机器振动特征分析(2)轴承
机械振动故障及其特征频谱
机械振动故障及其特征频谱15类常见的振动故障及其特征频谱:不平衡、不对中、偏心转子、弯曲轴、机械松动、转子摩擦、共振、皮带和皮带轮、流体动力激振、拍振、偏心转子、电机、齿轮故障、滚动轴承、滑动轴承。
一、不平衡不平衡故障症状特征:◎振动主频率等于转子转速◎径向振动占优势◎振动相位稳定◎振动随转速平方变化◎振动相位偏移方向与测量方向成正比1、力偶不平衡力偶不平衡症状特征:◎同一轴上相位差180°◎存在1X转速频率而且占优势◎振动幅值随提高的转速的平方变化◎可能引起很大的轴向及径向振动幅值◎动平衡需要在两个修正面内修正2、悬臂转子不平衡悬臂转子不平衡症状特征:◎径向和轴向方向存在1X转速频率◎轴向方向读数同相位,但是径向方向读数可能不稳定◎悬臂转子经常存在力不平衡和力偶不平衡两者,所以都需要修正二、不对中1、角向不对中角向不对中症状特征:◎特征是轴向振动大◎联轴器两侧振动相位差180°◎典型地为1X和2X转速大的轴向振动◎通常不是1X,2X或3X转速频率占优势◎症状可指示联轴器故障2、平行不对中平行不对中症状特征:◎大的径向方向相位差180°的振动严重不对中时,产生高次谐波频率◎2X转速幅值往往大于1X转速幅值,类似于角向不对中的症状◎联轴器的设计可能影响振动频谱形状和幅值3、装斜的滚动轴承装斜的滚动轴承症状特征:◎振动症状类似于角向不对中◎试图重新对中联轴器或动平衡转子不能解决问题◎产生相位偏移约180°的侧面◎对侧面或顶部对底部的扭动运动三、偏心转子偏心转子症状特征:◎在转子中心连线方向上最大的1X转速频率振动◎相对相位差为0°或180°◎试图动平衡将使一个方向的振动幅值减小,但是另一个方向振动可能增大四、弯曲轴弯曲轴症状特征:◎弯曲的轴产生大的轴向振动◎如果弯曲接近轴的跨度中心,则1X转速频率占优势◎如果弯曲接近轴的跨度两端,则2X转速频率占优势◎轴向方向的相位差趋向180°五、机械松动1、机械松动(A)机械松动(A)症状特征:◎机器底脚结构松动引起的◎基础变形将产生“软底脚”问题◎相位分析将揭示机器的底板部件之间垂直方向相位差约180°2、机械松动(B)机械松动(B)症状特征:◎由地脚螺栓松动引起的◎可能产生0.5X、1X、2X和3X转速频率振动时,由裂纹的结构或轴承座引起的3、机械松动(C)机械松动(C)症状特征:◎相位经常是不稳定的◎将产生许多谐波频率六、转子摩擦转子摩擦症状特征◎振动频谱类似于机械松动◎通常产生一系列可能激起自激振动的频率◎可能出现转速的亚谐波频率振动◎摩擦可能是部分圆周或整圆周的七、共振共振症状特征:◎当强迫振动频率与自振频率一致时,出现共振◎轴通过共振时,相位改变180°,系统处于共振状态时,将产生大幅值的振动八、皮带和皮带轮1、皮带共振皮带共振症状特征:◎如果皮带自振频率与驱动转速或被驱动转速频率一致,则可能出现大幅值的振动◎改变皮带张力可能改变皮带的自振频率2、皮带磨损、松动或不匹配皮带磨损、松动或不匹配症状特征:◎往往2X转速频率占优势◎振动幅值往往是不稳定的,有时是脉冲、频率或是驱动转速频率,或是被驱动转速频率◎齿形皮带磨损或不对中,将产生齿轮皮带频率大幅值的振动◎皮带振动频率低于驱动转速或被驱动转速频率3、偏心皮带轮偏心皮带轮症状特征:◎偏心或不平衡的皮带轮,将产生1x转速频率的大幅值的皮带轮振动◎在皮带一致方向上的振动幅值最大◎试图动平衡偏心皮带轮要谨慎4、皮带/皮带轮不对中皮带/皮带轮不对中症状特征:◎皮带轮不对中将产生1X转速频率的大幅值的轴向振动◎电动机上振动幅值最大的往往是风机转速频率九、流体动力激振1、叶片通过频率流体动力激振症状特征:◎如果叶片与壳体之间的间隙不均匀,叶片通过频率(BPF)振动的幅值可能很高◎如果摩擦环卡在轴上,可能产生高幅值的叶片通过频率(BPF)振动◎偏心的转子可能产生幅值过大的叶片通过频率(BPF)振动2、流体紊流流体紊流症状特征:◎在风机中,由于流道内气流的压力变化或速度变化,往往会出现气流紊流流动◎将产生随机的,可能在0到30赫兹频率范围的低频振动3、气穴气穴症状特征:◎气穴将产生随机的,叠加在叶片通过频率(BPF)上的高频宽带能量振动◎通常说明进口压力不当◎如果任凭气穴现象存在,将可能导致叶轮的叶片腐蚀和泵壳体腐蚀◎声音听起来像砂石经过泵的声音十、拍振拍振症状特征:◎拍振是两个频率非常接近的振动同相位和反相位合成的结果◎宽带谱将显示为一个尖峰上下,波动本身在宽带谱上存在两个尖峰的频率之差就是拍频十一、偏心转子◎电源频率FL(中国为50赫兹=3000转/分)◎极数P◎转子条通过频率Fb=转子条数*转子转速◎同步转速NS=2XFL/P◎滑差频率FS=同步转速-转子转速1、定子偏心、绝缘短路和铁芯松动定子偏心、绝缘短路和铁芯松动症状特征:◎定子问题产生高幅值的电源频率,二倍(2FL)电磁振动◎定子偏心产生不均匀的气隙,其振动的单向性非常明显◎软底脚可能导致定子偏心2、同步电动机同步电动机症状特征:◎同步电动机的定子线圈松动产生◎高幅值的线圈通过频率振动◎线圈通过频率两侧将伴随1X转速频率的边带3、电源相位故障电源相位故障症状特征:◎相位问题将引起二倍电源频率◎(2FL)伴有(1/3)FL的边带◎如果不修正电源故障,二倍电源频率(2FL)的电磁振动幅值可能超过25毫米/秒峰值◎如果电源接头局部故障只是偶尔接触故障4、偏心转子偏心转子症状特征:◎偏心转子产生旋转的、可变的气隙,它产生脉冲振动◎经常要求进行细化谱分析,以分离二倍电源频率(2F)与旋转转速的谐波频率5、转子断条转子断条症状特征:◎旋转转速及其谐波频率两侧伴随极通过频率(Fp)边带说明转子断条故障◎在转子条通过频率(RBPF)两侧,伴随二倍电源频率(2FL)边带说明转子条松动◎往往是转子条通过频率(RBPF)的二倍(2XRBPF)和三倍(3XRBPF)幅值很高,而转子条通过频率(RBPF)的基频(1XRBPF)的幅值很小十二、直流电机直流电动机故障症状特征:◎利用可控硅整流器频率(SCR)高于正常的幅值可检测直流电动机故障◎这些故障包括:绕组线圈断裂,保险丝和控制板故障,可产生1X 