2016-2017学年浙江省嘉兴市高三上学期期末数学试卷含答案

合集下载

中学2016-2017学年高二下期末考试数学试卷含解析

中学2016-2017学年高二下期末考试数学试卷含解析

2016学年第二学期高二数学期末考试一、填空题(本大题满分54分)本大题共有12题,其中第1题至第6题每小题4分,第7题至第12题每小题5分,考生应在答题纸上相应编号的空格内直接填写结果,否则一律得零分.1. 的展开式中项的系数为______.【答案】【解析】的展开式的通项公式为,令,求得,可得展开式中项的系数为,故答案为10.2. 已知直线经过点且方向向量为,则原点到直线的距离为______.【答案】1【解析】直线的方向向量为,所以直线的斜率为,直线方程为,由点到直线的距离可知,故答案为1.3. 已知全集,集合,,若,则实数的值为___________.【答案】2【解析】试题分析:由题意,则,由得,解得.考点:集合的运算.4. 若变量满足约束条件则的最小值为_________.【答案】【解析】由约束条件作出可行域如图,联立,解得,化目标函数,得,由图可知,当直线过点时,直线在y轴上的截距最小,有最小值为,故答案为. 点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5. 直线上与点的距离等于的点的坐标是_____________.【答案】或.【解析】解:因为直线上与点的距离等于的点的坐标是和6. 某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是_______.【答案】【解析】设“这名学生在上学路上到第二个路口首次遇到红灯”为事件,则所求概率为,故答案为.7. 某学校随机抽取名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.则该校学生上学所需时间的均值估计为______________.(精确到分钟).【答案】34................点睛:本题考查频率分布直方图,解题的关键是理解直方图中各个小矩形的面积的意义及各个小矩形的面积和为1,本题考查了识图的能力;根据直方图求平均值的公式,各个小矩形的面积乘以相应组距的中点的值,将它们相加即可得到平均值.8. 一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种________.【答案】186【解析】试题分析:设取红球个,白球个,则考点:古典概型.9. 如图,三棱锥满足:,,,,则该三棱锥的体积V的取值范围是______.【答案】【解析】由于平面,,在中,,要使面积最大,只需,的最大值为,的最大值为,该三棱锥的体积V的取值范围是.10. 是双曲线的右支上一点,分别是圆和上的点,则的最大值等于_________.【答案】9【解析】试题分析:两个圆心正好是双曲线的焦点,,,再根据双曲线的定义得的最大值为.考点:双曲线的定义,距离的最值问题.11. 棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为___________.【答案】【解析】试题分析:.考点:几何体的表面积.12. 在直角坐标平面中,已知两定点与位于动直线的同侧,设集合点与点到直线的距离之差等于,,记,.则由中的所有点所组成的图形的面积是_______________.【答案】【解析】过与分别作直线的垂线,垂足分别为,,则由题意值,即,∴三角形为正三角形,边长为,正三角形的高为,且,∴集合对应的轨迹为线段的上方部分,对应的区域为半径为1的单位圆内部,根据的定义可知,中的所有点所组成的图形为图形阴影部分.∴阴影部分的面积为,故答案为.二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13. 已知为实数,若复数是纯虚数,则的虚部为()A. 2B. 0C. -2D. -2【答案】C【解析】∵复数是纯虚数,∴,化为,解得,∴,∴,∴的虚部为,故选C.14. 已知条件:“直线在两条坐标轴上的截距相等”,条件:“直线的斜率等于”,则是的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】B【解析】当直线过原点时,直线在两条坐标轴上的截距相等,斜率可以为任意数,故不成立;当直线的斜率等于,可设直线方程为,故其在两坐标轴上的截距均为,故可得成立,则是的必要非充分条件,故选B.15. 如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()A. 该三棱柱主视图的投影不发生变化;B. 该三棱柱左视图的投影不发生变化;C. 该三棱柱俯视图的投影不发生变化;D. 该三棱柱三个视图的投影都不发生变化.【答案】B【解析】A、该三棱柱主视图的长度是或者在轴上的投影,随点得运动发生变化,故错误;B、设是z轴上一点,且,则该三棱柱左视图就是矩形,图形不变.故正确;C、该三棱柱俯视图就是,随点得运动发生变化,故错误.D、与矛盾.故错误;故选B.点睛:本题考查几何体的三视图,借助于空间直角坐标系.本题是一个比较好的题目,考查的知识点比较全,但是又是最基础的知识点;从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,根据图中C点对三棱柱的结构影响进一步判断.16. 如图,两个椭圆,内部重叠区域的边界记为曲线,是曲线上任意一点,给出下列三个判断:①到、、、四点的距离之和为定值;②曲线关于直线、均对称;③曲线所围区域面积必小于.上述判断中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】对于①,若点在椭圆上,到、两点的距离之和为定值、到、两点的距离之和不为定值,故错;对于②,两个椭圆,关于直线、均对称,曲线关于直线、均对称,故正确;对于③,曲线所围区域在边长为6的正方形内部,所以面积必小于36,故正确;故选C.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. 已知复数满足,(其中是虚数单位),若,求的取值范围.【答案】或【解析】试题分析:化简复数为分式的形式,利用复数同乘分母的共轭复数,化简为的形式即可得到,根据模长之间的关系,得到关于的不等式,解出的范围.试题解析:,,即,解得或18. 如图,直四棱柱底面直角梯形,,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1)(2)见解析【解析】试题分析:(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,,10分,.又,平面. 12分考点:(1)异面直线所成的角;(2)线面垂直.19. 如图,圆锥的顶点为,底面圆心为,线段和线段都是底面圆的直径,且直线与直线的夹角为,已知,.(1)求该圆锥的体积;(2)求证:直线平行于平面,并求直线到平面的距离.【答案】(1)(2)【解析】试题分析:(1)利用圆锥的体积公式求该圆锥的体积;(2)由对称性得,即可证明直线平行于平面,到平面的距离即直线到平面的距离,由,求出直线到平面的距离.试题解析:(1)设圆锥的高为,底面半径为,则,,∴圆锥的体积;(2)证明:由对称性得,∵不在平面,平面,∴平面,∴C到平面的距离即直线到平面的距离,设到平面的距离为,则由,得,可得,∴,∴直线到平面的距离为.20. 阅读:已知,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数,,求证:.【答案】(1)9(2)18(3)见解析【解析】试题分析:本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2),7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分考点:阅读材料问题,“1”的代换,基本不等式.21. 设椭圆的长半轴长为、短半轴长为,椭圆的长半轴长为、短半轴长为,若,则我们称椭圆与椭圆是相似椭圆.已知椭圆,其左顶点为、右顶点为.(1)设椭圆与椭圆是“相似椭圆”,求常数的值;(2)设椭圆,过作斜率为的直线与椭圆仅有一个公共点,过椭圆的上顶点为作斜率为的直线与椭圆仅有一个公共点,当为何值时取得最小值,并求其最小值;(3)已知椭圆与椭圆是相似椭圆.椭圆上异于的任意一点,求证:的垂心在椭圆上.【答案】(1)或;(2)当时,取得最小值.(3)见解析【解析】试题分析:(1)运用“相似椭圆”的定义,列出等式,解方程可得s;(2)求得的坐标,可得直线与直线的方程,代入椭圆的方程,运用判别式为,求得,再由基本不等式即可得到所求最小值;(3)求得椭圆的方程,设出椭圆上的任意一点,代入椭圆的方程;设的垂心的坐标为,运用垂心的定义,结合两直线垂直的条件:斜率之积为,化简整理,可得的坐标,代入椭圆的方程即可得证.试题解析:(1)由题意得或,分别解得或.(2)由题意知:,,直线,直线,联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ①联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ②由①②得:.所以,此时,即.(3)由题意知:,所以,且.设垂心,则,即. 又点在上,有,. 则,所以的垂心在椭圆上.。

2016-2017学年高二上学期地理期末考试题及答案

2016-2017学年高二上学期地理期末考试题及答案

2016-2017学年高二上学期地理期末考试题及答案2016-2017学年度上学期期末考试高二地理试题2016-1-04本试卷共分为选择题和非选择题两部分,共43题,共100分,共5页。

考试时间为90分钟。

考试结束后,只需交答题卡。

第Ⅰ卷(选择题,共计60分)一、选择题(本大题共40小题,每小题1.5分)1.关于区域的叙述,以下哪项是错误的?()A。

区域都具有一定的区位特征B。

区域都有一定的面积和形状C。

区域都有一定明确的界线D。

区域的地理环境对区域发展有深刻的影响2.在沙漠中迷路时,以下哪种方法可以获知自己所处的具体位置信息?()A。

指南针B。

GPS设备C。

遥感图像D。

地形图我国江南部分丘陵山区出现大片“红色荒漠”,即在亚热带湿润的岩搭地区,土壤受严重侵蚀,基岩裸露,地表出现类似荒漠化景观的土地退化现象。

据此回答下列各题。

3.“红色荒漠”形成的自然原因主要是()A。

风化作用B。

风力侵蚀作用C。

流水侵蚀作用D。

流水沉积作用4.“红色荒漠”形成的人为原因主要是()A。

乱垦滥伐B。

过度放牧C。

开山取石D。

污染环境5.有关热带雨林分布的叙述,正确的是()A。

中纬度近海地区B。

中高纬度的大陆内部C。

赤道附近的低纬度地区D。

两极地区6.热带雨林被毁的根本原因是()A。

人口快速增长和生活贫困B。

发达国家需要大量木材C。

历史遗留的迁移农业D。

热带雨林的土壤贫瘠7.下图漫画反映的主题是()A。

控制人口B。

发展经济C。

保护森林D。

开发能源8.亚马孙热带雨林被称为“地球之肺”,其所指的生态环境效应是()A。

促进全球水循环,调节水平衡B。

调节全球气候,维护生态平衡C。

吸收二氧化碳,释放大量氧气D。

地球上功能最强大的生态系统煤炭是人类最早认识并加以利用的能源之一,德国鲁尔区丰富的煤炭资源使它成为世界著名的工业区。

山西省是我国主要的煤炭生产地,但尚未成为我国的经济大省。

回答下列问题。

9.与鲁尔区相比,山西省较缺乏的条件是()A。

2016届高三上学期第一次月考数学(文)试题Word版含答案

2016届高三上学期第一次月考数学(文)试题Word版含答案

2016届高三上学期第一次月考数学(文)试题Word版含答案2016届高三上学期第一次月考数学文试卷考试时间120分钟,满分150分一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N 等于( ) A .[0,1] B .[0,1) C .(0,1]D .(0,1)2.已知集合A ={1,2},B ={1,a ,b },则“a =2”是“A ?B ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是( ) A .﹁p 或q B .p 且q C .﹁p 且﹁qD .﹁p 或﹁q4.设函数f (x )=x 2+1,x ≤1,2x ,x >1,则f (f (3))等于( )A.15B .3C.23D.1395.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)6.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于( )A .-2B .0C .1D .27. 如果函数f (x )=x 2-ax -3在区间(-∞,4]上单调递减,则实数a 满足的条件是( ) A .a ≥8 B .a ≤8 C .a ≥4D .a ≥-48. 函数f (x )=a x -2+1(a >0且a ≠1)的图像必经过点( ) A .(0,1) B .(1,1) C .(2,0)D .(2,2)9. 函数f (x )=lg(|x |-1)的大致图像是( )10. 函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)11. 设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为( ) A .e 2B .eC.ln22D .ln212. 函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( ).A .{x |x >0}B .{x |x <0}C .{x |x <-1或x >1}D .{x |x <-1或0<1}<="" p="">二、填空题:本大题共4小题,每题5分.13. 已知函数y =f (x )及其导函数y =f ′(x )的图像如图所示,则曲线y =f (x )在点P 处的切线方程是__________.14. 若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________. 15. 函数y =12x 2-ln x 的单调递减区间为________.16. 若方程4-x 2=k (x -2)+3有两个不等的实根,则k 的取值范围是________.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(10分) 化简:(1)3131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(12分)已知函数f (x )=1a -1(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;(3)当a =1时,求f (|x |)的单调区间. 21.(12分)已知函数f (x )=x 3+x -16. (1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; 22.(12分)已知函数f (x )=x 3-3ax -1,a ≠0. (1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图像有三个不同的交点,求m 的取值范围.2016届高三上学期第一次月考数学答题卡一、选择题(共12小题,每小题5分,共60分,每小题有一个正确答案)13、 14、15、 16、三、解答题17.(10分) 化简:(1)131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(10分)已知函数f (x )=1a -1x(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;21.(13分)已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=1时,求f(|x|)的单调区间.22.(13分)已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图像有三个不同的交点,求m的取值范围.2016届高三上学期第一次月考数学文试卷参考答案1.B2.A3.D4.D5.D6.A7.A8.D9.B10.B11.B12.A13. x -y -2=0 14. {x |-32<1}<="" p="">15. (0,1] 16. (512,34]17. 解 (1)原式=121311113233211212633311233().a b a b abab ab a b+-++----==(2)原式=(-278)23-+(1500)12--105-2+1=(-827)23+50012-10(5+2)+1=49+105-105-20+1=-1679. 18. (1)证明设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=(1a -1x 2)-(1a -1x 1)=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数. (2)解∵f (x )在[12,2]上的值域是[12,2],又f (x )在[12,2]上单调递增,∴f (12)=12,f (2)=2.易得a =25.19. 解(1)∵f (x )是周期为2的奇函数,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0,f (-1)=0. (2)由题意知,f (0)=0. 当x ∈(-1,0)时,-x ∈(0,1).由f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,综上,在[-1, 1]上,f (x )=2x4x +1,x ∈(0,1),-2x 4x+1,x ∈(-1,0),0,x ∈{-1,0,1}.20.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,∵x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35. (2)∵函数f (x )的图像开口向上,对称轴是x =-a ,∴要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. (3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=?x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0, 6],单调递减区间是[-6,0].21.解 (1)可判定点(2,-6)在曲线y =f (x )上.∵f ′(x )=(x 3+x -16)′=3x 2+1.∴f ′(x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)法一设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8,∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26.) 法二设直线l 的方程为y =kx ,切点为(x 0,y 0),则k=y0-0x0-0=x30+x0-16x0又∵k=f′(x0)=3x20+1,∴x30+x0-16x0=3x2+1,解之得x0=-2,∴y0=(-2) 3+(-2)-16=-26,k=3×(-2)2+1=13.∴直线l的方程为y=13x,切点坐标为(-2,-26).22.解(1)f′(x)=3x2-3a=3(x2-a),当a<0时,对x∈R,有f′(x)>0,∴当a<0时,f(x)的单调增区间为(-∞,+∞).当a>0时,由f′(x)>0,解得x<-a或x>a.由f′(x)<0,解得-a<x<a,< p="">∴当a>0时,f(x)的单调增区间为(-∞,-a),(a,+∞),单调减区间为(-a,a).(2)∵f(x)在x=-1处取得极值,∴f′(-1)=3×(-1)2-3a=0,∴a=1.∴f(x)=x3-3x-1,f′(x)=3x2-3,由f′(x)=0,解得x1=-1,x2=1.由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.∵直线y=m与函数y=f(x)的图像有三个不同的交点,结合如图所示f(x)的图像可知:实数m的取值范围是(-3,1).</x<a,<>。

