七年级数学下册“三线八角”
七年级下册相交线——三线八角
![七年级下册相交线——三线八角](https://img.taocdn.com/s3/m/6fb0021b30126edb6f1aff00bed5b9f3f90f72b0.png)
知识点四、三线八角同位角:F内错角:Z同旁内角:U三线九角图:✓找出∠B的同位角✓找出∠B的内错角✓找出∠B的同旁内角三线12角1.如图,直线AB,CD被直线EF所截,则与∠1构成内错角的是()A.∠2B.∠3C.∠4D.∠5 2.如图,直线AB,CD被射线CE所截,与∠1构成同位角的是()A.∠2B.∠3C.∠4D.∠5 3.如图,与∠4是同旁内角的是()A.∠1B.∠2C.∠3D.∠5 4.如图,直线a、b被直线c所截,下列说法不正确的是()A.∠1与∠5是同位角B.∠2与∠4是对顶角C.∠3与∠6是同旁内角D.∠5与∠6互为余角5.如图所示同位角一共有对,分别是;内错角一共有对,分别是;同旁内角一共有对,分别是..6.如图,下列判断正确的是()A.∠1,∠2,∠6互为邻补角B.∠2与∠4是同位角C.∠3与∠6是同旁内角D.∠5与∠3是内错角7.如图根据图形填空:先描线、在判断(1)直线AB和CD被直线AC所截形成的内错角是;(2)直线AB和CD被直线BE所截形成的同位角是;(3)直线AD和BE被直线AB所截形成的同旁内角是;(4)∠3和∠6是直线和被直线所截形成的角;(5)∠2和∠6是直线和被直线所截形成的角.三角形的三个内角,互为同旁内角找出∠C的同旁内角,并指出是由哪两条直线被哪一条直线所截形成的?8.复杂的数学问题我们常会把它分解为基本问题来研究,化繁为简,化整为零这是一种常见的数学解题思想.(1)如图1,直线l1,l2被直线l3所截,在这个基本图形中,形成了对同旁内角.(2)如图2,平面内三条直线l1,l2,l3两两相交,交点分别为A、B、C,图中一共有对同旁内角.(3)平面内四条直线两两相交,最多可以形成对同旁内角.(4)平面内n条直线两两相交,最多可以形成对同旁内角.本节思维导图。
七年级数学《三线八角》课件
![七年级数学《三线八角》课件](https://img.taocdn.com/s3/m/7491cca3f71fb7360b4c2e3f5727a5e9856a27fc.png)
1 EE
AC
A
1 11 BBBB
1 CCBC
1 BC
C
注意:1的同旁内角有三个。
15
课堂小结:
1、正确识别同位角、内错角、同旁内角的关键 应准确找到什么?
(1)、首先要抓住“三条直线”,哪两条 直线被哪一条直线所截, (2)、在“截线”的同侧找同位角、同旁 内角;在截线的两侧找内错角
2、最近我们学习的关于两个角的六种关系 的角有__、__、__、__、__、__。
1 2
()
1
1 2
()
1
2 ()
2
()
5
观察 问题:2、观察∠3与∠5的位置关系
内错角:①在直线AB、CD的内侧
②在直线EF的两侧
E
21
B
A
34
65
3 5
C
78 D
∠4和∠6
Z型
F
6
观察 问题3:观察∠4与∠5的位置关系
同旁内角:①在直线AB、CD的内侧
②在直线EF的同侧
A C
E
21
B
34
65
78 D
2、在两个交点处形成几个角?这些角有哪 些与我们学过的有关?