到5X电源频率的高幅值振动十三、齿轮故障正常状态频谱:◎正常状态频谱显示1X和2X转速频率和齿轮啮合频率GMF◎齿轮啮合频率GMF通常伴有旋转转速频率边带◎所有的振动尖峰的幅值都较低,没有自振频率1、齿载荷的影响齿载荷的影响症状特征:◎齿轮啮合频率往往对载荷很敏感◎高幅值的齿轮啮合频率GMF未必说明齿轮有故障◎每次分析都应该在最大载荷下进行2齿磨损齿磨损症状特征:◎激起自振频率同时伴有磨损齿轮的1X转速频率的边带说明齿磨损◎边带是比齿轮啮合频率GMF更好的磨损指示◎当齿轮的齿磨损时齿轮啮合频率的幅值可能不变3、齿轮偏心和侧隙游移齿轮偏心和侧隙游移症状特征:◎齿轮啮合频率GMF两侧较高幅值的边带说明,齿轮偏心侧隙游移和齿轮轴不平行◎有故障的齿轮将调制边带◎不正常的侧隙游移通常将激起齿轮自振频率振动4、齿轮不对中齿轮不对中症状特征:◎齿轮不对中总是激起二阶或更高阶的齿轮啮合频率的谐波频率,并伴有旋转转速频率边带◎齿轮啮合频率基频(1XGMF)的幅值较小,而2X和3X齿轮啮合频率的幅值较高◎为了捕捉至少2XGMF频率,设置足够高的最高分析频率Fmax很重要5、断齿/裂齿断齿/裂齿症状特征:◎断齿或裂齿将产生该齿轮的1X转速频率的高幅值的振动◎它将激起自振频率振动,并且在其两侧伴有旋转转速基频边带◎利用时域波形最佳指示断齿或裂齿故障◎两个脉冲之间的时间间隔就是1X转速的倒数6、齿磨损摆动的齿症状特征:◎摆动的齿轮的振动是低频振动,经常忽略它十四、滚动轴承1、滚动轴承故障发展的第一阶段滚动轴承故障发展的第一阶段症状特征:◎超声波频率范围(>250K赫兹)内的最早的指示,利用振动加速度包络技术(振动尖峰能量gSE)可最好地评定频谱2、滚动轴承故障发展的第二阶段滚动轴承故障发展的第二阶段症状特征:◎轻微的故障激起滚动轴承部件的自振频率振动◎故障频率出现在500-2000赫兹范围内◎在滚动轴承故障发展第二阶段的末端,在自振频率的左右两侧出现边带频率3、滚动轴承故障发展的第三阶段滚动轴承故障发展的第三阶段症状特征:◎出现滚动轴承故障频率及其谐波频率◎随着磨损严重出现故障频率的许多谐波频率,边带数也增多◎在此阶段,磨损可以用肉眼看见,并环绕轴承的圆周方向扩展4、滚动轴承故障发展的第四阶段滚动轴承故障发展的第四阶段症状特征:◎离散的滚动轴承故障频率消失,被噪声地平形式的宽带随机振动取代之◎朝此阶段末端发展,甚至影响1X转速频率的幅值◎事实上,高频噪声地平的幅值和总量幅值可能反而减小十五、滑动轴承1、油膜振荡不稳定性油膜振荡症状特征:◎如果机器在2X转子临界转速下运转,可能出现油膜振荡◎当转子升速到转子第二阶临界转速时,油膜涡动接近转子临界转速,过大的振动将使油膜不能支承轴◎油膜振荡频率将锁定在转子的临界转速。
《谐波法电机轴承故障诊断技术研究》范文
《谐波法电机轴承故障诊断技术研究》篇一一、引言随着工业自动化和智能化水平的不断提高,电机作为各种机械设备的重要驱动力源,其运行状态直接关系到整个生产线的效率和安全。
其中,电机轴承的故障诊断对于预防电机故障和保证设备正常运行至关重要。
本文针对谐波法在电机轴承故障诊断领域的应用展开研究,以期提高电机轴承故障诊断的准确性和效率。
二、谐波法的基本原理谐波法是一种基于信号处理和频谱分析的故障诊断方法。
在电机轴承运行过程中,由于轴承的磨损、裂纹、异物侵入等故障,会导致电机振动信号发生变化。
这些变化可以通过安装在电机上的传感器进行捕捉和记录。
谐波法通过分析这些振动信号的频谱特征,提取出与轴承故障相关的谐波成分,从而实现对轴承故障的诊断。
三、谐波法在电机轴承故障诊断中的应用1. 信号采集与处理:首先,通过安装在电机上的传感器采集振动信号。
这些信号包含了电机轴承运行状态的各种信息。
然后,利用信号处理技术对采集到的信号进行滤波、去噪等预处理,以便更好地提取出与轴承故障相关的特征信息。
2. 频谱分析:经过预处理的信号进入频谱分析阶段。
通过快速傅里叶变换等频谱分析方法,将时域信号转换为频域信号,从而观察到信号的频率成分和能量分布。
在频谱图中,可以观察到与轴承故障相关的谐波成分,如轴承内圈故障、外圈故障、滚动体故障等对应的特征频率。
3. 故障诊断:根据频谱分析结果,结合专家知识和经验,判断电机轴承的故障类型和严重程度。
通过对比正常轴承和故障轴承的频谱图,可以准确地诊断出轴承的故障。
此外,还可以通过对比不同时期的频谱图,监测轴承故障的发展趋势,为维修决策提供依据。
四、技术研究与优化为了提高谐波法在电机轴承故障诊断中的准确性和效率,可以进行以下技术研究与优化:1. 智能诊断算法:研究基于人工智能、机器学习等算法的智能诊断方法,提高诊断系统的自学习和自适应能力,降低对专家知识的依赖。
2. 多传感器融合:将多种传感器(如振动传感器、温度传感器、声音传感器等)融合使用,从多个角度捕捉电机轴承的运行状态信息,提高诊断的准确性。
转动设备常见振动故障频谱特征及案例分析
转动设备常见振动故障频谱特征及案例分析一、不平衡转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。
结构设计不合理,制造和安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。
转子不平衡的主要振动特征:1、振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动;2、波形为典型的正弦波;3、振动频率为工频,水平与垂直方向振动的相位差接近90度。
案例:某装置泵轴承箱靠联轴器侧振动烈度水平13.2 mm/s,垂直11.8mm/s,轴向12.0 mm/s。