浙江省嘉兴市2022-2023学年高三上学期9月基础测试数学试题含答案

浙江省嘉兴市2022-2023学年高三上学期9月基础测试数学试题含答案

嘉兴市2022-2023学年高三上学期9月基础测试数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合41A x x ⎧⎫=>⎨⎬⎩⎭,{}2B x x =>,则A B = ()A .{}04x x <<B .{}2x x >C .{}24x x <<D .{}x x >2.若复数3i1iz +=-(i 为虚数单位),则z =()A .5B C .3D 3.在平行四边形ABCD 中,点E ,F 分别在边BC ,CD 上,且2BE EC = ,3CF FD =,记AB a = ,AD b = ,则EF = ()A .3143a b -+B .3143a b +C .3143a b -D .1143a b-+ 4.从圆内接正八边形的8个顶点中任取3个顶点构成三角形,则所得的三角形是直角三角形的概率是()A .114B .314C .720D .375.已知直线:210l x y +-=及圆()()22:124C x y +++=,过直线l 上任意一点P 作圆C 的一条切线P A ,A 为切点,则PA 的最小值是()A .5B .5C .5D .56.已知函数()()π5π2sin sin 011212f x x x ωωω⎛⎫⎛⎫=-+<< ⎪ ⎪⎝⎭⎝⎭的图象关于点π,03⎛⎫ ⎪⎝⎭对称,将函数()f x 的图象向左平移π3个单位长度后得到函数()g x 的图象,则()g x 的一个单调递增区间是()A .3ππ,22⎡⎤-⎢⎥⎣⎦B .[]π,π-C .π3π,22⎡⎤-⎢⎥⎣⎦D .[]0,2π7.已知实数a 满足()()2ln 11ln 21ln 2e a +-<<+,则()A .1e aa>B .1e aa<C .1e 1e a a -->D .1e 1e a a --<8.为庆祝国庆,立德中学将举行全校师生游园活动,其中有一游戏项目是夹弹珠.如图,四个半径都是1cm 的玻璃弹珠放在一个半球面形状的容器中,每颗弹珠的顶端恰好与容器的上沿处于同一水平面,则这个容器的容积是()A .(25πc m3+B .(345πc m 3+C .(325πcm+D .(385πc m 3+二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数()32f x x ax bx c =+++在R 上单调递增,()f x '为其导函数,则下列结论正确的是()A .()10f '≥B .()10f ≥C .230a b -≤D .230a b -≥10.如图,在正四面体ABCD 中,E 、F 分别为AB 、CD 的中点,则()A .直线EF 与AB 所成的角为π2B .直线EF 与AD 所成的角为π4C .直线EF 与平面BCD 所成的角的正弦值为3D .直线EF 与平面ABD 所成的角的正弦值为2211.如图,抛物线2:4C y x =的焦点为F ,过点F 的直线与抛物线C 交于M ,N 两点,过点M ,N 分别作准线l 的垂线,垂足分别为1M ,1N ,准线l 与x 轴的交点为1F ,则()A .直线1F N 与抛物线C 必相切B .1π2MF N ∠≤C .111F M F N F F MN⋅=⋅D .11111FM FN FF F M N ⋅=⋅12.已知函数()f x ,()g x 的定义域均为R ,且()()13f x g x +-=,()()33g x f x +-=.若()y g x =的图象关于点(1,0)对称,则()A .()()f x f x -=-B .()()g x g x -=C .()202216066k f k ==∑D .()20201k g k ==∑三、填空题:本题共4小题,每小题5分,共20分.13.设函数()()222,0lg 1,0x x x f x x x ⎧+≤⎪=⎨+>⎪⎩若()0f a ≥,则实数a 的取值范围是___________.14.()()6x y x y +-的展开式中34x y 的系数是___________.(用数字作答)15.树人中学进行篮球定点投篮测试,规则为:每人投篮三次,先在A 处投一次三分球,投进得3分,末投进得0分,然后在B 处投两次两分球,每投进一次得2分,末投进得0分,测试者累计得分高于3分即通过测试.甲同学为了通过测试,进行了五轮投篮训练,每轮在A 处和B 处各投10次,根据统计该同学各轮三分球和两分球的投进次数如下图表:若以五轮投篮训练命中频率的平均值作为其测试时每次投篮命中的概率,则该同学通过测试的概率是___________.16.已知点()5,0M -,点P 在曲线()2210916x y x -=>上运动,点Q 在曲线()2251x y -+=上运动,则2PM PQ的最小值是___________.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)已知等差数列{}n a 的前n 项和为n S ,且4331S a =+,525S =.(1)求数列{}n a 的通项公式;(2)令2n an b =,求数列{}n b 的前n 项和n T .18.(12分)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是正方形,若1124AB A B ==,13BB =,11CC DD ==(1)证明:平面11DCC D ⊥平面ABCD ;(2)求二面角1A CC D --的余弦值.19.(12分)记ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知点D 为AB 的中点,点E 满足2AE EC = ,且()()cos cos cos πsin a A a B C A C +-=-.(1)求A ;(2)若BC =,DE =,求ABC △的面积.20.(12分)某市决定利用两年时间完成全国文明城市创建的准备工作,其中“礼让行人”是交警部门主扲的重点工作之一.“礼让行人”即当机动车行经人行横道时应当减速慢行,遇行人正在通过人行横道,应当停车让行.如表是该市某一主干路口电子监控设备抓拍的今年1-6月份机动车驾驶员不“礼让行人”行为的人数统计数据.月份123456不“礼让行人”333640394553(1)请利用所给的数据求不“礼让行人”人数y 与月份x 之间的经验回归方程()112,y b x a x x '''=+≤≤∈N ,并预测该路口今年11月份不“礼让行人”的机动车驾驶员人数(精确到整数);(2)交警部门为调查机动车驾驶员“礼让行人”行为与驾龄满3年的关系,从这6个月内通过该路口的机动车驾驶员中随机抽查了100人,如表所示:不“礼让行人”礼让行人驾龄不超过3年1842驾龄3年以上436依据小概率值0.05α=的独立性检验,能否据此判断机动车驾驶员“礼让行人”行为与驾龄满3年有关?并说明理由.附:参考公式:()()()121niii ni i x x y y b x x ==--'=-∑∑,()()()()()22n ad bc a c b d a b c d χ-=++++,其中n a b c d =+++.独立性检验临界值表:α0.100.050.0100.0050.001x α2.7063.841 6.6357.87910.82821.(12分)已知椭圆()222:1024x y C b b +=<<,直线1:l y x m =+与椭圆C 交于A ,B 两点,且AB 的最大值为463.(1)求椭圆C 的方程;(2)当463AB =时,斜率为2-的直线2l 交椭圆C 于P ,Q 两点(P ,Q 两点在直线1l 的异侧),若四边形APBQ 的面积为1669,求直线2l 的方程.22.(12分)已知函数()ln f x ax x =和()(()0g x b x b =>有相同的最小值.(1)求1a b+的最小值;(2)设()()()h x f x g x =+,方程()h x m =有两个不相等的实根1x ,2x ,求证:12122x x <+<.2022年高三基础测试数学参考答案(2022.9)一、选择题:本题共8小题,每小愿5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1-8:CBAD ABDB7.答案D 【解折】由()()2ln e 11ln 21ln 2a +-<<+得111e e 2e a ⎛⎫<+<< ⎪⎝⎭,对于选项A 与B ,令函数()1e xg x x =-在()0,+∞上单调递物,则存在012,23x ⎛⎫∈ ⎪⎝⎭,使得()00g x =,即00e 1x x =,又2112e e e 1a <<+且0212e ,e e 1x ⎛⎫∈ ⎪+⎝⎭,所以1e a a >,1e a a <均有可能,即1e a与a 大小不确定.故A 与B 都不正确.对于选项C 与D ,令函数()()ln 11xf x x x =>-得()()211ln 1x x f x x --'=-,令()()11ln 1g x x x x =--≥得()221110xg x x x x-'=-=≤,所以()g x 在[)1,+∞上单调递减所以当1x >时,()()10g x g <=,所以()()()201g x f x x '=<-,所以()f x 在()1,+∞上单调递减,又111e e 2e a ⎛⎫<+<< ⎪⎝⎭,所以()()e f a f >,所以ln ln e 1e 1a a >--,即1e 1e a a --<,故D 正确.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.AC10.ABC11.BD12.BD12.答案BD 【解析】因为()y g x =的图象关于点(1,0)对称,所以()()110g x g x -++=,()g x 的定义域均为R ,故()10g =,由()()13f x g x +-=,得()()13f x g x -++=,所以()()6f x f x +-=,故A 错误;令0x =得,()03f =,因为()()33g x f x +-=,所以()()123g x f x ++-=与()()13f x g x +-=联立得,()()26f x f x +-=,则()()246f x f x -+-=,所以()()4f x f x =-,即()f x 的其中一个周期为4,因为()()33x f x g +-=,所以()()413x f g x +++=.即()()4g x g x +=,所以()g x 的其中一个周期也为4,由()()33g x f x +-=,得()()143g x f x -+-=,与()()13f x g x +-=联立,得()()11g x g x -=-,即()()g x g x =-.所以B 正确;由()()26f x f x +-=,得()()136f f +=,但()1f 与()3f 的值不确定,又()03f =,()23f =,所以()()()()()()2022112505123k f k f f f f f ==++++⎡⎣∑()()460631f f +=+⎤⎦,故C 错误;由()()33g x f x +-=,得()()303g f +=,所以()30g =,又()()123f g -+=,()()143f g +=,两式相加得,()()240g g +=,所以()()()()()20201050512340k g k g g g g ===+++=⎡⎤⎣⎦∑,故D 正确,故选BD .三、填空题:本题共4小题,每小题5分,共20分.13.(][),20,a ∈-∞-+∞ 14.5-15.16125化成小数即为0.50416.20四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)【解析】(1)由4331S a =+,得()114343212a d a d ⨯+=++,即11a =;由525S =,得151025a d +=,则2d =,所以()1121n a a n d n =+-=-.(2)由(1)知214222nna n nb -===,则数列{}n b 是以2为首项,4为公比的等比数列,所以()()()11212142411143n n n n n b q T b b b q---=+++===-- .18.(12分)【解析】(1)方法一:将四棱台1111ABCD A B C D -补形成四棱锥P ABCD -,取CD 中点E ,连结PE ,BE ,则由题意知PC PD =,且1A ,1B ,1C ,1D 分别是棱PA ,PB ,PC ,PD 的中点,所以PE CD ⊥,又126PB BB ==,BE =,4PE =,所以222PB PE BE =+,所以PE BE ⊥又BE CD E = ,BE ⊂平面ABCD ,CD ⊂平面ABCD ,所以PE ⊥平面ABCD ,又PE ⊂平面11DCC D ,所以平面11DCC D ⊥平面ABCD .方法二:在梯形11BCC B 中过1B 作1B M BC ⊥于M ,过1C 作1C N BC ⊥于N ,设BM x =,则2CN x =-,由11B M C N =,得()22952x x -=--,即2x =,所以0CN =,即1BC CC ⊥,又因为CB CD ⊥,1CC CD C = ,所以CB ⊥平面11DCC D ,又因为CB ⊂平面ABCD ,所以平面11DCC D ⊥平面ABCD .方法三:过1C 作1C E CD ⊥于E ,连结BE ,1BC ,则在梯形11CDD C 中,1CE =,12C E ==,在正方形ABCD 中,BE ==,在梯形11BCC B中,4BC =,112B C =,1CC =,13BB =,则梯形11BCC B 为直角梯形,其中1BC CC ⊥,1BC ==,所以22211BE EC BC +=,故1C E BE ⊥,又因为1C E CD ⊥,CD BE E = ,所以1C E ⊥平面ABCD ,又因为1C E ⊂平面11DCC D ,所以平面11DCC D ⊥平面ABCD.方法四:以C 为原点,CD ,CB 所在直线为x ,y 轴如图建系.则()0,0,0C ,D (4,0,0),B (0,4,0),设()1,,C x y z ,由方法二、三知1CC =,1C D =,1C B =,则()()2222222225,413,421,x y z x y z x y z ⎧++=⎪⎪-++=⎨⎪+-+=⎪⎩解得1,0,2,x y z =⎧⎪=⎨⎪=⎩,所以()11,0,2C ,故10CB CC ⋅= ,即1CB CC ⊥,又因为CB CD ⊥,1CC CD C = ,所以CB ⊥平面11DCC D ,又因为CB ⊂平面ABCD ,所以平面11DCC D ⊥平面ABCD.(2)方法一:由第(1)问知AD ⊥平面11DCC D ,过D 作1DG CC ⊥于G ,连结AG ,则可证1AG CC ⊥,因此∠AGD 为二面角1A CC D --的一个平面角,在直角△ADG 中,4AD =,DG ==AG ==,所以2cos 3DG AGD AG ∠==,即二面角1A CC D --的平面角的余弦值为23.方法二:由第(1)问方法四知,()0,1,0m = 为平面11DCC D 的一个法向量:()11,0,2CC =,()4,4,0CA = ,设(),,n x y z = 为平面1ACC 的一个法向量,则1,,n CC n CA ⎧⊥⎪⎨⊥⎪⎩ 即20,440,x z x y +=⎧⎨+=⎩取1z =,则2x =-,2y =,则()2,2,1n =-,设二面角1A CC D --的平面角的大小为π0,2θ⎛⎫∈ ⎪⎝⎭,则2cos cos ,3m n m n m n θ⋅=== ,所以二面角1A CC D --的平面角的余弦值为23.19.(12分)【解析】(1)由()()cos cos cos πsin a A a B C A C +-=-,得()()cos cos cos sin a B C a B C A C-++-=-,即2sin sin cos sin a B C A C=-由正弦定理得sin sin sin cos sin A B C B A C =,因为在△ABC 中sin 0B >,sin 0C >,所以sin A A =,得tan A =,因为()0,πA ∈,所以2π3A =.(2)在△ABC 中由余弦定理2222cos a b c bc A =+-,得2219b c bc ++=,在△ADE 中由余弦定理得2247943b c bc ++=,所以()22224794319b c bc b c bc ++=++,化简得225224810b bc c --=,即()()2326270b c b c -+=,所以32b c =,代入2219b c bc ++=,计算得3b =,2c =,则△ABC的面积1233sin 3sin 232ABC S bc A π===△.20.(12分)【解析】(1)由表中数据可知:123456762x +++++==,333640394553416y +++++==,所以()()()611622116ˆ6n iii ii i ni ii i x x y y x y x ybx x xx ====---==--∑∑∑∑,即616221692486118ˆ14759162iii ii x yxybxx ==--===--∑∑,所以187142ˆˆ41525ay bx =-=-⨯=,所求得经验回归方程为18142ˆ55y x =+.当11x =时,ˆ68y=,所以预测该路口11月份的不“礼让行人”违章驾驶员人数为68人.(2)零假设为0H :“礼让行人”与驾龄满3年无关,由题意知22⨯列联表为不礼让行人礼让行人合计驾龄不超过3年184260驾龄3年以上43640合计2278100由表中数据可得()()()()()()22210018364428005.594 3.84122786040143n ad bc a c b d a b c d χ-⨯-⨯===≈>++++⨯⨯⨯根据小概率值0.05α=的独立性检验,我们推新0H 不成立,即认为“礼让行人”与驾龄满3年有关,且推断犯错误的概率不超过0.05,21.【解析】(1)设()11,A x y ,()22,B x y ,联立直线1l 与椭圆方程得22214x y b y x m ⎧+=⎪⎨⎪=+⎩,消去y 得()()22224840b x mx m b+++-=,又1x ,2x 是这个方程的两个实根,所以()()()222212222122641640,8444m b m b m x x b m b x x b ⎧⎪∆=-+->⎪⎪-+=⎨+⎪⎪-⎪=+⎩由弦长公式得12244AB xb=-=⋅+,所以当0m=时,AB取到最大值,即maxAB==,解得b=.所以椭圆C的方程为22142x y+=.(2)设直线2l方程为2y x n=-+,()33,P x y,()44,Q x y,联立直线2l与椭圆方程221422x yy x n⎧+=⎪⎨⎪=-+⎩消去y得2298240x nx n-+-=,所以()2234234(8)4924089249n nnx xnx x⎧∆=-+⨯⨯->⎪⎪⎪+=⎨⎪⎪-=⎪⎩且(n∈-,记点P,Q到直线1l的距离分别为1d,2d,又1d=,2d=且()()3344x y x y--<,所以12d d+=+====所以()121146||223APBQS AB d d=+=⋅=因为APBQS=,9=,,整理得22n=,所以n=件,综上所述直线的方程为2:2l y x=-±,即为2:20l x y+=.22.(12分)【解析】(1)因为()(21124g x b x b⎡⎤⎫==--⎢⎥⎪⎭⎢⎥⎣⎦,所以()min144bg x g⎛⎫==-⎪⎝⎭;()lnf x ax x=定义域()0,x∈+∞,()()ln1f x a x'=+,令()0f x'=得,1ex=,当0a>时,()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e⎛⎫+∞ ⎪⎝⎭上单递增;当0a <时,()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递增,在1,e⎛⎫+∞ ⎪⎝⎭上单调递减;当0a =时,()0f x =,要使()f x 与()g x 有相同的最小值,则0a >,()min 1e e 4ab f x f ⎛⎫===- ⎪-⎝⎭,所以e 4b a =,所以1e 14b a b b +=+≥=,当且仅当b =时,取等号.(2)由已知得()()()(eln 4h x f x g x bx x b x =+=+,()()12e1ln 1142h x b x b x -⎛⎫'=++- ⎪⎝⎭,令()()12e 1ln 1142H x b x b x -⎛⎫=++- ⎪⎝⎭,则()32e 11044H x b b x x -'=⋅+⋅>恒成立,则()H x 在()0,+∞上单调递增,即()h x '在()0,+∞单调递增,因为()()2e e 3e e 21110424h b b b -⎛⎫⎛⎫'=-++-=-< ⎪ ⎪⎝⎭⎝⎭,()10h '>,存在()20e ,1x -∈使得()00h x '=,()h x 在()00,x 上单调递减,在()0,x +∞上单调递增,又因为()10h =,当01x <<时,()0h x <,因此若方程()h x m =有两个不相等的实根1x ,2x (不防设12x x <),则必有1201x x <<<,因此122x x +<;下证1212x x +>,由()()12h x h x m ==,得((111222e eln ln 44bx x b x bx x b x m +-=+-=,则((1211mx x b ⎫⎛⎫=-=⎪ ⎪⎪ ⎪⎭⎝⎭,令())01m x x =<<,令()0,1t =,则()2ln 1t t m t t =-,则()()()()()()222ln 112ln 21ln 11t t t t t t m t t t +----'==--,令()()1ln 01n t t t t =--<<,则()110n t t '=-<成立,所以()n t 在(0,1)上单调递减,()()10n t n >=,即当01t <<时,()0m t '>成立,所以()m t 在(0,1)上单调递增,即()m x 在(0,1)上单调递增,故()()120m x m x <<,由于20x x ,因此((1211x x ⎫⎛⎫=-⎪⎪⎪ ⎪⎭⎝⎭(21x ⎫<-⎪⎪⎭,得12x x <->,得1>,所以212122x x +>=⎝⎭,综上12122x x <+<.。

浙江省嘉兴市2023-2024学年高一上学期1月期末检测数学试题(含答案)

浙江省嘉兴市2023-2024学年高一上学期1月期末检测数学试题(含答案)