截线
E
21
B
A
34
C
被截直线
65
78 D
F
3
观察 问题:1、观察∠1与∠5的位置关系
同位角:①在直线EF的同侧
②在直线AB、CD的同方向
E
21
B
1
A
34
65
5
C
78 D
F型
F ∠2和∠6;∠3和∠7;∠4和∠8
4
三线八角课件新课标人教版七年级下
![三线八角课件新课标人教版七年级下](https://img.taocdn.com/s3/m/7d7199ab534de518964bcf84b9d528ea81c72fa4.png)
教学案例三
案例内容:介绍 三线八角的基本 概念、性质和判 定方法
案例分析:通过 具体的教学案例, 分析三线八角在 几何中的应用和 解题思路
案例总结:总结 三线八角的教学 重点和难点,提 出教学建议和改 进措施
THANK YOU
汇报人:XX
汇报时间:20XX/XX/XX
教学目标
知识目标
掌握三线八角的 定义和性质
理解三线八角在 几何图形中的应 用
能够运用三线八 角的知识解决实 际问题
培养学生的空间 想象能力和逻辑 思维能力
能力目标
能够根据几何图形进行简单 的推理和证明
掌握三线八角的识别方法和 应用
培养学生的空间想象能力和 几何思维能力
提高学生解决实际问题的能 力和数学应用能力
重点与难点解析
重点:掌握三线八角的性质和应用 难点:理解三线八角在几何图形中的意义和作用 解析:通过实例和练习题,深入理解三线八角的性质和应用 总结:掌握三线八角是解决几何问题的重要基础
教学方法与手段
教学方法:直 观演示法、小 组讨论法、讲
授法
教学手段:多 媒体课件、实 物展示、教学
视频
强调实践操作, 注重学生动手
能力的培养
结合生活实例, 引导学生观察、 思考、解决问
题
教学资源
教材资源
教材内容:根据新课标要求,涵盖了数学、英语、物理等多个学科的 知识点,注重培养学生的综合素质和应用能力。
配套练习:每章节都配有相应的练习题,帮助学生巩固所学知识, 提高解题能力。
数字化资源:提供多媒体教学资源,如教学视频、PPT课件等,方便 教师进行教学和学生自主学习。
课件结构介绍
教学目标:明 确课程的教学 目标,为学生 提供清晰的学
苏教版七年级下册数学知识点总结
![苏教版七年级下册数学知识点总结](https://img.taocdn.com/s3/m/f2ef44b784868762caaed5d3.png)
第七章 平面图形的认识(二)一、知识点:1、“三线八角”① 如何由线找角:一看线,二看型。
同位角是“F ”型;内错角是“Z ”型;同旁内角是“U ”型。
② 如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
34、图形平移的性质:图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。
5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。
若三角形的三边分别为a 、b 、c ,则b a c b a +<<-6、三角形中的主要线段:三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。
8、多边形的内角和:n边形的内角和等于(n-2)•180°;任意多边形的外角和等于360°。
第八章幂的运算幂(power)指乘方运算的结果。
a n指将a自乘n次(n个a相乘)。
把a n看作乘方的结果,叫做a的n次幂。
对于任意底数a,b,当m,n为正整数时,有:am•a n=a m+n (同底数幂相乘,底数不变,指数相加)am÷a n=a m-n (同底数幂相除,底数不变,指数相减)(am)n=a mn (幂的乘方,底数不变,指数相乘)(ab)n=a n a n (积的乘方,把积的每一个因式乘方,再把所得的幂相乘)a0=1(a≠0) (任何不等于0的数的0次幂等于1)a-n=1/a n (a≠0) (任何不等于0 的数的-n次幂等于这个数的n次幂的倒数)科学记数法:把一个绝对值大于10(或者小于1)的整数记为a×10n的形式(其中1≤|a|<10),这种记数法叫做科学记数法.复习知识点:1.乘方的概念:a中,a 叫做底数,求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
七年级三线八角课件
![七年级三线八角课件](https://img.taocdn.com/s3/m/4ec30fe56e1aff00bed5b9f3f90f76c660374c5e.png)
课堂练习效果评价
详细描述
知识点覆盖程度
做题时间与速度
题目难度评价
01
02
总结词
通过观察学生的问题回答情况,教师可以及时发现学生在知识掌握上的不足和问题,以便及时采取措施进行补救。
详细描述
在七年级数学教学中,学生问题回答情况反馈可以从以下几个方面展开
教学目标
教学目标与要求
三线八角的定义及性质
02
在同一个平面内,不相交的两条直线互相平行。
三线的定义
平行线
当两条直线相交所成的四个角中,有一个角是直角时,两条直线互相垂直。
垂线
既不平行于第一条直线,也不垂直于第二条直线。
第三条线
内错角
在两个平行直线被第三条直线所截的情况下,处于被截直线之间,且分别位于截线的两侧的两个角。
同位角
在两个平行直线被第三条直线所截的情况下,处于被截直线同侧,且分别位于截线的同侧或异侧的两个角。
同旁内角
在两个平行直线被第三条直线所截的情况下,处于被截直线之间,且位于截线的同侧的两个角。
八角的定义
三线八角的基本性质
对顶角相等;等腰三角形两底角相等;三角形三个内角之和等于180度。
等量代换;等角代换;全等三角形的对应边相等,对应角相等。
两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
三线八角的应用与判定
03
在道路交叉口设置三线八角,用于指示车辆和行人安全行驶和停靠。
指示路标
宣传工具
装饰照明
企业或组织在宣传活动中使用三线八角作为标志,以突出自己的形象和品牌。
七年级数学下册_三线八角_课件
![七年级数学下册_三线八角_课件](https://img.taocdn.com/s3/m/4c0ab3bc81c758f5f71f6733.png)
同旁内角
∠3和∠6 ∠4和∠5
分别位于被截线的( 内 )侧,位 于截线的( 同 )侧。
2020/7/19
指出下列各图中所有的同位角、内错角、同旁内角。
a
b
b
c
6
5
c
2187
4 3
2 34
a
2020/7/19
直线DE、BC被AB所截。 1、∠1与∠2、∠1与∠3、∠1与∠4各是什么角? 2、如果∠1=∠4,
A
E1 3D
B2
4
FC
(2)若ED,BC被AF所截,
则∠3与_∠_4___是内错角。
2020/7/19
看图填空
A
E1 3D
B2
4
FC
(3)∠1与∠3是AB和AF被 __D_E__所截构成的__内__错___角。
2020/7/19
看图填空
A
E1 3D
B2
4
FC
(4)∠2与∠4是_A__B__和__A_F__被 BC所截构成的__同__位__角。
1
1
2
()
2020/7/19
2 ()
A
D
31
4
2
E
B
C
(1)∠1和∠2是直线(AD)和(CB )被(AC)所截,构成(内错)角.