各方向振动都为工频成分,水平、垂直波形为正弦波,水平振动频谱如图1所示,水平振动波形如图2所示。
再对水平和垂直振动进行双通道相位差测量,显示相位差接近90度。
诊断为不平衡故障,并且不平衡很可能出现在联轴器部位。
解体检查未见零部件的明显磨损,但联轴器经检测存在质量偏心,动平衡操作时对联轴器相应部位进行打磨校正后振动降至2.4 mm/s。
二、不对中转子不对中包括轴系不对中和轴承不对中两种情况。
轴系不对中是指转子联接后各转子的轴线不在同一条直线上。
轴承不对中是指轴颈在轴承中偏斜,轴颈与轴承孔轴线相互不平行。
通常所讲不对中多指轴系不对中。
不对中的振动特征:1、最大振动往往在不对中联轴器两侧的轴承上,振动值随负荷的增大而增高;2、平行不对中主要引起径向振动,振动频率为2倍工频,同时也存在工频和多倍频,但以工频和2倍工频为主;3、平行不对中在联轴节两端径向振动的相位差接近180度;4、角度不对中时,轴向振动较大,振动频率为工频,联轴器两端轴向振动相位差接近180度。
案例:某卧式高速泵振动达16.0 mm/s,由振动频谱图(图3)可以看出,50 Hz(电机工频)及其2倍频幅值显着,且2倍频振幅明显高于工频,初步判定为不对中故障。
滚动轴承故障及其诊断方法
而一旦有了压痕,压痕引起的冲击载荷会进一步引起附近 表面的剥落。
这样,载荷的累积作用或短时超载就有可能引起轴承塑性 变形。
1滚动轴承异常的基本形式
(4).腐蚀
润滑油、水或空气水分引起表 面锈蚀(化学腐蚀)
轴承内部有较大的电流通过造 成的电腐蚀
2.3 滚动轴承的振动及其故障特征
2. 幅值域中的概率密度特征 滚动轴承正常时和
发生剥落损伤时的轴 承振动信号的幅值概 率密度分布如图。
轴承振动的概率密度分布
从图中可以看出,轴承发生剥落时,幅值分布的幅 度广,这是由于存在剥落的冲击振动。这样,从概率 密度分布的形状,就可以进行异常诊断。
3 滚动轴承故障诊断方法
2.2 滚动轴承的特征频率
➢ 为分析轴承各部运动参数,先做如下假设: (1)滚道与滚动体之间无相对滑动; (2)每个滚道体直径相同,且均匀分布在内外滚道之间 (3)承受径向、轴向载荷时各部分无变形;
方法: 研究出不承受轴向力时轴承缺陷特征频率,进而,推导出 承受轴向力时轴承缺陷特征频率
1. 不承受轴向力时 轴承缺陷特征频率
d Dm
)
fr
滚动轴承的特征频率
➢ (3) 轴承内外环有缺陷时的特征频率:
➢ 如果内环滚道上有缺陷时,则Z个滚动体滚过该缺陷时的
频率为
fi
f Bi Z
1 (1 2
d Dm
) frZ
➢ 如果外环滚道上有缺陷时,则Z个滚动体滚过该缺陷时的
频率为
fo
f Bo Z
1 (1 2
d Dm
)
f
r
Z
➢ (4) 单个滚动体有缺陷时的特征频率:如果单个有缺陷的 滚动体每自传一周只冲击外环滚道(或外环)一次,则其 相对于外环的转动频率为
十五种常见的设备振动故障及其特征频谱
十五种常见的设备振动故障及其特征频谱2020.2.3∙以下十五种常见的振动故障及其特征频谱: 不平衡、不对中、偏心转子、弯曲轴、机械松动、转子摩擦、共振、皮带和皮带轮、流体动力激振、拍振、偏心转子、电机、齿轮故障、滚动轴承、滑动轴承。
一、不平衡不平衡故障症状特征:∙振动主频率等于转子转速;∙径向振动占优势;∙振动相位稳定;∙振动随转速平方变化;∙振动相位偏移方向与测量方向成正比。
1、力偶不平衡力偶不平衡症状特征:∙同一轴上相位差180°;∙存在1X转速频率而且占优势;∙振动幅值随提高的转速的平方变化;∙可能引起很大的轴向及径向振动幅值;∙动平衡需要在两个修正面内修正。
2、悬臂转子不平衡悬臂转子不平衡症状特征:∙径向和轴向方向存在1X转速频率;∙轴向方向读数同相位,但是径向方向读数可能不稳定;∙悬臂转子经常存在力不平衡和力偶不平衡两者,所以都需要修正。
二、不对中1、角向不对中角向不对中症状特征:∙特征是轴向振动大;∙联轴器两侧振动相位差180°;∙典型地为1X和2X转速大的轴向振动;∙通常不是1X,2X或3X转速频率占优势;∙症状可指示联轴器故障。
2、平行不对中平行不对中症状特征:∙大的径向方向相位差180°的振动严重不对中时,产生高次谐波频率;∙2X转速幅值往往大于1X转速幅值,类似于角向不对中的症状;∙联轴器的设计可能影响振动频谱形状和幅值。
3、装斜的滚动轴承装斜的滚动轴承症状特征:∙振动症状类似于角向不对中;∙试图重新对中联轴器或动平衡转子不能解决问题;∙产生相位偏移约180°的侧面;∙对侧面或顶部对底部的扭动运动。
三、偏心转子偏心转子症状特征:∙在转子中心连线方向上最大的1X转速频率振动;∙相对相位差为0°或180°;∙试图动平衡将使一个方向的振动幅值减小,但是另一个方向振动可能增大。
四、弯曲轴弯曲轴症状特征∙弯曲的轴产生大的轴向振动;∙如果弯曲接近轴的跨度中心,则1X转速频率占优势;∙如果弯曲接近轴的跨度两端,则2X转速频率占优势;∙轴向方向的相位差趋向180°。
常见的15种振动故障与特征频谱
常见的15种振动故障及其特征频谱以下十五种常见的振动故障及其特征频谱: 不平衡、不对中、偏心转子、弯曲轴、机械松动、转子摩擦、共振、皮带和皮带轮、流体动力激振、拍振、偏心转子、电机、齿轮故障、滚动轴承、滑动轴承。
一、不平衡不平衡故障症状特征:●振动主频率等于转子转速;●径向振动占优势;●振动相位稳定;●振动随转速平方变化;●振动相位偏移方向与测量方向成正比。
1、力偶不平衡●力偶不平衡症状特征:●同一轴上相位差180°;●存在1X转速频率而且占优势;●振动幅值随提高的转速的平方变化;●可能引起很大的轴向及径向振动幅值;●动平衡需要在两个修正面内修正。
2、悬臂转子不平衡●悬臂转子不平衡症状特征:●径向和轴向方向存在1X转速频率;●轴向方向读数同相位,但是径向方向读数可能不稳定;●悬臂转子经常存在力不平衡和力偶不平衡两者,所以都需要修正。