嘉兴市2023~2024学年第一学期期末检测高一数学试题卷(答案在最后)(2024.1)本试题卷共6页,满分150分,考试时间120分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}24,3A x x B x x =≤<=≥,则A B = ()A.[)2,4 B.[)3,4 C.[)2,+∞ D.[)3,+∞【答案】B 【解析】【分析】由交集的定义求解即可.【详解】因为集合{}{}24,3A x x B x x =≤<=≥,所以A B ⋂{}34x x =≤<.故选:B .2.已知()3sin π5α+=,则sin α=()A.45 B.35 C.45-D.35-【答案】D 【解析】【分析】应用诱导公式()sin πsin αα+=-,求解即可.【详解】由诱导公式()sin πsin αα+=-,且()3sin π5α+=,可得3sin 5α-=,即3sin 5α=-.故选:D.3.已知函数()()31,111,12x x f x f x x ⎧-≤⎪=⎨->⎪⎩,则()3f =()A.14B.12C.2D.4【答案】B 【解析】【分析】利用函数()f x 的解析式可求得()3f 的值.【详解】因为()()31,111,12x x f x f x x ⎧-≤⎪=⎨->⎪⎩,则()()()113113212442f f f -====.故选:B.4.已知(),,0,a b m ∈+∞,则“a b >”是“b m ba m a+>+”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】利用作差法,得出b m ba m a+>+的等价条件()0()m a b a a m ->+,再分析充分性和必要性,即可得出结论.【详解】由于()()b m b m a b a m a a a m +--=++,则b m ba m a+>+成立,等价于()0()m a b a a m ->+成立,充分性:若a b >,且(),,0,a b m ∞∈+,则0,0a m a b +>->,则()0()m a b a a m ->+,所以b m ba m a+>+成立,满足充分性;必要性:若b m ba m a+>+,则()0()m a b a a m ->+成立,其中(),,0,a b m ∞∈+,且0a m +>,则可得0a b ->成立,即a b >成立,满足必要性;故选:C.5.已知,αβ都是锐角,()2510cos ,sin 510αβα+==,则cos β=()A.10B.10 C.2D.10【答案】B 【解析】【分析】根据()βαβα=+-,结合同角三角关系以及两角和差公式运算求解.【详解】因为,αβ都是锐角,则()0,παβ+∈,则()sin ,cos 510αβα+==,所以()()()cos cos cos cos sin sin βαβααβααβα⎡⎤=+-=+++⎣⎦51051010=⨯+⨯=.故选:B.6.设函数()323f x x x =-,则下列函数是奇函数的是()A.()12f x ++B.()12f x -+C.()12f x --D.()12f x +-【答案】A 【解析】【分析】化简各选项中函数的解析式,利用函数奇偶性的定义判断可得出合适的选项.【详解】因为()323f x x x =-,对于A 选项,()()()32322312131233136323f x x x x x x x x x x ++=+-++=+++---+=-,令()313f x x x =-,该函数的定义域为R ,()()()()331133f x x x x x f x -=---=-+=-,则()12f x ++为奇函数,A 满足要求;对于B 选项,()()()323221213123313632f x x x x x x x x -+=---+=-+--+-+32692x x x =-+-,令()322692f x x x x =-+-,该函数的定义域为R ,则()2020f =-≠,所以,函数()12f x -+不是奇函数,B 不满足条件;对于C 选项,()()()323221213123313632f x x x x x x x x --=----=-+--+--32696x x x =-+-,令()323696f x x x x =-+-,该函数的定义域为R ,则()3060f =-≠,所以,函数()12f x --不是奇函数,C 不满足条件;对于D 选项,()()()323223121312331363234f x x x x x x x x x x +-=+-+-=+++----=--,令()3434f x x x =--,该函数的定义域为R ,则()4040f =-≠,所以,函数()12f x +-不是奇函数,D 不满足要求.故选:A.7.已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的部分图象如图所示,ABC 是等腰直角三角形,,A B 为图象与x 轴的交点,C 为图象上的最高点,且3OB OA =,则()A.()262f =B.()()190f f +=C.()f x 在()3,5上单调递减 D.函数()f x 的图象关于点5,02⎛⎫-⎪⎝⎭中心对称【答案】D 【解析】【分析】根据C 为图象上的最高点,且点C 的纵坐标为1,ABC 为等腰直角三角形可以求出2AB =,进而求出周期,即求出ω,将点C 代入即可求出ϕ,从而确定函数()f x 解析式,再逐项判断.【详解】由ABC 为等腰直角三角形,C 为图象上的最高点,且点C 的纵坐标为1,所以2AB =.则函数()f x 的周期为4,由2π4ω=,0ω>,可得π2=ω,又3OB OA =,所以13,0,,022A B ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则1,12C ⎛⎫ ⎪⎝⎭,将点C 代入()πsin 2f x x ϕ⎛⎫=+ ⎪⎝⎭,得π1sin 4ϕ⎛⎫=+ ⎪⎝⎭,则ππ2π42k ϕ+=+,k ∈Z .而0πϕ<<,则π4ϕ=,所以()ππsin 24f x x ⎛⎫=+⎪⎝⎭,则()2ππ6s n i 624f ⎛⎫⨯+=-⎪⎝=⎭,A 错误;()()419sin s ππππ3π3πsin sin 92424i 4n f f ⎛⎫⎛⎫++⨯++= ⎪ ⎪⎝⎭=⎝+=⎭,B 错误;若()3,5x ∈,则ππ7π11π,2444x ⎛⎫+∈ ⎪⎝⎭,显然函数不是单调的,C 错误;()5π5πsin sin π02224f ⎛⎫⎛⎫⎛⎫-=⨯-+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以函数()f x 的图象关于点5,02⎛⎫- ⎪⎝⎭中心对称,D 正确.故选:D.8.已知函数()e xf x x =+,()lng x x x =+,若()()12f x g x t ==,则2122x x t ++-的最大值为()A.94B.2C.2e 12- D.23e 1e -【答案】A 【解析】【分析】由已知可得出()()ln g x f x =,分析函数()f x 的单调性,可得出12ln x x =,即可得出221222x x t t t ++-=+-,结合二次函数的基本性质可求得2122x x t ++-的最大值.【详解】因为函数e x y =、y x =均为R 上的增函数,所以,函数()e xf x x =+为R 上的增函数,()()ln ln e ln ln x g x x x x f x =+=+=,因为()()()122ln f x g x f x t ===,其中t ∈R ,所以,12ln x x =,故222212221992ln 22244x x t x x t t t t ⎛⎫++-=++-=+-=--+≤ ⎪⎝⎭,当且仅当12t =时等号成立,故2122x x t ++-的最大值为94.故选:A.【点睛】关键点点睛:解决本题的关键在于利用指对同构思想结合函数单调性得出12ln x x =,将所求代数式转化为以t 为自变量的函数,将问题转化为函数的最值来处理.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知幂函数()f x x α=的图象经过点()4,2,则()A.12α=B.()f x 的图象经过点()1,1C.()f x 在[)0,∞+上单调递增 D.不等式()f x x ≥的解集为{}1xx ≤∣【答案】ABC 【解析】【分析】根据题意,代入法确定函数解析式,从而依次判断选项即可.【详解】由幂函数()f x x α=的图象经过点()4,2,则24α=,得12α=,所以幂函数()12f x x ==,所以A 正确;又()11f ==,即()f x 的图象经过点()1,1,B 正确;且()f x 在[)0,∞+上单调递增,C 正确;不等式()f x x ≥x ≥,解得01x ≤≤,D 错误.故选:ABC.10.已知0a >,0b >,且1a b +=,则()A.18ab ≥B.221a b +>C.11022a b ⎛⎫⎛⎫--≤ ⎪⎪⎝⎭⎝⎭D.11lnln 1a b+>【答案】CD 【解析】【分析】利用特殊值法可判断A 选项;利用二次函数的基本性质可判断B 选项;利用不等式的基本性质可判断C 选项;利用基本不等式结合对数函数的单调性可判断D 选项.【详解】对于A 选项,取18a =,78b =,则71648ab =<,A 错;对于B 选项,因为0a >,0b >,且1a b +=,则10b a =->,可得01a <<,所以,111222a -<-<,则211024a ⎛⎫≤-< ⎪⎝⎭,因为()22222211112212,1222a b a a a a a ⎛⎫⎡⎫+=+-=-+=-+∈ ⎪⎪⎢⎝⎭⎣⎭,B 错;对于C 选项,21111111102222222a b a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--=---=--=--≤ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,当且仅当12a =时,等号成立,C 对;对于D 选项,因为21024a b ab +⎛⎫<≤= ⎪⎝⎭,当且仅当1a b a b =⎧⎨+=⎩时,即当12a b ==时,等号成立,所以,()1111lnln ln ln ln ln 414ab a b ab +==-≥-=>,D 对.故选:CD.11.已知函数()()22*sin cos kkk f x x x k =+∈N ,值域为kA ,则()A.21,12A ⎡⎤=⎢⎥⎣⎦ B.()*,k k f x ∀∈N 的最大值为1C.*1,k k k A A +∀∈⊆N D.*k ∃∈N ,使得函数()k f x 的最小值为13【答案】AB 【解析】【分析】对于A ,利用换元法与二次函数的单调性即可判断;对于B ,利用指数函数的单调性即可判断;对于C ,利用幂函数的单调性即可判断;对于D ,结合ABC 选项的结论,求得3A ,从而得以判断.【详解】对于A ,因为22sin cos 1x x +=,故()2222sin cos 1cos cos kk k k x x x x+=-+今2cos x t =,则22sin cos (1),[0,1]k k k k x x t t t +=-+∈,当2k =时,222211(1)221222t t t t t ⎛⎫-+=-+=-+ ⎪⎝⎭,因为[0,1]t ∈,211222y t ⎛⎫=-+ ⎪⎝⎭在10,2⎡⎫⎪⎢⎣⎭上单调递减,在1,12⎛⎤ ⎥⎝⎦上单调递增,所以21,12A ⎡⎤=⎢⎥⎣⎦,故A 正确;对于B ,因为[0,1]t ∈,011t ≤-≤,则(1)(1)k t t -≤-且k t t ≤,故(1)11k k t t t t -+≤-+=,当且仅当0=t 或1t =时,(1)1k k t t -+=,所以()k f x 最大值为1,故B 正确;对于C ;因为[0,1]t ∈,011t ≤-≤,则11(1)(1),k k k k t t t t ++-≤-≤,即11(1)(1)k k k k t t t t ++-+≤-+,所以()()1min min k k f x f x +≤,由选项B 又知()1k f x +与()k f x 的最大值都为1,所以1k k A A +⊆,故C 错误;对于D ,当3k =时,233211(1)331324t t t t t ⎛⎫-+=-+=-+ ⎪⎝⎭,因为[0,1]t ∈,211324y t ⎛⎫=-+ ⎪⎝⎭,在10,2⎡⎫⎪⎢⎣⎭上单调递减,在1,12⎛⎤ ⎥⎝⎦上单调递增,所以31,14A ⎡⎤∈⎢⎥⎣⎦,又()()1min min k k f x f x +≤,所以当3k >时,()min 14k f x ≤,又21,12A ⎡⎤∈⎢⎥⎣⎦,易知{}11A =,故不可能存在*N k ∈使()k f x 最小值为13,故D 错误.故选:AB.【点睛】关键点点睛:本题解决的关键在于利用换元法将函数转化为二次函数,从而得解.12.设定义在R 上的函数()f x 满足()()()20,1f x f x f x ++=+为奇函数,当[]1,2x ∈时,()2=⋅+x f x a b ,若()01f =-,则()A.()10f =B.12a b +=-C.()21log 242f =- D.()2f x +为偶函数【答案】ABD【解析】【分析】由题意可得()()110f x f x ++-+=可判断A ;由()01f =-可得()21f =,列方程组,解出,a b 可判断B ;由函数的周期性、对称性和对数函数的运算性质可判断C ;由()()()()2,2f x f x f x f x +=--=-得()()22f x f x +=-可判断D .【详解】选项A :因为()1f x +为奇函数,所以()()110f x f x ++-+=,即()f x 关于()1,0对称,又()f x 是定义在R 上的函数,则()10f =,故A 正确;选项B :由()01f =-可得()21f =,则有120124121a b a a b a b b ⎧+==⎧⎪⇒⇒+=-⎨⎨+=⎩⎪=-⎩,故B 正确;选项C :因为()()2f x f x +=-,所以()()()42f x f x f x +=-+=,即()f x 的周期为4;因为224log 2450log 2441<<⇒<-<,即230log 12<<,所以()223log 24log 2f f ⎛⎫= ⎪⎝⎭;因为()f x 关于()1,0对称,所以()()=2f x f x --,则2223381log 2log log 2233f f f⎛⎫⎛⎫⎛⎫=--=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 错误;选项D :由()()()()2,2f x f x f x f x +=--=-得()()22f x f x +=-,即()2f x +为偶函数,故D 正确.故选:ABD.【点睛】方法点睛:抽象函数的奇偶性、对称性、周期性常有以下结论(1)()()()f x a f b x f x +=-⇒关于2a bx +=轴对称,(2)()()()2f x a f b x c f x ++-=⇒关于,2a b c +⎛⎫⎪⎝⎭中心对称,(3)()()()f x a f x b f x +=+⇒的一个周期为T a b =-,(4)()()()f x a f x b f x +=-+⇒的一个周期为2T a b =-.可以类比三角函数的性质记忆以上结论.三、填空题:本大题共4小题,每小题5分,共20分.13.一个扇形的弧长和面积都是2π3,则这个扇形的半径为________.【答案】2【解析】【分析】由扇形的面积公式求解即可.【详解】设扇形的弧长为l ,半径为r ,所以2π3l =,112π2π2233S rl r ===,解得:2r =.故答案为:2.14.函数()12xf x ⎛⎫= ⎪⎝⎭的单调递增区间是________.【答案】(],0-∞【解析】【分析】根据指数函数的单调性即可得解.【详解】()1,01222,0xxx x f x x ⎧⎛⎫>⎪⎛⎫⎪==⎨⎝⎭⎪⎝⎭⎪≤⎩,所以函数()12xf x ⎛⎫= ⎪⎝⎭的单调递增区间是(],0-∞.故答案为:(],0-∞.15.海洋潮汐是在太阳和月球的引力作用下,形成的具有周期性海面上升和下降的现象.在通常情况下,船在涨潮时驶进航道,停靠码头;在落潮时离开港口,返回海洋.已知某港口某天的水深()H t (单位:m )与时间t (单位:h )之间满足关系式:()()3sin 50H t t ωω=+>,且当地潮汐变化的周期为12.4h T =.现有一艘货船的吃水深度(船底与水面的距离)为5m ,安全条例规定至少要有1.5m 的安全间隙(船底与洋底的距离).若该船计划在当天下午到达港口,并在港口停靠一段时间后于当天离开,则它最多可停留________h .【答案】6215【解析】【分析】根据函数周期性可得5π31ω=,令() 6.5H t >,结合正弦函数性质分析求解即可.【详解】由题意可得:2π5π12.431ω==,则()5π3sin 531H t t =+,令()5π3sin 5 6.531H t t =+>,则5π1sin 312t >,可得π5π5π2π2π,6316k t k k +<<+∈Z ,解得62316231,53056k t k k +<<+∈Z ,设该船到达港口时刻为1t ,离开港口时刻为2t ,可知121224t t <<<,则0k =,即1262316231,,53056t t ⎛⎫∈++⎪⎝⎭,所以最多可停留时长为62316231625653015⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭小时.故答案为:6215.16.若函数()212(0)11f x x x a a a x ⎛⎫=---> ⎪+-⎝⎭有两个零点,则实数a 的取值范围是________.【答案】102a +<<【解析】【分析】令1t x =-,则()2111g t t a a t ⎛⎫=---⎪+⎝⎭只有一个零点,即2211a t a t =-++,据此即可求解.【详解】函数的定义域为R ,令1t x =-,则()2111g t t a a t ⎛⎫=---⎪+⎝⎭只有一个零点,且该零点为正数,()22011ag t t a t =⇔=-++,根据函数()()210h t tt =≥和()()22101ah t a t t =-+≥+的图象及凹凸性可知,只需满足()()1200h h <即可,即:221515011022a a a a a -+<-++⇒--<⇒<<,又因为0a >,所以实数a 的取值范围是102a <<.故答案为:0a <<.【点睛】关键点点睛:本题令1t x =-,则()2111g t t a a t ⎛⎫=---⎪+⎝⎭只有一个零点,即2211a t a t =-++的分析.四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知集合{}{}2230,2A x x x B x x =--≥=≤.(1)求集合A ;(2)求()R A B ð.【答案】(1){}13A x x x =≤-≥或(2)(){23}A B xx ⋃=-≤<R ∣ð【解析】【分析】(1)先求解2230x x -->,从而可得1x ≤-或3x ≥,从而可求解.(2)分别求出{}13A x x =-<<R ð,{}22B x x =-≤≤,再利用集合的并集运算从而可求解.【小问1详解】由题意得2230x x -->,解得3x ≥或1x ≤-,所以{1A xx =≤-∣或3}x ≥.【小问2详解】由(1)可得{}13A x x =-<<R ð,{}22B x x =-≤≤,所以(){23}A B xx ⋃=-≤<R ∣ð.18.如图,以Ox 为始边作角α与()0πββα<<<,它们的终边与单位圆O 分别交于P 、Q 两点,且OP OQ ⊥,已知点P 的坐标为43,55⎛⎫- ⎪⎝⎭.(1)求sin sin αβ-的值;(2)求tan2β的值.【答案】(1)15-(2)247-【解析】【分析】(1)由三角函数的定义可得出α的正弦值和余弦值,分析可得π2βα=-,利用诱导公式可求得sin β的值,由此可得出sin sin αβ-的值;(2)利用诱导公式求出cos β的值,可求得tan β的值,再利用二倍角的正切公式可求得tan 2β的值.【小问1详解】解:由三角函数的定义可得4cos 5α=-,3sin 5α=,将因为0πβα<<<,且角α、β的终边与单位圆O 分别交于P 、Q 两点,且OP OQ ⊥,结合图形可知,π2βα=-,故π4sin sin cos 25βαα⎛⎫=-=-= ⎪⎝⎭.故341sin sin 555αβ-=-=-.【小问2详解】解:由(1)可知4sin 5β=,且π3cos cos sin 25βαα⎛⎫=-== ⎪⎝⎭,故sin 454tan cos 533βββ==⨯=,根据二倍角公式得22422tan 243tan21tan 7413βββ⨯===--⎛⎫- ⎪⎝⎭.19.已知函数()()()22log 1log 1f x x x =+--.(1)求函数()f x 的定义域,并根据定义证明函数()f x 是增函数;(2)若对任意10,2x ⎡⎤∈⎢⎥⎣⎦,关于x 的不等式()211221x xx f t f ⎛⎫--⋅< ⎪+⎝⎭恒成立,求实数t 的取值范围.【答案】(1)定义域为()1,1-,证明见解析(2)(【解析】【分析】(1)由对数的真数大于零,可得出关于x 的不等式组,即可解得函数()f x 的定义域,然后利用函数单调性的定义可证得结论成立;(2)分析可知,210121xx -≤<+,由()211221x xx f t f ⎛⎫--⋅< ⎪+⎝⎭可得出1121211221xx x xt t ⎧-<-⋅<⎪⎨--⋅<⎪+⎩,结合参变量分离法可得出()222221x x x t <<+,利用指数函数的单调性可求得实数t 的取值范围.【小问1详解】解:对于函数()()()22log 1log 1f x x x =+--,则1010x x +>⎧⎨->⎩,可得11x -<<,所以,函数()f x 的定义域为()1,1-,证明单调性:设1211x x -<<<,则有()()()()()()1221212222log 1log 1log 1log 1f x f x x x x x -=+---+--⎡⎤⎣⎦,()()()()1221211log 11x x x x +-=-+,由于1211x x -<<<,所以120x x -<,()()12110x x +->,()()12110x x -+>,并且()()()()()()121211222121111111x x x x x x x x x x x x +---+=-+--+--()1220x x =-<,则()()()()12121111x x x x +-<-+,于是()()()()1212110111x x x x +-<<-+,所以()()()()1221211log 011x x x x +-<-+,即:()()12f x f x <,所以函数()f x 在定义域()1,1-上单调递增.【小问2详解】解:当10,2x ⎡⎤∈⎢⎥⎣⎦时,2120112121x x x -≤=-<++,所以不等式()211221xxx f t f ⎛⎫--⋅< ⎪+⎝⎭恒成立等价于1121211221x x x xt t ⎧-<-⋅<⎪⎨--⋅<⎪+⎩对任意的10,2x ⎡⎤∈⎢⎥⎣⎦恒成立,等价于()222221x x x t <<+在10,2x ⎡⎤∈⎢⎥⎣⎦恒成立.由10,2x ⎡⎤∈⎢⎥⎣⎦可得12x ≤≤222x≤≤,())222112x x≤+≤=+,则()221221x x≤≤+,于是实数t 的取值范围是(.20.噪声污染问题越来越受到人们的重视.我们常用声压与声压级来度量声音的强弱,其中声压p (单位:Pa )是指声波通过介质传播时,由振动带来的压强变化;而声压级p L (单位:dB )是一个相对的物理量,并定义020lgp p L p =⨯,其中常数0p 为听觉下限阈值,且50210Pa p -=⨯.(1)已知某人正常说话时声压p 的范围是0.002Pa 0.02Pa ~,求声压级p L 的取值范围;(2)当几个声源同时存在并叠加时,所产生的总声压p 为各声源声压()1,2,3,,i p i n = 的平方和的算术平方根,即p =现有10辆声压级均为80dB 的卡车同时同地启动并原地急速,试问这10辆车产生的噪声声压级p L 是多少?【答案】(1)[]40,60dB P L ∈(2)()90dB p L =【解析】【分析】(1)因为P L 是关于p 的增函数结合声压p 的范围是0.002Pa 0.02Pa ~,即可得出答案;(2)由题意可得出08020lg i p p =⨯求出i p ,代入可求出总声压p ,再代入020lg p pL p =⨯,求解即可.【小问1详解】当30.002210Pa p -==⨯时,3521020lg 40dB 210P L --⨯=⨯=⨯;当20.02210Pa p -==⨯时,2521020lg 60dB 210P L --⨯=⨯=⨯;因为P L 是关于p 的增函数,所以正常说话时声压级[]40,60dB P L ∈.【小问2详解】由题意得:()4008020lg 10Pa ii p p p p =⨯⇒=⨯(其中1,2,3,,10i = )总声压:()4010Pa p ==⨯(40001020lg 20lg 20490(dB)P p L p p ⨯=⨯=⨯=⨯+=故这10辆车产生的噪声声压级()90dB p L =.21.设函数()22cos 2sin cos 1(04)f x x x x ωωωω=--<<,若将函数()f x 的图象向右平移12π个单位长度后得到曲线C ,则曲线C 关于y 轴对称.(1)求ω的值;(2)若直线y m =与曲线()y f x =在区间[]0,π上从左往右仅相交于,,A B C 三点,且2AB BC =,求实数m 的值.【答案】(1)32ω=(2)2【解析】【分析】(1)方法一:利用三角恒等变换化简可得()π24f x x ω⎛⎫=+ ⎪⎝⎭,根据图象变换结合对称性分析求解;方法二:利用三角恒等变换化简可得()π24f x x ω⎛⎫=+ ⎪⎝⎭,由题意可知函数()f x 关于直线π12x =-对称,根据对称性分析求解;(2)方法一:根据题意结合图象可知:1π01,012m x <<<<且312π3x x T -==,进而结合对称性分析求解;方法二:根据题意结合图象可知:1π01,012m x <<<<且312π3x x T -==,1πππ3,442t x ⎛⎫=+∈ ⎪⎝⎭,可得4π2π3t t ⎛⎫++= ⎪⎝⎭,进而可得结果.【小问1详解】方法一:因为()()22cos 12sin cos f x x x xωωω=--cos2sin2x x ωω=-π24x ω⎛⎫=+⎪⎝⎭,由题意可知:曲线C 为函数πππ212124y f x x ω⎡⎤⎛⎫⎛⎫=-=-+ ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦因为曲线C 关于y 轴对称,则ππ2π,124k k ω⎛⎫-+=∈ ⎪⎝⎭Z ,解得36,2k k ω=-∈Z ,又因为04ω<<,所以30,2k ω==;方法二:因为()()22cos 12sin cos f x x x xωωω=--cos2sin2x x ωω=-π24x ω⎛⎫=+⎪⎝⎭,由题意可知:函数()f x 关于直线π12x =-对称,则ππ2π,124k k ω⎛⎫-+=∈ ⎪⎝⎭Z ,解得36,2k k ω=-∈Z ,又因为04ω<<,所以30,2k ω==.【小问2详解】方法一:由(1)可知:()π34f x x ⎛⎫=+ ⎪⎝⎭,根据函数()f x 在[]0,π上的图象,如图所示:设()()()112233,,,,,A x y B x y C x y 可知:1π01,012m x <<<<且312π3x x T -==,由2AB BC =,得2124π39x x T -==①,又因为,A B 两点关于直线π4x =对称,则12π2x x +=②由①②可得121π3617π36x x ⎧=⎪⎪⎨⎪=⎪⎩,于是()1ππ33642m f x ⎛⎫==⨯+=⎪⎝⎭;方法二:由(1)可知:()π34f x x ⎛⎫=+ ⎪⎝⎭,设()()()112233,,,,,A x y B x y C x y ,根据函数()f x 在[]0,π上的图象,如图所示:由题意可知:1π0,012m x ><<,且312π3x x T -==,又因为2AB BC =,得2124π39x x T -==,则214π9x x =+,而()()12f x f x =12ππ3344x x ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,可得111π4πππ4πcos 3cos 3cos 349443x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=++=++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,令1πππ3,442t x ⎛⎫=+∈ ⎪⎝⎭,则4πcos cos 3t t ⎛⎫=+ ⎪⎝⎭,可得4π2π3t t ⎛⎫++= ⎪⎝⎭,即π3t =,故()()112342m f x x t ==+==.22.已知函数()2π4cos2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.【答案】(1)[]5,1-(2)12,2a =【解析】【分析】(1)根据2(2)4y x =--和πcos2y x =的单调性可得()f x 在[]0,2上单调递减,进而可求解;(2)构造()()4F x f x a =-+,根据()()4F x F x -=,可得()F x 关于直线2x =对称,进而可得13224x x x +==,即可代入化简得()()131278f x f x x --的表达式,即可结合二倍角公式以及二次函数的性质求解.【小问1详解】若()2π1,(2)cos42a f x x x =-=-+-,因为函数2(2)4y x =--和πcos 2y x =均在[]0,2上单调递减,所以函数()f x 在[]0,2上单调递减,故()()min max ()25,()01f x f f x f ==-==,所以函数()f x 在[]0,2上的值域为[]5,1-.【小问2详解】()2π4(2)cos 12f x a x a x ⎛⎫=-⇔-=+ ⎪⎝⎭,显然:当2x ≠时,2π(2)0,0cos122x x ->≤+≤,由于方程()4f x a =-有三个不等实根123,,x x x ,所以必有0a >,令()()4F x f x a =-+,则()2π4cos42F x x x a x a =---+,显然有()20F =,由()()()22ππ4(4)44cos 4444cos 22F x x x a x a x x a x a -=------+=-+--,得到()()4F x F x -=,所以函数()F x 关于直线2x =对称,由()()()1230F x F x F x ===,可得:13224x x x +==,于是()()231111π44cos2f x f x x x a x =-=--,()21111248cosπf x x x a x =--,()()221311111111π27848cosπ74cos 82f x f x x x x a x x x a x ⎛⎫--=------ ⎪⎝⎭()22111ππ32122cos 17cos 22x a x x ⎛⎫=--+--- ⎪⎝⎭①,由()10F x =可得:()211π2cos12x a x ⎛⎫-=+ ⎪⎝⎭②,将②代入①式可得:()()2131111πππ2783cos 1122cos 17cos 222f x f x x a x a x ⎛⎫⎛⎫--=-++--- ⎪ ⎪⎝⎭⎝⎭211ππ2cos 4cos 21222a x x ⎛⎫=-+-+ ⎪⎝⎭21π2cos 112122a x ⎛⎫=--+≤ ⎪⎝⎭,当且仅当1πcos12x =,即()14x k k =∈N 时等号成立,由于()4f x a =-恰有三个不等实根,22x =且123x x x <<,所以10x =,此时34x =,由()211π2cos 12x a x ⎛⎫-=+ ⎪⎝⎭可得()4co 0s 1a =+,故2a =.【点睛】方法点睛:处理多变量函数最值问题的方法有:(1)消元法:把多变量问题转化单变量问题,消元时可以用等量消元,也可以用不等量消元.(2)基本不等式:即给出的条件是和为定值或积为定值等,此时可以利用基本不等式来处理,用这个方法时要关注代数式和积关系的转化.(3)线性规划:如果题设给出的是二元一次不等式组,而目标函数也是二次一次的,那么我们可以用线性规划来处理.。

指数对数运算练习题40道(附答案)

指数对数运算练习题40道(附答案)