(2)∠3和∠4是直线( AB )和(DC)被( AC )所截,构( 内错角)。
(3)∠BAD与∠D是直线( AB ) 和(DC) 被(AD) 所截,构成
( 同旁内角 )。
(4)∠2与∠4是_同__位___角。
2020/7/19
∠1与哪个角是内错角,与哪个角是同旁 内角?它们分别是哪两条直线被哪一条直 线所截形成的?∠2呢?
第六课时 第二章三线八角
![第六课时 第二章三线八角](https://img.taocdn.com/s3/m/860bc157ad02de80d4d8404d.png)
三线八角三线八角(同位角、内错角、同旁内角)的概念: 如图:两条直线a1 , a2和第三条直线a3相交。
(或者说:直线 a1 , a2 被直线 a3 所截。
)a1a2a3876543211. 观察∠ 1与∠5的位置:它们都在第三条直线 a3 的同旁,并且分别位于直线 a1 , a2 的相同一侧,这样的一对角叫做“同位角”。
2. 观察∠ 3与∠5的位置:它们都在第三条直线 a3 的异侧,并且都位于两条直线 a1 , a2 之间,这样的一对角叫做“内错角”。
3. 观察∠ 2与∠5的位置:它们都在第三条直线 a3 的同旁,并且都位于两条直线 a1 , a2 之间,这样的一对角叫做“同旁内角”。
知识整理(反思):问题1.你觉得应该按怎样的步骤在“三线八角”中确定关系角?确定前提(三线) 寻找构成的角(八角) 确定构成角中的关系角问题2:在下面同位角、内错角、同旁内角中任选一对,请你看看这对角的四条边与“前提”中的“三线”有什么关系?结论:两个角的在同一直线上的边所在直线就是前提中的第三线。
【典型例题】例1:如图:请指出图中的同旁内角。
(提示:请仔细读题、认真看图。
)87654321ABCDE练习:1. 其中:∠1与∠5 ;∠4与∠6是直线 和直线 被直线 所截得到的同旁内角。
此时三线构成了 个角。
此时,同位角有: ,内错角有: 。
2.其中: ∠1与∠A 是直线 和直线 被直线 所截得到的同旁内角。
此时三线构a1a2a387654321成了 个角。
此时,同位角有: ,内错角有: 。
3.其中: ∠5与∠A 是直线 和直线 被直线 所截得到的同旁内角。
此时三线构成了 个角。
此时,同位角有: ,内错角有: 。
二.练习 1.看图填空:4321ABCF E D(1)若ED ,BC 被AB 所截,则∠1与 是同位角。
(2)若ED ,BC 被AF 所截,则∠3与 是内错角。
(3)∠1 与∠3是AB 和AF 被 所截构成的 角。
七年级三线八角课件
![七年级三线八角课件](https://img.taocdn.com/s3/m/cf3c8c644a35eefdc8d376eeaeaad1f34793117f.png)
02
三线八角的定义和定理
三线八角的定义
七年级数学中,三线八角是常 见的几何概念。
三线八角是指在一个平面内, 有三条直线相交于一点,而每 两条相交的直线都会形成一对 邻补角。
这些角的大小可以用于描述和 证明一些几何关系和定理。
例题二:稍复杂的三线八角问题
总结词
这道例题将三线八角的概念引入到稍微复杂一些的情境中,通过观察和计算,学生可以进一步了解三线八角的 性质和应用。
详细描述
本题以一个稍复杂的图形为例,让学生找出图中所有的三线八角,并比较它们的大小。通过这种形式的题目, 学生可以进一步了解三线八角的性质和应用,为后续的学习打下基础。同时,通过让学生计算两条平行线之间 的距离,可以培养学生的计算能力。
05
三线八角的练习题
练习题一:基础题
总结词
简单基础,涉及知识点较少。
详细描述
本题主要考察学生对三线八角基本概念的理解,包括同位角 、内错角、同旁内角等。学生需根据这些概念判断哪些是同 位角、内错角或同旁内角。
练习题二:提高题
总结词
难度适中,涉及知识点较多。
VS
详细描述
本题不仅要求学生掌握三线八角的基本概 念,还需要理解角之间的位置关系,如平 行线的性质、垂直的定义等。学生需通过 分析图形中的角的位置关系,得出正确答 案。
举例
在三线八角中,如果我们已知两个角分别等于90度和45度,那么我们 可以直接推导出第三个角等于45度。