二、不对中1、角向不对中角向不对中症状特征:特征是轴向振动大;联轴器两侧振动相位差180°;典型地为1X和2X转速大的轴向振动;通常不是1X,2X或3X转速频率占优势;症状可指示联轴器故障。
2、平行不对中●平行不对中症状特征:●大的径向方向相位差180°的振动严重不对中时,产生高次谐波频率;●2X转速幅值往往大于1X转速幅值,类似于角向不对中的症状;●联轴器的设计可能影响振动频谱形状和幅值。
3、装斜的滚动轴承装斜的滚动轴承症状特征:振动症状类似于角向不对中;试图重新对中联轴器或动平衡转子不能解决问题;产生相位偏移约180°的侧面;对侧面或顶部对底部的扭动运动。
三、偏心转子●偏心转子症状特征:●在转子中心连线方向上最大的1X转速频率振动;●相对相位差为0°或180°;●试图动平衡将使一个方向的振动幅值减小,但是另一个方向振动可能增大。
四、弯曲轴●弯曲轴症状特征:●弯曲的轴产生大的轴向振动;●如果弯曲接近轴的跨度中心,则1X转速频率占优势;●如果弯曲接近轴的跨度两端,则2X转速频率占优势;●轴向方向的相位差趋向180°。
机器振动特征分析(4)
共振问题 滑动轴承故障 摩擦问题 流体引起的振动
共振问题
当强迫振动频率与某固有频率一致时便发生共振
固有频率可以是:
转子的固有频率 支承框架的固有频率 基础的固有频率 传动皮带的固有频率 ……
强迫振动频率包括:
不平衡 不对中 松动 轴承故障 齿轮故障 皮带磨损等振源频率
偏心距和姿态角
亚同步振动的产生
当轴承负载减小或转子转速提高时,滑动轴承的姿态角增大,轴承 稳定性降低。当轴承不能承受足够的预载使旋转轴处于稳定位置时, 任何干扰轴承载荷的外力都可能引起轴承不稳定状态的出现。
在不稳定的运转状态下,由于系统中包含了引起失稳的各种因素, 一旦产生失稳,转子就会产生自激振动,即使消除了原始激励源, 转子的自激振动现象还会保持下去。这就是亚同步振动(即低于转速 的振动)。
波特图中右侧的峰值不是自振频率,因 为在这个转速下没有发生90°的相位移, 而在左侧的峰值是自振频率,因为在这 转速下发生了90°的相位移,随着转速 的下降直至相位移动180°
波德图
机器启机和停机过程中,振动 幅值和相位随转速变化的曲线
机器从6500RPM停机,通过两个共振区: 过4850rpm时,振幅从仅0.13mil增大到0.87mil,然后再次下降到0.13mil 过2450rpm时,幅值增大到0.60mil,最后振幅再次减小,直到停车为止 如果该机器从0到2200rpm,或从2700到4300rpm,或从5300到6500rpm运
多自由度系统的强迫振动
振动的频率等于外激励的频率。 振型为各阶振型的叠加。各阶振型所占的比例,决定于外激
励的频率和作用点位置。 激励频率接近某阶固有频率时,该阶振型增大而占主导地位,
振动大实例与原因分析
振动大实例与原因分析 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】1倍频振动大除了动平衡还应检查什么据统计,有19%的设备振动来自动不平衡即一倍频,而产生动不平衡有很多原因。
现场测量的许多频谱结果也多与机器的一倍频有关系,下面仅就一倍频振动增大的原因进行分析。
一、单一一倍频信号转子不平衡振动的时域波形为正弦波,频率为转子工作频率,径向振动大。
频谱图中基频有稳定的高峰,谐波能量集中于基频,其他倍频振幅较小。
当振动频率小于固有频率时,基频振幅随转速增大而增大;当振动频率大于固有频率时,转速增加振幅趋于一个较小的稳定值;当振动频率接近固有频率时机器发生共振,振幅具有最大峰值。
由于通常轴承水平方向的刚度小,振动幅值较大,使轴心轨迹成为椭圆形。
振动强烈程度对工作转速的变化很敏感。
1.力不平衡频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,一般水平方向幅值大于垂直方向;振幅与转速平方成正比,振动频率为一倍频;相位稳定,两个轴承处相位接近,同一轴承水平方向和垂直方向的相位差接近90度。
2.偶不平衡频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;在两个轴承处均产生较大的振动,不平衡严重时,还会产生较大的轴向振动;振幅与转速平方成正比,振动频率以一倍频为主,有时也会有二、三倍频成分;振动相位稳定,两个轴承处相位相差180度。
3.动不平衡频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,振幅与转速平方成正比,频率以一倍频为主;振动相位稳定,两个轴承处相位接近。
4.外力作用下(旋转)产生的共振各个零部件、结构件在外力作用下所产生的固有共振为自激振动,其频率与不同的结构对应,即刚度不同引起的不同共振。
频谱特征为时域波形为正弦波,振动频率以一倍频为主。
二、相关一倍频信号1.转子永久弯曲振动类似于动不平衡和不对中,以一倍转频为主,也会产生二倍转频振动;振动随转速增加很快;通常振幅稳定,轴向振动较大,两支承处相位相差180度。
旋转机械振动基本特性
旋转机械振动的基本特性概述绝大多数机械都有旋转件,所谓旋转机械是指主要功能由旋转运动来完成的机械,尤其是指主要部件作旋转运动的、转速较高的机械。
旋转机械种类繁多,有汽轮机、燃气轮机、离心式压缩机、发电机、水泵、水轮机、通风机以及电动机等。
这类设备的主要部件有转子、轴承系统、定子和机组壳体、联轴器等组成,转速从每分钟几十到几万、几十万转。
故障是指机器的功能失效,即其动态性能劣化,不符合技术要求。
例如,机器运行失稳,产生异常振动和噪声,工作转速、输出功率发生变化,以及介质的温度、压力、流量异常等。
机器发生故障的原因不同,所反映出的信息也不一样,根据这些特有的信息,可以对故障进行诊断。