每天一刻钟,数学点点通郭大侠的数学江湖指数对数运算练习题1.已知,b=0.32,0.20.3c =,则a,b,c 三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a2.已知432a =,254b =,1325c =,则(A)b a c <<(B)a b c <<(C)b c a<<(D)c a b<<3.三个数6log ,7.0,67.067.0的大小顺序是()A.7.07.0666log 7.0<< B.6log 67.07.07.06<<C.67.07.07.066log << D.7.067.067.06log <<4.已知4log ,4.0,22.022.0===c b a ,则()A.c b a >>B.a c b>>C.c a b>>D.b c a>>5.设 1.1 3.13log 7,2,0.8ab c ===则()A.c a b <<B.ba c << C.ab c << D.bc a <<6.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是()A.b c a <<B.c b a <<C.ca b <<D.ac b <<7.已知 1.22a =,0.80.5b =,2log 3c =,则()A.a b c>>B.c b a <<C.c a b>>D.a c b>>8.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a >>9.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则()A.a>b>cB.a>c>bC.b>c>aD.c>b>a10.设0.61.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是()(A)a b c <<(B) a c b <<(C)b a c <<(D)b c a<<试卷第2页,总8页11.设a=34⎛⎫ ⎪⎝⎭0.5,b=43⎛⎫ ⎪⎝⎭0.4,c=log 34(log 34),则()A.c<b<a B.a<b<c C.c<a<bD.a<c<b12.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a>>13.已知03131log 4,(),log 105a b c ===,则下列关系中正确的是()A.a b c >>B.b a c >>C.a c b >>D.c a b>>14.设0.5342log log 2a b c π-===,,,则()A.b a c>> B. b c a >> C.a b c >> D.a c b>>15.设0.90.48 1.512314,8,(2y y y -===,则()A.312y y y >>B.213y y y >>C.132y y y >>D.123y y y >>16.设12log 5a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则()A .a b c<<B .c b a<<C .c a b<<D .b a c<<17.设221333111(,(),()252a b c ===,则,,a b c 的大小关系是()A.a b c >>B.c a b >>C.a c b>> D.c b a>>18.已知0.5log sin a x =,0.5log cos b x =,0.5log sin cos c x x =,,42x ππ⎛⎫∈ ⎪⎝⎭,则,,a b c 的大小关系为()A.b a c>> B.c a b>> C.c b a>> D.b c a>>19.设0.50.82x =,2log y =sin1z =,则x 、y 、z 的大小关系为()A.x y z<< B.y z x<< C.z x y<< D.z y x<<每天一刻钟,数学点点通郭大侠的数学江湖20.若21log 0,(12ba <> ,则()A .1,0a b >>B .1,0a b ><C .01,0a b <<> D .01,0a b <<< 21.已知1122log log a b <,则下列不等式一定成立的是()A.1143ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B.11a b> C.()ln 0a b -> D.31a b-<22.计算(1)(2)1.0lg 10lg 5lg 2lg 125lg 8lg --+23.计算:1132081()274e π-⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭;②2lg 5lg 4ln ++.24.化简下列各式(其中各字母均为正数):(1)131.5-×76⎛⎫-⎪⎝⎭0+80.25)6;211113322---()(3)41332233814a a bb a⎛÷⨯⎝--+25.(12分)化简或求值:(1)110232418(22(2)()5427--+⨯-;(2)2lg5+试卷第4页,总8页每天一刻钟,数学点点通郭大侠的数学江湖26.(12分)化简、求值:(1)220.53327492()()(0.008)8925---+⨯;(2)计算2lg 5lg8000(lg 11lg 600lg 36lg 0.0122⋅+--27.(本小题满分10分)计算下列各式的值:(1)2203227()(1()38-+-;(2)5log 33332log 2log 32log 85-+-试卷第6页,总8页28.计算:(1)0021)51(1212)4(2---+-+-;(2)3log 5.222ln 001.0lg 25.6log +++e 29.(本题满分12分)计算以下式子的值:1421(0.252--+⨯;(2)7log 237log 27lg 25lg 47log 1++++.30.计算(1)7log 203log lg 25lg 47(9.8)+++-(2)32310641(833()1(416-+--π-每天一刻钟,数学点点通郭大侠的数学江湖31.计算:()10012cos3022π-⎛⎫-+- ⎪⎝⎭.32.(本题满分12分)计算(1)5log 923215log 32log (log 8)2+-(2)())121023170.0272179--⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭33.(1)化简:1222232()()()a b ab a b ---⋅÷;.34.计算:(1)2482(2013)ππ---⨯--(26cos 45-o试卷第8页,总8页35.(1)计算3log 238616132(log 4)(log 27)log 82log 3--+.(2)若1122x x-+=,求1223x x x x --++-的值.36.求值:(122316ln 4⎛⎫-+ ⎪⎝⎭37.(1)求值:(2)已知31=+x x 求221xx +的值38.计算:(1)943232053312332278-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛(2)23log 32lg 222lg 52lg ++-39.下列四个命题:①11(0,),()()23xxx ∃∈+∞>;②23(0,),log log x x x ∃∈+∞<;③121(0,),()log 2xx x ∀∈+∞>;④1311(0,),(log 32xx x ∀∈<.其中正确命题的序号是.40.(23227log 28-⎛⎫--- ⎪⎝⎭=_____________________________参考答案1.A【来源】2013-2014学年福建省三明一中高二下学期期中考试文科数学试卷(带解析)【解析】试题分析:由指数函数的单调性可知0.3xy =是单调递减的所以0.50.20.30.3<即a<c<1;2xy =是单调增的,所以0.30221y =>=,即可知A 正确考点:指数函数比较大小.2.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A.【考点】幂函数的性质.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.3.D【来源】2013-2014学年广西桂林十八中高二下学期开学考理科数学试卷(带解析)【解析】试题分析:0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=,所以60.70.7log 600.716<<<<.考点:用指数,对数函数特殊值比较大小.4.A .【来源】2014届安徽“江淮十校”协作体高三上学期第一次联考理数学卷(带解析)【解析】试题分析:因为0,10,1<<<>c b a ,所以c b a >>,故选A.考点:利用指数函数、幂函数、对数函数的单调性比较数式的大小.5.B【来源】2014年全国普通高等学校招生统一考试文科数学(安徽卷带解析)【解析】试题分析:由题意,因为3log 7a=,则12a <<; 1.12b =,则2b >; 3.10.8c =,则00.81c <=,所以c a b<<考点:1.指数、对数的运算性质.6.C【来源】2014-2015学年山东省德州市重点中学高一上学期期中考试数学试卷(带解析)【解析】试题分析:∵200.31a <=<,22b log 0.3log 10=<=,0.30221c =>=,∴c a b <<考点:根式与分数指数幂的互化及其化简运算.7.D【来源】2014届河北省唐山市高三年级第三次模拟考试文科数学试卷(带解析)【解析】试题分析:∵ 1.222a =>,0.800.51<<,21log 32<<,∴a c b >>.考点:利用函数图象及性质比较大小.8.C【来源】2014年全国普通高等学校招生统一考试文科数学(辽宁卷带解析)【解析】试题分析:因为132(0,1)a -=∈,221log log 103b =<=,112211log log 132c =>=,故c a b >>.考点:指数函数和对数函数的图象和性质.9.A【来源】2014届浙江省嘉兴市高三上学期9月月考文科数学试卷(带解析)【解析】试题分析:由指数函数和对数函数的图像和性质知0a >,0b <,0c <,又对数函数()0.2log f x x =在()0,+∞上是单调递减的,所以0.20.2log 3log 4>,所以a b c >>.考点:指数函数的值域;对数函数的单调性及应用.10.C【来源】2015年全国普通高等学校招生统一考试文科数学(山东卷带解析)【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .考点:1.指数函数的性质;2.函数值比较大小.11.C【来源】2014届上海交大附中高三数学理总复习二基本初等函数等练习卷(带解析)【解析】由题意得0<a<1,b>1,而log 34>1,c=log 34(log 34),得c<0,故c<a<b.12.C【来源】2014年全国普通高等学校招生统一考试理科数学(辽宁卷带解析)【解析】试题分析:1032122110221,log 0,log log 31,33ab c -<=<==<==>所以c a b >>,故选C.考点:1.指数对数化简;2.不等式大小比较.13.A.【来源】2015届湖南省益阳市箴言中学高三第一次模拟考试文科数学试卷(带解析)【解析】试题分析:∵33log 4log 31a =>=,01(15b ==,11331log 10log 13c =<=,∴a b c >>.考点:指对数的性质.14.A【来源】2015届河南省八校高三上学期第一次联考文科数学试卷(带解析)【解析】试题分析:∵0.53422,,a b log c log π-===,0.52112>-,341122>,=log log π.∴>>b a c .故选:A.考点:不等式比较大小.15.C【来源】2012-2013学年广东省执信中学高一下学期期中数学试题(带解析)【解析】试题分析:根据题意,结合指数函数的性质,当底数大于1,函数递增,那么可知0.9 1.80.48 1.44 1.5 1.5123142,82,()22y y y -======,结合指数幂的运算性质可知,有132y y y >>,选C.考点:指数函数的值域点评:解决的关键是以0和1为界来比较大小,属于基础题。

人教版数学高三第一章解三角形单元测试精选(含答案)1

人教版数学高三第一章解三角形单元测试精选(含答案)1
5
(1)求 BC 边长; (2)求 AB 边上中线 CD 的长.
【来源】北京 101 中学 2018-2019 学年下学期高一年级期中考试数学试卷
【答案】(1) 3 2 ;(2) 13 .
33.ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 a 3, cos A 6 , B A ,
【答案】C
3.在 ABC 中,若 a b cb c a 3bc ,则 A ( )
A. 90
B. 60
C.135
D.150
【来源】2015-2016 学年江西省金溪一中高一下期中数学试卷(带解析)
【答案】B
4.设在 ABC 中,角 A,B,C 所对的边分别为 a,b, c , 若 b cos C c cos B a sin A ,
【答案】C
21.设 ABC 的内角 A, B,C 所对边的长分别为 a, b, c ,若 b c 2a, 3sin A 5sin B ,
则角 C =( )
A.
3 3
C.
4
2
B.
3 5
D.
6
【来源】2013 年全国普通高等学校招生统一考试文科数学(安徽卷带解析)
【答案】B
22.在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若 a2 b2 c2 tanB 3ac ,
A.3 6
B.9 6
C.3
D.6
【来源】福建省晋江市季延中学 2017-2018 学年高一下学期期末考试数学试题
【答案】A
2.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,且cc−−ba=sinCsi+nAsinB,则 B= (
)
A.π
6

2016年浙江省嘉兴市中考数学试题及答案

2016年浙江省嘉兴市中考数学试题及答案

2016年浙江省初中毕业升学考试(嘉兴卷)一、选择题(本题有10小题,每题4分,共40分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.—2的相反数为( ▲ ) (A )2(B )2-(C)21 (D)21-2.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是( ▲ )(A )(B )(C )(D )3.计算222a a +,结果正确的是( ▲ ) (A )42a(B)22a(C )43a(D )23a4.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( ▲ ) (A )42(B )49(C )67(D)775.某班要从9名百米跑成绩各不相同的同学中选4名参加1004⨯米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( ▲ ) (A)平均数 (B )中位数 (C )众数(D )方差 6.已知一个正多边形的内角是︒140,则这个正多边形的边数是( ▲ )(A )6(B )7(C )8(D )97.一元二次方程01322=+-x x 根的情况是( ▲ ) (A )有两个不相等的实数根(B)有两个相等的实数根(C )只有一个实数根(D )没有实数根8.把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则BC 的度数是( ▲ )(A )︒120 (B)︒135 (C )︒150(D )︒1659.如图,矩形ABCD 中,2=AD ,3=AB ,CD ,AB 于点E ,F ,则DE 的长是( ▲ ) (A )5 (B)613(C )1(D )65 ABCDEF(第9题)A C(第8题)B OOOO10.二次函数5)1(2+--=x y ,当n x m ≤≤且0<mn 时,y 的最小值为m 2,最大值为n 2,则m n +的值为( ▲ ) (A)25 (B )2 (C )23 (D )21 卷Ⅱ(非选择题)二、填空题(本题有6小题,每题5分,共30分) 11.因式分解:=-92a ▲ .12.二次根式1-x 中,字母x 的取值范围是 ▲ .13.一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为 ▲ .14.把抛物线2x y =先向右平移2个单位,再向上平移3个单位,平移后抛物线的表达式是 ▲ . 15.如图,已知△ABC 和△DEC 的面积相等,点E 在BC 边上,DE ∥AB 交AC 于点F ,12=AB ,9=EF ,则DF 的长是 ▲ .16.如图,在直角坐标系中,点A ,B 分别在x 轴,y 轴上,点A的坐标为)0,1(-, ︒=∠30ABO ,线段PQ 的端点P从点O 出发,沿△OBA 的边按O →B →A →O 运动一周,同时另一端点Q 随之在x 轴 的非负半轴上运动,PQ =3.(1)当点P 从点O 运动到点B 时,点Q 的运动路程为 ▲ ;(2)当点P 按O →B →A →O 运动一周时,点Q 运动的总路程为 ▲ .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(1)计算:2)13(40--⨯-; (2)解不等式:1)1(23-+>x x .18.先化简,再求值:2)111(xx ÷-+,其中2016=x .19.太阳能光伏建筑是太阳能光伏系统与现代绿色环保住宅的完美结合.老刘准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC 如图2所示,10=BC 米,︒=∠=∠36ACB ABC .改建后顶点D 在BA 的延长线上,且︒=∠90BDC .求改建后南屋面边沿增加部分AD 的长.(结果精确到1.0米)FE DC B A (第15题)(第16题)(参考数据:31.018sin ≈ ,95.018cos ≈ ,32.018tan ≈ ,59.036sin ≈ ,81.036cos ≈ ,73.036tan ≈ )20.为落实省新课改精神,我市各校都开设了“知识拓展类”、“体艺特长类”、“实践活动类”三类拓展性课程.某校为了解在周二第六节开设的“体艺特长类”中各门课程学生的参与情况,随机调查了部分学生作为样本进行统计,绘制了如图所示的统计图(部分信息未给出).根据图中信息,解答下列问题: (1)求被调查学生的总人数;(2)若该校有200名学生参加了“体艺特长类"中的各门课程,请估计参加棋类的学生人数; (3)根据调查结果,请你给学校提一条合理化建议.21.如图,已知一次函数b kx y +=1的图象与反比例函数xy 42=的图象交于点),4(m A -, 且与y 轴交于点B ,第一象限内点C 在反比例函数xy 42=的图象上,且以点C 为圆心的圆与x 轴,y 轴分别相切于点D ,B . (1)求m 的值; (2)求一次函数的表达式;(3)根据图象,当021<<y y 时,写出x 的取值范围.某校部分学生“体艺特长类”课程参与情况扇形统计图E DC 10%A 30% BB课程 (类别)CD128 64 AE 10 12 人数(个) 某校部分学生“体艺特长类”课程参与情况条形统计图 A :球类 B :动漫类 C :舞蹈类 D :器乐类 E :棋类(第20题) 0ACBD 南屋面(第19题)图2图1y xOC AB D(第21题)22.如图1,已知点E ,F ,G ,H 分别是四边形ABCD 各边AB ,BC ,CD ,DA 的中点,根据以下思路可以证明四边形EFGH 是平行四边形:(1)如图2,将图1中的点C 移动至与点E 重合的位置,F ,G ,H 仍是BC ,CD ,DA 的中点,求证:四边形CFGH 是平行四边形;(2)如图3,在边长为1的小正方形组成的55⨯网格中,点A ,C ,B 都在格点上,在格点上找一点D ,使点C 与BC ,CD ,DA 的中点F ,G ,H 组成的四边形CFGH 是正方形.画出点D ,并求正方形CFGH 的边长.23.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”. (1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究:如图1,在四边形ABCD 中,BE 平分ABC ∠交CD 于点E ,AD ∥BE ,︒=∠80D , ︒=∠40C ,探究四边形ABCD 是否为等邻角四边形,并说明理由; (3)应用拓展:如图2,在Rt △ABC 与Rt △ABD 中,︒=∠=∠90D C ,3==BD BC ,5=AB ,将Rt △ABD 绕着点A 顺时针旋转角α(BAC ∠<∠<︒α0),得到Rt △''D AB (如图3),当凸四边形BC AD '为等邻角四边形时,求出它的面积.图3图1图2 (第22题) 图1D(第23题)'D图2 ABDCE24.小明的爸爸和妈妈分别驾车从家同时出发去上班.爸爸行驶到甲处时,看到前面路口是红灯,他立即刹车减速并在乙处停车等待.爸爸驾车从家到乙处的过程中,速度)s /m (v 与时间)s (t 的关系如图1中的实线所示,行驶路程)m (s 与时间)s (t 的关系如图2所示,在加速过程中,s 与t 满足表达式2at s =.(1)根据图中的信息,写出小明家到乙处的路程,并求a 的值; (2)求图2中A 点的纵坐标h ,并说明它的实际意义;(3)爸爸在乙处等待了7秒后绿灯亮起继续前行.为了节约能源,减少刹车,妈妈驾车从家出发的行驶过程中,速度)s /m (v 与时间)s (t 的关系如图1中的折线O -B -C 所示,加速过程中行驶路程)m (s 与时间)s (t 的关系也满足表达式2at s =.当她行驶到甲处时,前方的绿灯刚好亮起,求此时妈妈驾车的行驶速度.)图2)图1(第24题)2016年浙江省初中毕业升学考试(嘉兴卷)一、选择题(本题有10小题,每题4分,共40分)二、填空题(本题有6小题,每题5分,共30分) 11.)3)(3(-+a a ;12.1≥x ;13.52; 14.3)2(2+-=x y ;15.7;16.3;4.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每小题12分,第24题14分,共80分) 17.(1)原式=4122⨯-=. ………4分 (2)去括号,得1223-+>x x ;移项,得1223->-x x ;合并同类项,得1x >. ∴不等式的解为1x >. ………8分 18. 2)111(xx ÷-+=2121x x x x ÷=--; 当2016=x 时,原式=120162-=20152. ………8分19. ∵∠BDC =90°,BC =10,BC CDB =∠sin ,∴B BC CD ∠⋅=sin ≈59.010⨯=9.5, ∵在Rt △BCD 中,︒=︒-︒=∠-︒=∠54369090B BCD ∴ACB BCD ACD ∠-∠=∠︒=︒-︒=183654,∴在Rt △ACD 中,CDADACD =∠tan , ∴ACD CD AD ∠⋅=tan ≈9.532.0⨯=9.1888.1≈(米).答:改建后南屋面边沿增加部分AD 的长约为1。

2016-2017学年七年级下期末数学试卷及答案解析

2016-2017学年七年级下期末数学试卷及答案解析

2016-2017学年七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣22.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.73.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×1066.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣18.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于.14.绝对值大于2且小于5的所有整数的和是.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.23.解方程组:.24.解不等式组:并把解集在数轴上表示出来.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?2016-2017学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣2【考点】有理数的乘方.【分析】根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.【解答】解:原式=﹣1,故选;B.【点评】本题考查了有理数的乘方,注意底数是1.2.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.7【考点】单项式.【分析】单项式的次数就是所有的字母指数和,根据以上内容得出即可.【解答】解:∵3x a﹣2是关于x的二次单项式,∴a﹣2=2,解得:a=4,故选A.【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解.3.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球【考点】认识立体图形.【分析】根据各立体图形的构成对各选项分析判断即可得解.【解答】解:A、长方体是有六个面围成,故本选项错误;B、圆柱体是两个底面和一个侧面组成,故本选项错误;C、圆锥体是一个底面和一个侧面组成,故本选项正确;D、球是由一个曲面组成,故本选项错误.故选C.【点评】本题考查了认识立体图形,熟悉常见几何体的面的组成是解题的关键.4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层左边一个,第二层中间一个,右边一个,故B符合题意,故选;B.【点评】本题考查了简单几何体的三视图,从上面看的到的视图是俯视图.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14.2万有6位,所以可以确定n=6﹣1=5.【解答】解:14.2万=142 000=1.42×105.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm【考点】一元一次不等式的应用.【分析】设至少为xcm,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.【解答】解:设导火线至少应有x厘米长,根据题意≥,解得:x≥24,∴导火线至少应有24厘米.故选:C.【点评】此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣1【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选A.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【专题】数形结合.【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选A.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于旋转所得到,故错误;B、属于轴对称变换,故错误;C、形状和大小没有改变,符合平移的性质,故正确;D、属于旋转所得到,故错误.故选C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣【考点】二元一次方程的解.【专题】计算题;方程思想.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.【解答】解:把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.故选A.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数m为未知数的方程,再求解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5【考点】平行线的判定.【分析】由平行线的判定定理易知A、B都能判定AB∥CD;选项C中可得出∠1=∠5,从而判定AB∥CD;选项D中同旁内角相等,但不一定互补,所以不能判定AB∥CD.【解答】解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB∥CD.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于23°40′.【考点】余角和补角.【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠A=66°20′,∴∠A的余角=90°﹣66°20′=23°40′,故答案为:23°40′.【点评】本题主要考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.14.绝对值大于2且小于5的所有整数的和是0.【考点】绝对值.【分析】首先根据绝对值的几何意义,结合数轴找到所有满足条件的数,然后根据互为相反数的两个数的和为0进行计算.【解答】解:根据绝对值性质,可知绝对值大于2且小于5的所有整数为±3,±4.所以3﹣3+4﹣4=0.【点评】此题考查了绝对值的几何意义,能够结合数轴找到所有满足条件的数.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【考点】平行线的性质;余角和补角.【专题】探究型.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在第三象限.【考点】点的坐标.【分析】由第二象限的坐标特点得到a<0,则点Q的横、纵坐标都为负数,然后根据第三象限的坐标特点进行判断.【解答】解:∵点P(a,2)在第二象限,∴a<0,∴点Q的横、纵坐标都为负数,∴点Q在第三象限.故答案为第三象限.【点评】题考查了坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是y=.【考点】解二元一次方程.【分析】要把方程2x﹣3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=.【解答】解:移项得:﹣3y=5﹣2x系数化1得:y=.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是60%.【考点】扇形统计图.【专题】计算题.【分析】用扇形的圆心角÷360°即可.【解答】解:扇形所表示的部分占总体的百分数是216÷360=60%.故答案为60%.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【考点】多边形内角与外角.【专题】计算题.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n ﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.【点评】本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.【考点】有理数的混合运算.【分析】先算乘方和绝对值,再算乘法,最后算加法,由此顺序计算即可.【解答】解:原式=1+×(﹣5)+8=1﹣1+8=8.【点评】此题考查有理数的混合运算,注意运算的顺序与符号的判定.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=3a﹣(﹣2b+4a﹣3b)=3a+2b﹣4a+3b=﹣a+5b,当a=﹣1,b=2时,原式=﹣(﹣1)+5×2=1+10=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程组:.【考点】解二元一次方程组.【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.24.解不等式组:并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后在数轴上表示出来即可.【解答】解:解x﹣2>0得:x>2;解不等式2(x+1)≥3x﹣1得:x≤3.∴不等式组的解集是:2<x≤3.【点评】本题考查了不等式组的解法,关键是正确解不等式,求不等式组的解集可以借助数轴.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.【考点】二元一次方程组的应用.【专题】图表型.【分析】根据题意可知,本题中的相等关系是“1猫+2狗=70元”和“2猫+1狗=50”,列方程组求解即可.【解答】解:设每只小猫为x元,每只小狗为y元,由题意得.解之得.答:每只小猫为10元,每只小狗为30元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?【考点】一元一次不等式的应用.【专题】应用题.【分析】设他至少要答对x题,由于他共回答了30道题,其中答对一题加5分,一题答错或不答倒扣1分,他这次竞赛中的得分要超过100分,由此可以列出不等式5x﹣(30﹣x)>100,解此不等式即可求解.【解答】解:设他至少要答对x题,依题意得5x﹣(30﹣x)>100,x>,而x为整数,x>21.6.答:他至少要答对22题.【点评】此题主要考查了一元一次不等式的应用,解题的关键首先正确理解题意,然后根据题目的数量关系列出不等式即可解决问题.27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?【考点】条形统计图;扇形统计图.【分析】(1)根据A8袋占总数的40%进行计算;(2)根据(1)中计算的总数和B占45%进行计算;(3)根据总百分比是100%进行计算;(4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进行计算.【解答】解:(1)8÷40%=20(袋);(2)20×45%=9(袋),即(3)1﹣10%﹣40%﹣45%=5%;(4)10000×5%=500(袋),即10000袋中不合格的产品有500袋.【点评】此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分比;条形统计图能够清楚地反映各部分的具体数目.注意:用样本估计总体的思想.。