证明方法二:反证法
总结词
反证法是一种间接证明方法,通过假设相反的结论成立 ,然后推导出矛盾的结论,从而证明原命题的正确性。
七年级三线八角课件
![七年级三线八角课件](https://img.taocdn.com/s3/m/18b426092a160b4e767f5acfa1c7aa00b42a9d61.png)
02
主题重要性
学习目标
掌握三线八角的定义、性质及判定方法。 能够准确绘制三线八角的基本图形。 能够解决与三线八角相关的几何问题。
02
三线八角基本概念
直线的基本定义
01
02
直线是笔直的、无端点的线,它可以向两个方向无限延伸。在直线上 ,任意两点之间可以确定一条直线。
直线的表示方法:可以用一个小写字母表示一条直线,如“l”,也 可以用两个大写字母表示两条直线,如“AB”。
对角线的性质
对角线把多边形分成几个 三角形,这些三角形是全 等的。
对角线的判定
在四边形ABCD中,如果 AC和BD互相平分,那么 四边形ABCD是平行四边 形。
07
复习与总结
重点知识回顾
角的定义
角是由两条射线或线段共享一个 端点而形成的图形,这个端点叫 做角的顶点,两条射线或线段叫
做角的两边。
角的度量
同位角的性质:两直线平行,同位角相等。
三线八角的性质
内错角的定义及性质
两个角分别在截线的两侧,且夹在两被截线之间,这样的一对角称为内 错角。
内错角的性质:两直线平行,内错角相等。
三线八角的性质
同旁内角的定义及性质 两个角都在截线的同一侧,并且夹在两被截线之间,这样的一对角称为同旁内角。
同旁内角的性质:两直线平行,同旁内角互补。
垂直线的性质证明
垂直线的性质定理
如果一条直线垂直于一个平面,那么 这条直线垂直于该平面上任意一条直 线。
证明过程
通过构造垂线,利用垂线的定义和三 角形的高来进行证明。
对角线的性质证明
对角线的性质定理
在一个n边形中,从任一个顶点出发的对角线有(n-3)条。
数学人教版七年级下册5.1.3 三线八角
![数学人教版七年级下册5.1.3 三线八角](https://img.taocdn.com/s3/m/7a8635b66bec0975f465e2ed.png)
§5.1.3 三线八角学习目标:1.了解同位角、内错角、同旁内角的概念.2.通过在图形中识别同位角、内错角、同旁内角,提高识图能力,体会分类的思想.学习重点:同位角、内错角、同旁内角的识别.学习难点:能准确在各种变式的图形中找出这三类角.教学准备:师:课件、画图工具;生:画图工具、练习册等教学过程:1.课前检测已知,如图1,三角形ABC 中,∠C=90°.(1)分别指出点A 到直线BC ,点B 到直线AC 的距离是哪些线段的长?(2)三条边AB ,AC ,BC 中哪条边最长?为什么?生:独立思考,班内交流2.探索与思考:问题1:我们知道,两条直线相交形成4个角.如图2,直线AB 与EF 相交,你能说出其中的对顶角与邻补角吗?生:独立完成,班内交流(口答)问题2:三条直线相交可以分为哪些情况?你能画图说明吗?生:独立完成,4人小组内交流后班内展示师:巡视并参与、指导学生活动,后组织学生在班内展示交流;后结合课件讲解,提出“三线八角”,分类思想.问题3:观察图3中的∠1和∠5,它们具有怎样的位置关系?生:观察、思考 2.自主学习:学习教材P6,思考:1.什么是同位角、内错角、同旁内角?2.找出图3中的同位角、内错角、同旁内角.3.这些角都是哪两条直线被哪条直线所截?生:自主学习,4人小组内交流讨论,班内交流师:巡视并指导、参与学生小组讨论(重点指导学生找到截线);学生交流后结合课件以同位角为例讲解怎样识别.3.自主练习:1.如图4所示,∠1与∠2是____角,是直线___和直线___•被直线____所截而形成的,∠1与∠3是_____角,是直线____和直线___•被直线_____所截而形成的,∠3与∠2是____角,是直线_____和直线____•被直线___所截而形成的.2.分别指出下列图4-5中的同位角、内错角、同旁内角.图1 图2 图3 图4 c图5 654321c b a 图4生:独立完成,同伴互评.4.典例分析:例.