但是,机器发生故障的原因往往不是单一的因素,一般都是多种因素共同作用的结果,所以对设备进行故障诊断时,必须进行全面的综合分析研究。
由于旋转机械的结构及零部件设计加工、安装调试、维护检修等方面的原因和运行操作方面的失误,使得机器在运行过程中会引起振动,其振动类型可分为径向振动、轴向振动和扭转振动三类,其中过大的径向振动往往是造成机器损坏的主要原因,也是状态监测的主要参数和进行故障诊断的主要依据。
从仿生学的角度来看,诊断设备的故障类似于确定人的病因:医生需要向患者询问病情、病史、切脉(听诊)以及量体温、验血相、测心电图等,根据获得的多种数据,进行综合分析才能得出诊断结果,提出治疗方案。
同样,对旋转机械的故障诊断,也应在获取机器的稳态数据、瞬态数据以及过程参数和运行状态等信息的基础上,通过信号分析和数据处理提取机器特有的故障症兆及故障敏感参数等,经过综合分析判断,才能确定故障原因,做出符合实际的诊断结论,提出治理措施。
根据故障原因和造成故障原因的不同阶段,可以将旋转机械的故障原因分为几个方面,见表1。
表1 旋转机械故障原因分类故障分类主要原因设计原因①设计不当,动态特性不良,运行时发生强迫振动或自激振动②结构不合理,应力集中③设计工作转速接近或落人临界转速区④热膨胀量计算不准,导致热态对中不良制造原因①零部件加工制造不良,精度不够②零件材质不良,强度不够,制造缺陷③转子动平衡不符合技术要求安装、维修①机械安装不当,零部件错位,预负荷大②轴系对中不良③机器几何参数(如配合间隙、过盈量及相对位置)调整不当④管道应力大,机器在工作状态下改变了动态特性和安装精度⑤转子长期放置不当,改变了动平衡精度⑥未按规程检修,破坏了机器原有的配合性质和精度操作运行①工艺参数(如介质的温度、压力、流量、负荷等)偏离设计值,机器运行工况不正常②机器在超转速、超负荷下运行,改变了机器的工作特性③运行点接近或落入临界转速区④润滑或冷却不良⑤转子局部损坏或结垢⑥启停机或升降速过程操作不当,暖机不够,热膨胀不均匀或在临界区停留时间过久机器劣化①长期运行,转子挠度增大或动平衡劣化②转子局部损坏、脱落或产生裂纹③零部件磨损、点蚀或腐蚀等④配合面受力劣化,产生过盈不足或松动等,破坏了配合性质和精度⑤机器基础沉降不均匀,机器壳体变形旋转机械振动的基本特性(1)旋转机械的主要功能是由旋转部件来完成的,转子是其最主要的部件。
轴振动和轴承振动检测方法
对于大型设备的机器性能,可预知性的了解机器的突发性故障,磨损度和寿命预测,使企业可以提前预知机器可能产生的各种情况,提前作好准备,以达到保证不间断安全生产。
轴承故障是工业机械设备最常见的故障之一。
因此,适当的状态监测至关重要。
轴振动,即轴相对于轴承座的相对振动,一般用在大机组的在线上。
安装时是把传感器(多是位移传感器-电涡流传感器)固定在轴承座上,因此测的是轴相对于轴承座的相对位移,单位多是位移;轴振动是机组振动的源头,由于旋转件的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等原因导致振动的发生,所以95%机组振动的状态能够从轴振动反映出;针对轴振动我们可以采用晶钻仪器手持式动态信号分析仪CoCo-80X的转子动力学分析功能做检测,提供实时阶次跟踪、相位阶次跟踪、轨道分析、动平衡等功能,提取振动信号幅值、时域、频域、时频特征、相位、轴心轨迹,根据特征进行故障判断。
轴承座振动,即在监测时把传感器配有磁铁吸附在轴承座上(没有安装),测的是轴承座的绝对振动。
大多数巡检用的手持式数据采集仪都是如此,如CoCo-80X,多用加速度传感器。
常见的问题是支持松动。
支承松动引起系统的结构刚度变小,很小的激振力会引起较大的振动。
该故障有如下的特征(1)、相位不稳定(2)振动随转速变化明显(3)基频及分数谐波振幅大,伴随2f3f…等高频振幅(4)松动方向振动大(5)轴承座的振动会明显增大。
使用FFT频谱分析功能,测量轴承座与台板、台板与基础之间的接触不良,可以通过测量他们之间振动的差异来判断。
观察检测点的频谱值。
对于一般的轴承座来说,在同一轴向位置,如下图,测点上下标高差在100mm以内的两个连接部件,在连接紧固的情况下垂直方向的差别振动应小于2μm;滑动面之间正常的差别振动应小于5μm;当两个相邻部件差别振动明显大于这些数据时,即可判断链接刚度不足。
差别振动越大,振动故障越严重。
CoCo-80X是一款手持式高精度振动采集仪器,具有24位A/D,动态范围150dB,8通道同步采样最大采样率102.4kHz,可测量小至6μV和大至±20 V的信号。
振动检测分析基本概念知识
10/07/1998 1:32:32
14/08/1998 1:23:53
11/09/1998 1:25:20
mm/s
rms
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
Velocity
其意义是…..?
如何用于评价机器状态
振动的标准 IRD.Machanalysis 通用旋转机械 振动位移和速度 标准
如何用于评价机器状态
10 Hz = 600 RPM
FFT
10 Hz
一个更复杂的频谱
Rub
Imbalance
FFT
10 Hz
80 Hz
600 CPM
4,800 CPM
使用特殊的计算方法指示在频谱中的位置 – 叫做 “激励频率”.
激励频率
分辨率 高分辨率 低分辨率
加窗
记录振动信号 段. 段的边缘必须平滑,避免 频谱泄漏.
工厂维修的作用
事后维修
也叫“故障维修” 常见的方式 (即使在今天) 可接受的运行成本
二次损害 (10X$) 高停产时间 高备件库存 安全考虑
预防维修
在故障前维修 (也叫 “计划维修”, “历史维修”, “基于日期维修”) 今天大部分工厂中常用的维修方式 假定所有机器到时失效 在失效前进行维修 停机 但是,机器什么时候失效?