2016-2017 学年第二学期高等数学AII 期末试卷(试卷+A3排版+解析)

2016-2017 学年第二学期高等数学AII 期末试卷(试卷+A3排版+解析)
f (x)g(y) d x d y = 0
¨D
¨D
(C) [f (x) + g(y)] d x d y = 0
13.
设由方程组
y + xyz
z+x =1
=
0
确定的隐函数
y
=
y(x)

z
=
z(x),求
dy dx ,
dz dx
.
14.
设连续函数
f (x)
满足方程
f (x)
=
ˆ
3x
f
() t d t + e2x,

f (x).
¨(
0
3
)
(
)
15. 计算曲面积分 I = x2 − yz d y d z + y2 − zx d z d x + 2z d x d y, 其中 Σ
xOy ydx
平面上一条简单光滑的正向闭曲线,原点在其所围闭区域之外,则
=
【】
C x2 + 4y2
(A) 4π
(B) 0
(C) 2π
(D) π
6. 微分方程 xy′′ − y′ = 0 满足条件 y′(1) = 1, y(1) = 0.5 的解为
【】
(A) y = x2 + 1 44
(B) y = x2 2
1,
√ − ¨x

y

√x},则正确的选x 项为
¨
【】
(A) f (y)g(x) d x d y = 0
(B) f (x)g(y) d x d y = 0
¨D
¨D
(C) [f (x) + g(y)] d x d y = 0

20162017学年度上学期期末八年级数学试题含答案

20162017学年度上学期期末八年级数学试题含答案

2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。

2017年浙江省嘉兴市中考数学试卷(含答案)

2017年浙江省嘉兴市中考数学试卷(含答案)

2017年浙江省嘉兴市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(3分)长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4 B.5 C.6 D.93.(3分)已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b ﹣2,c﹣2的平均数和方差分别是()A.3,2 B.3,4 C.5,2 D.5,44.(3分)一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利5.(3分)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A.红红不是胜就是输,所以红红胜的概率为B.红红胜或娜娜胜的概率相等C.两人出相同手势的概率为D.娜娜胜的概率和两人出相同手势的概率一样6.(3分)若二元一次方程组的解为,则a﹣b=()A.1 B.3 C.D.7.(3分)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位B.向左平移(2﹣1)个单位,再向上平移1个单位C.向右平移个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位8.(3分)用配方法解方程x2+2x﹣1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=39.(3分)一张矩形纸片ABCD,已知AB=3,AD=2,小明按如图步骤折叠纸片,则线段DG长为()A.B.C.1 D.210.(3分)下列关于函数y=x2﹣6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+n时的函数值大于x=3﹣n时的函数值;③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n﹣4)个;④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.其中真命题的序号是()A.①B.②C.③D.④二、填空题(每题4分,满分24分,将答案填在答题纸上)11.(4分)分解因式:ab﹣b2=.12.(4分)若分式的值为0,则x的值为.13.(4分)如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O,=90°,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为.14.(4分)七(1)班举行投篮比赛,每人投5球.如图是全班学生投进球数的扇形统计图,则投进球数的众数是.15.(4分)如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan ∠BA2C=,tan∠BA3C=,计算tan∠BA4C=,…按此规律,写出tan∠BA n C=(用含n的代数式表示).16.(4分)一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是.现将三角板DEF绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H相应移动的路径长共为.(结果保留根号)三、解答题(本大题共8小题,第17-19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分.)17.(6分)(1)计算:()2﹣2﹣1×(﹣4);(2)化简:(m+2)(m﹣2)﹣×3m.18.(6分)小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.19.(6分)如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.20.(8分)如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1).(1)求这两个函数的表达式;(2)在x轴上是否存在点P(n,0)(n>0),使△ABP为等腰三角形?若存在,求n的值;若不存在,说明理由.21.(8分)小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2.根据统计图,回答下面的问题:(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?(2)请简单描述月用电量与气温之间的关系;(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由.22.(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin80°≈0.98,cos80°≈0.17,≈1.41,结果精确到0.1)23.(10分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE ∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=,DM=4时,求DH的长.24.(12分)如图,某日的钱塘江观潮信息如图:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t (分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数s=t2+bt+c (b,c是常数)刻画.(1)求m的值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t ﹣30),v0是加速前的速度).2017年浙江省嘉兴市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)(2017•随州)﹣2的绝对值是()A.2 B.﹣2 C.D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2017•舟山)长度分别为2,7,x的三条线段能组成一个三角形,x 的值可以是()A.4 B.5 C.6 D.9【分析】已知三角形的两边长分别为2和7,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围,再结合选项选择符合条件的.【解答】解:由三角形三边关系定理得7﹣2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选:C.【点评】考查了三角形三边关系,此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.3.(3分)(2017•舟山)已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是()A.3,2 B.3,4 C.5,2 D.5,4【分析】根据数据a,b,c的平均数为5可知(a+b+c)=5,据此可得出(a ﹣2+b﹣2+c﹣2)的值;再由方差为4可得出数据a﹣2,b﹣2,c﹣2的方差.【解答】解:∵数据a,b,c的平均数为5,∴(a+b+c)=5,∴(a﹣2+b﹣2+c﹣2)=(a+b+c)﹣2=5﹣2=3,∴数据a﹣2,b﹣2,c﹣2的平均数是3;∵数据a,b,c的方差为4,∴[(a﹣5)2+(b﹣5)2+(c﹣5)2]=4,∴a﹣2,b﹣2,c﹣2的方差=[(a﹣2﹣3)2+(b﹣2﹣3)2+(c﹣﹣2﹣3)2]=[(a ﹣5)2+(b﹣5)2+(c﹣5)2]=4.故选B.【点评】本题考查的是方差,熟记方差的定义是解答此题的关键.4.(3分)(2017•舟山)一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“利”是相对面.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.(3分)(2017•舟山)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A .红红不是胜就是输,所以红红胜的概率为B.红红胜或娜娜胜的概率相等C .两人出相同手势的概率为D.娜娜胜的概率和两人出相同手势的概率一样【分析】利用列表法列举出所有的可能,进而分析得出答案.【解答】解:红红和娜娜玩“锤子、剪刀、布”游戏,所有可能出现的结果列表如下:锤子剪刀布红红娜娜锤子(锤子,锤子)(锤子,剪刀)(锤子,布)剪刀(剪刀,锤子)(剪刀,剪刀)(剪刀,布)布(布,锤子)(布,剪刀)(布,布)由表格可知,共有9种等可能情况.其中平局的有3种:(锤子,锤子)、(剪刀,剪刀)、(布,布).因此,红红和娜娜两人出相同手势的概率为,两人获胜的概率都为,红红不是胜就是输,所以红红胜的概率为,错误,故选项A符合题意,故选项B,C,D不合题意;故选:A.【点评】此题主要考查了列表法求概率,根据题意正确列举出所有可能是解题关键.6.(3分)(2017•舟山)若二元一次方程组的解为,则a﹣b=()A.1 B.3 C.D.【分析】将两式相加即可求出a﹣b的值.【解答】解:∵x+y=3,3x﹣5y=4,∴两式相加可得:(x+y)+(3x﹣5y)=3+4,∴4x﹣4y=7,∴x﹣y=,∵x=a,y=b,∴a﹣b=x﹣y=故选(D)【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值,本题属于基础题型.7.(3分)(2017•舟山)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位B.向左平移(2﹣1)个单位,再向上平移1个单位C.向右平移个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位【分析】过点B作BH⊥OA,交OA于点H,利用勾股定理可求出OB的长,进而可得点A向左或向右平移的距离,由菱形的性质可知BC∥OA,所以可得向上或向下平移的距离,问题得解.【解答】解:过B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是平行四边形,过B作BH⊥x轴于H,∵B(1,1),∴OB==,∵A(,0),∴C(1+,1)∴OA=OB,∴则四边形OACB是菱形,∴平移点A到点C,向右平移1个单位,再向上平移1个单位而得到,故选D.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;8.(3分)(2017•舟山)用配方法解方程x2+2x﹣1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=3【分析】把左边配成一个完全平方式,右边化为一个常数,判断出配方结果正确的是哪个即可.【解答】解:∵x2+2x﹣1=0,∴x2+2x+1=2,∴(x+1)2=2.故选:B.【点评】此题主要考查了配方法在解一元二次方程中的应用,要熟练掌握.9.(3分)(2017•舟山)一张矩形纸片ABCD,已知AB=3,AD=2,小明按如图步骤折叠纸片,则线段DG长为()A.B.C.1 D.2【分析】首先根据折叠的性质求出DA′、CA′和DC′的长度,进而求出线段DG的长度.【解答】解:∵AB=3,AD=2,∴DA′=2,CA′=1,∴DC′=1,∵∠D=45°,∴DG=DC′=,故选A.【点评】本题主要考查了翻折变换以及矩形的性质,解题的关键是求出DC′的长度.10.(3分)(2017•舟山)下列关于函数y=x2﹣6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+n时的函数值大于x=3﹣n时的函数值;③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n﹣4)个;④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.其中真命题的序号是()A.①B.②C.③D.④【分析】分别根据二次函数的图象与系数的关系、抛物线的顶点坐标公式及抛物线的增减性对各选项进行逐一分析.【解答】解:∵y=x2﹣6x+10=(x﹣3)2+1,∴当x=3时,y有最小值1,故①错误;当x=3+n时,y=(3+n)2﹣6(3+n)+10,当x=3﹣n时,y=(n﹣3)2﹣6(n﹣3)+10,∵(3+n)2﹣6(3+n)+10﹣[(n﹣3)2﹣6(n﹣3)+10]=0,∴n为任意实数,x=3+n时的函数值等于x=3﹣n时的函数值,故②错误;∵抛物线y=x2﹣6x+10的对称轴为x=3,a=1>0,∴当x>3时,y随x的增大而增大,当x=n+1时,y=(n+1)2﹣6(n+1)+10,当x=n时,y=n2﹣6n+10,(n+1)2﹣6(n+1)+10﹣[n2﹣6n+10]=2n﹣4,∵n是整数,∴2n﹣4是整数,故③正确;∵抛物线y=x2﹣6x+10的对称轴为x=3,1>0,∴当x>3时,y随x的增大而增大,x<0时,y随x的增大而减小,∵y0+1>y0,∴当0<a<3,0<b<3时,a>b,当a>3,b>3时,a<b,当0<a<3,b>3时,a<b,当0<a<3,b>3时,a<b,故④是假命题.故选C.【点评】本题主要考查了二次函数的意义,性质,图象,能够根据二次函数的性质数形结合是解决问题的关键.二、填空题(每题4分,满分24分,将答案填在答题纸上)11.(4分)(2017•淮安)分解因式:ab﹣b2=b(a﹣b).【分析】根据提公因式法,可得答案.【解答】解:原式=b(a﹣b),故答案为:b(a﹣b).【点评】本题考查了因式分解,利用提公因式法是解题关键.12.(4分)(2017•舟山)若分式的值为0,则x的值为2.【分析】根据分式的值为零的条件可以得到,从而求出x的值.【解答】解:由分式的值为零的条件得,由2x﹣4=0,得x=2,由x+1≠0,得x≠﹣1.综上,得x=2,即x的值为2.故答案为:2.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.13.(4分)(2017•舟山)如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O,=90°,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为(32+48π)cm2.,根据扇形面积公式求【分析】连接OA、OB,根据三角形的面积公式求出S△AOB出扇形ACB的面积,计算即可.【解答】解:连接OA、OB,∵=90°,∴∠AOB=90°,=×8×8=32,∴S△AOB扇形ACB(阴影部分)==48π,则弓形ACB胶皮面积为(32+48π)cm2,故答案为:(32+48π)cm2.【点评】本题考查的是扇形面积的计算,掌握扇形面积公式是解题的关键.14.(4分)(2017•舟山)七(1)班举行投篮比赛,每人投5球.如图是全班学生投进球数的扇形统计图,则投进球数的众数是3球.【分析】根据众数的定义及扇形统计图的意义即可得出结论.【解答】解:∵由图可知,3球所占的比例最大,∴投进球数的众数是3球.故答案为:3球.【点评】本题考查的是扇形统计图,熟知扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数是解答此题的关键.15.(4分)(2017•舟山)如图,把n个边长为1的正方形拼接成一排,求得tan ∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BA4C=,…按此规律,写出tan∠BA n C=(用含n的代数式表示).【分析】作CH⊥BA4于H,根据正方形的性质、勾股定理以及三角形的面积公式求出CH、A4H,根据正切的概念求出tan∠BA4C,总结规律解答.【解答】解:作CH⊥BA4于H,由勾股定理得,BA4==,A4C=,△BA4C的面积=4﹣2﹣=,∴××CH=,解得,CH=,则A4H==,∴tan∠BA4C==,1=12﹣1+1,3=22﹣2+1,7=32﹣3+1,∴tan∠BA n C=,故答案为:;.【点评】本题考查的是正方形的性质、勾股定理的应用以及正切的概念,掌握正方形的性质、熟记锐角三角函数的概念是解题的关键.16.(4分)(2017•舟山)一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是(12﹣12)cm.现将三角板DEF绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H相应移动的路径长共为(12﹣18)cm.(结果保留根号)【分析】如图1中,作HM⊥BC于M,设HM=CM=a.在Rt△BHM中,BH=2HM=2a,BM=a,根据BM+MF=BC,可得a+a=12,推出a=6﹣6,推出BH=2a=12﹣12.如图2中,当DG⊥AB时,易证GH1⊥DF,此时BH1的值最小,易知BH1=BK+KH1=3+3,当旋转角为60°时,F与H2重合,易知BH2=6,观察图象可知,在∠CGF从0°到60°的变化过程中,点H相应移动的路径长=2HH1+HH2,由此即可解决问题.【解答】解:如图1中,作HM⊥BC于M,设HM=a,则CM=HM=a.在Rt△ABC中,∠ABC=30°,BC=12,在Rt△BHM中,BH=2HM=2a,BM=a,∵BM+FM=BC,∴a+a=12,∴a=6﹣6,∴BH=2a=12﹣12.如图2中,当DG⊥AB时,易证GH1⊥DF,此时BH1的值最小,易知BH1=BK+KH1=3+3,∴HH1=BH﹣BH1=9﹣15,当旋转角为60°时,F与H2重合,易知BH2=6,观察图象可知,在∠CGF从0°到60°的变化过程中,点H相应移动的路径长=2HH1+HH2=18﹣30+[6﹣(12﹣12)]=12﹣18.故答案为(12﹣12)cm,(12﹣18)cm.【点评】本题考查轨迹、旋转变换、解直角三角形、锐角三角函数等知识,解题的关键是正确寻找点H的运动轨迹,属于中考常考题型.三、解答题(本大题共8小题,第17-19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分.)17.(6分)(2017•舟山)(1)计算:()2﹣2﹣1×(﹣4);(2)化简:(m+2)(m﹣2)﹣×3m.【分析】(1)首先计算乘方和负指数次幂,计算乘法,然后进行加减即可;(2)首先利用平方差公式和单项式的乘法法则计算,最后合并同类项即可.【解答】解:(1)原式=3﹣×(﹣4)=3+2=5;(2)原式=m2﹣4﹣m2=﹣4.【点评】本题考查了实数的运算以及整式的混合运算,正确理解乘法公式是关键.18.(6分)(2017•舟山)小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.【分析】根据一元一次不等式的解法,找出错误的步骤,并写出正确的解答过程即可.【解答】解:错误的是①②⑤,正确解答过程如下:去分母,得3(1+x)﹣2(2x+1)≤6,去括号,得3+3x﹣4x﹣2≤6,移项,得3x﹣4x≤6﹣3+2,合并同类项,得﹣x≤5,两边都除以﹣1,得x≥﹣5.【点评】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的解法及步骤是解题的关键.19.(6分)(2017•舟山)如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.【分析】(1)直接利用基本作图即可得出结论;(2)利用四边形的性质,三角形的内切圆的性质即可得出结论.【解答】解:(1)如图1,⊙O即为所求.(2)如图2,连接OD,OE,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.【点评】此题主要考查了基本作图,三角形的内切圆的性质,四边形的内角和公式,解本题的关键是作出三角形的内切圆.20.(8分)(2017•舟山)如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1).(1)求这两个函数的表达式;(2)在x轴上是否存在点P(n,0)(n>0),使△ABP为等腰三角形?若存在,求n的值;若不存在,说明理由.【分析】(1)利用待定系数法即可解决问题;(2)分三种情形讨论①当PA=PB时,可得(n+1)2+4=(n﹣2)2+1.②当AP=AB 时,可得22+(n+1)2=(3)2.③当BP=BA时,可得12+(n﹣2)2=(3)2.分别解方程即可解决问题;【解答】解:(1)把A(﹣1,2)代入y=,得到k2=﹣2,∴反比例函数的解析式为y=﹣.∵B(m,﹣1)在Y=﹣上,∴m=2,由题意,解得,∴一次函数的解析式为y=﹣x+1.(2)∵A(﹣1,2),B(2,﹣1),∴AB=3,①当PA=PB时,(n+1)2+4=(n﹣2)2+1,∴n=0,∵n>0,∴n=0不合题意舍弃.②当AP=AB时,22+(n+1)2=(3)2,∵n>0,∴n=﹣1+.③当BP=BA时,12+(n﹣2)2=(3)2,∵n>0,∴n=2+.综上所述,n=﹣1+或2+.【点评】本题考查反比例函数综合题.一次函数的性质、待定系数法、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.21.(8分)(2017•舟山)小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2.根据统计图,回答下面的问题:(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?(2)请简单描述月用电量与气温之间的关系;(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由.【分析】(1)由每月的平均气温统计图和月用电量统计图直接回答即可;(2)结合生活实际经验回答即可;(3)能,由中位数的特点回答即可.【解答】解:(1)由统计图可知:月平均气温最高值为30.6℃,最低气温为5.8℃;相应月份的用电量分别为124千瓦时和110千瓦时.(2)当气温较高或较低时,用电量较多;当气温适宜时,用电量较少;(3)能,因为中位数刻画了中间水平.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(10分)(2017•舟山)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin80°≈0.98,cos80°≈0.17,≈1.41,结果精确到0.1)【分析】(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断;【解答】解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100•sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66•cos45°=33≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66•sin45°≈46.53,∴PH≈46.53,∵GN=100•cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.【点评】本题考查直角三角形的应用,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(10分)(2017•舟山)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=,DM=4时,求DH的长.【分析】(1)只要证明AE=BM,AE∥BM即可解决问题;(2)成立.如图2中,过点M作MG∥DE交CE于G.由四边形DMGE是平行四边形,推出ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,可知AB ∥DE,AB=DE,即可推出四边形ABDE是平行四边形;(3)①如图3中,取线段HC的中点I,连接MI,只要证明MI=AM,MI⊥AC,即可解决问题;②设DH=x,则AH=x,AD=2x,推出AM=4+2x,BH=4+2x,由四边形ABDE是平行四边形,推出DF∥AB,推出=,可得=,解方程即可;【解答】(1)证明:如图1中,∵DE∥AB,∴∠EDC=∠ABM,∵CE∥AM,∴∠ECD=∠ADB,∵AM是△ABC的中线,且D与M重合,∴BD=DC,∴△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四边形ABDE是平行四边形.(2)结论:成立.理由如下:如图2中,过点M作MG∥DE交CE于G.∵CE∥AM,∴四边形DMGE是平行四边形,∴ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,∴AB∥DE,AB=DE,∴四边形ABDE是平行四边形.(3)①如图3中,取线段HC的中点I,连接MI,∵BM=MC,∴MI是△BHC的中位线,∴MI∥BH,MI=BH,∵BH⊥AC,且BH=AM.∴MI=AM,MI⊥AC,∴∠CAM=30°.②设DH=x,则AH=x,AD=2x,∴AM=4+2x,∴BH=4+2x,∵四边形ABDE是平行四边形,∴DF∥AB,∴=,∴=,解得x=1+或1﹣(舍弃),∴DH=1+.【点评】本题考查四边形综合题、平行四边形的判定和性质、直角三角形30度角的判定、平行线分线成比例定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考压轴题.24.(12分)(2017•嘉兴)如图,某日的钱塘江观潮信息如图:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t (分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数s=t2+bt+c (b,c是常数)刻画.(1)求m的值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t ﹣30),v0是加速前的速度).【分析】(1)由题意可知:经过30分钟后到达乙地,从而可知m=30,由于甲地到乙地是匀速运动,所以利用路程除以时间即可求出速度;(2)由于潮头的速度为0.4千米/分钟,所以到11:59时,潮头已前进19×0.4=7.6千米,设小红出发x分钟,根据题意列出方程即可求出x的值,(3)先求出s的解析式,根据潮水加速阶段的关系式,求出潮头的速度达到单车最高速度0.48千米/分钟时所对应的时间t,从而可知潮头与乙地之间的距离s,设她离乙地的距离为s1,则s1与时间t的函数关系式为s1=0.48t+h(t≥35),当t=35时,s1=s=,从而可求出h的值,最后潮头与小红相距1.8千米时,即s ﹣s1=1.8,从而可求出t的值,由于小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时6分钟,共需要时间为6+50﹣30=26分钟,【解答】解:(1)由题意可知:m=30;∴B(30,0),潮头从甲地到乙地的速度为:千米/分钟;(2)∵潮头的速度为0.4千米/分钟,∴到11:59时,潮头已前进19×0.4=7.6千米,设小红出发x分钟与潮头相遇,∴0.4x+0.48x=12﹣7.6,∴x=5∴小红5分钟与潮头相遇,(3)把(30,0),C(55,15)代入s=t2+bt+c,解得:b=﹣,c=﹣,∴s=t2﹣﹣∵v0=0.4,∴v=(t﹣30)+,当潮头的速度达到单车最高速度0.48千米/分钟,此时v=0.48,∴0.48=(t﹣30)+,∴t=35,当t=35时,s=t2﹣﹣=,∴从t=35分(12:15时)开始,潮头快于小红速度奔向丙地,小红逐渐落后,当小红仍以0.48千米/分的速度匀速追赶潮头.设她离乙地的距离为s1,则s1与时间t的函数关系式为s1=0.48t+h(t≥35),当t=35时,s1=s=,代入可得:h=﹣,∴s1=﹣最后潮头与小红相距1.8千米时,即s﹣s1=1.8,∴t2﹣﹣﹣+=1.8解得:t=50或t=20(不符合题意,舍去),∴t=50,小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时6分钟,∴共需要时间为6+50﹣30=26分钟,∴小红与潮头相遇到潮头离她1.8千米外共需要26分钟,【点评】本题考查二次函数的实际应用,涉及一次函数的应用,一元二次方程的解法,待定系数法求解析式等知识,综合程度较高,属于中等题型.。

数学2016-2017学年度第一学期期末考试试题

数学2016-2017学年度第一学期期末考试试题

2016-2017学年度第一学期期末考试试题一、细心选一选.(每小题3分,共30分)1.在下列各式的计算中,正确的是 ( ).A .5x 3·(-2x 2)=-10x 5B .4m 2n-5mn 2 = -m 2nC .(-a)3÷(-a) =-a 2D .3a+2b=5ab2.点M 1(a-1,5)和M 2(2,b-1)关于x 轴对称,则a,b 的值分别为( ).A .3,-2B .-3,2C .4,-3D .3,-4 3.下列图案是轴对称图形的有 ( ).A. 1个 B .2个 C .3个 D .4个4.下列说法正确的是( ).A .等腰三角形任意一边的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的一边不可以是另一边的两倍D .等腰三角形的两底角相等5.如图所示,下列图中具有稳定性的是( ).6.下列各组线段中,能组成三角形的是( ).A . a=2,b=3,c=8B .a=7,b=6,c=13C . a=12,b=14,c=18D .a=4,b=5,c=67.下列多项式中,能直接用完全平方公式因式分解的是( ).A. x 2+2xy- y 2B. -x 2+2xy+ y 2C. x 2+xy+ y 2D. 42x -xy+y 28.在△ABC 和△DEF 中,给出下列四组条件:(1) AB=DE, BC=EF, AC=DF(2) AB=DE, ∠B=∠E, BC=EF (3)∠B=∠E , BC=EF, ∠C=∠FDC B A(4) AB=DE, AC=DF, ∠B=∠E 其中能使△ABC ≌△DEF 的条件共有 ( ).A.1组B.2组C.3组D.4组9.已知 a=833, b=1625, c=3219, 则有( ).A .a <b <cB .c <b <aC .c <a <bD .a <c <b10.如图,在直角△ABC 中,∠ACB=90°,∠A 的平分线交BC 于D .过C 点作CG ⊥AB 于G, 交AD 于E, 过D 点作DF ⊥AB 于F.下列结论:(1)∠CED=∠CDE (2)∠ADF=2∠FDB (3)CE=DF (4)△AEC 的面积与△AEG 的面积比等于AC:AG其中正确的结论是( ).A .(1)(3)(4)B .(2)(3)C .(2) (3)(4)D .(1)(2)(3)(4)二、耐心填一填.(每小题3分,共30分)11.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,这个数用科学记数法表示为__________ m. 12. 如果把分式yx x+2中的x 和y 都扩大5倍,那么分式的值 . 13.已知ab=1,m =a +11+b+11 ,则m 2016的值是 . 14.如果一个多边形的边数增加一条,其内角和变为1260°,那么这个多 边形为 边形.15.如图,若△ACD 的周长为19cm , DE为AB 边的垂直平分线,则 AC+BC= cm.16.若(x-1)0-2(3x-6)-2有意义,则x 的取值范围是 .17.如图,在直角△ABC 中,∠BAC=90°,AD ⊥BC 于D ,将AB 边沿AD 折叠, 发现B 的对应点E 正好在AC 的垂 直平分线上,则∠C= .18.如图,在△ABC 中,∠A=50°,点D 、E 分别在AB ,AC 上,EF 平分∠CED ,DF 平分∠BDE ,则 ∠F = .19.已知等腰△ABC ,AB=AC,现将△ABC 折叠,使A 、B 两点重合,折痕所在的直 线与直线AC 的夹角为40°,则∠B 的 度数为 .E DCBAGFEDCBAF EDC BA EDCBA20.如图,在△ABC 中,AB=AC,点D 在AB 上,过点D 作DE ⊥AC 于E ,在BC 上取一点F , 且点F 在DE 的垂直平分线上,连接DF , 若∠C=2∠BFD ,BD=5,CE=11,则BC 的 长为 . 三、用心答一答.(60分) 21.(9分)(1) 分解因式: 8xy+ (2x-y)2(2)先化简,再求值:(a+b)2- b(2a+b)- 4b ,其中a=-2, b=-43;(3)先化简,再求值:(4482+-+x x x -x -21)÷xx x 232-+,其中 x=-222.(6分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长为1,点A 、点B 和点C 在小正方形的顶点上, 请在图1、图2中各画一个四边形,满足以下要求:(1)在图1中画出以A 、B 、C 和D 为顶点的四边形,此四边形为轴 对称图形,并画出一条直线将此四边形分割为两个等腰三角形;(2)在图2中画出以A 、B 、C 和E 为顶点的四边形,此四边形为 轴对称图形,并画出此四边形的对称轴; (3)两个轴对称图形不全等.FEDCB A图1图223.(9分)已知关于x 的方程21++x x - 1-x x = )(+1-)2(x x a的解是正数, 求a 的取值范围.24.(6分) 如图,△ABC 与△ABD 都是等边三角形,点E 、F 分别在BC ,AC 上,BE=CF,AE 与BF 交于点G.(1)求∠AGB 的度数;(2)连接DG,求证:DG=AG+BG.25.(10分)百姓果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完;由于水果畅销,第二次购买时,每千克进价比第一次提高10%,用1452元所购买的数量比第一次多20kg ,以每千克9元出售100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元?(2)该果品店在这次销售中,总体是盈利还是亏损?盈利或亏损了多少元?G F E DC B A26.(10分)(1)已知3x =4y =5z ,求yx y z 5332+-的值.(2)已知6122---x x x =2+x A +3-x B,其中A 、B 为常数, 求2A+5B 的值.(3)已知 x+y+z ≠0,a 、b 、c 均不为0,且zy x+=a, x z y +=b , yx z +=c 求证:a a +1+b b +1+cc +1=127.(10分)如图1,AD//BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E在线段AB 上.(1)求∠ADE 的度数; (2)求证:AB=BC ;(3)如图2,若F 为线段CD 上一点,∠FBC=30°,求DF:FC 的值.D图1E CBA D图2FE CBA。

浙江省嘉兴市2016-2017学年七年级上学期期末语文试卷(含答案)

浙江省嘉兴市2016-2017学年七年级上学期期末语文试卷(含答案)

浙江省嘉兴市2016-2017学年七年级上学期期末语文试卷(含答案)嘉兴市七年级(上)学科期末检测语文试题卷2016.1)温馨提示:本卷共四大题,19小题,满分100分(含书写3分)。

请将答案写在答题卷上。

考试时间120分钟。

一、语文知识积累(16分)1.读下面这段文字,根据拼音写出汉字。

(3分)XXX的南湖,游人如织。

泛舟碧波粼粼的湖上,耳畔传来船娘清丽(liáo)▲亮的歌声,双眸浸(rùn)▲着湖水的缠绵,心就这样荡▲(XXXɡ)在了江南的水乡里。

2.古诗文名句填空。

(6分)1)烈士暮年,▲。

(XXX《龟虽寿》)2)▲,月是故乡明。

(XXX《月夜忆舍弟》)3)XXX《泊秦淮》中,矛头直指上层人物不顾国事艰难,只顾自己享乐的句子是:“▲,▲”。

4)XXX说“洗手的时候,日子从水盆里过去;吃饭的时候,日子从饭碗里过去”,这正如古代文人墨客感慨的那样:“▲,▲”。

(填连续的两句古诗文名句)3.文学常识与名著阅读。

(7分)1)下列句子表述有错误的一项为哪一项(▲)(3分)A.儒家经典著作《论语》,记录了XXX的言行,与《大学》《中庸》《孟子》合称“四书”。

B.XXX小说《草房子》,主要讲述了男孩XXX期间接受人生启蒙教育的成长故事。

C.印度文学家XXX,曾获诺贝尔文学奖。

著有诗集《吉檀迦利》《新月集》《园丁集》等。

D.《皇帝的新装》作者是丹麦童话家XXX,其代表作品还有《卖火柴的小女孩》《丑小鸭》等。

2)根据《伊索寓言》,把相关联的两项内容用线连起来。

(4分)A.《金斧和银斧》①小猫玻尔被偷B.《埋在葡萄园中的珠宝》②XXX拷问仁慈C.《害眼病的老太婆和医生》③批判为富不仁D.《赫拉克勒斯和财神》二、现代文阅读(23分)④父亲的良苦用心阅读下面文章,完成4~11题。

一)散步(11分)XXX我们在田野散步:我,我的母亲,我的妻子和儿子。

XXX母亲本不肯出来的。

她老了,身体不好,走远一点就觉得很累。

2016-2017年九年级上数学期末试题及答案

2016-2017年九年级上数学期末试题及答案

2016-2017年九年级上数学期末试题及答案2016-2017学年度第一学期期末考试初三年级数学试卷一、选择题(10×3分=30分)1、下列图形中,既是中心对称图形又是轴对称图形的是(。

)2、将函数y=-3x^2+1的图象向右平移2个单位得到的新图象的函数解析式为(。

)A。

y=-3(x-2)^2+1B。

y=-3(x+2)^2+1C。

y=-3x^2+2D。

y=-3x^2-23、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为(。

)A.40°B.30°C.45°D.50°4、方程x^2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.12或15C.15D.无法确定5、如图,有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上,从中任意抽取一张是数字3的概率是(。

)A、1/4B、1/6C、2/3D、1/36、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是(。

)A.4B.5C.6D.37、如果矩形的面积为6,那么它的长y与宽x间的函数关系用图像表示(。

)8、如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△ABC1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于(。

)A.55°B.70°C.125°D.145°9、一次函数y=ax+b与二次函数y=ax^2+bx+c在同一坐标系中的图像可能是(。

)A.B.C.D.10、如图,已知正方形ABCD的边长为2,P为BC的中点,连接AP并延长交BD于点E,则PE的长度为(。

)A。

2B。

1C。

√2D。

1/√2二、填空题(8×4分=32分)11、方程x^2=x的解是(。

)12、正六边形的边长为10cm,那么它的边心距等于(。

高三数学问题:1.3-含参数的常用逻辑用语问题(含答案)

高三数学问题:1.3-含参数的常用逻辑用语问题(含答案)