如图6,直线DE 、BC 被直线AB 所截,(1)∠l 与∠2,∠1与∠3,∠1与∠4各是什么关系的角?(2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?师生共同分析,生独立书写,4人小组内讨论互评,师课件板书示范.5.小结与反思:今天我的收获是_______________我的困惑是________________ 6.作业:(1)教科书 习题5.1 第11题,复习题5 第7题(2)预习:教科书P 11-12 5.2.1平行线.教学反思:1.概念辨析不够,应多增加变式,如: (1)教师给出一对角,让学生说出是什么位置关系;(2)找出指定角的同位角、内错角、同旁内角等.2.例题书写很不规范,如忘把已知写入解答过程、书写顺序混乱等。
2.2同位角、内错角、同旁内角(三线八角)-北师大版七年级数学下册(教案)
![2.2同位角、内错角、同旁内角(三线八角)-北师大版七年级数学下册(教案)](https://img.taocdn.com/s3/m/c8ec227dae45b307e87101f69e3143323968f5b0.png)
学生小组讨论环节,我尽量扮演好引导者的角色,让学生在探讨中自己发现问题、解决问题。但从成果分享来看,部分学生的思考深度仍有待提高。为了激发学生的思考,我决定在下一节课增加一些开放性问题,引导学生从多角度分析问题,培养他们的逻辑思维能力。
2.2同位角、内错角、同旁内角(三线八角)-北师大版七年级数学下册(教案)
一、教学内容
2.2同位角、内错角、同旁内角(三线八角)-北师大版七年级数学下册(教案)
本节课,我们将深入学习以下内容:
1.同位角的定义及性质;
2.内错角的定义及性质;
3.同旁内角的定义及性质;
4.三线八角的关系及其应用。
-能够识别并画出同位角、内错角、同旁内角;
3.增强学生的数学抽象能力,使学生能从具体的几何图形中抽象出同位角、内错角、同旁内角的数学概念,形成数学模型;
4.培养学生的数学应用意识,将所学知识应用于解决实际问题,体会数学在生活中的价值。
这些目标旨在帮助学生深入理解几何图形的基本概念,提高学生的数学思维品质,为后续学习打下坚实基础。
三、教学难点与重点
(2)难点突破:通过举例和练习,让学生在实际问题中学会找出三线八角的关系。如给出一个图形,要求学生找出所有的同位角、内错角、同旁内角,并说明它们之间的关系。
(3)难点应用:在几何证明中,引导学生运用三线八角关系进行推理。例如,在证明两个三角形全等时,通过证明它们的一对同位角、一对内错角和一对同旁内角分别相等,从而得出两个三角形全等的结论。
七年级数学下册《三线八角》教案、教学设计
![七年级数学下册《三线八角》教案、教学设计](https://img.taocdn.com/s3/m/80cbb78c185f312b3169a45177232f60dccce763.png)
设计富有层次的练习题,让学生在实际操作中巩固所学知识。针对学生的个体差异,实施分层教学,使每个学生都能在原有基础上得到提高。
5.总结反思,拓展延伸
在课堂总结环节,引导学生对所学知识进行梳理,总结三线八角性质的关键点。同时,提出具有挑战性的拓展问题,激发学生的思维,为后续学习奠定基础。
教师设计具有挑战性的问题,引导学生进行自主探究,发现三线八角性质的规律。在此基础上,组织学生进行小组合作交流,分享彼此的发现,互相学习,共同提高。
3.案例解析,深入理解
教师选取具有代表性的例题,进行详细讲解,引导学生通过分析、归纳、总结,掌握三线八角性质的运用。同时,注重培养学生的几何直观,使他们能够运用所学知识解决实际问题。
1.充分了解学生的知识背景,针对学生的个体差异,进行有针对性的教学。
2.注重启发式教学,通过生动形象的语言和直观的教具演示,降低学生对三线八角概念的理解难度。
3.强调几何直观,引导学生通过观察、猜想、验证等方法,发现三线八角性质的规律。
4.注重培养学生的几何逻辑思维,使他们能够运用所学知识解决实际问题。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法引导学生学习:
1.采用直观演示法,通过生动的实物、模型等展示三线八角的特点,激发学生的学习兴趣。
2.运用任务驱动法,设计富有挑战性的问题,引导学生主动探究、发现三线八角的相关性质。
3.利用小组合作学习法,让学生在讨论、交流中互相学习,培养团队协作能力。
3.揭示课题:“今天我们要学习的是三线八角,它在我们生活中有着广泛的应用,让我们一起探索其中的奥秘。”
(二)讲授新知
在这一环节,我将按照以下步骤进行讲授:
1.讲解三线八角的概念,让学生明确三线八角是由三条线段和四个角组成的几何图形。
七年级数学三线八角知识点
![七年级数学三线八角知识点](https://img.taocdn.com/s3/m/9f6da0c4900ef12d2af90242a8956bec0875a57b.png)
七年级数学三线八角知识点三线八角是中学数学中常见的一个知识点,也是七年级数学中必须掌握的重点内容。
在这份文章中,我们将详细介绍三线八角的定义、性质以及解题技巧。
一、定义三线八角,顾名思义,就是由三条直线和八个角所组成的图形,如图1所示。
图1其中三条直线相交于一点O,八个角分别为∠AOC、∠AOB、∠BOD、∠EOC、∠EOF、∠FOG、∠GOH和∠BOH,且每两条直线之间的夹角均相等。
二、性质1.每一对相邻的外角互补,即∠AOC+∠BOD+∠EOF+∠GOH=180°。
2.每一对相邻的内角互补,即∠AOB+∠BOH+∠EOC+∠FOG=180°。
3.相邻的外角与其对应的内角互补,即∠AOC+∠EOC=∠AOB+∠BOH=∠BOD+∠FOG=∠EOF+∠GOH =180°。
三、解题技巧对于三线八角的解题,主要是应用它的性质进行推导和运用。
以例题为例:例1 在图2中,∠AOB=30°,∠EOC=110°,则∠BOD和∠EOF的和为多少度?图2解:由三线八角的性质可知,∠AOB+∠BOH+∠EOC+∠FOG=180°。
则∠BOH+∠FOG=180°-∠AOB-∠EOC=180°-30°-110°=40°。
而∠BOD+∠EOF=(180°-∠AOC)÷2+(180°-∠EOC)÷2=(180°-∠BOH)÷2+(180°-∠FOG)÷2=80°。
因此,∠BOD和∠EOF的和为80°。
例2 在图3中,AB//CD,∠BAE=55°,∠CFE=40°,则∠BEF 为多少度?图3解:由三线八角的性质可知,∠AOC+∠EOC=∠AOB+∠BOH=∠BOD+∠FOG=∠EOF+∠GOH =180°。
人教版七年级数学下册第五章《 三线八角》优课件
![人教版七年级数学下册第五章《 三线八角》优课件](https://img.taocdn.com/s3/m/f5afdf13df80d4d8d15abe23482fb4daa48d1d41.png)
CA
1 4
E5 B6 7
23 F D
∠5与∠2是一对 同位 角;
∠2与∠7是一对 内错 角.
先找截线,
(3)∠3和∠4是直线 AB 和直线 EF 被直线 CD 所截得的内错角;
紧抓图形结构特 征(F、Z、U)
∠4和∠7是直线 CD 和直线 EF 被直线 AB 所截得的 同位 角;
谢谢观赏
You made my day!
三线八角
课标引路
知识梳理
平面上两直线被一直 线所截,得到八个角, 称为“三线八角”.
1.同位角
观位察于:直∠线1l的和同∠侧5 ,同时位于直线a、b的同一方, 对这于样直的线一l对来角说是,同∠位1角和.∠5位于 直线l的同侧 , 对于直线a、b来说, ∠1和∠5位于 直线a、b的上方 ,
图2.中内还错有角几对同位角?分别是什么?
l
12
b
43
a
56 87
观位察于:直∠线3l的和两∠侧5 ,同时夹在直线a、b之间,这样 对的于一直对线角l是来内说错,角∠. 3和∠5位于 直线l的两侧 ,
3对图.于中同直还旁线有内a、几角b对来说内,错∠角3?和分∠别5位是于什位么于?直线a、b之间 ,
位观于察直:线∠l4的和两∠同5 侧,同时夹在直线a、b之间,这 样对的于一直对线角l来是说同,旁∠内4角和.∠5位于 直线l的同侧 ,
∠2和∠4是直线 AB 和直线 EF 被直线 CD 所截得的 同旁内角.