缺点 机器仍然早期失效 完全良好的机器被 “维修” 停机大修常引入问题 不必要的停机时间
预防维修
预测维修
“如果机器没有问题, 不要维修!” (也叫 “基于状态的维修”) 预测机器什么时候将失效 安排在最方便的时候修理 判断 “危险” 进行 “状态监测” 确定健康状态 预测失效 合理行动 优点: 无停机时间 无意外失效 无二次损坏 计划所有维修
滚动轴承振动产生的可能原因及其特征频率
滚动轴承振动产⽣的可能原因及其特征频率通过前⾯的⽂章《滚动轴承的运动学》,我们了解了滚动轴承运转产⽣的特征频率,但实际上,除了这些频率之外,还存在⼀些其他的频率成分。
产⽣这些复杂的振动频率的原因可以分两类:第⼀类为外界激励所引起的,如轴不平衡、不对中、临界转速、结构共振等,这些故障(或缺陷)可以按照它们各⾃的特征频率来处理;第⼆类是由于滚动轴承⾃⾝结构特点以及故障缺陷所引起的。
通常,滚动轴承不会仅受到⼀种激励作⽤,更多是两种激励同时作⽤引起轴承振动,这就使得振动频谱更为错综复杂,对轴承的故障诊断增加难度。
另⼀⽅⾯,除了存在各⾃的特征频率成分及其谐波之外,还会存在相互调制效应,产⽣边频带。
当轴承各元件出现各种故障时,《滚动轴承的运动学》中的轴承频率公式提供了频率成分的理论计算,这些计算是基于这样的假设:当轴承各元件遭遇故障时,会产⽣⼀个理想的脉冲。
对于轴承局部故障,如滑动和点蚀,会产⽣短时尖的冲击,这些冲击将激起结构共振,相应的振动通过外部安装在轴承座上的传感器能测量到。
每次遭遇⼀个局部故障产⽣的冲击,测量到的振动信号将是按指数衰减的正弦振荡。
1载荷引起的振动滚动轴承在运转过程中,如受到通过轴⼼的轴向载荷,可以认为各个滚动体平均分担,即各滚动体受⼒相等。
但在受到径向载荷F r作⽤时,内圈沿径向载荷⽅向会移动⼀段路径δ0,如图1中虚线所⽰,此时上半圈滚动体不受⼒,下半圈的各个滚动体由于接触点上的弹性变形量δi不同⽽承受不同的载荷Q i。
处于F r作⽤线最下端位置的滚动体受⼒Q0最⼤,对应的变形量δ0也最⼤。
下半圈受载荷作⽤的其他各接触点滚动体的法向变形量为δi与径向载荷⽅向处变形量δ0的关系为图1 轴承元件上的受⼒分析各个接触点法向⼒Q i与沿径向载荷⽅向处的法向⼒Q0的关系为因此,在受载荷作⽤的半圈内,各接触点处的受⼒⼤致呈余弦分布状态,并引起相应规律的应⼒变化。
滚动轴承各元件在⼯作时承受变动的接触应⼒,如单颗滚动体受到的接触应⼒从⼩变⼤,然后再变⼩的周期性变化,⽽在不受载荷的半圈内不受接触应⼒作⽤,内圈上的某⼀点的接触应⼒也有类似的规律。
转动机械常见故障及其频率特征资料重点
转动机械常见故障及其频率特征资料重点转动机械是指依靠旋转运动来完成工作的机械设备,包括电机、风机、泵等。
这些机械设备在长时间运行的过程中,常常会遇到一些故障。
了解并掌握这些故障及其频率特征,对于提高设备的可靠性和运行效率具有重要意义。
以下是一些转动机械常见故障及其频率特征的重点概述:1.轴承故障:轴承故障是转动机械中最常见的故障之一、轴承故障的频率特征包括频谱分析中的频谱峰值,通常以倍频为特征。
其他可能的特征包括振动加速度、速度和位移等参数的变化。
2.不平衡故障:不平衡是指转动机械在运行过程中由于质量不均匀分布导致的问题。
不平衡故障的频率特征主要包括由于不平衡引起的径向振动频率。
此外,还应注意检查频谱中的谐波振动频率,这些频率通常会出现在不平衡故障的频谱中。
3.错位故障:错位故障是指转动机械中轴心与旋转件中心不重合的问题。
错位故障的频率特征主要表现为以旋转频率为中心的低频分量。
同时,对于大型机械设备,还可能会出现由于错位引起的回转频率。
4.轮齿故障:对于齿轮传动的转动机械,轮齿故障是常见的问题之一、轮齿故障的频率特征主要包括齿轮传动频率及其倍频,以及其谐波振动频率。
5.润滑故障:润滑故障包括油液流量问题、油液质量问题和油温过高等。
润滑故障的频率特征主要体现在振动和声音信号中的周期性模式变化上。
以上仅是一些转动机械常见故障及其频率特征的重点概述。
在实际应用过程中,具体的故障和频率特征可能会有所不同,需要根据具体设备的特点进行分析和判断。
对于转动机械的故障诊断和预防,可以借助振动分析、声学分析、热成像等技术手段来进行监测和判断。
及早发现并处理这些故障,可以提高设备的可靠性和运行效率,减少意外停机和维修成本。
机械振动信号特征提取与识别
机械振动信号特征提取与识别机械振动信号是用于监测和诊断机械设备状态的重要工具。
通过对机械振动信号进行特征提取与识别,可以实现对机械设备的故障诊断和预测维护,提高设备的可靠性和可用性。
本文将探讨机械振动信号的特征提取方法和识别技术,以及其在实际应用中的意义和挑战。
一、机械振动信号的特征提取方法机械振动信号具有多种特征,包括振幅、频率、相位等。
为了更好地实现故障诊断和预测维护,需要对机械振动信号进行特征提取。
常用的特征提取方法有时域分析、频域分析和时频分析。
1. 时域分析时域分析是指对信号在时间轴上进行观察和分析。
常用的时域特征包括振幅、峰值、均方根、脉冲指数等。
这些特征可以反映振动信号的幅值和波形特征。
例如,均方根特征可以衡量信号的整体振动强度,而脉冲指数可以反映信号的冲击能量。
2. 频域分析频域分析是指将信号从时间域转换到频域,以获取信号的频率成分。
常用的频域特征包括功率谱密度、峰值频率、谐波分量等。
这些特征可以反映振动信号的频率分布和频率成分的变化。
例如,功率谱密度可以描述信号在不同频率上的能量分布,峰值频率可以反映信号的主要频率成分。
3. 时频分析时频分析是指将信号在时间和频率两个维度上进行联合分析。
常用的时频特征包括短时傅里叶变换、小波变换等。
时频分析可以捕捉到信号在时间和频率上的瞬时变化和特征。
例如,短时傅里叶变换可以提取信号在不同时间段和频率上的功率谱密度,从而实现对信号瞬时谱特征的描述。
二、机械振动信号的故障识别方法机械设备在运行过程中可能会出现各种故障,如轴承损伤、齿轮磨损等。
通过对振动信号进行特征提取和故障识别,可以及时捕捉并分析设备故障的特征,从而指导设备的维修和保养。
1. 基于统计模型的故障识别方法基于统计模型的故障识别方法是根据机械振动信号的统计特征,建立起适当的故障识别模型。
常用的统计模型包括随机过程模型、高斯混合模型等。
通过建立模型,可以将正常状态和故障状态下的振动信号进行分类,从而实现故障的识别。
轴承振动特征分析含轴承故障特征频率的特点及计算
轴承故障原因及其解决
• 污染 – 污染是轴承失效的主要原因之一 – 污染的征兆是在滚道和滚动体表面有点痕,导致振 动加大和磨损 – 清洁环境,工具,规范操作。新轴承的储运。