2017届高三数学跨越一本线问题三 含参数的常用逻辑用语问题通过多年的高考试卷看,求参数的取值范围问题一直是高考考查的重点和热点,同时也是一个难点.考生有时会感到难度较大,与简易逻辑问题有关的参数问题,需要正确理解充分条件和必要条件的定义,弄懂逻辑联接词的含义以及全称量词、特称量词包含的数学理论,本文从各方面多角度地阐述与简易逻辑有关的问题,以飨读者.一、与充分条件、必要条件有关的参数问题充分条件和必要条件的理解,可以翻译成“若p 则”命题的真假,或者集合与集合之间的包含关系,尤其转化为集合间的关系后,利用集合知识处理.【例1】【2017湖南省郴州市上学期第一次质量监测】设集合2{|21,03}A y y x x x ==-+≤≤,集合2{|(21)(1)0}B x x m x m m =--+-≤.已知命题:p x A ∈,命题:q x B ∈,且命题p 是命题的必要不充分条件,求实数m 的取值范围.【分析】先化简给定集合,再利用p 是的必要不充分条件⇔⊂B A ≠解题 【解析】由已知得{|04}A y y =≤≤,{|1}B x m x m =-≤≤. ∵p 是的必要不充分条件,∴A B ⊂≠.则有104m m -≥⎧⎨≤⎩.∴14m -≤≤,故m 的取值范围为[1,4].【点评】充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.【小试牛刀】设p :114≤-x ;:2(21)(1)0x a x a a -+++≤.若p ⌝是q ⌝的必要而不充分条件,求实数的取值范围. 【答案】⎥⎦⎤⎢⎣⎡-0,21. 【解析】由114≤-x 得,1141≤-≤-x , 故210≤≤x 由2(21)(1)0x a x a a -+++≤()()10x a x a ⇔--+≤⎡⎤⎣⎦1a x a ⇔≤≤+若p ⌝是q ⌝的必要而不充分条件,∴p 是q 的必要而不充分条件,即[]1,21,0+⊂⎥⎦⎤⎢⎣⎡a a ⎪⎩⎪⎨⎧≥+≤⇒2110a a 021≤≤-⇒a ,故所求的取值范围是⎥⎦⎤⎢⎣⎡-0,21. 二、与逻辑联接词有关的参数问题逻辑联接词“或”“且”“非”与集合运算的并集、交集、补集有关,由逻辑联接词组成的复合命题的真假与组成它的简单命题真假有关,其中往往会涉及参数的取值范围问题.根据命题真假求参数的方法步骤(1)先根据题目条件,推出每一个命题的真假(有时不一定只有一种情况);(2)然后再求出每个命题是真命题时参数的取值范围;(3)最后根据每个命题的真假情况,求出参数的取值范围.【例2】【2017宁夏育才中学月考】已知命题函数321()3f x mx x x =++在区间(1,2)上单调递增;命题:q 函数C 的图象上任意一点处的切线斜率恒大于1,若“()p q ∨⌝”为真命题,“()p q ⌝∨”也为真命题,求实数m 的取值范围.【分析】先确定p 真值相同.再根据p ,同真时或同假确定实数m 的取值范围.【点评】含逻辑联结词的命题的真假要转化为简单命题的真假,解题时要首先考虑简单命题为真时参数的范围.然后再根据复合命题的真假列不等式(组)求参数范围【小试牛刀】已知命题:p 方程2222220x y mx m m +-+-=表示圆;命题q :双曲线2215y x m-=的离心率(1,2)e ∈,若命题“p q ∧”为假命题,“p q ∨”为真命题,求实数m 的取值范围.【答案】215m ≤<【解析】若命题p 为真命题 ,则2240D E F +->,即22(2)4(22)0m m m --->整理得220m m -<,解得02m <<.若命题为真命题,则25(1,4)5me +=∈,解得015m << 因为命题p q ∧为假命题,p q ∨为真命题,所以p q 、中一真一假,若p 真假,则m ∈∅ ; 若p 假真,则215m ≤<,所以实数m 的取值范围为215m ≤<.三、与全称命题、特称命题真假有关的参数问题全称命题和特称命题从逻辑结构而言,是含义相反的两种命题,利用正难则反的思想互相转化,达到解题的目的.【例3】若命题“0,R ∃∈x 使得2002+50++<x mx m ”为假命题,则实数m 的取值范围是( )(A )[10,6]- (B )(6,2]- (C )[2,10]- (D )(2,10)-【分析】命题“0,R ∃∈x 使得2002+50++<x mx m ”的否定是真命题,故将本题转化为恒成立问题求解.【解析】由命题“0,R ∃∈x 使得2002+50++<x mx m ”为假命题,则命题“x R ∀∈使得22+50x mx m ++≥”为真命题.所以24(25)0,210m m m =-+≤∴-≤≤ .故选(C ). 【点评】已知命题为假命题,则其否定是真命题,故将该题转化为恒成立问题处理.【小试牛刀】【2017山东潍坊2017届高三上学期期中联考】已知m R ∈,设[]: 1 1p x ∀∈-,,2224820x x m m --+-≥成立;[]: 1 2q x ∃∈,,()212log 11x mx -+<-成立,如果“p q ∨”为真,“p q ∧”为假,求m 的取值范围. 【答案】12m <或32m =. 【解析】若p 为真:对[]1 1x ∀∈-,,224822m m x x -≤--恒成立,设()222f x x x =--,配方得()()213f x x =--,∴()f x 在[]1 1-,上的最小值为3-,∴2483m m -≤-,解得1322m ≤≤,∴p 为真时:1322m ≤≤;若为真:[]1 2x ∃≤,,212x mx -+>成立,∴21x m x -<成立.设()211x g x x x x-==-,易知()g x 在[]1 2,上是增函数,∴()g x 的最大值为()322g =,∴32m <,∴为真时,32m <, ∵p q ∨”为真,“p q ∧”为假,∴p 与一真一假,当p 真假时132232m m ⎧≤≤⎪⎪⎨⎪≥⎪⎩,∴32m =,当p 假真时132232m m m ⎧<>⎪⎪⎨⎪<⎪⎩或,∴12m <,综上所述,m 的取值范围是12m <或32m =.四、与全称量词、特称量词有关的参数问题全称量词“∀”表示对于任意一个,指的是在指定范围内的恒成立问题,而特称量词“”表示存在一个,指的是在指定范围内的有解问题,上述两个问题都利用参变分离法求参数取值范围.【例3】已知命题p :“0],2,1[2≥-∈∀a x x ”,命题:“022,2=-++∈∃a ax x R x ”. 若命题“p 且”是真命题,则实数的取值范围为( ) A .2-≤a 或1=a B .2-≤a 或21≤≤a C .1≥a D .12≤≤-a【分析】若命题“p 且”是真命题,则命题,p q 都是真命题,首先将命题,p q 对应的参数范围求出来,求交集即可.【点评】命题p 是恒成立问题,命题是有解问题.【小试牛刀】已知2:(0,),1p x x mx ∀∈+∞+≥-恒成立,:q 方程222128x y m m +=+表示焦点在轴上的椭圆,若命题“p 且”为假,求实数m 的取值范围. 【答案】(,4]-∞.【解析】由题意:若p 为真,则有1()m x x ≥-+对(0,)x ∈+∞恒成立.12(1x x x+≥= 取“=”)2m ∴≥-若为真,则有2280m m >+>,即42m -<<-或4m >,由p 且为假,则p 、中至少一个为假.若p 、均为真,则4m >,∴p 且为假,实数m 的取值范围是(,4]-∞【迁移运用】1.【2017四川双流中学高三模拟】已知命题p ⌝:存在()2,1∈x 使得0>-a e x,若p 是真命题,则实数a 的取值范围为( )A .()e ,∞-B .(]e ,∞-C .()+∞,2e D .[)+∞,2e 【答案】D【解析】若存在)2,1(∈x ,使得0>-a e x ,则2max ()x a e e <=,若p 为真命题,则p ⌝为假命题,实数a 的取值范围为),[2+∞e .故本题正确答案为D . 2.【2017河南南阳一中高三上学期月考】已知“x k >”是“,则的取值范围是( )A .[2,)+∞B .[1,)+∞C .(2,)+∞D .(,1]-∞- 【答案】A 可得1x <-或2x >,因为“x k >”是“条件,所以“x k >”是“1x <-或2x >”的真子集,所以2k ≥,故选A.3.【2017使得0122<+-x x λ成立”是假命题,则实数λ的取值范围为( )A .3=λ【答案】A4.函数12)(2+-=ax x x f 在(]2,∞-上是单调递减函数的必要不充分条件是( )A .2≥aB .6=aC .3≥aD .0≥a 【答案】D .【解析】函数12)(2+-=ax x x f 在(]2,∞-上是单调递减函数则2≥a ;选项A 是充要条件;选项B 、C 是充分不必要条件;故选D .5.命题“对任意实数x [1,2]∈,关于的不等式20x a -≤恒成立”为真命题的一个必要不充分条件是( )A .4a ≥B .4a ≤C .3a ≥D .3a ≤ 【答案】C【解析】即由“对任意实数x [1,2]∈,关于的不等式20x a -≤恒成立”可推出选项,但由选项推不出“对任意实数x [1,2]∈,关于的不等式20x a -≤恒成立”.因为x [1,2]∈,所以2[1,4]x ∈,20x a -≤恒成立,即2x a ≤, 因此4a ≥;反之亦然.故选C .6.已知2()(ln )f x x x a a =-+,则下列结论中错误的是( ) A .0,0,()0a x f x ∃>∀>≥ B .000,0,()0a x f x ∃>∃>≤. C .0,0,()0a x f x ∀>∀>≥ D .000,0,()0a x f x ∃>∃>≥ 【答案】C .7.【2017广东郴州高三第二次教学质量监测】若命题:p “020223x x R a a ∃∈-≤-,”是假命题,则实数的取值范围是________. 【答案】[1,2]【解析】“020223x x R a a ∃∈-≤-,”是假命题等价于2223x x R a a ∀∈->-,,即223a a -≥-,解之得12a ≤≤,即实数的取值范围是[1,2].8.已知关于的不等式()(2)0---≤x a x a 的解集为A ,集合{|22}=-≤≤B x x .若“x A ∈”是“x B ∈”的充分不必要条件,则实数的取值范围是__________.. 【答案】-2,0].【解析】由“x A ∈”是“x B ∈”的充分不必要条件,可知A B,因此a≥-2且a +2≤2 解得a∈-2,0]9.已知命题:p R x ∈∃,0122≤++ax ax .若命题⌝p 是真命题,则实数的取值范围是 .【答案】)1,0[【解析】若命题⌝p 是假命题,即对于012,2>++∈∀ax ax R x ,当0=a 时,显然成立,当0≠a 时,则100<<⇒⎩⎨⎧<∆>a a ,综上)1,0[∈a .10.由命题“x∈R,x 2+2x +m≤0”是假命题,求得实数m 的取值范围是(a,+∞),则实数a =. 【答案】1.【解析】由题意得命题“∀x∈ R,x 2+2x +m>0”是真命题,所以Δ=4-4m<0,即m>1,故实数m 的取值范围是(1,+∞),从而实数a 的值为1.11.【2015学年江苏省涟水中学高三12月月考数学试卷】已知命题:“2(1,4),0x x ax a ∃∈-+<”为真命题,则实数的取值范围是. 【答案】a>4.【解析】2(1,4),0x x ax a ∃∈-+<⇔当(1,4)x ∈时,20x ax a -+<有解⇔(1,4)x ∃∈,使得21x a x >-,设2(x)1x f x =-,则222(x 1)(x)0(1)x x f x --'==-解得x=0,2,当(1,2)x ∈(x)0,(x)f f '<单调递减,当(2,4)x ∈(x)0,(x)f f '>单调递赠,所以2(x)1x f x =-的最小值为(2)4f =,所以a>4.12.【2015届江苏省如东高中高三上学期第8周周练理科数学试卷】若不等式102x m x m-+<-成立的一个充分非必要条件是1132x <<,则实数m 的取值范围是. 【答案】3441≤≤m . 【解析】因为不等式的102x m x m -+<-成立的充分非必要条件是1132x <<,所以111||0322x m x x x x m -+⎧⎫⎧⎫<<⊂<⎨⎬⎨⎬-⎩⎭⎩⎭,当12m m -<即1m >-时,不等式的102x m x m -+<-解集为{|12}x m x m -<<, 由11|{|12}32x x x m x m ⎧⎫<<⊂-<<⎨⎬⎩⎭得:1131221m m m ⎧-≤⎪⎪⎪≥⎨⎪>-⎪⎪⎩,解之得:3441≤≤m ,当12m m -=即1m =-时,不等式102x m x m-+<-解集为∅;当12m m ->即1m <-时,不等式102x m x m-+<-解集为{|21}x m x m <<-由11|{|21}}32x x x m x m ⎧⎫<<⊂<<-⎨⎬⎩⎭得:1231121m m m ⎧≤⎪⎪⎪-≥⎨⎪<-⎪⎪⎩,此时m 无解,所以m 的取值范围为3441≤≤m . 13.设命题p :实数满足22430x ax a -+<,其中0a >;命题:实数满足2560x x -+≤. (1)若1a =,且p q ∧为真,求实数的取值范围; (2)若p 是成立的必要不充分条件,求实数的取值范围. 【答案】(1) [)2,3(2)()1,214.已知命题P :在R 上定义运算⊗:.)1(y x y x -=⊗不等式1)1(<-⊗x a x 对任意实数恒成立;命题Q :若不等式2162≥+++x ax x 对任意的*N x ∈恒成立.若P Q ∧为假命题,P Q ∨为真命题,求实数的取值范围. 【答案】123>-<<-∴a a 或.【解析】由题意知,x a x x a x )1)(1()1(--=-⊗若命题P 为真,01)1()1(2>+---x a x a 对任意实数恒成立,∴①当01=-a 即1=a 时,01>恒成立,1=∴a ;②当01≠-a 时,⎩⎨⎧<---=∆>-0)1(4)1(012a a a ,13<<-∴a , 综合①②得,13≤<-a若命题Q 为真,0>x ,01>+∴x ,则有)1(2)6(2+≥++x ax x 对任意的*N x ∈恒成立 , 即2)4(++-≥x x a 对任意的*N x ∈恒成立,令2)4()(++-=xx x f ,只需max )(x f a ≥, 224242)(-=+-=+⋅-≤xx x f ,当且仅当)(4*N x x x ∈=即2=x 时取“=”,2-≥∴aP Q ∧为假命题,P Q ∨为真命题,Q P ,∴中必有一个真命题,一个假命题,(1)若P 为真Q 为假,则⎩⎨⎧-<≤<-213a a ,23-<<-a ,(2)若P 为假Q 为真,则⎩⎨⎧-≥>-≤213a a a 或,1>∴a ,综上:123>-<<-∴a a 或.15.设命题p :实数满足22430x ax a -+<,其中0a >,命题:实数满足2260,280.x x x x ⎧--≤⎪⎨+->⎪⎩.(1)若1,a =且p q ∧为真,求实数的取值范围; (2)若p ⌝是⌝的充分不必要条件,求实数的取值范围. 【答案】(1) (2,3) (2) (]1,2【解析】(1)当1a =时,{}:13p x x <<,{}:23q x x <≤, 又p q ∧为真,所以p 真且真, 由1323x x <<⎧⎨<≤⎩,得23x <<所以实数的取值范围为(2,3)(2) 因为p ⌝是⌝的充分不必要条件, 所以是p 的充分不必要条件, 又{}:3p x a x a <<,{}:23q x x <≤,所以0233a a a >⎧⎪≤⎨⎪>⎩,解得12a <≤所以实数的取值范围为(]1,216.【2016湖北省襄阳市四校高三上学期期中联考】设:p 实数满足:03422<+-a ax x (0>a ),:q 实数满足:121-⎪⎭⎫⎝⎛=m x ,()2,1∈m()I 若41=a ,且q p ∧为真,求实数的取值范围; ()II 是p 的充分不必要条件,求实数的取值范围.【答案】(Ⅰ)⎭⎬⎫⎩⎨⎧<<4321x x;(Ⅱ)11[,]32.()II 是p 的充分不必要条件,记⎭⎬⎫⎩⎨⎧<<=121x x A ,{}0,3><<=a a x a x B则A 是B 的真子集 ⎪⎩⎪⎨⎧>=∴1321a a 或⎪⎩⎪⎨⎧≥<1321a a … 得2131≤≤a ,即的取值范围为1132⎡⎤⎢⎥⎣⎦,… 17. 【2017河北省冀州中学上学期第二次阶段考试】设命题:p 实数满足22430x ax a -+<,0a ≠;命题:q 实数满足302x x-≥-. (Ⅰ)若1a =,p q ∧为真命题,求的取值范围;(Ⅱ)若p ⌝是q ⌝的充分不必要条件,求实数的取值范围.18.已知命题p :“方程230x ax a -++=有解”,q:“11042x xa +->∞在[1,+)上恒成立”,若p 或q 为真命题,p 且q 为假命题,求实数的取值范围.【答案】206a a -<≤≥或【解析】:26p a a ≤-≥或.令21,2xt t t a =+> 02t <≤ ,:0q a ∴≤.∵pq 一真一假,∴260a a a ≤-≥⎧⎨>⎩或 或260a a -<<⎧⎨≤⎩ 得:206a a -<≤≥或19.命题p 实数满足03422<+a ax -x (其中0a >),命题实数满足⎪⎩⎪⎨⎧>+≤02321x-x x- (1)若1a =,且p q ∧为真,求实数的取值范围;(2)若p ⌝是⌝的充分不必要条件,求实数的取值范围.【答案】(1)()2,3.;(2)(1,2].【解析】由:03422<+a ax -x (其中0a >),解得3a x a <<, 记(,3)A a a = 由⎪⎩⎪⎨⎧>+≤02321x-x x-,得132,3或x x x -≤≤⎧⎨><-⎩,即23x <≤,记(]2,3B =. (1)若1a =,且p q ∧为真,则(1,3)A =,(]2,3B =,又p q ∧为真,则1323x x <<⎧⎨<≤⎩,所以23x <<,因此实数的取值范围是()2,3.(2)∵p ⌝是q ⌝的充分不必要条件,∴p 是的必要不充分条件,即B A ≠⊂,(]2,3(,3)a a ≠⊂,则只需3302a a >⎧⎨<≤⎩,解得12a <≤,故实数a 的取值范围是(1,2].20.【2017届山东潍坊市高三上学期期中联考】已知m R ∈,设[]: 1 1p x ∀∈-,,2224820x x m m --+-≥成立;[]: 1 2q x ∃∈,,,如果“p q ∨”为真,“p q ∧”为假,求m 的取值范围. 【解析】若p 为真:对[]1 1x ∀∈-,,224822m m x x -≤--恒成立, 设()222f x x x =--,配方得()()213f x x =--, ∴()f x 在[]1 1-,上的最小值为3-,∴2483m m -≤-,∴p 为真时: 若为真:[]1 2x ∃≤,,212x mx -+>成立,易知()g x 在[]1 2,上是增函数,∴()g x 的最大值为∴为真时∵p q ∨”为真,“p q ∧”为假,∴p 与一真一假,当p 真假时当p 假真时综上所述,m 的取值范围是21.【2017届山东潍坊市高三上学期期中联考】已知m R ∈,设[]: 1 1p x ∀∈-,,2224820x x m m --+-≥成立;[]: 1 2q x ∃∈,,,如果“p q ∨”为真,“p q ∧”为假,求m 的取值范围. 【解析】若p 为真:对[]1 1x ∀∈-,,224822m m x x -≤--恒成立, 设()222f x x x =--,配方得()()213f x x =--, ∴()f x 在[]1 1-,上的最小值为3-,∴2483m m -≤-,∴p 为真时: 若为真:[]1 2x ∃≤,,212x mx -+>成立,易知()g x 在[]1 2,上是增函数,∴()g x 的最大值为∴为真时∵p q ∨”为真,“p q ∧”为假,∴p 与一真一假,当p 真假时当p 假真时综上所述,m 的取值范围是。