指点迷津
重点: 同位角
内错角 同旁 内角
位置关系
在两被截直线的同一方 在截线的同一侧 位置相同
在两被截直线的内部 在截线的两侧 内部交错
七年级下册三线八角知识点
![七年级下册三线八角知识点](https://img.taocdn.com/s3/m/0df3d9742f3f5727a5e9856a561252d380eb20af.png)
七年级下册三线八角知识点作为初中数学的一部分,我们每逢新学期便要学习新的知识点。
七年级下册中,三线八角是其中的重点之一。
下面,我将详细介绍三线八角的知识点,希望对同学们的学习有所帮助。
一、三线所谓三线,顾名思义,就是指画在一个平面内的三条直线。
根据它们之间的位置关系,三线可以分为三种情况:1.三线相交于同一点,形成一个点的图形这种情况下,这个点就是三线的交点。
2.三线两两平行,形成四个顶点的图形这种情况下,四个顶点所组成的图形就是叫做平行四边形。
3.两条线段之间有一条线段相交,形成五个顶点的图形这个五个顶点所组成的图形就叫做梯形。
二、八角八角是指一个图形有八个角。
根据八个角的大小和位置关系,八角可分为以下三种情况:1.所有的角都是直角这种情况下,这个图形就是正八边形。
2.四个相邻的角为锐角,其余四个为钝角这种情况下,这个图形就是凸八边形。
3.四个相邻的角为钝角,其余四个为锐角这种情况下,这个图形就是凹八边形。
三、三线八角有了三线和八角的概念,我们就可以进入到三线八角的知识点了。
所谓三线八角,就是指三条线段相互连接形成的八角形图形。
三线八角的特点在于,1.三条线段之间是相互平行或相交的。
2.三线八角的八个角中可以有直角、钝角或者锐角。
3.三线八角可以是凸的(四个相邻的角为锐角,其余四个为钝角)或凹的(四个相邻的角为钝角,其余四个为锐角)。
常见的三线八角有以下几种类型:1.梯形梯形是三线八角中最基础的一个类型。
它由两个平行线段和相连省略号号线段组成。
它的特点是有两个对边平行,而且对角线长度不同。
2.平行四边形平行四边形也是一种非常基础的三线八角图形。
它的特点是四边对边平行且长度相同,而且有四个顶点。
3.菱形菱形同样是三线八角中的一种特殊图形,它是一种同时满足平行四边形和正八边形的要求的八角形,其四个边所对的角相等,且都是直角,所以四个角度数相等。
四、总结三线八角是初中数学中的一个基础知识点,对我们以后学习的数学知识和图形知识都有很大的帮助。
数学七年级下册三线八角
![数学七年级下册三线八角](https://img.taocdn.com/s3/m/33bcb45242323968011ca300a6c30c225901f0fc.png)
数学七年级下册三线八角一、三线八角的概念。
1. 三线。
- 在平面内,两条直线被第三条直线所截,这里的三条直线就简称为“三线”。
例如直线a、b被直线c所截,直线a、b是被截直线,直线c是截线。
2. 八角。
- 这三条直线相交形成八个角。
根据角的位置关系,可以分为同位角、内错角和同旁内角。
- 以直线a、b被直线c所截为例:- 同位角:在截线c的同侧,并且在被截直线a、b的同一方的两个角。
例如∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8都是同位角。
同位角的形状像字母“F”(可以是倒置、斜置等情况)。
- 内错角:在截线c的两侧,并且在被截直线a、b之间的两个角。
如∠3与∠5,∠4与∠6是内错角。
内错角的形状像字母“Z”(同样可以有不同的放置角度)。
- 同旁内角:在截线c的同侧,并且在被截直线a、b之间的两个角。
像∠3与∠6,∠4与∠5是同旁内角。
同旁内角的形状像字母“U”(也会有不同的摆放形式)。
二、三线八角的识别方法。
1. 先找截线。
- 在复杂的图形中,要准确识别三线八角,首先要确定哪条是截线。
截线是与另外两条直线都相交的直线。
例如在一个三角形和一条直线相交的图形中,如果我们要研究三角形的两条边与这条直线所形成的角的关系,这条直线就是截线。
2. 再根据位置确定角的类型。
- 确定截线后,观察角相对于被截直线和截线的位置。
- 如果角在截线同侧且在被截直线同一方,就是同位角;如果在截线两侧且在被截直线之间,就是内错角;如果在截线同侧且在被截直线之间,就是同旁内角。