• 润滑油失效 – 滚道和滚子的变色(蓝、棕)是润滑失效的征兆, 随之产生滚道、滚子和保持架磨损,导致过热和严 重故障。 – 滚动轴承的正常运行取决于各部件间存在良好油膜 失效常常由润滑不足和过热引起
滚动轴承故障频率计算(2)
保持架故障频率: FTF=(N/2)[1-(d/D)Cos φ]
滚动体旋转故障频率: BSF=(N/2)(D/d){1-[(d/D)Cos φ]²}
外环故障频率: BPFO=(N/2)n[1-(d/D)Cosφ]
内环故障频率: BPFI=(N/2)n[1+(d/D)Cosφ]
轴承故障原因及其解决
• 腐蚀 –其征兆是在滚道、滚子、保 持架或其他位置出现红棕色 区域 –原因是轴承接触腐蚀性流体 和气体 –严重情况下,腐蚀引起轴承 早期疲劳失效 –除掉腐蚀流体,尽可能使用 整体密封轴承
轴承故障原因及其解决
• 不对中
– 征兆是滚珠在滚道上产生的磨痕与滚道边缘不平行 – 如果不对中超过0.001in/in,会产生轴承和轴承座异常
轴承故障特征频率的特点
12. 评定的低速机器的轴承状态:
评定尤其是低于100转/分转速的机器轴承状态时,推荐采集时域波形和 (FFT)频谱二者。当转速很低时,滚动体滚动通过轴承内外环上缺陷时发 生的脉冲没有足够能量产生清楚的,可以检测出来的FFT谱中的频率,但 是在时域波形中仍然可能清楚的看出来。
保持架故障频率:
FTFe≌N(0.5-1.2/n)
估算公式
n=滚动体数目; N=轴的转速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转速愈高,预期的寿命愈短。理论的轴承寿命随轴承承受的的负 载的三次方变化。如果设计者只考虑轴承的静载和如皮带拉伸等其他 部件静载,则轴承的理论计算寿命会大打折扣。
缩短滚动轴承寿命的因素
例:
重量为2000磅 908公斤 的转子,转速为6000 公斤) 6000转 在直径为3英尺(半径为18 18英 重量为2000磅(908公斤)的转子,转速为6000转/分,在直径为3英尺(半径为18英 2000 457. 毫米)处的转子上存在一个1盎司(28.35克 的不平衡质量。 寸 =457.2毫米)处的转子上存在一个1盎司(28. 35克 )的不平衡质量。此不平衡质量产 生的离心力计算: 生的离心力计算:
轴承故障原因及其解决
• 腐蚀 –其征兆是在滚道、滚子、保 持架或其他位置出现红棕色 区域 –原因是轴承接触腐蚀性流体 和气体 –严重情况下,腐蚀引起轴承 早期疲劳失效 –除掉腐蚀流体,尽可能使用 整体密封轴承
轴承故障原因及其解决
• 不对中
– 征兆是滚珠在滚道上产生的磨痕与滚道边缘不平行 – 如果不对中超过0.001in/in,会产生轴承和轴承座异常 温升,和保持架球磨损
滚动轴承故障频率计算例
典型的轴承故障发展过程
润滑分析 声发射检测
感官
振动分析
典型的轴承故障发展过程
轴承故障劣化发展不是按线性规律,而是按指数规律变化
灾难性破坏
X
累 积 的 损 伤
1 2 3 4
阶段≈轴承剩余寿命的10-20% 阶段≈轴承剩余寿命的5-10% 阶段≈轴承剩余寿命的1-5% 阶段≈一小时至轴承剩余寿命的1%
d=滚动体直径; D=滚动轴承平均直径(滚动体中心处直径); φ=径向方向接触角; n=滚动体数目; No=轴承外环角速度; No Ni=轴承内环角速度(=轴转速). Ni=
注:1.滚动轴承没有滑动;2.滚动轴承几何尺寸没有变化;3.轴承外环和轴承内环都旋转. 1.滚动轴承没有滑动;2.滚动轴承几何尺寸没有变化;3.轴承外环和轴承内环都旋转. 滚动轴承没有滑动 滚动轴承几何尺寸没有变化 轴承外环和轴承内环都旋转
轴承故障原因及其解决
• 布氏硬度凹痕 – 当负荷超过滚道的弹性极限时产生 – 滚道上的凹痕增加振动(噪声) – 任何静态过负荷和严重冲击产生布氏凹痕
• 伪布式凹痕 – 在每个滚珠位置产生的椭圆形磨损凹痕,光滑, 有明显边界,周围有磨削 – 表明严重的外部振动 – 隔振和使用抗摩添加剂
轴承故障原因及其解决
d=滚动体直径; D=滚动轴承平均直径(滚动体中心处直径); φ=径向方向接触角; n=滚动体数目; N=轴的转速。 注:1.滚动轴承没有滑动;2.滚动轴承几何尺寸没有变化;3.轴承外环固定不旋转. 1.滚动轴承没有滑动;2.滚动轴承几何尺寸没有变化;3.轴承外环固定不旋转. 滚动轴承没有滑动 滚动轴承几何尺寸没有变化 轴承外环固定不旋转
其它缩短滚动轴承寿命的因素
转子不只承受不平衡,还承受不对中、松动、气蚀或其它故障引起 的动载荷,轴承的实际寿命可能还要短。 其它因素:润滑不当,错误润滑剂,灰尘和其它污染物污染,储存 不当,潮气,运输或使用时嗑碰、刮伤,错用轴承型号,轴承安装 不当等。 最重要的对策是监测滚动轴承的状态,早期发现轴承故障,跟踪其 发展趋势,并知道何时需更换轴承;
滚动轴承故障频率计算(2)
保持架故障频率: FTF=(N/2)[1-(d/D)Cos φ] 滚动体旋转故障频率: BSF=(N/2)(D/d){1-[(d/D)Cos φ]²} 外环故障频率: BPFO=(N/2)n[1-(d/D)Cosφ] 内环故障频率: BPFI=(N/2)n[1+(d/D)Cosφ]
4 1 2 3 时间
通常约百分之八十至九十的轴承寿命
轴承故障发展的四个阶段
I. 初始阶段
1. 噪声正常 2. 温度正常 3. 可以用超声,振动尖峰能量,声发射测量出来,轴承外环有缺陷 4. 振动总量比较小,无离散的轴承故障频率尖峰 5. 剩余寿命大于10%
• 正常疲劳失效 –疲劳失效指滚道和滚动体上发生龟 裂,并随之产生材料碎片剥落 –这种疲劳为逐渐发生,一旦开始则 迅速扩展,并伴随明显的振动增加 –更换轴承,和设计有更长疲劳寿命 的轴承
轴承故障原因及其解决
• 反向载荷 –角接触轴承的设计只接受一个方向 的轴向载荷 –当方向相反时,外圈的椭圆接触区 域被削平… –结果是应力增加,温度升高,并产 生振动增大和轴承早期失效
滚动轴承故障频率计算(3)
外环故障频率: BPFOr≌0.4Nn 内环故障频率: BPFIr≌0.6Nn 保持架故障频率: FTFr≌0.4N
n=滚动体数目; N=轴的转速。
经验公式
注:1.滚动轴承没有滑动;2.滚动轴承几何尺寸没有变化; 1.滚动轴承没有滑动;2.滚动轴承几何尺寸没有变化; 滚动轴承没有滑动 滚动轴承几何尺寸没有变化 3.轴承外环固定不旋转 轴承外环固定不旋转. 3.轴承外环固定不旋转.