2019届浙江嘉兴市高三上学期基础测试数学试卷【含答案及解析】

2019届浙江嘉兴市高三上学期基础测试数学试卷【含答案及解析】

2019届浙江嘉兴市高三上学期基础测试数学试卷【含答案及解析】姓名____________ 班级_______________ 分数____________、选择题1. 设集合:',"“ I、I--: ,则■■()A - ;B •C •D •" ' -门+⑴2. 已知复数——-(•是虚数单位)是纯虚数,则实数 =()1+JA • - 2B • - 1C • 0D •23. 已知•■,则“■■”是“.:•-;巨”的()A •充分不必要条件__________________ B•必要不充分条件C •充要条件________________D •既不充分也不必要条件4. 对于空间的三条直线.和三个平面」.,则下列命题中为假命题的是()A •若;.勺-厂厂」X ,则帶:B •若,贝VC •若^ •「,则D •若,. ’,则■9.5. 若函数 兰「]的图象可由函数 |-的图象向右平移 一 个单位长度变换得到,则.,.的解析式是 () A -. : ' ■ I '7.若函数汁• •『:-•:.,「r在[1帰:上是增函数,则实数的取值范围是(A)B.'1CD、填空题设等差数列匕!的前,项和为 ,已知 =I :+ 2X fxS1的中点,点:在直线 y) ,则-( B.6外,<AU■ ,■JF已知双曲线 ——一―'| I ■ ■ I -a~ 打且两曲线的一个交点为,若■'| :. 58. 与抛物线| 有一个公共的焦点;,,则双曲线的离心率为(c 一6. 设点 /是线段WIPIVMrlCA+CB\=\ CA - CB A . 12_____________________ ;S_为最大值时的冲= ________ 9.积为__________________________ii. 在的展开式中,含声项的二项式系数为 _____________________________ 系数为__________________________ .(均用数字作答)12. 已知一个袋子中装有4个红球和2个白球,假设每一个球被摸到的可能性是相等的,若从袋子中摸出3个球,记摸到白球的个数,则■■=:的概率是__________________________ ;随机变量f 的均值是_______________________________ .x - y 1 4 > 013. 若|满足,则■「|的最大值为14. 由直线沁•;!;■='■>匸上的一动点,向圆丨'| I |引切线,则切线长的最小值为___________________________ .15. 已知两单位向量厂| 1的夹角为I•…I ,若实数-1满足| r贝+ 2v 的取值范围是 _____________________________ .三、解答题16. 在丄:/ 中,内角 '-所对的边分别为. ,已知小;.":八「」.;-(1 )求角匸的大小;(2 )若丄..的面积._「.,求•的值.~ 4 聆17. 已知数列「的前•项和为、,若:三=1 ,且.•.…-,其中(1 )求实数•的值和数列的通项公式;(2 )若数列1 .满足--;■,. :(,求数列—的前,项和.18. 如图,在三棱锥芯匚中,「是等边三角形,■:是;的中点,.■■■:=.;,二面角■-.:- 的大小为| •(1 ) 求证:平面;■- 1 |平面「,:;2 )求苫陀与平面,;所成角的正弦值19. 已知函数■ I - | - ■■ ■ I ■在 - -.处取得极值.(1 )求一的值;(2 )求,在点:i 处的切线方程.20. 已知椭圆<.的左、右焦点分别为;-厂,离心率为n~ h~—,经过点,且倾斜角为的直线交椭圆于:两点.(1 )若沁.愿的周长为1 6,求直线的方程;(2 )若"—,求椭圆.的方程•参考答案及解析第1题【答案】【解析】试题分析:J = {x| x2-x-2 > 0} = {.v| < -1,戒x % 2}』5 = (x|| x|< 3} = *[.v | -3 <<3}, A Jn5 = (x|-3<x>-L ^2<r<3) 7故选匚.第2题【答案】k【解析】试题分析:浮三耳十寻「,由害是纯虛数得耳".一—2 、故选乩1 + ?2 2 1+ r 2第3题【答案】B【解析】试题芬析;设』=&切亦年3}—&毎|忖+问°山如團涂色部分为丿;红色为於,有E 是用的真子集,故为必要不充分条件,选克第4题【答案】i【解析】试题分析:D明显不正确」可能平行』也可能异面,也可能相交.3第5题【答案】【解析】试題分析;fM = $in2卄馆cos 2y = 十y)向右平移三个里位长度变换得到3 6g(x> 55 2sin[2(x-^)+^]=2rin2x “ 故选A. £ >第6题【答案】UUU UUi |L4.LU I LUI llLIi 1LUI1 |LLLI.I| |LLAJi ilXLl.l|试J盼析;|CJ + C51 = 2|cv|^A-CB\=p -2 |CAf I = = 6.\ |CAf| = J 撷选C・第7题【答案】C【解析】试題分析:由题誉得在卩•十兀)上恒成立,则^<(2?)Xffi= 2,/.a<2 ,故选c・第8题【答案】【解析】试题分析,巩工0),由|户F|=】7知点卩的横坐标为17-$=12、则其纵坐标为価云1 = 4应,设双曲线的另一个焦点为耳(一5-0・贝J(】2+5尸十〔4$)】仝23・= = 23-17 = 5 . :g 二3 ,:飞二匚,故选氏a3第9题【答案】d =_2 F?= 10 或]1【解析】试题井析:陽二气+(巧-3)0二10二"+W才二一2 ,因为码二叫十G-1M ,.'.16 = +2*(—2)]21「叫=20 , A S… = -n1+21H J当坨=-2 K(T)、由旳亡Z得科=10或1.1时,%対最大值.第10题【答案】Z 7【解析】试题分析:几何体如團所示』底面対正方体』棱”抠‘丄平面J5CZ),苴表面积S-1^1+ —2+ 丄町><22 2十丄xlxTFTT +i^lx^27717= 3 + >/5」体积为卩=丄"“乂2 =二・_2" .. 3 鼻z ------- $C B第11题【答案】20 -160【解析】试题井析;J = Ch(F ,含疋项的二项式系数为Cl = 20 ,含+项的系数为C^(-l)3=-160 .第12题【答案】5【薛析】试题耸析Y二1的概率是兽£ M二0的概率是= 2的概率是兽 =| ,则随机变量Q的均值是“丄+0A±+2^=1.第13题【答案】【解析】试题井析;不等式组表示的平面区域如图所示‘2十点〉2斗在H R 时有最大值, /. r= |2x(~2)+2|-6』F " _l^-y|转化为尸 ;由團象可知 二二=9 ,综上最大倩为9・ 第14题【答案】2运【解析】试题分析:当宜线上的点到圆心QT)的距离最矩叭切袋长最小.此圆心到直线的距离.|3^2-4X(-I)45| =, 厂打二~ = 3r=1,所以切鉄长为2迈•第15题【答案】(-2.2|【解析】分析;:】j ^t = x + 2y^\x=t-2y;由t坷+乙叫卜巧.二,卩+ 2即斗4护一3 = 0打£■(/ -2yf+ 20-2y)y+4/-3^O f A +j:-2fy■+ F T=0; A建(U (T沪-4«4«(?-3)&0-2<t<2 .故"2]」的取值范围为「22].第16题【答案】【解析】试題分析:(1〉由正弦定理,将衆件中的边化咸甬,可得怕口B二拓,进而可得B的值;需)由三角形面枳公式^=^csinB可得,二他、再由余弦定理可得= 、得最后结论.试题解析;(1} sin 月"* 巧-sin J sin J 、又sd】川AQ .'. stn 2! JJ cosBf 又s G(0,^)得R幅彳(2)由£ ■2^"' " —(7f Un 敢? '. b' =ac4 24.V. tf7=o-+c T— Iflrtosfi得a- <-c J- 2sc "0 <=>(i -cf -0,二且=£得—-1第17题【答案】3【解析】试題分析:(1)4^ 可得『二n>2时宙^=5.-5^得数列血}为苜项如,公比为3 的等比数列,可得通项公式」⑵化简妬二对-1』则匚A二A占r」n),用裂项相消求o h b^} 2 2«-1 2« +1和,可得前拴J页S1.亠11 11 试题解帕⑴力F时,町诃■蚀■扌,得V ,从而几峠叭甘,则沁2时,协.■$.—$刊平(辛耳一+卜(号J 一半)得口.・初口又叭-0得严F ,故数列®}为等比数列,公比为肌首项为1*第18题【答案】3⑴证明见解析;⑵ 7 • 4【解析】试题分析:CD 由平面与平面垂直的列定主理,尸D 丄AC.BD 丄MC 可得结论,(2)由题意作出 平面刃C 的垂线BO ,知O 在加上 则ZB.4O 为所求的二面角,在RbBAO 中,设BO. AB ,即可求出加与平面E4C 所成角的正弦値.BDLAC 1试题解析:(1) PD 丄M \^AC 丄面刖QPB c BD ■ B \又u 面PAC f 所以 面PAC 丄面PBD即平面PBD 丄平面PAC(2)方法一:"DB 就是P — /C -〃的平面角,得ZPB2>=60°作〃 0丄刃> 于0 ,连结上0 , JjJiJ AC 丄〃 O ,又ACnPD = D.•.〃0丄面P.4C , S.^BAO 就是直线工〃与平面所成的角令 , BD ■屈,BO^-BD^-a2 2方法二AC LED ,如图建立空间直角坐标系,••则巩0皿),令血0』),则B©■梟;C(-1,0,0)试题井析: ⑴ 由/ (2) = 0./(3> = 0可得甘上的值』(2)由导数的几何磁可求得切绒的斜率 ,由点上可求得点的坐标』代入直线方程的点斜式」可得切线方程.(1> / (r)=l + A +^ll±^ ,令/J 理 M X据题意J 得占琨方程川+ A.Y + /I -0两根⑵ J G')ir 6 In A' + y .v ! - 5.v 、则 了(L )・|■一右■弓,得尸(1 ■弓)B fip ■ is又由于乐卜上竺艺、得厂0卜1一§7・2 从而,得所求切线方程为心・碍・心-1),即lA-2.>-13=0 . 第20题【答案】第19题【答案】 (2〉 0 .【解析】 试题解析:(1)m ;⑵—+【解析】试题分析;(1) M眄的周长为16可得々的值,由离心率为扌得c的值川專列坐标,代入直线的点斜式方程可得直线/的方程;(2)由离心率及eb.c关系化简椭圆方程3P +4/=12c:,联立椭圆及直线方程,整理关于忙的一元二次方程,由根与系数的关系得环心的值,代入弦长公式,題立等式,可得c的值,从而得椭圆的方程.试题解析:(1〉由题设得= = 4⑵由题设得十+,得H血,则椭圆c:心―2卩又有心UIY,设・4g」・J >矶勺」・J :打2=12—'消去•'、得7.v? -8CV-SC- =0则叫F ■亓吗“7乔R二恳「运J詈宀芋八討芋‘解得E、从而得所求桶E1C的方程为匕亠匕“.4 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年浙江省嘉兴市高三上学期数学期末试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)若复数z=(i是虚数单位)是实数,则实数m=()A.1B.2C.D.2.(4分)若a∈R,则“a>0”是“a+≥2”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既非充分也非必要条件3.(4分)已知直线a,b和平面α,则下列命题正确的是()A.若a∥b,b∥α,则a∥αB.a⊥b,b⊥α,则a∥αC.若a∥b,b⊥α,则a⊥αD.若a⊥b,b∥α,则a⊥α4.(4分)设数列{a n}是等差数列,且a2=﹣2,a8=6,数列{a n}的前n项和为S n,则S9=()A.27B.18C.20D.95.(4分)sin,cos,tan的大小关系为()A.sin<cos<tan B.cos<sin<tanC.sin<tan<cos D.tan<sin<cos6.(4分)已知任意两个向量,不共线,若=+,=+2,=2﹣,=﹣,则下列结论正确的是()A.A,B,C三点共线B.A,B,D三点共线C.A,C,D三点共线D.B,C,D三点共线7.(4分)下列函数中既是奇函数,又在区间[﹣1,1]上单调递增的是()A.f(x)=x B.f(x)=sin(2x+)C.f(x)=3﹣x﹣3x D.f(x)=x+tanx8.(4分)若a0+a1(2x﹣1)+a2(2x﹣1)2+a3(2x﹣1)3+a4(2x﹣1)4+a5(2x﹣1)5=x5,则a2=()A.B.C.D.9.(4分)如图,△ABC中,AB=BC,∠ABC=120°,若以A,B为焦点的双曲线的渐近线经过点C,则该双曲线的离心率为()A.B.C.D.10.(4分)已知a、b、c∈R,a>b>c,a+b+c=0,若实数x,y满足不等式组,则目标函数z=2x+y()A.有最大值,无最小值B.无最大值,有最小值C.有最大值,有最小值D.无最大值,无最小值二、填空题(共7小题,多空题6分,单空题4分,满分36分)11.(6分)已知集合M={x||x﹣1|≤2},N={x|2x>1},则M∩N=,M ∪∁R N=.12.(6分)已知某三棱锥的三视图(单位:cm)如图所示,则此三棱锥的体积是cm3,表面积是cm2.13.(6分)已知α、β都是锐角,cosα=,cos(α+β)=﹣,则tanα=,cosβ=.14.(6分)从4名男生和2名女生中任选3人参加演讲比赛,则恰好选到2名男生和1名女生的概率为,所选3人中至少有1名女生的概率为.15.(4分)已知椭圆+=1(a>b>0)的两焦点为F1,F2,A,B分别是椭圆的左顶点和上顶点,若线段AB上存在点P,使PF1⊥PF2,则椭圆的离心率的取值范围为.16.(4分)设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a的取值集合为.17.(4分)如图,已知E,F分别是正方形ABCD的边AB、CD的中点,现将正方形沿EF折成60°的二面角,则异面角直线AE与BF所成角的余弦值是.三、解答题(共5小题,满分74分)18.(14分)在△ABC中,角A、B、C的对边分别为a,b,c,且=.(1)求角A的大小;(2)若a=,b=2c,求△ABC的面积.19.(15分)已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式;(2)若b n=a n•a n,S n=b1+b2+…+b n,求使S n+n•2n+1>50成立的正整数n的最小值.20.(15分)如图,平面ABE⊥平面ABCD,四边形ABCD为直角梯形,∠CBA=90°,AD∥BC∥EF,△ABE为等边三角形,AB=2,BC=2,AD=4,EF=3(Ⅰ)求证:平面CDF⊥平面ABCD;(Ⅱ)求直线AF与平面CDF所成角的正切值.21.(15分)已知过抛物线y2=4x的焦点F的直线l交抛物线于A,B两点.(Ⅰ)求F点坐标;(Ⅱ)试问在x轴上是否存在一点T(不与F重合),使∠ATF=∠BTF?若存在,求出T点坐标;若不存在,请说明理由.(Ⅲ)若P是抛物线上异于A,B的任意一点,l1是抛物线的准线,直线PA、PB 分别交l1于点M、N,求证:•为定值,并求出该定值.22.(15分)已知函数f(x)=x﹣lnx,g(x)=.(1)求f(x)的最小值;(2)求证:f(x)>g(x);(3)若f(x)+ax+b≥0,求的最小值.2016-2017学年浙江省嘉兴市高三上学期数学期末试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)若复数z=(i是虚数单位)是实数,则实数m=()A.1B.2C.D.【分析】直接由复数代数形式的乘除运算化简复数z,再由已知条件得虚部等于0,求解即可得答案.【解答】解:z===,∵复数z=(i是虚数单位)是实数,∴,即m=1.故选:A.2.(4分)若a∈R,则“a>0”是“a+≥2”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既非充分也非必要条件【分析】根据基本不等式的性质以及充分必要条件的定义判断即可.【解答】解:若a>0,则a+≥2=2,当且仅当a=1时“=”成立,a<0时,a+≤﹣2=﹣2,当且仅当a=﹣1时“=”成立,故若a∈R,则“a>0”是“a+≥2”的充分必要条件,故选:C.3.(4分)已知直线a,b和平面α,则下列命题正确的是()A.若a∥b,b∥α,则a∥αB.a⊥b,b⊥α,则a∥αC.若a∥b,b⊥α,则a⊥αD.若a⊥b,b∥α,则a⊥α【分析】利用空间线面平行与垂直的判定及其性质即可判断出正误.【解答】解:A.a∥b,b∥α,则a∥α或a⊂α,因此不正确;B.a⊥b,b⊥α,则a∥α或a⊂α,因此不正确;C.a∥b,b⊥α,则a⊥α,正确;D.a⊥b,b∥α,则a⊥α,a∥α,或相交,因此不正确.故选:C.4.(4分)设数列{a n}是等差数列,且a2=﹣2,a8=6,数列{a n}的前n项和为S n,则S9=()A.27B.18C.20D.9【分析】由等差数列的性质可得:a2+a8=a1+a9,再利用求和公式即可得出.【解答】解:由等差数列的性质可得:a2+a8=a1+a9,∴S9==9×=18.故选:B.5.(4分)sin,cos,tan的大小关系为()A.sin<cos<tan B.cos<sin<tanC.sin<tan<cos D.tan<sin<cos【分析】根据∈(,),利用三角函数的单调性与特殊值,判断sin,cos,tan的大小关系.【解答】解:∵1∈(,),∴∈(,),∴0<sin<1,<cos <1,∴0<sin<tan=<cos<1,故选:C.6.(4分)已知任意两个向量,不共线,若=+,=+2,=2﹣,=﹣,则下列结论正确的是()A.A,B,C三点共线B.A,B,D三点共线C.A,C,D三点共线D.B,C,D三点共线【分析】利用向量共线,且有公共点,证明三点共线,对选项逐一判定即可.【解答】解:,,,和共线,且有公共点,所以A,B,D三点共线.故选:B.7.(4分)下列函数中既是奇函数,又在区间[﹣1,1]上单调递增的是()A.f(x)=x B.f(x)=sin(2x+)C.f(x)=3﹣x﹣3x D.f(x)=x+tanx【分析】根据函数的单调性和奇偶性,判断答案即可.【解答】解:对于A:f(x)=,x>0,不是奇函数,故A错误;对于B:f(x)=cos2x,是偶函数,故B错误;对于C:f(﹣x)=﹣f(x),是奇函数,在[﹣1,1]递减,不合题意,故C错误;对于D:f(x)=x+tanx是奇函数,在[1,1]递增,符合题意,故D正确;故选:D.8.(4分)若a0+a1(2x﹣1)+a2(2x﹣1)2+a3(2x﹣1)3+a4(2x﹣1)4+a5(2x ﹣1)5=x5,则a2=()A.B.C.D.【分析】把二项式变形为a0+a1(2x﹣1)+a2(2x﹣1)2+a3(2x﹣1)3+a4(2x﹣1)4+a(2x﹣1)5=x5=,利用展开式的通项公式即可求出对应项5的系数.【解答】解:令a0+a1(2x﹣1)+a2(2x﹣1)2+a3(2x﹣1)3+a4(2x﹣1)4+a5(2x﹣1)5=x5=,其展开式的通项公式为T r=••(2x﹣1)r,+1令r=2,得a2=×=.故选:C.9.(4分)如图,△ABC中,AB=BC,∠ABC=120°,若以A,B为焦点的双曲线的渐近线经过点C,则该双曲线的离心率为()A.B.C.D.【分析】设AB=BC=2,取AB的中点为O,由题意可得双曲线的一条渐近线为直线OC,由余弦定理可得OC,cos∠COB,求得tan∠COB,即为渐近线的斜率,由a,b,c的关系和离心率公式,即可得到.【解答】解:设AB=BC=2,取AB的中点为O,由题意可得双曲线的一条渐近线为直线OC,在三角形OBC中,cosB=﹣,∴OC2=OB2+BC2﹣2OB•BC•cosB=1+4﹣2×1×2×(﹣)=7,∴OC=,则cos∠COB==,可得sin∠COB==,tan∠COB==,可得双曲线的渐近线的斜率为,不妨设双曲线的方程为﹣=1(a,b>0),渐近线方程为y=±x,可得=,可得e=====.故选:D.10.(4分)已知a、b、c∈R,a>b>c,a+b+c=0,若实数x,y满足不等式组,则目标函数z=2x+y()A.有最大值,无最小值B.无最大值,有最小值C.有最大值,有最小值D.无最大值,无最小值【分析】判断直线bx+ay+c=0由y轴的交点位置,画出可行域,即可判断目标函数的最值情况.【解答】解:a、b、c∈R,a>b>c,a+b+c=0,可得bx+ay+c=0,在y轴上的截距为正,并且﹣<2.由实数x,y满足不等式组,的可行域如图:可知目标函数z=2x+y,一定存在最大值和最小值.故选:C.二、填空题(共7小题,多空题6分,单空题4分,满分36分)11.(6分)已知集合M={x||x﹣1|≤2},N={x|2x>1},则M∩N={x|0<x≤3} ,M∪∁R N={x|x≤3} .【分析】求出M与N中不等式的解集分别确定出M,求出M与N的交集,找出M与N补集的并集即可.【解答】解:由M中不等式变形得:﹣2≤x﹣1≤2,解得:﹣1≤x≤3,即M={x|﹣1≤x≤3},由N中不等式变形得:2x>1=20,解得:x>0,即N={x|x>0},∴∁R N={x|x≤0},则M∩N={x|0<x≤3},M∪∁R N={x|x≤3},故答案为:{x|0<x≤3};{x|x≤3}12.(6分)已知某三棱锥的三视图(单位:cm)如图所示,则此三棱锥的体积是2cm3,表面积是5+3+cm2.【分析】根据已知画出几何体的直观图,进而代入锥体体积和表面积公式,可得答案.【解答】解:由已知中三视图,可得几何体的直观图如下图所示:底面三角形ABC的面积为:×2×2=2cm2,高h=3cm,故棱锥的体积V=Sh=2cm3,侧面三角形VAB的面积为:×2×3=3cm2,侧面三角形VAC的面积为:××3=3cm2,侧面三角形VBC的面积为:×2×=cm2,故表面积S=(5+3+)cm2,故答案为:2,5+3+13.(6分)已知α、β都是锐角,cosα=,cos(α+β)=﹣,则tanα=4,cosβ=.【分析】利用同角三角函数的基本关系,两角差的三角公式,求得要求式子的值.【解答】解:∵α、β都是锐角,cosα=,cos(α+β)=﹣,∴sinα==,sin(α+β)==,则tanα==4.cosβ=co s[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=﹣•+•==,故答案为:4;.14.(6分)从4名男生和2名女生中任选3人参加演讲比赛,则恰好选到2名男生和1名女生的概率为,所选3人中至少有1名女生的概率为.【分析】先求出基本事件总数n=,再求出恰好选到2名男生和1名女生包含的基本事件个数m=,由此能求出恰好选到2名男生和1名女生的概率;所选3人中至少有1名女生的对立事件是选到的3人都是男生,由此利用对立事件概率计算公式能求出所选3人中至少有1名女生的概率.【解答】解:从4名男生和2名女生中任选3人参加演讲比赛,基本事件总数n==20,恰好选到2名男生和1名女生包含的基本事件个数m==12,∴恰好选到2名男生和1名女生的概率p1=.∵所选3人中至少有1名女生的对立事件是选到的3人都是男生,∴所选3人中至少有1名女生的概率p=1﹣=.故答案为:,.15.(4分)已知椭圆+=1(a>b>0)的两焦点为F1,F2,A,B分别是椭圆的左顶点和上顶点,若线段AB上存在点P,使PF1⊥PF2,则椭圆的离心率的取值范围为.【分析】依题意,作图如下:A(﹣a,0),B(0,b),F1(﹣c,0),F2(c,0),直线AB的方程为:bx﹣ay+ab=0,设直线AB上的点P(x,y),则bx=ay﹣ab,由PF1⊥PF2,=x2+y2﹣c2=+y2﹣c2=f(y),令f′(y)=2+2y=0,解得:y=,x=﹣,满足=0,解得e=,为最小值.当点P取B时,b=c,e=取得最大值.即可得出.【解答】解:依题意,作图如下:∵A(﹣a,0),B(0,b),F1(﹣c,0),F2(c,0),∴直线AB的方程为:+=1.整理得:bx﹣ay+ab=0,设直线AB上的点P(x,y)则bx=ay﹣ab,∴x=y﹣a,∵PF1⊥PF2,∴=(﹣c﹣x,﹣y)•(c﹣x,﹣y)=x2+y2﹣c2=+y2﹣c2=f(y),令f′(y)=2+2y=0,∴由f′(y)=0得:y=,于是x=﹣,∴=﹣c2=0,整理可得:=c2,又b2=a2﹣c2,e2=,∴e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e=,为最小值.当点P取B时,b=c,e=.∴椭圆的离心率的取值范围为.故答案为:.16.(4分)设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a的取值集合为[2,+∞).【分析】先由方程log a x+log a y=3解出y,转化为函数的值域问题求解.【解答】解:易得在[a,2a]上单调递减,所以,故⇒a≥2,故答案为[2,+∞)17.(4分)如图,已知E,F分别是正方形ABCD的边AB、CD的中点,现将正方形沿EF折成60°的二面角,则异面角直线AE与BF所成角的余弦值是.【分析】连接BD,由AE∥DF,知∠DFB即为异面直线FB与AE所成角,由此能求出异面角直线AE与BF所成角的余弦值.【解答】解:如图,连接BD,∵AE∥DF,∴∠DFB即为异面直线FB与AE所成角设正方形ABCD的边长为2,则在△BDF中,DF=1,BF=,BD==,∴cos∠DFB===.故答案为:.三、解答题(共5小题,满分74分)18.(14分)在△ABC中,角A、B、C的对边分别为a,b,c,且=.(1)求角A的大小;(2)若a=,b=2c,求△ABC的面积.【分析】(1)由条件利用正弦定理可得b2+c2﹣a2=﹣bc,再利用余弦定理求得cosA 的值,可得A的值.(2)由条件利用余弦定理求得c的值,可得△ABC的面积为bc•sinA 的值.【解答】解:(1)△ABC中,角A、B、C的对边分别为a,b,c,且==,化简可得b2+c2﹣a2=﹣bc,∴cosA==﹣,∴A=.(2)∵△ABC中,a=,b=2c,∴a2=b2+c2﹣2bc•cosA=5c2﹣4c•(﹣)=7,∴c=1,∴△ABC的面积为bc•sinA=•2•=.19.(15分)已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式;(2)若b n=a n•a n,S n=b1+b2+…+b n,求使S n+n•2n+1>50成立的正整数n的最小值.【分析】(1)设等比数列{a n}的首项为a1,公比为q,依题意,可得到关于a1与q的方程组,解之即可求得数列{a n}的通项公式;(2)(1)得a n=2n,再由b n=a n•a n,可得b n=﹣n•2n,于是S n=﹣(1×2+2×22+…+n•2n),利用错位相减法即可求得S n=2+22+23+…+2n﹣n•2n+1=2n+1﹣2﹣n•2n+1,解不等式S n+n•2P n+1P>50即可求得使之成立的正整数n的最小值.【解答】解:(1)设等比数列{a n}的首项为a1,公比为q.依题意,有2(a3+2)=a2+a4,代入a2+a3+a4=28,可得a3=8,∴a2+a4=20,…(2分)即,解之得或…(4分)又∵数列{a n}单调递增,所以q=2,a1=2,∴数列{a n}的通项公式为a n=2n.…(6分)(2)因为,所以S n=﹣(1×2+2×22+…+n•2n),2S n=﹣[1×22+2×23+…+(n﹣1)•2n+n•2n+1],两式相减,得S n=2+22+23+…+2n﹣n•2n+1=2n+1﹣2﹣n•2n+1.…(10分)要使S n+n•2n+1>50,即2n+1﹣2>50,即2n+1>52.易知:当n≤4时,2n+1≤25=32<52;当n≥5时,2n+1≥26=64>52.故使S n+n•2n+1>50成立的正整数n的最小值为5.…(12分)20.(15分)如图,平面ABE⊥平面ABCD,四边形ABCD为直角梯形,∠CBA=90°,AD∥BC∥EF,△ABE为等边三角形,AB=2,BC=2,AD=4,EF=3(Ⅰ)求证:平面CDF⊥平面ABCD;(Ⅱ)求直线AF与平面CDF所成角的正切值.【分析】(Ⅰ)取AB,CD的中点H,G,连接GH,GF,EH,证明:四边形EFGH 是平行四边形,FG∥EH,EH⊥平面ABCD,可得FG⊥平面ABCD,即可证明平面CDF⊥平面ABCD;(Ⅱ)连接AG,证明∠AFG为直线AF与平面CDF所成角,即可求直线AF与平面CDF所成角的正切值.【解答】(Ⅰ)证明:如图所示,取AB,CD的中点H,G,连接GH,GF,EH,则HG∥AD∥BC∥EF,∵BC=2,AD=4,∴HG=3,∵EF=3,∴EF=HG,∴四边形EFGH是平行四边形,∴FG∥EH∵△ABE为等边三角形,∴EH⊥AB,∵平面ABE⊥平面ABCD,平面ABE∩平面ABCD=AB,∴EH⊥平面ABCD,∴FG⊥平面ABCD,∵FG⊂平面CDF,∴平面CDF⊥平面ABCD;(Ⅱ)解:连接AG,由题意,可得CD=4,∠ADC=60°,∵AD=4,∴AG=2,∴AG⊥GD,∵平面CDF⊥平面ABCD,平面CDF∩平面ABCD=CD∴AG⊥平面CDF,∴∠AFG为直线AF与平面CDF所成角,∵AG=2,FG=3,∴tan∠AFG=,即直线AF与平面CDF所成角的正切值为.21.(15分)已知过抛物线y2=4x的焦点F的直线l交抛物线于A,B两点.(Ⅰ)求F点坐标;(Ⅱ)试问在x轴上是否存在一点T(不与F重合),使∠ATF=∠BTF?若存在,求出T点坐标;若不存在,请说明理由.(Ⅲ)若P是抛物线上异于A,B的任意一点,l1是抛物线的准线,直线PA、PB 分别交l1于点M、N,求证:•为定值,并求出该定值.【分析】(Ⅰ)由抛物线方程知F(1,0);(Ⅱ)设直线l的方程为x=my+1,将抛物线C的方程y2=4x与直线l的方程联立,设A(x1,y1),B(x2,y2),由韦达定理求得k AT+k BT,设点T(a,0)存在,由TA,TB与x轴所成的锐角相等可得k TA+k TB=0,利用韦达定理,即可求得a;(Ⅲ)求出M,N点横坐标,利用向量的数量积公式,即可得出结论.【解答】解:(Ⅰ)抛物线方程知F(1,0);(Ⅱ)设A(x 1,y1),B(x2,y2),设直线l的方程为x=my+1(m≠0),代入y2=4x得y2﹣4my﹣4=0,△=16m2+16>0恒成立,假设存在T(a,0)满足题意,则k AT+k BT==0∴﹣8m+4m(1﹣a)=0,∴a=﹣1,∴存在T(﹣1,0);(Ⅲ)设P(x0,y0),则直线PA的方程为:y﹣y1=当x=﹣1时,y=,即M点纵坐标为y M=,同理可得N点纵坐标为y N=.∴y M y N=×=∴═y M y N+(﹣1)•(﹣1)=﹣3为定值22.(15分)已知函数f(x)=x﹣lnx,g(x)=.(1)求f(x)的最小值;(2)求证:f(x)>g(x);(3)若f(x)+ax+b≥0,求的最小值.【分析】(1)求出原函数的定义域,再求出原函数的导函数,由导函数大于0求得原函数的增区间,由导函数小于0求得原函数的减区间,从而得到函数的最小值;(2)由(1)求得函数f(x)的最小值,再由导数求得函数g(x)的最大值,则结论得证;(3)由f(x)+ax+b≥0分离变量b,利用导数可得b≥1﹣ln(a+1),则.设φ(a)=.求导求其最小值,则的最小值可求.【解答】(1)解:f(x)的定义域是(0,+∞),f′(x)=1﹣=,令f′(x)<0,解得:0<x<1,令f′(x)>0,解得:x>1,∴f(x)在(0,1)递减,在(1,+∞)递增,∴f(x)的最小值是f(1)=1;(2)证明:g(x)=,g′(x)=,令g′(x)>0,解得:0<x<e,令g′(x)<0,解得:x>e,故g(x)在(0,e)递增,在(e,+∞)递减,故g(x)max=g(e)=,由(1)f(x)min=f(1)=1>g(e)=,故f(x)>g(x);(3)解:f(x)+ax+b≥0,即x﹣lnx+ax+b≥0.∴b≥lnx﹣ax﹣x,令h(x)=lnx﹣ax﹣x,h′(x)==,若a+1≤0,则h′(x)>0,h(x)为增函数,无最大值;若a+1>0,由h′(x)>0,得0<x<,由h′(x)<0,得x>,∴h(x)在(0,)上为增函数,在()上为减函数,∴h(x)≤h()=﹣1﹣ln(a+1).∴b≥﹣1﹣ln(a+1),∴.设φ(a)=.则φ′(a)=,由φ′(a)>0,得a>e﹣1;由φ′(a)<0,得﹣1<a<e﹣1.∴φ(a)≥φ(e﹣1)=.∴的最小值为.。

相关文档
最新文档