三、三线八角的性质在解题中的应用。
1. 平行线下的三线八角性质。
- 如果两条被截直线平行(假设a∥ b,被直线c所截):- 同位角相等,即∠1=∠5,∠2 = ∠6,∠3=∠7,∠4=∠8。
- 内错角相等,∠3=∠5,∠4=∠6。
- 同旁内角互补,∠3+∠6 = 180^∘,∠4+∠5=180^∘。
- 这些性质可以用来求解角的度数。
例如已知a∥ b,∠1 = 70^∘,求∠5的度数。
七年级数学下册“三线八角”
![七年级数学下册“三线八角”](https://img.taocdn.com/s3/m/587331e1ba1aa8114531d996.png)
浅谈“三线八角”我们把同位角、内错角、同旁内角统称为“三种角”,下面根据它们的定义,谈谈识别这“三种角”的方法,供大家学习时参考.图7-1如图7-1:第一条直线a 与第二条直线b (简称两条直线a 、b )被第三条直线l 所截(简称截线l )截得8个角(简称“三线八角”).图7-1中除有对顶角、邻补角外(具体的是哪些角请读者自己写出),还有这样的三组角:第一组角是∠1与∠5、∠2与∠6、∠3与∠8、∠4与∠7; 第二组角是∠2与∠7、∠3与∠5; 第三组角是∠2与∠5、∠3与∠7.我们不难观察发现,这三组角都有一个共同的特点,这就是没有公共顶点且都有一条边在截线上.第一组角是同位角,它们分别在两直线的同侧且在截线的同旁. 第二组角是内错角,它们分别在两直线之间且在截线的两旁. 第三组角是同旁内角,它们分别在两直线之间且在截线的同旁.识别“三种角”的关键是:先要看同一对角是由哪两条直线被哪条直线截得的;然后再由它们的位置关系来判断.下面举例加以说明: 问题:如图7-2,找出图中的“三种角”.第一条直线a第二条直线bl1 24 35 6 78图7-2分析:(1)两直线AC 、AD 被直线EF 所截,同位角有∠1与∠3、∠2与∠6;内错角有∠2与∠4;同旁内角有∠2与∠3.(2)两直线AC 、CE 被直线AD 所截,同位角有∠A 与∠4;内错角有∠A 与∠6;同旁内角有∠A 与∠3.(3)两直线AB 、BC 被直线AC 所截,同位角没有;内错角有∠A 与∠1;同旁内角有∠A 与∠2. 由同学完成下面练习题:图7-3如图7-3:指出图中的同位角有______对;内错角有______对;同旁内角有______对.1234 5 6F C AEDB。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈“三线八角”
我们把同位角、内错角、同旁内角统称为“三种角”,下面根据它们的定义,谈谈识别这“三种角”的方法,供大家学习时参考.
图7-1
如图7-1:第一条直线a 与第二条直线b (简称两条直线a 、b )被第三条直线l 所截(简称截线l )截得8个角(简称“三线八角”).
图7-1中除有对顶角、邻补角外(具体的是哪些角请读者自己写出),还有这样的三组角:
第一组角是∠1与∠5、∠2与∠6、∠3与∠8、∠4与∠7; 第二组角是∠2与∠7、∠3与∠5; 第三组角是∠2与∠5、∠3与∠7.
我们不难观察发现,这三组角都有一个共同的特点,这就是没有公共顶点且都有一条边在截线上.
第一组角是同位角,它们分别在两直线的同侧且在截线的同旁. 第二组角是内错角,它们分别在两直线之间且在截线的两旁. 第三组角是同旁内角,它们分别在两直线之间且在截线的同旁.
识别“三种角”的关键是:先要看同一对角是由哪两条直线被哪条直线截得的;然后再由它们的位置关系来判断.下面举例加以说明: 问题:如图7-2,找出图中的“三种角”.
第一条直线a
第二条直线b
l
1 2
4 3
5 6 7
8
图7-2
分析:(1)两直线AC 、AD 被直线EF 所截,同位角有∠1与∠3、∠2与∠6;内错角有∠2与∠4;同旁内角有∠2与∠3.
(2)两直线AC 、CE 被直线AD 所截,同位角有∠A 与∠4;内错角有∠A 与∠6;同旁内角有∠A 与∠3.
(3)两直线AB 、BC 被直线AC 所截,同位角没有;内错角有∠A 与∠1;同旁内角有∠A 与∠2. 由同学完成下面练习题:
图7-3
如图7-3:指出图中的同位角有______对;内错角有______对;同旁内角有______对.
1
2
3
4 5 6
F C A
E
D
B。