滚动轴承振动尖峰能量(gSE)报警值。
滚动轴承故障的振动特征
轴承零部件的自振频率
安装在机器上的滚动轴承自振频率范围约为500到2000Hz之 间。自振频率与转速无关,无论轴的转速高低它都处在一个相同 的频率位置。
轴承故障特征频率
滚动轴承故障特征频率就是轴承故障产生的振动频率。 BPFO – 外圈故障特征频率 BPFI – 内圈故障特征频率 BSF – 滚动体故障特征频率 FTF - 保持架故障特征频率
滚动轴承故障特征频率
BPFO BPFI BSF FTF -
Ball Pass Frequency Outer Race Ball Pass Frequency Inner Race Ball Spin Frequency Cage Frequency or Fundamental Train Frequency
正确地采集轴承振动特征信号; 正确地采集轴承振动特征信号; 分析其振动特征信号,故障诊断; 分析其振动特征信号,故障诊断; 利用高频包络解调信号处理技术,更有效地监测出轴承故障。 利用高频包络解调信号处理技术,更有效地监测出轴承故障。 选择合适的监测参数如振动速度、冲击脉冲、解调谱等。 选择合适的监测参数如振动速度、冲击脉冲、解调谱等。
轴承故障特征频率的特点
13.振动传感器置于尽可能靠近轴承的承载区,尤其是轴承仅支承径向负载时。 14.不合适的轴承负载和安装问题 若轴承负载不合适或安装不恰当,例如,安装新轴承时,如果轴承与轴承 座过盈配合过紧,使轴承“咔入”轴承座中,导致轴承内部间隙发生变化,使 滚动体强制被压向轴承的内外环。出现这种情况,轴承在起动时立即产生轴承 外环和内环的故障频率。 由于安装不当对轴承施加了过大负荷。虽然,可能尚未发生实际损坏,但 是,如果检测不出这种故障问题并采取措施修正,则该轴承将在其预定寿命之 前很早就损坏。 15.轴承润滑不良产生的频率 特征是在900到1600Hz范围内,有3或4个尖峰,尖峰之间的差频在80到 130Hz。润滑良好的轴承可能也包括这些频率分量,然而,它们的幅值非常小, 约为1.27mm/s或更小。当润滑不良时,幅值增大到 2.54到5.08mm/s
轴承故障特征频率的特点
1. 2. 3. 4. 轴承的故障频率与其他故障频率不同 ; 轴承故障频率是转速频率的非整数倍 ; 内外环故障频率的和频=“轴承滚动体通过频率” (滚动体个数 ×RPM) 轴承内环故障频率往往伴有1 X转速频率的边带
轴承故障特征频率的特点
5. 6. 轴承外环故障频率的幅值高于轴承内环故障频率的幅值; 轴承故障一般在发展到滚动体和保持架出现故障之前首先出现的是内环或 外环故障频率; 轴承保持架故障频率(FTF)通常不是以其基频出现 ; 当滚动体本身出现故障时,往往会产生不仅滚动体故障频率(BSF),还有 保持架故障频率(FTF); 轴承保持架断裂时,可能出现滚动体旋转故障频率 ;
滚动轴承故障频率计算(4)
外环故障频率: BPFOe≌N(0.5n-1.2) 内环故障频率: BPFIe≌N(0.5n+1.2) 滚动体故障频率: BSFe≌N(0.2n-1.2/n) 保持架故障频率: FTFe≌N(0.5-1.2/n)Байду номын сангаас
n=滚动体数目; N=轴的转速。
估算公式
注:1.滚动轴承没有滑动;2.滚动轴承几何尺寸没有变化;3.轴承外环固定不旋转 1.滚动轴承没有滑动;2.滚动轴承几何尺寸没有变化;3.轴承外环固定不旋转 滚动轴承没有滑动 滚动轴承几何尺寸没有变化
• 配合松动
– 配合松动导致配合部件的相对运动,如果这个相对运动 轻微但不间断,则产生磨损 – 这种磨损产生颗粒,并氧化成特殊的棕色。这导致研磨 和松动加大。 – 如果松动增大到内圈或外圈的显著运动,安装表面(孔 径,外径和侧面)将磨损和发热,引起噪声和晃动。
滚动轴承故障的振动特征
滚动轴承一旦产生故障,可能会产生四种类型频率的振动
7. 8.
9.
10. 一个以上滚动体有故障时,将产生有故障的滚动体数目×滚动体故障特征 频率的频率。如果5个滚珠或滚柱上有故障,往往将出现5×BSF的频率。 11. 轴承故障频率允许的振动幅值不能绝对限定。它不仅与具体机器、转速有 关,还与轴承故障频率传递的通路有很大关系。 指示轴承损坏的最明显 的标志就是存在轴承故障频率的谐波频率,尤其是这些频率伴有1×转速 频率或轴承其它故障频率边带,应尽快更换该轴承。
机器振动特征分析(2)
滚动轴承故障
滚动轴承故障
滚动轴承是机器中最精密的部件,公差是其余 部件的十分之一。
由于各种原因,只有10%到20%的轴承能达 到它们的设计寿命
滚动轴承类型
深槽球轴承 针轴承 角接触球轴承
圆柱滚子轴承
球面滚子轴承
圆锥滚子轴承
滚动轴承为什么会过早损坏?
主要因素之一是过大的动载荷即振动。 理论计算滚珠轴承寿命公式,表明为什么作用在轴承上的动载减少轴 承的寿命: