2020年高三数学上期末试卷(及答案)

合集下载

2020年河北省衡水市第六中学高三数学理期末试题含解析

2020年河北省衡水市第六中学高三数学理期末试题含解析

2020年河北省衡水市第六中学高三数学理期末试题含解析一、 选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 设集合,,则( )A .B .C .D .参考答案:A 因为集合,,所以。

2. 执行右图所示的程序框图,输出结果的值是___ .参考答案: 1略3. 已知集合( )A .{1,2,3}B .{1,2,4}C .{2,3,4}D .{1,2,3,4}参考答案:D4. 设变量x ,y 满足约束条件,则x 2+y 2的最小值为( )A .0B .C .1D .参考答案:B【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用z 的几何意义进行求解即可.【解答】解:作出不等式组,对应的平面区域如图,z 的几何意义为区域内的点到原点的距离的平方, 由图象知:OA 的距离最小,原点到直线2x+y ﹣2=0的距离最小.由=,则x 2+y 2的最小值为:,故选:B .5. 设是双曲线的两个焦点,P 是C 上一点,若,且的最小内角为,则C 的离心率为A .B .C .D .参考答案:C6. 若直线(a >0,b >0)被圆截得的弦长为4,则的最小值为( )A. B. C. D.参考答案:C圆的标准方程为,所以圆心坐标为,半径为.因为直线被圆截得的弦长为4,所以线长为直径,即直线过圆心,所以,即,所以,所以,当且仅当,即,时取等号,所以的最小值为,选C.7. 设函数,数列是公差不为0的等差数列,,则A.0 B.7 C.14D.21参考答案:D略8. 给定函数①,②,③,④, 其中在区间上单调递减的函数序号是( )A.①②B.②③C.③④D.①④参考答案:B9. 设变量满足约束条件:的最大值为()A.10 B.8 C.6 D.4 参考答案:C略10. 设a、b是两条不同的直线,α、β是两个不同的平面,下列命题中正确的是( )A.若a∥b,a∥α,则b∥αB.若α⊥β,a∥α,则a⊥βC.若α⊥β,a⊥β,则a∥αD.若a⊥b,a⊥α,b⊥β,则α⊥β参考答案:D考点:空间中直线与平面之间的位置关系.专题:证明题;综合法.分析:A选项a∥b,a∥α,则b∥α,可由线面平行的判定定理进行判断;B选项α⊥β,a∥α,则a⊥β,可由面面垂直的性质定理进行判断;C选项α⊥β,a⊥β,则a∥α可由线面的位置关系进行判断;D选项a⊥b,a⊥α,b⊥β,则α⊥β,可由面面垂直的判定定理进行判断;解答:解:A选项不正确,因为b?α是可能的;B选项不正确,因为α⊥β,a∥α时,a∥β,a?β都是可能的;C选项不正确,因为α⊥β,a⊥β时,可能有a?α;D选项正确,可由面面垂直的判定定理证明其是正确的.故选D点评:本题考查线面平行、线面垂直以及面面垂直的判断,主要考查空间立体的感知能力以及组织相关知识进行判断证明的能力.二、填空题:本大题共7小题,每小题4分,共28分11. (2015?上海模拟)已知数列{a n}满足a n=,且f(n)=a1+a2+a3+…+a2n﹣1,(n∈N*),则f(4)﹣f(3)的值为.参考答案:139【考点】:数列的求和.【专题】:计算题.【分析】:由已知先求出f(4),f(3),然后代入数列的通项公式即可求解解:∵a n=,f(n)=a1+a2+a3+…+a2n﹣1,∴f(4)﹣f(3)=a1+a2+a3+…+a7﹣(a1+a2+a3+…+a5)=a6+a7=11+27=139故答案为:139【点评】:本题主要考查了利用数列的递推公式求解数列的和,属于基础试题12. 如图,在矩形ABCD中,AB =2.AD =3,AB中点为E,点F,G分别在线段AD,BC上随机运动,则∠FEG为锐角的概率为。

海淀区2020届高三第一学期期末数学试题及答案(官方版)

海淀区2020届高三第一学期期末数学试题及答案(官方版)

海淀区高三年级第一学期期末练习数学 2020. 01本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合{}1,2,3,4,5,6U =,{}1,3,5A =,{}2,3,4B =,则集合U A B I ð是 (A ){1,3,5,6}(B ){1,3,5} (C ){1,3} (D ){1,5}(2)抛物线24y x =的焦点坐标为 (A )(0,1)(B )(10,) (C )(0,1-) (D )(1,0)-(3)下列直线与圆22(1)(1)2x y -+-=相切的是(A )y x =- (B )y x =(C )2y x =- (D )2y x =(4)已知,a b R Î,且a b >,则 (A )11ab <(B )sin sin a b >(C )11()()33ab<(D )22a b >(5)在51()x x-的展开式中,3x 的系数为 (A )5-(B )5(C )10-(D )10(6)已知平面向量,,a b c 满足++=0a b c ,且||||||1===a b c ,则⋅a b 的值为(A )12-(B )12(C )32-(D )32(7)已知α, β, γ是三个不同的平面,且=m αγI ,=n βγI ,则“m n ∥”是“αβ∥”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(8)已知等边△ABC 边长为3. 点D 在BC 边上,且BD CD >,7AD =. 下列结论中错误的是(A )2BDCD= (B )2ABDACDS S ∆∆= (C )cos 2cos BADCAD∠=∠ (D )sin 2sin BAD CAD ∠=∠ (9)声音的等级()f x (单位:dB )与声音强度x (单位:2W/m )满足12()10lg110x f x -=⨯⨯.喷气式飞机起飞时,声音的等级约为140dB ;一般说话时,声音的等级约为60dB ,那么喷气式飞机起飞时声音强度约为一般说话时声音强度的 (A )610倍(B )810倍(C )1010倍(D )1210倍(10)若点N 为点M 在平面a 上的正投影,则记()N f M a =. 如图,在棱长为1的正方体1111ABCD A B C D -中,记平面11AB C D 为b ,平面ABCD 为g ,点P 是棱1CC 上一动点(与C ,1C 不重合),1[()]Q f f P g b =,2[()]Q f f P b g =. 给出下列三个结论:①线段2PQ 长度的取值范围是12[,)22;②存在点P 使得1PQ ∥平面b ; ③存在点P 使得12PQ PQ ^. 其中,所有正确结论的序号是 (A )①②③(B )②③(C )①③(D )①②第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2020-2021学年浙江省杭州市高三(上)期末数学试卷 (解析版)

2020-2021学年浙江省杭州市高三(上)期末数学试卷 (解析版)

2020-2021学年浙江省杭州市高三(上)期末数学试卷一、选择题(共10小题).1.若集合A={x|1≤x≤3},B={x|(x﹣1)(x﹣2)≥0},则A∪B=()A.{x|1≤x≤2}B.{x|2≤x≤3}C.{x|1≤x≤3}D.R2.已知a∈R,若(2+ai)(a﹣2i)=﹣4i(i为虚数单位),则a=()A.﹣1B.0C.1D.23.某几何体的三视图如图所示,则该几何体的体积为()A.1B.C.D.4.若a>0,b>0,则“a>b”是“lna﹣b>lnb﹣a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.函数f(x)=(﹣1)cos x(其中e为自然对数的底数)图象的可能是()A.B.C.D.6.已知随机变量ξ满足P(ξ=x)=ax+b(x=﹣1,0,1),其中a,b∈R.若E(ξ)=,则D(ξ)=()A.B.C.D.7.已知(x2+1)(2x﹣1)7=a0+a1(x﹣1)+a2(x﹣1)2+…+a9(x﹣1)9(x∈R),则a1=()A.﹣30B.30C.﹣40D.408.已知实数a,b满足|b|≤2﹣a,且a≥﹣1,则2a+b的最小值为()A.﹣7B.﹣5C.﹣3D.﹣19.设函数f(x)=lnx﹣﹣2mx+n,若不等式f(x)≤0对x∈(0,+∞)恒成立,则的最大值为()A.B.C.e D.2e10.设数列{a n}满足a1=3,a2=6,a n+2=(n∈N*),()A.存在n∈N*,a n∉QB.存在p>0,使得{a n+1﹣pa n}是等差数列C.存在n∈N*,a n=D.存在p>0,使得{a n+1﹣pa n}是等比数列二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.计算lg2﹣lg=;4=.12.在△ABC中,A=,b=4,a=2,则B=,△ABC的面积等于.13.若a>0,b>0,且a+b=1,则a2+b2的最小值等于,+的最大值等于.14.已知tanα=cosα,则cos2α+cos4α=,=.15.一排11个座位,现安排2人就座,规定中间的3个座位不能坐,且2人不相邻,则不同排法的种数是.16.平面向量,的夹角为60°,且|﹣|=1,则•(+2)的最大值为.17.在棱长为的正方体ABCD﹣A1B1C1D1中,棱BB1,B1C1的中点分别为E,F,点P在平面BCC1B1内,作PQ⊥平面ACD1,垂足为Q.当点P在△EFB1内(包含边界)运动时,点Q的轨迹所组成的图形的面积等于.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知函数f(x)=sin(ωx+)cos(ωx+)(ω>0)的最小正周期为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在锐角△ABC中,若sin A sin C﹣sin2C=sin2A﹣sin2B,求f(B)的值.19.已知函数f(x)=x2﹣ax﹣|ax﹣2|(a>0).(Ⅰ)若a=2,解不等式f(x)<0;(Ⅱ)设x1,x2,x3,x4是函数y=f(x)+1的四个不同的零点,且x1<x2<x3<x4.问是否存在实数a,使得x2,x3,x4成等差数列?若存在,求出所有a的值;若不存在,说明理由.20.在三棱锥A﹣BCD中,△BCD为等腰直角三角形,点E,G分别是线段BD,CD的中点,点F在线段AB上,且BF=2FA.若AD=1,AB=,CB=CD=.(Ⅰ)求证:AG∥平面CEF;(Ⅱ)求直线AD与平面CEF所成的角.21.在数列{a n}中,a1=1,a2k﹣1,a2k,a2k+1(k∈N*)成等比数列,公比为q k>0.(Ⅰ)若q k=2,求a1+a3+a5+…+a2k﹣1;(Ⅱ)若a2k,a2k+1,a2k+2(k∈N*)成等差数列,公差为d k,设b k=.①求证:{b n}为等差数列;②若d1=2,求数列{d k}的前k项和D k.22.已知函数f(x)=xlnx﹣a(x+1)2,a∈R恰好有两个极值点x1,x2(x1<x2).(Ⅰ)求证:存在实数m∈(),使0<a<m;(Ⅱ)求证:﹣<f(x1)<﹣.参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|1≤x≤3},B={x|(x﹣1)(x﹣2)≥0},则A∪B=()A.{x|1≤x≤2}B.{x|2≤x≤3}C.{x|1≤x≤3}D.R解:∵A={x|1≤x≤3},B={x|x≤1或x≥2},∴A∪B=R.故选:D.2.已知a∈R,若(2+ai)(a﹣2i)=﹣4i(i为虚数单位),则a=()A.﹣1B.0C.1D.2解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,则有4a=0,a2﹣4=﹣4,解得a=0.故选:B.3.某几何体的三视图如图所示,则该几何体的体积为()A.1B.C.D.解:由三视图知几何体是一个四棱锥,四棱锥的底面是一个平行四边形,有两个等腰直角三角形,直角边长为1组成的平行四边形,四棱锥的一条侧棱与底面垂直,且侧棱长为1,∴四棱锥的体积是.故选:B.4.若a>0,b>0,则“a>b”是“lna﹣b>lnb﹣a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:当a>0,b>0时,若a>b,则lna>lnb,此时a+lna>b+lnb成立,即充分性成立,设f(x)=x+lnx,当x>0时,f(x)为增函数,则由a+lna>b+lnb得f(a)>f(b),即a>b,即必要性成立,则“a>b”是“a+lna>b+lnb”的充要条件,故选:C.5.函数f(x)=(﹣1)cos x(其中e为自然对数的底数)图象的可能是()A.B.C.D.解:f(x)=•cos x=•cos x,则f(﹣x)=•cos x=•cos x=﹣f(x),则f(x)是奇函数,排除A,C,当0<x<时,f(x)<0,排除B,故选:D.6.已知随机变量ξ满足P(ξ=x)=ax+b(x=﹣1,0,1),其中a,b∈R.若E(ξ)=,则D(ξ)=()A.B.C.D.解:由已知可得:P(ξ=﹣1)=﹣a+b,P(ξ=0)=b,P(ξ=1)=a+b,则﹣a+b+b+a+b=1,即b=,又E(ξ)=﹣1×(﹣a+b)+0×b+1×(a+b)=,所以a=,所以ξ的分布列如下:ξ﹣101P所以D(ξ)=,故选:B.7.已知(x2+1)(2x﹣1)7=a0+a1(x﹣1)+a2(x﹣1)2+…+a9(x﹣1)9(x∈R),则a1=()A.﹣30B.30C.﹣40D.40解:∵(x2+1)(2x﹣1)7=a0+a1(x﹣1)+a2(x﹣1)2+…+a9(x﹣1)9(x∈R),令f(x)=(x2+1)(2x﹣1)7=a0+a1(x﹣1)+a2(x﹣1)2+…+a9(x﹣1)9(x∈R),则f′(x)=2x=a1+a2(x﹣1)1+…+a9(x﹣1)8,f′(x)=2x•(2x﹣1)7+(x2+1)•14(2x﹣1)6,∴a1=f′(1)=2×1+2×14×(2﹣1)6=30故选:B.8.已知实数a,b满足|b|≤2﹣a,且a≥﹣1,则2a+b的最小值为()A.﹣7B.﹣5C.﹣3D.﹣1解:不等式|b|≤2﹣a可化为﹣2+a≤b≤2﹣a,且a≥﹣1,所以约束条件为,画出约束条件表示的平面区域,如阴影部分所示:设z=2a+b,平移目标函数知,当目标函数过点A时,z取得最小值;由,求得A(﹣1,﹣3),所以z=2a+b的最小值为z min=2×(﹣1)+(﹣3)=﹣5.故选:B.9.设函数f(x)=lnx﹣﹣2mx+n,若不等式f(x)≤0对x∈(0,+∞)恒成立,则的最大值为()A.B.C.e D.2e解:不等式f(x)≤0对x∈(0,+∞)恒成立,即为lnx﹣﹣2mx+n≤0,即lnx﹣≤2m(x﹣)对x>0恒成立,设g(x)=lnx﹣,由g′(x)=+>0,可得g(x)在(0,+∞)递增,且g(e)=0,当x→0时,g(x)→﹣∞;x→+∞,g(x)→+∞,作出y=g(x)的图象,再设h(x)=2m(x﹣),x>0,可得h(x)表示过(,0),斜率为2m的一条射线(不含端点),要求的最大值,且满足不等式恒成立,可求的最大值,由于点(,0)在x轴上移动,只需找到合适的m>0,且与g(x)=lnx﹣切于点(,0),如图所示:此时=e,即有的最大值为2e,故选:D.10.设数列{a n}满足a1=3,a2=6,a n+2=(n∈N*),()A.存在n∈N*,a n∉QB.存在p>0,使得{a n+1﹣pa n}是等差数列C.存在n∈N*,a n=D.存在p>0,使得{a n+1﹣pa n}是等比数列解:由a n+2=(n∈N*),可得①,则②①﹣②可得,a n+2a n﹣a n+1a n﹣1=a n+12﹣a n2,所以a n(a n+2+a n)=a n+1(a n+1+a n﹣1),则,由此可得,,所以,则a n+2=3a n+1﹣a n且a1=3∈Z,a2=6∈Z,所以a n∈Z,故选项A,C错误;由a n+3=3a n+2﹣a n+1,可得a n+3﹣a n+2=5a n+1﹣2a n不是常数,所以不存在p>0,使得{a n+1﹣pa n}是等差数列,故选项B错误;假设存在p>0,使得{a n+1﹣pa n}是等比数列,公比为q,则有a n+1﹣pa n=q(a n﹣pa n﹣1),所以a n+1=(p+q)a n﹣pqa n﹣1,由a n+2=3a n+1﹣a n,则,解得,所以存在,使得{a n+1﹣pa n}是等比数列,故选项D正确.故选:D.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.计算lg2﹣lg=1;4=9.解:lg2﹣lg=lg2+lg5=lg10=1;4==9.故答案为:1;9.12.在△ABC中,A=,b=4,a=2,则B=,△ABC的面积等于2.解:因为在△ABC中,A=,b=4,a=2,由正弦定理,可得=,可得sin B=1,因为B∈(0,π),则B=,所以c===2,所以S△ABC=ac==2.故答案为:,2.13.若a>0,b>0,且a+b=1,则a2+b2的最小值等于,+的最大值等于.解:∵a>0,b>0,a+b=1,∴,,∴,∴a2+b2的最小值等于;∵,∴,∴的最大值等于.故答案为:.14.已知tanα=cosα,则cos2α+cos4α=1,=1.解:因为tanα==cosα,可得sinα=cos2α,则cos2α+cos4α=cos2α+sin2α=1,=====1.故答案为:1,1.15.一排11个座位,现安排2人就座,规定中间的3个座位不能坐,且2人不相邻,则不同排法的种数是44.解:根据题意,分2种情况讨论,①两个都在左边的4个座位或右边的4个座位就坐,有2×A22×3=12种排法,②两个人一人在左边4个座位,一个在右边4个座位就坐,有2×CA41×C41=32种排法,则一共有12+32=44种不同的排法,故答案为:4416.平面向量,的夹角为60°,且|﹣|=1,则•(+2)的最大值为.解:设||=a,||=b,则由|﹣|=1,平方得||2+||2﹣2•=1,即a2+b2﹣2ab×=1,即a2+b2﹣ab=1,则•(+2)=||2+2•=a2+ab,∵a2+ab===,令m=,则m>0,则原式==,再设t=1+m,则t>1,则m=t﹣1.则===≤===,当且仅当t=,即t=时,取等号,即•(+2)的最大值为,故答案为:.17.在棱长为的正方体ABCD﹣A1B1C1D1中,棱BB1,B1C1的中点分别为E,F,点P在平面BCC1B1内,作PQ⊥平面ACD1,垂足为Q.当点P在△EFB1内(包含边界)运动时,点Q的轨迹所组成的图形的面积等于.解:连结BD交AC于点O,连结OD1,B1D交于点H,设G为CD1的中点,因为AC⊥BD,AC⊥BB1,BB1∩BD=B,BB1,BD⊂平面BB1D,所以AC⊥平面BB1D,因为B1D⊂平面BB1D,所以B1D⊥AC,同理可证B1D⊥AD1,又AC∩AD1=A,AC,AD1⊂平面ACD1,所以B1D⊥平面ACD1,即点B1在平面ACD1的投影为H,且D1H=2HO,同理,点E,F在面ACD1的投影分别为O,G,所以△EFB1在平面ACD1的投影为△OGH,又,所以,所以点Q的轨迹所组成的图形的面积S=.故答案为:.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知函数f(x)=sin(ωx+)cos(ωx+)(ω>0)的最小正周期为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在锐角△ABC中,若sin A sin C﹣sin2C=sin2A﹣sin2B,求f(B)的值.解:(I)函数f(x)=sin(ωx+)cos(ωx+)=(sinωx+cosωx)(cosωx﹣sinωx)=cos2ωx﹣sin2ωx=×﹣×=cos2ωx﹣,因为函数f(x)最小正周期为π,由T==π,且ω>0,解得ω=1,所以f(x)=cos2x﹣,令2kπ﹣π≤2x≤2kπ,k∈Z,解得kπ﹣≤x≤kπ,k∈Z,可得函数f(x)的单调递增区间为:[kπ﹣,kπ],k∈Z.(II)由sin A sin C﹣sin2C=sin2A﹣sin2B得:ac﹣c2=a2﹣b2,即a2+c2﹣b2=ac,∴cos B===,又B为锐角,可得B=,∴f(B)=cos﹣=﹣=.19.已知函数f(x)=x2﹣ax﹣|ax﹣2|(a>0).(Ⅰ)若a=2,解不等式f(x)<0;(Ⅱ)设x1,x2,x3,x4是函数y=f(x)+1的四个不同的零点,且x1<x2<x3<x4.问是否存在实数a,使得x2,x3,x4成等差数列?若存在,求出所有a的值;若不存在,说明理由.解:(Ⅰ)当a=2时,不等式f(x)<0,即x2﹣2x﹣|2x﹣2|=|x﹣1|2﹣2|x﹣1|﹣1<0,所以0≤|x﹣1|<,解得,故不等式f(x)<0的解集为{x|};(Ⅱ)因为f(x)=x2﹣ax﹣|ax﹣2|(a>0),则,又y=f(x)+1有四个不同的零点,所以△=4a2﹣12>0且,解得,因为x1<x2<x3<x4,当时,f(x)+1=x2﹣1=0,可得x1=﹣1,x2=1,所以x3,x4是x2﹣2ax+3=0的两个根,若x2,x3,x4成等差数列,则,所以,代入方程x2﹣2ax+3=0可得,,解得或﹣2(舍),综上可知,存在使得x2,x3,x4成等差数列.20.在三棱锥A﹣BCD中,△BCD为等腰直角三角形,点E,G分别是线段BD,CD的中点,点F在线段AB上,且BF=2FA.若AD=1,AB=,CB=CD=.(Ⅰ)求证:AG∥平面CEF;(Ⅱ)求直线AD与平面CEF所成的角.【解答】(Ⅰ)证明:连接BG交EC于H,连接FH,则点H为△BCD的重心,有,∵,∴FH∥AG,且FH⊂平面CEF,AG⊄平面CEF,则AG∥平面CEF;(Ⅱ)解:∵BF=,BE=1,∠ABD=30°,∴EF2=BF2+BE2﹣2BE•BF•cos∠ABD==,故BF2=BE2+EF2,∴BE⊥EF,又由已知,CE⊥BD,CE∩EF=E,则BD⊥平面CEF,过F作AD的平行线FP,交BD于P,则PE⊥CEF,故∠PFE为直线AD与平面CEF所成的角,且FP=,EP=,∠FEP=90°,∴sin,得直线AD与平面CEF所成的角为.21.在数列{a n}中,a1=1,a2k﹣1,a2k,a2k+1(k∈N*)成等比数列,公比为q k>0.(Ⅰ)若q k=2,求a1+a3+a5+…+a2k﹣1;(Ⅱ)若a2k,a2k+1,a2k+2(k∈N*)成等差数列,公差为d k,设b k=.①求证:{b n}为等差数列;②若d1=2,求数列{d k}的前k项和D k.【解答】(Ⅰ)解:因为a1=1,a2k﹣1,a2k,a2k+1(k∈N*)成等比数列,公比为q k>0,所以,则a1+a3+a5+…+a2k﹣1==;(Ⅱ)①证明:因为a2k,a2k+1,a2k+2(k∈N*)成等差数列,所以2a2k+1=a2k+a2k+2,即,则,即b k+1﹣b k=1,所以数列{b n}为等差数列,公差为1;②解:若d1=2,所以a3=a2+2,则有,所以a2=2或a2=﹣1;当a2=2时,q1=2,所以b1=1,则b k=1+(k﹣1)×1=k,即,解得,所以,则=,所以,则d k=a2k+1﹣a2k=k+1,故;若a2=﹣1时,q1=﹣1,所以,则,即,解得,则=,则,所以d k=a2k+1﹣a2k=4k﹣2,故.综上所述,或.22.已知函数f(x)=xlnx﹣a(x+1)2,a∈R恰好有两个极值点x1,x2(x1<x2).(Ⅰ)求证:存在实数m∈(),使0<a<m;(Ⅱ)求证:﹣<f(x1)<﹣.【解答】证明:(Ⅰ)f′(x)=lnx+1﹣a(x+1),x>0,结合题意,lnx+1﹣a(x+1)=0,即lnx+1=a(x+1)存在2个不同正根,先考虑y=a(x+1)与y=lnx+1相切,记切点横坐标为x0,则,解得:,记g(x)=xlnx﹣1,x>0,则g′(x)=1+lnx,令g′(x)=0,解得:x=,故y=g(x)在(0,)递减,在(,+∞)递增,且g(1)=﹣1<0,g(2)=ln4﹣1>0,故存在唯一x0∈(1,2),使得x0lnx0=1成立,取m=∈(,1),则0<a<m时,f(x)恰有2个极值点,得证;(Ⅱ)由(Ⅰ)知:f′(x1)=lnx1+1﹣a(x1+1),且<x1<x0<2,故a=,代入f(x1),得f(x1)=(x1lnx1﹣x1﹣lnx1﹣1),设h(x)=(xlnx﹣x﹣lnx﹣1),h′(x)=(lnx﹣),<x<2,由h′(x0)=0,得lnx0=,即x0lnx0=1,则x∈(,x0)时,h′(x)<0,x∈(x0,2),h′(x)>0,故h(x)在(,x0)递减,在(x0,2)递增,h(x)>h(x0)=(x0lnx0﹣lnx0﹣x0﹣1)=(1﹣﹣x0﹣1)=﹣(x0+),∵x0∈(1,2),∴x0+∈(2,),∴h(x0)∈(﹣,﹣1),故h(x)>﹣,即f(x1)>﹣,而h(x)<h()=﹣>h(2)=(ln2﹣3),故:﹣<f(x1)<﹣.。

2019-2020学年山东省泰安市高三上期末数学测试卷(理)(含答案)

2019-2020学年山东省泰安市高三上期末数学测试卷(理)(含答案)

山东省泰安市高三(上)期末测试数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为( )A .{2}B .{4,6}C .{1,3,5}D .{4,6,7,8}2.设{a n }是公差为正数的等差数列,若a 1+a 3=10,且a 1a 3=16,则a 11+a 12+a 13等于( ) A .75 B .90 C .105 D .1203.已知p :0<a <4,q :函数y=x 2﹣ax+a 的值恒为正,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.下列命题错误的是( )A .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βB .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γD .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β 5.不等式|x ﹣5|+|x+1|<8的解集为( ) A .(﹣∞,2) B .(﹣2,6) C .(6,+∞)D .(﹣1,5)6.已知点F 1、F 2分别是椭圆的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于 M 、N 两点,若△M NF 2为等腰直角三角形,则该椭圆的离心率e 为( )A .B .C .D .7.设f (x )在定义域内可导,其图象如图所示,则导函数f ′(x )的图象可能是( )A. B.C.D.8.已知实数a,b满足2a=3,3b=2,则函数f(x)=a x+x﹣b的零点所在的区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)9.已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π.若f(x)>1对任意x∈(﹣,)恒成立,则φ的取值范围是()A.[,] B.[,] C.[,] D.(,]10.已知函数f(x)=,若a<b,f(a)=f(b),则实数a﹣2b的取值范围为()A.B.C.D.二、填空题:本大题共5个小题,每小题5分,共25分,请把答案填写在答题卡相应位置.11.若α∈(0,)且cos2α+cos(+2α)=,则tanα= .12.直线ax+y+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,则实数a的值是.13.如果实数x,y满足条件,则z=x+y的最小值为.14.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为.15.规定记号“*”表示一种运算,a*b=a 2+ab ,设函数f (x )=x*2,且关于x 的方程f (x )=ln|x+1|(x ≠﹣1)恰有4个互不相等的实数根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4= .三、解答题:本大题共有6小题,满分75分,解答应写出文字说明、证明过程或演算步骤.16.△ABC 的内角A 、B 、C 所对的边a 、b 、c ,且(Ⅰ)求角A(Ⅱ)若,求a 的最小值.17.如图,多面体ABCDEF 中,四边形ABCD 是矩形,EF ∥AD ,FA ⊥面ABCD ,AB=AF=EF=1,AD=2,AC 交BD 于点P(Ⅰ)证明:PF ∥面ECD ; (Ⅱ)求二面角B ﹣EC ﹣A 的大小.18.已知正项等比数列{a n }的前n 项和为S n ,且S 2=6,S 4=30,n ∈N *,数列{b n }满足b n •b n+1=a n ,b 1=1 (I )求a n ,b n ;(Ⅱ)求数列{b n }的前n 项和为T n .19.如图,是一曲边三角形地块,其中曲边AB 是以A 为顶点,AC 为对称轴的抛物线的一部分,点B 到边AC 的距离为2km ,另外两边AC ,BC 的长度分别为8km ,2km .现欲在此地块内建一形状为直角梯形DECF的科技园区.(Ⅰ)求此曲边三角形地块的面积; (Ⅱ)求科技园区面积的最大值.20.已知椭圆C :的右顶点A (2,0),且过点(Ⅰ)求椭圆C 的方程;(Ⅱ)过点B (1,0)且斜率为k 1(k 1≠0)的直线l 于椭圆C 相交于E ,F 两点,直线AE ,AF 分别交直线x=3于M ,N 两点,线段MN 的中点为P ,记直线PB 的斜率为k 2,求证:k 1•k 2为定值. 21.已知函数f (x )=lnx+ax 在点(t ,f (t ))处切线方程为y=2x ﹣1 (Ⅰ)求a 的值(Ⅱ)若,证明:当x >1时,(Ⅲ)对于在(0,1)中的任意一个常数b ,是否存在正数x 0,使得:.2019-2020学年山东省泰安市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为( )A .{2}B .{4,6}C .{1,3,5}D .{4,6,7,8}【考点】Venn 图表达集合的关系及运算.【分析】由韦恩图可知阴影部分表示的集合为(C U A )∩B ,根据集合的运算求解即可. 【解答】解:全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6}, 由韦恩图可知阴影部分表示的集合为(C U A )∩B , ∵C U A={4,6,7,8}, ∴(C U A )∩B={4,6}. 故选B .2.设{a n }是公差为正数的等差数列,若a 1+a 3=10,且a 1a 3=16,则a 11+a 12+a 13等于( ) A .75 B .90 C .105 D .120 【考点】等差数列的通项公式.【分析】由已知得a 1<a 3,且a 1,a 3是方程x 2﹣10x+16=0的两个根,解方程x 2﹣10x+16=0,得a 1=2,a 3=8,由此求出公差,从而能求出a 11+a 12+a 13的值.【解答】解:∵{a n }是公差为正数的等差数列,a 1+a 3=10,且a 1a 3=16, ∴a 1<a 3,且a 1,a 3是方程x 2﹣10x+16=0的两个根, 解方程x 2﹣10x+16=0,得a 1=2,a 3=8, ∴2+2d=8,解得d=3,∴a 11+a 12+a 13=3a 1+33d=3×2+33×3=105. 故选:C .3.已知p :0<a <4,q :函数y=x 2﹣ax+a 的值恒为正,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据函数的性质结合充分条件和必要条件的定义进行判断即可.【解答】解:若函数y=x2﹣ax+a的值恒为正,即x2﹣ax+a>0恒成立,则判别式△=a2﹣4a<0,则0<a<4,则p是q的充要条件,故选:C4.下列命题错误的是()A.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β【考点】平面与平面之间的位置关系.【分析】命题A,B可以通过作图说明;命题C可以直接进行证明;命题D可以运用反证法的思维方式说明是正确的.【解答】解:A、如图,平面α⊥平面β,α∩β=l,l⊂α,l不垂直于平面β,所以不正确;B、如A中的图,平面α⊥平面β,α∩β=l,a⊂α,若a∥l,则a∥β,所以正确;C、如图,设α∩γ=a,β∩γ=b,在γ内直线a、b外任取一点O,作OA⊥a,交点为A,因为平面α⊥平面γ,所以OA⊥α,所以OA⊥l,作OB⊥b,交点为B,因为平面β⊥平面γ,所以OB⊥β,所以OB⊥l,又OA∩OB=O,所以l⊥γ.所以正确.D 、若平面α内存在直线垂直于平面β,根据面面垂直的判定,则有平面α垂直于平面β,与平面α不垂直于平面β矛盾,所以,如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β,正确; 故选:A .5.不等式|x ﹣5|+|x+1|<8的解集为( ) A .(﹣∞,2) B .(﹣2,6) C .(6,+∞)D .(﹣1,5)【考点】绝对值不等式的解法.【分析】由条件利用绝对值的意义,求得绝对值不等式|x ﹣5|+|x+1|<8的解集. 【解答】解:由于|x ﹣5|+|x+1|表示数轴上的x 对应点到5、﹣1对应点的距离之和, 而数轴上的﹣2和6对应点到5、﹣1对应点的距离之和正好等于8, 故不等式|x ﹣5|+|x+1|<8的解集为(﹣2,6), 故选:B .6.已知点F 1、F 2分别是椭圆的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于 M 、N 两点,若△M NF 2为等腰直角三角形,则该椭圆的离心率e 为( )A .B .C .D .【考点】椭圆的简单性质.【分析】把x=﹣c 代入椭圆,解得y=±.由于△MNF 2为等腰直角三角形,可得=2c ,由离心率公式化简整理即可得出.【解答】解:把x=﹣c 代入椭圆方程,解得y=±,∵△MNF 2为等腰直角三角形,∴=2c ,即a 2﹣c 2=2ac ,由e=,化为e 2+2e ﹣1=0,0<e <1. 解得e=﹣1+.故选C .7.设f (x )在定义域内可导,其图象如图所示,则导函数f ′(x )的图象可能是( )A .B .C .D .【考点】利用导数研究函数的单调性.【分析】由f (x )的图象可得在y 轴的左侧,图象下降,f (x )递减,y 轴的右侧,图象先下降再上升,最后下降,即有y 轴左侧导数小于0,右侧导数先小于0,再大于0,最后小于0,对照选项,即可判断. 【解答】解:由f (x )的图象可得,在y 轴的左侧,图象下降,f (x )递减, 即有导数小于0,可排除C ,D ;再由y 轴的右侧,图象先下降再上升,最后下降, 函数f (x )递减,再递增,后递减, 即有导数先小于0,再大于0,最后小于0, 可排除A ; 则B 正确. 故选:B .8.已知实数a ,b 满足2a =3,3b =2,则函数f (x )=a x +x ﹣b 的零点所在的区间是( ) A .(﹣2,﹣1) B .(﹣1,0)C .(0,1)D .(1,2)【考点】函数的零点;指数函数的图象与性质.【分析】根据对数,指数的转化得出f (x )=(log 23)x +x ﹣log 32单调递增,根据函数的零点判定定理得出f (0)=1﹣log 32>0,f (﹣1)=log 32﹣1﹣log 32=﹣1<0,判定即可. 【解答】解:∵实数a ,b 满足2a =3,3b =2, ∴a=log 23>1,0<b=log 32<1, ∵函数f (x )=a x +x ﹣b ,∴f (x )=(log 23)x +x ﹣log 32单调递增, ∵f (0)=1﹣log 32>0f (﹣1)=log 32﹣1﹣log 32=﹣1<0,∴根据函数的零点判定定理得出函数f (x )=a x +x ﹣b 的零点所在的区间(﹣1,0), 故选:B .9.已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π.若f(x)>1对任意x∈(﹣,)恒成立,则φ的取值范围是()A.[,] B.[,] C.[,] D.(,]【考点】正弦函数的图象.【分析】由题意求得sin(ωx+φ)=﹣1,函数y=sin(ωx+φ)的图象和直线y=﹣1邻两个交点的距离为π,根据周期性求得ω的值,可得f(x)的解析式.再根据当x∈(﹣,)时,f(x)>1,可得sin(2x+φ)>0,故有﹣+φ≥2kπ,且+φ≤2kπ+π,由此求得φ的取值范围.【解答】解:函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤)的图象与直线y=﹣1相邻两个交点的距离为π,令2sin(ωx+φ)+1=﹣1,即sin(ωx+φ)=﹣1,即函数y=sin(ωx+φ)的图象和直线y=﹣1邻两个交点的距离为π,故 T==π,求得ω=2,∴f(x)=2sin(2x+φ)+1.由题意可得,当x∈(﹣,)时,f(x)>1,即 sin(2x+φ)>0,故有﹣+φ≥2kπ,且+φ≤2kπ+π,求得φ≥2kπ+,且φ≤2kπ+,k∈Z,故φ的取值范围是[2kπ+,2kπ+],k∈Z,结合所给的选项,故选:B.10.已知函数f(x)=,若a<b,f(a)=f(b),则实数a﹣2b的取值范围为()A.B.C.D.【考点】函数的值.【分析】由已知得a≤﹣1,a﹣2b=a﹣e a﹣1,再由函数y=﹣e x+a﹣1,(x≤﹣1)单调递减,能求出实数a﹣2b的范围.【解答】解:∵函数f(x)=,a<b,f(a)=f(b),∴a≤﹣1,∵f(a)=e a,f(b)=2b﹣1,且f(a)=f(b),∴e a=2b﹣1,得b=,∴a﹣2b=a﹣e a﹣1,又∵函数y=﹣e x+a﹣1(x≤﹣1)为单调递减函数,∴a﹣2b<f(﹣1)=﹣e﹣1=﹣,∴实数a﹣2b的范围是(﹣∞,﹣).故选:B.二、填空题:本大题共5个小题,每小题5分,共25分,请把答案填写在答题卡相应位置.11.若α∈(0,)且cos2α+cos(+2α)=,则tanα= .【考点】三角函数中的恒等变换应用;同角三角函数基本关系的运用.【分析】首先根据诱导公式和同角三角函数的关系式进行恒等变换,整理成正切函数的关系式,进一步求出正切的函数值.【解答】解:cos2α+cos(+2α)=,则:,则:,整理得:3tan2α+20tanα﹣7=0,所以:(3tanα﹣1)(tanα+7)=0解得:tan或tanα=﹣7,由于:α∈(0,),所以:.故答案为:12.直线ax+y+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,则实数a的值是﹣2 .【考点】直线与圆的位置关系.【分析】由圆的方程,得到圆心与半径,再求得圆心到直线的距离,利用勾股定理解.【解答】解:圆x2+y2﹣2ax+a=0可化为(x﹣a)2+y2=a2﹣a∴圆心为:(a,0),半径为:圆心到直线的距离为:d==.∵直线ax+y+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,∴a2+1+1=a2﹣a,∴a=﹣2.故答案为:﹣2.13.如果实数x,y满足条件,则z=x+y的最小值为.【考点】简单线性规划.【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(),化目标函数z=x+y为y=﹣x+z,由图可知,当直线y=﹣x+z过A时,直线在y轴上的截距最小,z有最小值为.故答案为:.14.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为.【考点】由三视图求面积、体积.【分析】根据三视图判断几何体是圆锥的一部分,再根据俯视图与左视图的数据可求得底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,把数据代入圆锥的体积公式计算. 【解答】解:由三视图知几何体是圆锥的一部分, 由正视图可得:底面扇形的圆心角为120°, 又由侧视图知几何体的高为4,底面圆的半径为2,∴几何体的体积V=××π×22×4=.故答案为:15.规定记号“*”表示一种运算,a*b=a 2+ab ,设函数f (x )=x*2,且关于x 的方程f (x )=ln|x+1|(x ≠﹣1)恰有4个互不相等的实数根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4= ﹣4 . 【考点】根的存在性及根的个数判断.【分析】由题意可得f (x )=x 2+2x ,可得图象关于x=﹣1对称,由函数图象的变换可得函数y=ln|x+1|(x ≠﹣1)的图象关于直线x=﹣1对称,进而可得四个根关于直线x=﹣1对称,由此可得其和. 【解答】解:由题意可得f (x )=x*2=x 2+2x , 其图象为开口向上的抛物线,对称轴为x=﹣1, 函数y=ln|x+1|可由y=ln|x|向左平移1个单位得到, 而函数函数y=ln|x|为偶函数,图象关于y 轴对称, 故函数y=ln|x+1|的图象关于直线x=﹣1对称,故方程为f (x )=ln|x+1|(x ≠﹣1)四个互不相等的实数根x 1,x 2,x 3,x 4, 也关于直线x=﹣1对称,不妨设x 1与x 2对称,x 3与x 4对称, 必有x 1+x 2=﹣2,x 3+x 4=﹣2,故x1+x2+x3+x4=﹣4,故答案为:﹣4.三、解答题:本大题共有6小题,满分75分,解答应写出文字说明、证明过程或演算步骤.16.△ABC的内角A、B、C所对的边a、b、c,且(Ⅰ)求角A(Ⅱ)若,求a的最小值.【考点】正弦定理.【分析】(Ⅰ)由正弦定理化简已知可得sinAsinB=sinBcosA,又sinB≠0,从而可求tanA,由于0<A <π,即可解得A的值.(Ⅱ)利用平面向量数量积的运算和余弦定理化简已知等式可得bc=8,利用余弦定理及基本不等式即可求得a的最小值.【解答】(本题满分为12分)解:(Ⅰ)因为,由正弦定理,得sinAsinB=sinBcosA,又sinB≠0,从而tanA=,由于0<A<π,所以A=.…4分(Ⅱ)由题意可得:=+•(﹣)﹣=+﹣•﹣=c2+b2﹣bccosA﹣a2=2bccosA﹣bccosA=bc=4,∵bc=8,由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2﹣bc≥2bc﹣bc=bc=8,∴a≥2,∴a的最小值为.…12分17.如图,多面体ABCDEF中,四边形ABCD是矩形,EF∥AD,FA⊥面ABCD,AB=AF=EF=1,AD=2,AC交BD 于点P(Ⅰ)证明:PF∥面ECD;(Ⅱ)求二面角B﹣EC﹣A的大小.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)取CD中点G,连结EG、PG,推导出四边形EFPG是平行四边形,由此能证明FP∥平面ECD.(Ⅱ)以AB所在直线为x轴,AD所在直线为y轴,AF所在直线为z轴,建立空间直角坐标系,利用向量法能求出二面角B﹣EC﹣A的大小.【解答】证明:(Ⅰ)取CD中点G,连结EG、PG,∵点P为矩形ABCD对角线交点,∴在△ACD中,PG AD,又EF=1,AD=2,EF∥AD,∴EF PG,∴四边形EFPG是平行四边形,∴FP∥EG,又FP⊄平面ECD,EG⊂平面ECD,∴FP∥平面ECD.解:(Ⅱ)由题意,以AB所在直线为x轴,AD所在直线为y轴,AF所在直线为z轴,建立空间直角坐标系,则F(0,0,1),B(1,0,0),C(1,2,0),E(0,1,1),∴=(0,2,0),=(1,1,﹣1),=(1,2,0),取FB中点H,连结AH,则=(),∵=0, =0,∴AH⊥平面EBC,故取平面AEC法向量为=(),设平面AEC 的法向量=(x ,y ,1),则,∴=(2,﹣1,1),cos <>===,∴二面角B ﹣EC ﹣A 的大小为.18.已知正项等比数列{a n }的前n 项和为S n ,且S 2=6,S 4=30,n ∈N *,数列{b n }满足b n •b n+1=a n ,b 1=1 (I )求a n ,b n ;(Ⅱ)求数列{b n }的前n 项和为T n . 【考点】数列的求和;数列递推式.【分析】(I )设正项等比数列{a n }的公比为q (q >0),由等比数列的通项公式,解方程可得首项和公比均为2,可得a n =a 1q n ﹣1=2n ;再由n 换为n+1,可得数列{b n }中奇数项,偶数项均为公比为2的等比数列,运用等比数列的通项公式,即可得到所求b n ;(Ⅱ)讨论n 为奇数和偶数,运用分组求和和等比数列的求和公式,化简整理即可得到所求和. 【解答】解:(I )设正项等比数列{a n }的公比为q (q >0), 由题意可得a 1+a 1q=6,a 1+a 1q+a 1q 2+a 1q 3=30, 解得a 1=q=2(负的舍去), 可得a n =a 1q n ﹣1=2n ; 由b n •b n+1=a n =2n ,b 1=1, 可得b 2=2,即有b n+1•b n+2=a n =2n+1,可得=2,可得数列{b n }中奇数项,偶数项均为公比为2的等比数列,即有b n =;(Ⅱ)当n 为偶数时,前n 项和为T n =(1+2+..+)+(2+4+..+)=+=3•()n ﹣3;当n 为奇数时,前n 项和为T n =T n ﹣1+=3•()n ﹣1﹣3+=()n+3﹣3.综上可得,T n =.19.如图,是一曲边三角形地块,其中曲边AB 是以A 为顶点,AC 为对称轴的抛物线的一部分,点B 到边AC 的距离为2km ,另外两边AC ,BC 的长度分别为8km ,2km .现欲在此地块内建一形状为直角梯形DECF的科技园区.(Ⅰ)求此曲边三角形地块的面积; (Ⅱ)求科技园区面积的最大值.【考点】扇形面积公式;弧度制的应用.【分析】(Ⅰ)以AC 所在的直线为y 轴,A 为坐标原点建立平面直角坐标系,求出曲边AB 所在的抛物线方程,利用积分计算曲边三角形ABC 地块的面积;(Ⅱ)设出点D 为(x ,x 2),表示出|DF|、|DE|与|CF|的长,求出直角梯形CEDF 的面积表达式,利用导数求出它的最大值即可.【解答】解:(Ⅰ)以AC 所在的直线为y 轴,A 为坐标原点,建立平面直角坐标系xOy ,如图所示;则A(0,0),C(0,8),设曲边AB所在的抛物线方程为y=ax2(a>0),则点B(2,4a),又|BC|==2,解得a=1或a=3(此时4a=12>8,不合题意,舍去);∴抛物线方程为y=x2,x∈[0,2];又x2=x3=,∴此曲边三角形ABC地块的面积为﹣x2=×(8+4)×2﹣=;S梯形ACBM(Ⅱ)设点D(x,x2),则F(0,x2),直线BC的方程为:2x+y﹣8=0,∴E(x,8﹣2x),|DF|=x,|DE|=8﹣2x﹣x2,|CF|=8﹣x2,直角梯形CEDF的面积为S(x)=x[(8﹣2x﹣x2)+(8﹣x2)]=﹣x3﹣x2+8x,x∈(0,2),求导得S′(x)=﹣3x2﹣2x+8,令S′(x)=0,解得x=或x=﹣2(不合题意,舍去);当x∈(0,)时,S(x)单调递增,x∈(,2)时,S(x)单调递减,∴x=时,S(x)取得最大值是S ()=﹣﹣+8×=;∴科技园区面积S 的最大值为.20.已知椭圆C :的右顶点A (2,0),且过点(Ⅰ)求椭圆C 的方程;(Ⅱ)过点B (1,0)且斜率为k 1(k 1≠0)的直线l 于椭圆C 相交于E ,F 两点,直线AE ,AF 分别交直线x=3于M ,N 两点,线段MN 的中点为P ,记直线PB 的斜率为k 2,求证:k 1•k 2为定值. 【考点】椭圆的简单性质.【分析】(Ⅰ)由题意可得a=2,代入点,解方程可得椭圆方程;(Ⅱ)设过点B (1,0)的直线l 方程为:y=k (x ﹣1),由,可得(4k 12+1)x 2﹣8k 12x+4k 12﹣4=0,由已知条件利用韦达定理推导出直线PB 的斜率k 2=﹣,由此能证明k •k ′为定值﹣.【解答】解:(Ⅰ)由题意可得a=2, +=1,a 2﹣b 2=c 2, 解得b=1,即有椭圆方程为+y 2=1;(Ⅱ)证明:设过点B (1,0)的直线l 方程为:y=k 1(x ﹣1), 由,可得:(4k 12+1)x 2﹣8k 12x+4k 12﹣4=0,因为点B (1,0)在椭圆内,所以直线l 和椭圆都相交, 即△>0恒成立.设点E (x 1,y 1),F (x 2,y 2),则x 1+x 2=,x 1x 2=.因为直线AE 的方程为:y=(x ﹣2),直线AF的方程为:y=(x﹣2),令x=3,得M(3,),N(3,),所以点P的坐标(3,(+)).直线PB的斜率为k2==(+)=•=•=•=﹣.所以k1•k2为定值﹣.21.已知函数f(x)=lnx+ax在点(t,f(t))处切线方程为y=2x﹣1(Ⅰ)求a的值(Ⅱ)若,证明:当x>1时,(Ⅲ)对于在(0,1)中的任意一个常数b,是否存在正数x,使得:.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出f(x)的导数,可得切线的斜率和切点,解方程可得a的值;(Ⅱ)求出f(x)=lnx+x,要证原不等式成立,即证xlnx+x﹣k(x﹣3)>0,可令g(x)=xlnx+x﹣k(x ﹣3),求出导数,判断符号,可得单调性,即可得证;(Ⅲ)对于在(0,1)中的任意一个常数b,假设存在正数x,使得:.运用转化思想可令H(x)=(x+1)•e﹣x+x2﹣1,求出导数判断单调性,可得最小值,即可得到结论.【解答】解:(Ⅰ)函数f(x)=lnx+ax的导数为f′(x)=+a,在点(t,f(t))处切线方程为y=2x﹣1,可得f′(t)=+a=2,f(t)=2t﹣1=lnt+at,解得a=t=1;(Ⅱ)证明:由(Ⅰ)可得f (x )=lnx+x ,要证当x >1时,,即证lnx >k (1﹣)﹣1(x >1), 即为xlnx+x ﹣k (x ﹣3)>0,可令g (x )=xlnx+x ﹣k (x ﹣3),g ′(x )=2+lnx ﹣k ,由,x >1,可得lnx >0,2﹣k ≥0,即有g ′(x )>0,g (x )在(1,+∞)递增, 可得g (x )>g (1)=1+2k ≥0,故当x >1时,恒成立;(Ⅲ)对于在(0,1)中的任意一个常数b ,假设存在正数x 0,使得:.由e f (x0+1)﹣2x0﹣1+x 02=e ln (x0+1)﹣x0+x 02=(x 0+1)•e ﹣x0+x 02.即对于b ∈(0,1),存在正数x 0,使得(x 0+1)•e ﹣x0+x 02﹣1<0, 从而存在正数x 0,使得上式成立,只需上式的最小值小于0即可.令H (x )=(x+1)•e ﹣x +x 2﹣1,H ′(x )=e ﹣x ﹣(x+1)•e ﹣x +bx=x (b ﹣e ﹣x ), 令H ′(x )>0,解得x >﹣lnb ,令H ′(x )<0,解得0<x <﹣lnb , 则x=﹣lnb 为函数H (x )的极小值点,即为最小值点.故H (x )的最小值为H (﹣lnb )=(﹣lnb+1)e lnb +ln 2b ﹣1=ln 2b ﹣blnb+b ﹣1,再令G (x )=ln 2x ﹣xlnx+x ﹣1,(0<x <1),G ′(x )=(ln 2x+2lnx )﹣(1+lnx )+1=ln 2x >0,则G (x )在(0,1)递增,可得G (x )<G (1)=0,则H (﹣lnb )<0.故存在正数x 0=﹣lnb ,使得.。

2020届高三上学期期末教学质量检测数学理试题含答案及评分标准

2020届高三上学期期末教学质量检测数学理试题含答案及评分标准

理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

全卷满分150分,考试时间120分钟。

考生注意事项: 1.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.答第Ⅱ卷时,必须答题卡上作答.在试题卷上作答无效. 参考公式:如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P AB P A P B =棱柱的体积公式V Sh =,其中S 、h 分别表示棱柱的底面积、高.第Ⅰ卷(选择题 共40分)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项符合题目要求. 1.12i i +=A .i --2B .i +-2C .i -2D .i +22.集合{||2|2}A x x =-≤,2{|,12}B y y x x ==--≤≤,则A B =IA .RB .{|0}x x ≠C .{0}D .∅3.若抛物线22y px =的焦点与双曲线22122x y -=的右焦点重合,则p 的值为 A .2- B .2 C .4- D .44.不等式10x x->成立的一个充分不必要条件是 A .10x -<<或1x > B .1x <-或01x << C .1x >- D .1x > 5.对于平面α和共面的两直线m 、n ,下列命题中是真命题的为 A .若m α⊥,m n ⊥,则//n α B .若//m α,//n α,则//m nC .若m α⊂,//n α,则//m nD .若m 、n 与α所成的角相等,则//m n6.平面四边形ABCD 中0AB CD +=u u u r u u u r r ,()0AB AD AC -=⋅u u u r u u u r u u u r,则四边形ABCD 是A .矩形B .菱形C .正方形D .梯形 7.等比数列{}n a 中5121=a ,公比21-=q ,记12n n a a a ∏=⨯⨯⨯L (即n ∏表示 数列{}n a 的前n 项之积),8∏ ,9∏,10∏,11∏中值为正数的个数是 A . 1 B . 2 C . 3 D . 48.定义域R 的奇函数()f x ,当(,0)x ∈-∞时()'()0f x xf x +<恒成立,若3(3)a f =,(log 3)(log 3)b f ππ=⋅,()c f =-2-2,则A .a c b >>B .c b a >>C .c a b >>D . a b c >>第Ⅱ卷(非选择题,共110分)二 填空题:本题共6小题,共30分,把答案填在答题卷相应的位置上.9.某校有4000名学生,各年级男、女生人数如表,已知在全校学生中随机抽取一名奥运火炬手,抽到高一男生的概率是0.2,现用分层抽样的方法在全校抽取100名奥运志愿者,则在高二抽取的学生人数为______.10.如果实数x 、y 满足条件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,那么2x y -的最大值为______.11.在ABC ∆中角A 、B 、C 的对边分别是a 、b 、c ,若(2)cos cos b c A a C -=, 则cos A =________. 12.右图给出的是计算201614121+⋅⋅⋅+++的值 的一个程序框图,其中判断框内应填入的条件是i >___?13.由数字0、1、2、3、4组成无重复数字的 五位数,其中奇数有 个. 14.若一个正三棱柱的三视图如下图所示,则这 个正三棱柱的体积为__________.三.解答题(本大题共6小题,共80分 解答应写出文字说明、证明过程或演算步骤) 15.(本小题共12分)已知函数()sin cos f x x x =+,()f x '是()f x 的导函数. (1)求函数()()'()g x f x f x =⋅的最小值及相应的x 值的集合; (2)若()2()f x f x '=,求tan()4x π+的值.16.(本题满分12分)近年来,政府提倡低碳减排,某班同学利用寒假在两个小区逐户调查人们的生活习惯是否符合低碳观念.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳题12图 主视图 俯视图左视图族”.数据如下表(计算过程把频率当成概率).(1)如果甲、乙来自A小区,丙、丁来自B小区,求这4人中恰有2人是低碳族的概率;(2)A小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后随机地从A小区中任选25个人,记X表示25个人中低碳族人数,求()E X.17.(本小题满分14分)已知点(4,0)M、(1,0)N,若动点P满足6||MN MP NP=⋅u u u u r u u u r u u u r.(1)求动点P的轨迹C;(2)在曲线C上求一点Q,使点Q到直线l:2120x y+-=的距离最小.18.(本小题满分14分)已知梯形ABCD中,AD∥BC,2π=∠=∠BADABC,42===ADBCAB,E、F分别是AB、CD上的点,EF∥BC,xAE=.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为()f x.(1)当2=x时,求证:BD⊥EG;(2)求()f x的最大值;(3)当()f x取得最大值时,求异面直线AE与BD所成的角的余弦值.19.(本题满分14分)数列{}na中112a=,前n项和2(1)n nS n a n n=--,1n=,2,….(1)证明数列1{}nnSn+是等差数列;(2)求nS关于n的表达式;(3)设3n nnb S=1,求数列{}nb的前n项和nT.20.(本题满分14分)二次函数()f x满足(0)(1)0f f==,且最小值是14-.A小区低碳族非低碳族频率p0.50.5B小区低碳族非低碳族频率p0.80.2(1)求()f x 的解析式;(2)设常数1(0,)2t ∈,求直线l : 2y t t =-与()f x 的图象以及y 轴所围成封闭图形的面积是()S t ;(3)已知0m ≥,0n ≥,求证:211()()24m n m n +++≥.答案及评分标准:8~1:CCDD ;CBB A ;9.30;10.1;11.12;12.10;13.36;14.以下是各题的提示:1.21222i i i i i i+-+==-.2.[0,4]A =,[4,0]B =-,所以{0}A B =I .3.双曲线22122x y -=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =.4.画出直线y x =与双曲线1y x=,两图象的交点为(1,1)、(1,1)--,依图知10x x->10x ⇔-<<或1x >(*),显然1x >⇒(*);但(*)⇒/1x >.5.考查空间中线、面的平行与垂直的位置关系的判断.6.由0AB CD +=u u u r u u u r r ,得AB CD DC =-=u u u r u u u r u u u r,故平面四边形ABCD 是平行四边形,又()0AB AD AC -=⋅u u u r u u u r u u u r ,故0DB AC =⋅u u u r u u u r,所以DB AC ⊥,即对角线互相垂直.7.等比数列{}n a 中10a >,公比0q <,故奇数项为正数,偶数项为负数,∴110∏<,100∏<,90∏>,80∏>,选B .8.设()()g x xf x =,依题意得()g x 是偶函数,当(,0)x ∈-∞时()'()0f x xf x +<,即'()0g x <恒成立,故()g x 在(,0)x ∈-∞单调递减,则()g x 在(0,)+∞上递增,3(3)(3)a f g ==,(log 3)(log 3)(log 3)b f g πππ==⋅,2(2)(2)(2)c f g g =--=-=.又log 3123π<<<,故a c b >>. 9.依表知400020002000x y z ++=-=,0.24000x=,于是800x =, 1200y z +=,高二抽取学生人数为112003040⨯=.10.作出可行域及直线l :20x y -=,平移直线l 至可行域的点(0,1)-时2x y -取得最大值.11.由(2)cos cos b c A a C -=,得2cos cos cos b A c A a C =+,2sin cos sin cos sin cos B A C A A C =+,故2sin cos sin()B A A C =+,又在ABC ∆中sin()sin 0A C B +=>,故1cos 2A =,12.考查循环结构终止执行循环体的条件.13.1132336636C C A =⨯=⋅⋅.14.由左视图知正三棱柱的高2h =,设正三棱柱的底面边长a ,=,故4a =,底面积142S =⨯⨯=,故2V Sh === 15.解:(1)∵()sin cos f x x x =+,故'()cos sin f x x x =-, …… 2分∴()()'()g x f x f x =⋅(sin cos )(cos sin )x x x x =+-22cos sin cos 2x x x =-=, ……… 4分∴当22()x k k Z ππ=-+∈,即()2x k k Z ππ=-+∈时,()g x 取得最小值1-,相应的x 值的集合为{|,}2x x k k Z ππ=-+∈. ……… 6分评分说明:学生没有写成集合的形式的扣1分. (2)由()2()f x f x '=,得sin cos 2cos 2sin x x x x +=-,∴cos 3sin x x =,故1tan 3x =, …… 10分 ∴11tan tan34tan()2141tan tan 143x x x πππ+++===--. …… 12分 16.解:(1)设事件C 表示“这4人中恰有2人是低碳族”. …… 1分2222112222222222()0.50.20.50.50.20.80.50.8P C C C C C C C =+⨯⨯⨯+⋅⋅⋅⋅⋅⋅⋅⋅0.010.160.160.33=++=. …… 4分 答:甲、乙、丙、丁这4人中恰有2人是低碳族的概率为0.33; …… 5分(2)设A 小区有a 人,两周后非低碳族的概率20.5(120%)0.32a P a⨯⨯-==.故低碳族的概率10.320.68P =-=. ………… 9分 随机地从A 小区中任选25个人,这25个人是否为低碳族相互独立,且每个 人是低碳族的概率都是0.68,故这25个人中低碳族人数服从二项分布,即17~(25,)25X B ,故17()251725E X =⨯=. ………… 12分 17.解:(1)设动点(,)P x y ,又点(4,0)M 、(1,0)N ,∴(4,)MP x y =-u u u r ,(3,0)MN =-u u u u r ,(1,)NP x y =-u u u r. ……… 3分由6||MN MP NP =⋅u u u u r u u u r u u u r,得3(4)x --= ……… 4分∴222(816)4(21)4x x x x y -+=-++,故223412x y +=,即22143x y +=, ∴轨迹C 是焦点为(1,0)±、长轴长24a =的椭圆; ……… 7分 评分说明:只求出轨迹方程,没有说明曲线类型或交代不规范的扣1分. (2)椭圆C 上的点Q 到直线l 的距离的最值等于平行于直线l :2120x y +-=且与椭圆C 相切的直线1l 与直线l 的距离.设直线1l 的方程为20(12)x y m m ++=≠-. ……… 8分由22341220x y x y m ⎧+=⎨++=⎩,消去y 得2242120x mx m ++-= (*). 依题意得0∆=,即0)12(16422=--m m ,故216m =,解得4m =±.当4m =时,直线1l :240x y ++=,直线l 与1l 的距离5d ==当4m =-时,直线1l :240x y +-=,直线l 与1l 的距离d ==由于55<,故曲线C 上的点Q 到直线l 的距离的最小值为5.…12分 当4m =-时,方程(*)化为24840x x -+=,即2(1)0x -=,解得1x =.由1240y +-=,得32y =,故3(1,)2Q . ……… 13分 ∴曲线C 上的点3(1,)2Q 到直线l 的距离最小. ……… 14分18.(法一)(1)证明:作EF DH ⊥,垂足H ,连结BH ,GH , ∵平面AEFD ⊥平面EBCF ,交线EF ,DH ⊂平面EBCF , ∴⊥DH 平面EBCF ,又⊂EG 平面EBCF ,故DH EG ⊥, ∵12EH AD BC BG ===,//EF BC ,90ABC ∠=o . ∴四边形BGHE 为正方形,故BH EG ⊥.又BH 、DH ⊂平面DBH ,且BH DH H =I ,故⊥EG 平面DBH . 又⊂BD 平面DBH ,故BD EG ⊥.(2)解:∵AE EF ⊥,平面AEFD ⊥平面EBCF ,交线EF ,AE ⊂平面AEFD .∴AE ⊥面EBCF .又由(1)⊥DH 平面EBCF ,故//AE DH ,∴四边形AEHD 是矩形,DH AE =,故以F 、B 、C 、D 为顶点的三棱 锥D BCF - 的高DH AE x ==,又114(4)8222BCF S BC BE x x ∆==⨯⨯-=-⋅. ∴三棱锥D BCF -的体积()f x =13BFC S DH ∆⋅13BFC S AE ∆=⋅2128(82)333x x x x =-=-+2288(2)333x =--+≤.∴当2x =时,()f x 有最大值为83.(3)解:由(2)知当()f x 取得最大值时2AE =,故2BE =,由(2)知//DH AE ,故BDH ∠是异面直线AE 与BD 所成的角. 在Rt BEH ∆中222422BH BE EH AD =+=+=,由⊥DH 平面EBCF ,BH ⊂平面EBCF ,故DH BH ⊥ 在Rt BDH ∆中222823BD BH DH AE =+=+=,∴3cos 323DH BDH BD ∠===. ∴异面直线AE 与BD 所成的角的余弦值为33. 法二:(1)证明:∵平面AEFD ⊥平面EBCF ,交线EF ,AE ⊂平面AEFD ,EF AE ⊥,故AE ⊥平面EBCF ,又EF 、BE ⊂平面EBCF ,∴AE ⊥EF ,AE ⊥BE ,又BE ⊥EF ,取EB 、EF 、EA 分别为x 轴、y轴、z 轴,建立空间坐标系E xyz -,如图所示. 当2x =时,2AE =,2BE =,又2AD =,122BG BC ==. ∴(0,0,0)E ,(0,0,2)A ,(2,0,0)B ,(2,2,0)G ,(0,2,2)D .∴(2,2,2)BD =-u u u r ,(2,2,0)EG =u u u r,∴440BD EG ⋅=-+=u u u r u u u r.∴BD EG ⊥u u u r u u u r,即BD EG ⊥;(2)解:同法一;(3)解:异面直线AE 与BD 所成的角θ等于,AE BD <>u u u r u u u r或其补角.又(0,0,2)AE =-u u u r , 故3cos ,3|||2444|AE BD AE BD AE BD <>===-++⋅⋅u u u r u u u ru u u r u u u r u u u r u u u r ∴3cos 3θ=,故异面直线AE 与BD 所成的角的余弦值为33. 19.(1)证明:由2(1)n n S n a n n =--,得21()(1)(2)n n n S n S S n n n -=---≥.∴221(1)(1)n n n S n S n n ---=-,故111(2)1n n n nS S n n n -+-=≥-.…2分 ∴数列由1{}n n S n+是首项11221S a ==,公差1d =的等差数列; …… 4分 (2)解:由(1)得112(1)11n n S S n d n n n+=+-=+-=.……… 6分∴21n n S n =+; ………8分(3)由(2),得3n n nb S =1=321n n n +g 1=111(1)1n n n n =-++.…… 10分∴数列{}n b 的前n 项和1211111111122311n n n T b b b b n n n n -=++++=-+-++-+--+L L …12分 1111n n n =-=++. ……… 14分 20.解:(1)由二次函数()f x 满足(0)(1)0f f ==.设()(1)(0)f x ax x a =-≠,则221()()24af x ax ax a x =-=--. ……………… 2分 又()f x 的最小值是14-,故144a -=-.解得1a =.∴2()f x x x =-; ………………4分(2)依题意,由22x x t t -=-,得x t =,或1x t =-.(1t -p t)……6分由定积分的几何意义知3232222002()[()()]()|3232t tx x t t S t x x t t dx t x tx =---=--+=-+⎰…… 8分(3)∵()f x 的最小值为14-,故14m -,14n ≥-. …… 10分∴12m n +-≥-,故12m n ++. ……… 12分∵1()02m n +,102m n ++≥≥, ……… 13分∴11()()22m n m n +++≥=,∴211()()24m n m n +++≥. ……… 14分。

北京市西城区2019~2020学年度第一学期期末考试高三数学试题(含答案解析)

北京市西城区2019~2020学年度第一学期期末考试高三数学试题(含答案解析)

北京市西城区2019 — 2020学年度第一学期期末试卷高三数学本试卷共5页.共150分。

考试时长120分钟。

考生务必将答案答在答题卡上•在试 卷上作答无效。

第I 卷(选择题共40分)-S 选择题:本大题共8小题■每小题5分.共40分•在每小题列出的四个选项中,选出 符合题目要求的一项.1. 设集合Λ = {x ∖r<a}. B = {—3,0∙l ∙5}・若集合A∩B 有且仅有2个元索.则实数α 的取值范围为(A) (-3,+∞)(B) (0> 1](C) [l ∙+α□)2. 若复数Z = 注.则在复平面内N 对应的点位于I-TI(A)第一象限 (B)第二象限(C)第三象限3. 在厶ABC 中.若 α=6, A=60o, 3 = 75°,则 C =(A) 4(B) 2√2(C) 2√3(D) 2^4. 设且兀y≠0,则下列不等式中一定成立的是(A)丄>丄(B)InlJrl >ln∣y 丨(C) 2-工<2-,CD) j ∙2>^25. 已知直线T Jry Jr2=0与圆τ ÷j∕2+2jc~2y jra = 0有公共点,则实数"的取值范围为(A) ( — 8. θ](B) [θ∙+oo)(C) [0, 2)(D) (—8, 2)2020. I(D) Eb 5)(D)第四象限6・设三个向b. c互不共线•则∙+b+c=(Γ是^以Iah ∖b∖, ICl为边长的三角形存在"的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件7.紫砂壶是中国特冇的手工制造陶土工艺品,其制作始于明朝正徳年间.紫砂壶的壶型众多•经典的有西施壶.掇球壶、石瓢壶.潘壶等•其中.石瓢壶的壶体可以近似看成一个圆台(即圆锥用平行于底面的平面截去一个锥体得到的)・下图给出了一个石瓢壶的相关数据(单位cm),那么该壶的容量约为(A)IOO cm5(B)200 cm3(C)300 cm3(D)400 cn√&已知函数∕Q)=√TTΓ+4 若存在区间O M].使得函数/Q)在区间DZ 上的值域为[α + l,6 + l],则实数〃的取值范围为(A) (-l,+oo) (B) (一 1. 0] (C) (一 +,+8) (D)( —斗,0]4 4第JI 卷(非选择题共110分)二、填空题:本大题共6小题■每小题5分,共3。

2020-2021学年山东省济宁市高三(上)期末数学试卷 (解析版)

2020-2021学年山东省济宁市高三(上)期末数学试卷 (解析版)

2020-2021学年山东省济宁市高三(上)期末数学试卷一、选择题(共8小题).1.设集合A={x|x2﹣x﹣2≤0},B={x|y=ln(x﹣1)},则A∩B=()A.(1,2]B.(0,2]C.(2,+∞)D.[2,+∞)2.若复数(i为虚数单位)为纯虚数,则实数a的值为()A.﹣B.﹣C.D.3.若tanα=2,则=()A.B.C.D.14.“a=1”是“直线ax+(2a﹣1)y+3=0与直线(a﹣2)x+ay﹣1=0互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.2020年11月,中国国际进口博览会在上海举行,本次进博会设置了“云采访”区域,通过视频连线,帮助中外记者采访因疫情影响无法来沪参加进博会的跨国企业CEO或海外负责人.某新闻机构安排4名记者和3名摄影师对本次进博会进行采访,其中2名记者和1名摄影师负责“云采访”区域的采访,另外2名记者和2名摄影师分两组(每组记者和摄影师各1人),分别负责“汽车展区”和“技术装备展区”的现场采访.如果所有记者、摄影师都能承担三个采访区域的相应工作,则所有不同的安排方案有()A.36种B.48种C.72种D.144种6.函数f(x)=x﹣ln|e2x﹣1|的部分图象可能是()A.B.C.D.7.已知抛物线C:y2=2px(p>0)的焦点为F,过F作斜率为的直线l交抛物线C于A、B两点,若线段AB中点的纵坐标为,则抛物线C的方程是()A.y2=3x B.y2=4x C.y2=6x D.y2=8x8.已知函数f(x)(x∈R)的导函数是f′(x),且满足∀x∈R,f(1+x)=﹣f(1﹣x),当x>1时,f(x)+ln(x﹣1)•f′(x)>0,则使得(x﹣2)f(x)>0成立的x 的取值范围是()A.(0,1)⋃(2,+∞)B.(﹣∞,﹣2)⋃(2,+∞)C.(﹣2,﹣1)⋃(1,2)D.(﹣∞,1)⋃(2,+∞)二、选择题(共4小题).9.已知a,b,c,d均为实数,下列说法正确的是()A.若a>b>0,则>B.若a>b,c>d,则a﹣d>b﹣cC.若a>b,c>d,则ac>bd D.若a+b=1,则4a+4b≥410.直线l过点P(1,2)且与直线x+ay﹣3=0平行,若直线l被圆x2+y2=4截得的弦长为2,则实数a的值可以是()A.0B.C.D.﹣11.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<),其图象相邻两条对称轴之间的距离为,且直线x=﹣是其中一条对称轴,则下列结论正确的是()A.函数f(x)的最小正周期为B.函数f(x)在区间[﹣,]上单调递增C.点(﹣,0)是函数f(x)图象的一个对称中心D.将函数f(x)图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再把得到的图象向左平移个单位长度,可得到g(x)=sin2x的图象12.如图,在菱形ABCD中,AB=2,∠ABC=60°,M为BC的中点,将△ABM沿直线AM翻折成△AB1M,连接B1C和B1D,N为B1D的中点,则在翻折过程中,下列说法中正确的是()A.AM⊥B1CB.CN的长为定值C.AB1与CN的夹角为D.当三棱锥B1﹣AMD的体积最大时,三棱锥B1﹣AMD的外接球的表面积是8π三、填空题:本题共4小题,每小题5分,共20分。

湖北省荆州中学宜昌一中等“荆荆襄宜四地七校2020届高三上学期期末考试 数学(理)(含答案)

湖北省荆州中学宜昌一中等“荆荆襄宜四地七校2020届高三上学期期末考试 数学(理)(含答案)

“荆、荆、襄、宜四地七校考试联盟”2020届高三元月联考理 科 数 学 试 题本试卷共2页,共23题(含选考题)满分150分,考试用时120分钟★ 祝考试顺利 ★注意事项:1.答题前,考生务必将自己的姓名、班级、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用黑色中性笔将答案直接答在答题卡上对应的答题区域内.答在试题卷、草稿纸上无效.4.考生必须保持答题卡的整洁.考试结束后,请将答题卡上交.一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足(1)z i i -=,则z 在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.已知全集U R =,集合2{230}A x x x =--≤|,集合2{log 1}B x x =≤|,则()U A B =I ð A .(2,3] B .φ C .[1,0)(2,3]-U D . [1,0](2,3]-U 3.已知0.20.8512,(),2log 22a b c -===,则A .c a b <<B .c b a <<C .a b c << D. b a c <<4.据有关文献记载:我国古代一座9层塔共挂了126盏灯,且相邻两层中的下一层灯数比上一层灯数都多n (n 为常数)盏,底层的灯数是顶层的13倍,则塔的底层共有灯( )盏. A .2 B .3 C .26 D .27 5.若直线()+2=0>0>0ax by a b +、截得圆()()2221=1x y +++的弦长为2,则12a b+的最小值为 A .4 B .6 C .8 D .106.我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.如函数()21cos 21x xf x x +=-的图象大致是7.函数sin 3y x x =的图像可由函数sin 3y x x =+的图像至少向右平移______个单位长度得到.A .6π B .3π C .2πD .23π8.若向量a r 与b r 的夹角为60o ,(2,0)a =r,223a b +=r r ,则b r =A. 3 B .1 C .4 D .3 9.如图,AB 和CD 是圆O 两条互相垂直的直径,分别以OA ,OB ,OC ,OD为直径作四个圆,在圆O 内随机取一点,则此点取自阴影部分的概率是 A .21π- B .112π-C .2πD .1π 10.设函数()f x 的定义域为R ,满足2(1)()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =--.若对任意[,)x m ∈+∞,都有8()9f x ≤,则m 的取值范围是 A .7[,)6-+∞ B .5[,)3-+∞ C .5[,)4-+∞ D .4[,)3-+∞11.SC 是球O 的直径,A 、B 是该球面上两点,3AB =,30ASC BSC ∠=∠=o ,棱锥S ABC-的体积为3,则球O 的表面积为 A.4π B.8π C.16π D.32π12.关于函数()2ln f x x x=+,下列说法正确的是(1)2x =是()f x 的极小值点;(2)函数()y f x x =-有且只有1个零点; (3)1()2f x x >恒成立; (4)设函数2()()4g x xf x x =-++,若存在区间1[,][,)2a b ⊂+∞,使()g x 在[,]a b 上的值域是[(2),(2)]k a k b ++,则92ln 2(1,]10k +∈. A .(1) (2) B .(2)(4) C .(1) (2) (4) D .(1)(2)(3)(4) 二.填空题:本大题共4小题,每小题5分,共20分13.已知曲线2sin xy e x =-,则其在点(0,2)处的切线方程是 ▲ .14.已知n S 是等比数列{}n a 的前n 项和,396,,S S S 成等差数列,362a a +=,则9a = ▲ . 15.根据党中央关于“精准”脱贫的要求,我市某农业经济部门派4位专家各自在周一、周二两天中任选一天对某县进行调研活动,则周一、周二都有专家参加调研活动的概率为 ▲ .16.在平面直角坐标系xOy 中,双曲线22221(0,0)y x a b a b -=>>的上支与焦点为F 的抛物线22(0)y px p =>交于,A B 两点.若4AF BF OF +=,则该双曲线的渐近线方程为 ▲ .A B CDO三.解答题:共70分。

2020-2021学年北京市朝阳区高三(上)期末数学试卷 (解析版)

2020-2021学年北京市朝阳区高三(上)期末数学试卷 (解析版)

2020-2021学年北京市朝阳区高三(上)期末数学试卷一、选择题(共10小题).1.已知全集U={﹣1,0,1,2,3,4},集合A={0,1,2},则∁U A=()A.{3,4}B.{﹣1,3,4}C.{0,1,2}D.{﹣1,4}2.已知向量=(﹣1,2),=(x,4),且⊥,则||=()A.B.C.D.83.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为()A.B.C.3D.44.已知等比数列{a n}的各项均为正数,且a3=9,则log3a1+log3a2+log3a3+log3a4+log3a5=()A.B.C.10D.155.设抛物线C:y2=4x的焦点为F,准线l与x轴的交点为M,P是C上一点.若|PF|=4,则|PM|=()A.B.5C.D.6.已知函数,给出下列四个结论:①函数f(x)是周期为π的偶函数;②函数f(x)在区间上单调递减;③函数f(x)在区间上的最小值为﹣1;④将函数f(x)的图象向右平移个单位长度后,所得图象与g(x)=sin2x的图象重合.其中,所有正确结论的序号是()A.①③B.②③C.①④D.②④7.已知定义在R上的奇函数f(x)满足f(x+2)=f(x),且f(1)=0,当x∈(0,1)时,f(x)=2x+x.设a=f(5),,,则a,b,c的大小关系为()A.b>a>c B.a>c>b C.c>a>b D.b>c>a8.已知圆C:x2+y2=4,直线l:x+y+t=0,则“l与C相交”是“|t|<2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.已知双曲线(a>0,b>0)的左焦点为F,右顶点为A,过F作C的一条渐近线的垂线FD,D为垂足.若|DF|=|DA|,则C的离心率为()A.B.2C.D.10.在平面直角坐标系xOy中,已知直线y=mx(m>0)与曲线y=x3从左至右依次交于A,B,C三点.若直线l:kx﹣y+3=0(k∈R)上存在点P满足||=2,则实数k的取值范围是()A.(﹣2,2)B.C.(﹣∞,﹣2)∪(2,+∞)D.二、填空题(共5小题).11.设a∈R.若复数z=i(1+ai)为纯虚数,则a=,z2=.12.在(x2+)6的展开式中,常数项是.(用数字作答)13.在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.根据《周髀算经》记载,西周数学家商高就发现勾股定理的一个特例:若勾为三,股为四,则弦为五.一般地,像(3,4,5)这样能够成为一个直角三角形三条边长的正整数组称为勾股数组.若从(3,4,5),(5,12,13),(6,8,10),(7,24,25),(8,15,17),(9,12,15),(9,40,41),(10,24,26),(11,60,61),(12,16,20)这些勾股数组中随机抽取1组,则被抽出的勾股数组中的三个数恰好构成等差数列的概率为.14.若函数f(x)=sin(x+φ)+cos x为偶函数,则常数φ的一个取值为.15.设函数y=f(x)的定义域为D,若对任意x1∈D,存在x2∈D,使得f(x1)•f(x2)=1,则称函数f(x)具有性质M,给出下列四个结论:①函数y=x3﹣x不具有性质M;②函数具有性质M;③若函数y=log8(x+2),x∈[0,t]具有性质M,则t=510;④若函数具有性质M,则a=5.其中,正确结论的序号是.三、解答题(共6小题).16.在△ABC中,,c=3,且b≠c,再从条件①、条件②中选择一个作为已知,求:(Ⅰ)b的值;(Ⅱ)△ABC的面积.条件①:sin B=2sin A;条件②:sin A+sin B=2sin C.17.某公司为了解用户对其产品的满意程度,从A地区随机抽取了400名用户,从B地区随机抽取了100名用户,请用户根据满意程度对该公司产品评分.该公司将收集到的数据按照[20,40),[40,60),[60,80),[80,100]分组,绘制成评分频率分布直方图如图:(Ⅰ)从A地区抽取的400名用户中随机选取一名,求这名用户对该公司产品的评分不低于60分的概率;(Ⅱ)从B地区抽取的100名用户中随机选取两名,记这两名用户的评分不低于80分的个数为X,求X的分布列和数学期望;(Ⅲ)根据频率分布直方图,假设同组中的每个数据用该组区间的中点值代替,估计A地区抽取的400名用户对该公司产品的评分的平均值为μ1,B地区抽取的100名用户对该公司产品的评分的平均值为μ2,以及A,B两个地区抽取的500名用户对该公司产品的评分的平均值为μ0,试比较μ0和的大小.(结论不要求证明)18.如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,,E是线段AD的中点,连结BE.(Ⅰ)求证:BE⊥PA;(Ⅱ)求二面角A﹣PD﹣C的余弦值;(Ⅲ)在线段PB上是否存在点F,使得EF∥平面PCD?若存在,求出的值;若不存在,说明理由.19.已知椭圆(a>b>0)过点,且C的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)过点P(1,0)的直线l交椭圆C于A,B两点,求|PA|•|PB|的取值范围.20.已知函数f(x)=lnx﹣(a+2)x+ax2(a∈R).(Ⅰ)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)若f(x)恰有两个零点,求实数a的取值范围.21.已知无穷数列{a n}满足:a1=0,a n+1=a n2+c(n∈N*,c∈R).对任意正整数n≥2,记M n={c|对任意i∈{1,2,3,…n},|a i|≤2},M={c|对任意i∈N*,|a i|≤2}.(Ⅰ)写出M2,M3;(Ⅱ)当c>时,求证:数列{a n}是递增数列,且存在正整数k,使得c∉M k;(Ⅲ)求集合M.参考答案一、选择题(共10小题).1.已知全集U={﹣1,0,1,2,3,4},集合A={0,1,2},则∁U A=()A.{3,4}B.{﹣1,3,4}C.{0,1,2}D.{﹣1,4}解:∵U={﹣1,0,1,2,3,4},A={0,1,2},∴∁U A={﹣1,3,4}.故选:B.2.已知向量=(﹣1,2),=(x,4),且⊥,则||=()A.B.C.D.8解:根据题意,向量=(﹣1,2),=(x,4),若⊥,则•=﹣x+8=0,则x=8,故=(8,4),则||==4,故选:C.3.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为()A.B.C.3D.4解:由三视图还原原几何体如图,该几何体为三棱锥P﹣ABC,底面三角形ABC是等腰直角三角形,AB=BC=2,AB⊥BC,三棱锥的高为PO=2.∴该三棱锥的体积为V=.故选:A.4.已知等比数列{a n}的各项均为正数,且a3=9,则log3a1+log3a2+log3a3+log3a4+log3a5=()A.B.C.10D.15解:log3a1+log3a2+log3a3+log3a4+log3a5=log3(a1a2a3a4a5)=log3a35=log395=10,故选:C.5.设抛物线C:y2=4x的焦点为F,准线l与x轴的交点为M,P是C上一点.若|PF|=4,则|PM|=()A.B.5C.D.解:∵P是C上一点.且|PF|=4,∴PD=4=x+1⇒x P=3代入y2=4x得y P2=12,∴PM===2,故选:C.6.已知函数,给出下列四个结论:①函数f(x)是周期为π的偶函数;②函数f(x)在区间上单调递减;③函数f(x)在区间上的最小值为﹣1;④将函数f(x)的图象向右平移个单位长度后,所得图象与g(x)=sin2x的图象重合.其中,所有正确结论的序号是()A.①③B.②③C.①④D.②④解:由f(﹣x)=cos(﹣2x﹣)=cos(2x+)≠f(x),所以f(x)不是偶函数,故①错误;因x,所以2x﹣∈[0,π],而余弦函数在[0,π]上单调递减,故②正确;因x,所以2x﹣∈[﹣,],所以f(x)的最小值为﹣,故③错误;将函数f(x)的图象向右平移个单位长度后,y=cos[2(x﹣)﹣]=cos(﹣2x)=sin2x,故④正确;故选:D.7.已知定义在R上的奇函数f(x)满足f(x+2)=f(x),且f(1)=0,当x∈(0,1)时,f(x)=2x+x.设a=f(5),,,则a,b,c的大小关系为()A.b>a>c B.a>c>b C.c>a>b D.b>c>a解:因为当x∈(0,1)时,f(x)=2x+x,又f(x+2)=f(x),且f(x)为奇函数,所以f(5)=f(3)=f(1)=0,即a=0,=,故b>0,=,故c<0,所以b>a>c.故选:A.8.已知圆C:x2+y2=4,直线l:x+y+t=0,则“l与C相交”是“|t|<2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解:圆心C(0,0),半径为2,则圆心到直线l的距离为,因为l与C相交,则有d<r,所以,即,所以“l与C相交”是“|t|<2”的必要而不充分条件.故选:B.9.已知双曲线(a>0,b>0)的左焦点为F,右顶点为A,过F作C的一条渐近线的垂线FD,D为垂足.若|DF|=|DA|,则C的离心率为()A.B.2C.D.解:过点D作DC⊥AF于点C,∵|DF|=|DA|,∴点C为AF的中点,∴|CF|=|AF|=,而点F(﹣c,0)到渐近线y=﹣x的距离为|DF|==b,∴cos∠AFD==,即=,∴c(a+c)=2b2=2(c2﹣a2),即c2﹣ac﹣2a2=0,∴c=2a或c=﹣a(舍),∴离心率e==2.故选:B.10.在平面直角坐标系xOy中,已知直线y=mx(m>0)与曲线y=x3从左至右依次交于A,B,C三点.若直线l:kx﹣y+3=0(k∈R)上存在点P满足||=2,则实数k的取值范围是()A.(﹣2,2)B.C.(﹣∞,﹣2)∪(2,+∞)D.解:∵f(x)=x3和y=mx都是奇函数,∴B为原点,且A,C两点关于原点对称.故原点O为线段AC的中点.∴|+|=|2|=2||=2,∴|PB|=1.即P为单位圆x2+y2=1上的点.∴直线l:y=kx+3与单位圆有交点,∴≤1,解得k≥2或k≤﹣2.故选:D.二、填空题共5小题,每小题5分,共25分。

山东省济南市2020-2021学年高三上学期期末考试数学试题(含解析)

山东省济南市2020-2021学年高三上学期期末考试数学试题(含解析)

山东省济南市2021届高三第一学期期末检测数学试卷一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.设集合{}2A |60x x x =−−≤,{}B |10x x =−<,则AB =A .{}|3x x ≤B .{}|31x x −≤<C .{}|21x x −≤<−D .{}|21x x −≤< 2.已知复数i1i z =+(其中i 为虚数单位),则z 的共轭复数为 A .11i 22−+ B .11i 22−− C .11i 22+ D .11i 22−3.已知直线l 过点(2,2),则“直线l 的方程为y =2”是“直线l 与圆224x y +=相切”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.十二生肖是中国特有的文化符号,有着丰富的内涵,它们是成对出现的,分别为鼠和牛、虎和兔、龙和蛇、马和羊、猴和鸡、狗和猪六对.每对生肖相辅相成,构成一种完美人格.现有十二生肖的吉祥物各一个,按照上面的配对分成六份.甲、乙、丙三位同学依次选一份作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢.如果甲、乙、丙三位同学选取的礼物中均包含自己喜欢的生肖,则不同的选法种数共有A .12种B .16种C .20种D .24种5.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,CD 上,且满足BEEC =,CD 2CF =,则AE AF +=AB .3C .D .46.把物体放在空气中冷却,如果物体原来的温度是1C θ︒,空气的温度是0C θ︒,那么min t后物体的温度θ(单位:C ︒)满足公式010()e kt θθθθ−=+−(其中k 为常数).现有52C ︒的物体放在12C ︒的空气中冷却,2min 后物体的温度是32C ︒.则再经过4min 该物体的温度可冷却到A .12C ︒B .14.5C ︒ C .17C ︒D .22C ︒7.已知双曲线C :22221(00)x y a b a b−=>>,的左、右顶点分别为A ,B ,其中一条渐近线与以线段AB 为直径的圆在第一象限内的交点为P ,另一条渐近线与直线PA 垂直,则C 的离心率为A .3B .2C D8.已知函数()(1)e x f x a x x =+−,若存在唯一的正整数0x ,使得0()0f x <,则实数a 的取值范围是 A .[12e −,334e ) B .[334e ,223e ) C .[223e ,12e ) D .[12e ,12) 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.为落实《山东省学生体质健康促进条例》的要求,促进学生增强体质,健全人格,锤炼意志,某学校随机抽取了甲、乙两个班级,对两个班级某一周内每天的人均体育锻炼时间(单位:分钟)进行了调研.根据统计数据制成折线图如下:下列说法正确的是A .班级乙该周每天的人均体育锻炼时间的众数为30B .班级甲该周每天的人均体育锻炼时间的中位数为72C .班级甲该周每天的人均体育锻炼时间的极差比班级乙的小D .班级甲该周每天的人均体育锻炼时间的平均值比班级乙的大10.已知函数12()sin(2)cos(2)f x a x b x ϕϕ=+++(()f x 不恒为0),若()06f π=,则下列说法一定正确的是A .()12f x π−为奇函数 B .()f x 的最小正周期为πC .()f x 在区间[12π−,125π]上单调递增 D .()f x 在区间[0,2021π]上有4042个零点 11.如图,在正四棱柱ABCD—A 1B 1C 1D 1中,AA 1=2AB =2,点P 为线段AD 1上一动点,则下列说法正确的是 A .直线PB 1∥平面BC 1DB .三棱锥P—BC 1D 的体积为13C .三棱锥D 1—BC 1D 外接球的表面积为32π D .直线PB 1与平面BCC 1B 112.已知红箱内有5个红球、3个白球,白箱内有3个红球、5个白 第11题球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,依次类推,第k +1次从与第k 次取出的球颜色相同的箱子内取出一球,然后再放回去.记第n 次取出的球是红球的概率为n P ,则下列说法正确的是A .21732P =B .117232n n P P +=+C .211221()2n n n n n n P P P P P P ++++−=−+D .对任意的i ,j N *∈且1i j n ≤<≤,11111()()(14)(14)22180n n i ji j nP P −−≤<≤−−=−−∑ 三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知1sin()63απ+=,则5sin()6απ−的值为 . 14.若实数x ,y 满足lg lg lg()x y x y +=+,则xy 的最小值为 . 15.已知奇函数()f x 在(0,+∞ )上单调递减,且(4)0f =,则不等式(1)0xf x +>的解集为 .16.已知直线l 与抛物线C :28y x =相切于点P ,且与C 的准线相交于点T ,F 为C 的焦点,连接PF 交C 于另一点Q ,则△PTQ 面积的最小值为 ;若|TF |5=,则|PQ |的值为 .(本小题第一空2分,第二空3分)四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)在平面四边形ABCD 中,AB =2,BC =5,∠ABC =120°,AD,∠ADC =2∠ACD ,求△ACD 的面积. 18.(本小题满分12分)已知数列{}n a 的前n 项和2n S n =. (1)求数列{}n a 的通项公式; (2)在①218()n n n nb a a +=⋅,②2n n n b a =⋅,③(1)n n n b S =−⋅这三个条件中任选一个,补充在下面的问题中,并求解该问题.若 ,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(本小题满分12分)如图,在三棱柱ABC—A 1B 1C 1中,AB =AC =2,D 为BC 的中点,平面BB 1C 1C ⊥平面ABC ,设直线l 为平面AC 1D 与平面A 1B 1C 1的交线.(1)证明:l ⊥平面BB 1C 1C ;(2)已知四边形BB 1C 1C 为边长为2的菱形,且∠B 1BC =60°,求二面角D—AC 1—C 的余弦值.某县在实施脱贫工作中因地制宜,着力发展枣树种植项目.该县种植的枣树在2020年获得大丰收,依据扶贫政策,所有红枣由经销商统一收购.为了更好的实现效益,县扶贫办从今年收获的红枣中随机选取100千克,进行质量检测,根据检测结果制成如图所示的频率分布直方图.右表是红枣的分级标准,其中一级品、二级品统称为优质品.经销商与某农户签订了红枣收购协议,规定如下:从一箱红枣中任取4个进行检测,若4个均为优质品,则该箱红枣定为A 类;若4个中仅有3个优质品,则再从该箱中任意取出1个,若这一个为优质品,则该箱红枣也定为A 类;若4个中至多有一个优质品,则该箱红枣定为C 类;其它情况均定为B 类.已知每箱红枣重量为10千克,A 类、B 类、C 类的红枣价格分别为每千克20元、16元、12元.现有两种装箱方案:方案一:将红枣采用随机混装的方式装箱;方案二:将红枣按一、二、三、四等级分别装箱,每箱的分拣成本为1元. 以频率代替概率解决下面的问题.(1)如果该农户采用方案一装箱,求一箱红枣被定为A 类的概率; (2)根据所学知识判断,该农户采用哪种方案装箱更合适,并说明理由.21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>(1)求椭圆C 的标准方程;(2)若折线0)y k x =≠与C 相交于A ,B 两点(点A 在直线x =的右侧),设直线OA ,OB 的斜率分别为1k ,2k ,且212k k −=,求k 的值.22.(本小题满分12分)已知函数()ln(1)f x a x x =−+. (1)讨论()f x 的单调性; (2)若1()e 1x f x x −≥−+对任意的x ∈(0,+∞)恒成立,求实数a 的取值范围.山东省济南市2021届高三第一学期期末检测数学试卷一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.设集合{}2A |60x x x =−−≤,{}B |10x x =−<,则AB =A .{}|3x x ≤B .{}|31x x −≤<C .{}|21x x −≤<−D .{}|21x x −≤< 答案:D解析:{}2A |60x x x =−−≤=[﹣2,3],{}B |10x x =−<=(−∞,1),故AB =[﹣2,1).选D .2.已知复数i1i z =+(其中i 为虚数单位),则z 的共轭复数为 A .11i 22−+ B .11i 22−− C .11i 22+ D .11i 22−答案:D解析:i i(1i)1i1i (1i)(1i)22z −===+++−,则1i 22z =−.选D . 3.已知直线l 过点(2,2),则“直线l 的方程为y =2”是“直线l 与圆224x y +=相切”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A解析:“直线l 的方程为y =2”⇒“直线l 与圆224x y +=相切”, “直线l 与圆224x y += 相切”“直线l 的方程为y =2”,故选A .4.十二生肖是中国特有的文化符号,有着丰富的内涵,它们是成对出现的,分别为鼠和牛、虎和兔、龙和蛇、马和羊、猴和鸡、狗和猪六对.每对生肖相辅相成,构成一种完美人格.现有十二生肖的吉祥物各一个,按照上面的配对分成六份.甲、乙、丙三位同学依次选一份作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢.如果甲、乙、丙三位同学选取的礼物中均包含自己喜欢的生肖,则不同的选法种数共有A .12种B .16种C .20种D .24种答案:B解析:甲若选牛,则有1124C C 种;甲若选马,则有1124C C 种.故共有16种,选B .5.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,CD 上,且满足BEEC =,CD 2CF =,则AE AF +=AB .3 C.D .4答案:B解析:由题意知△AEF 的等边三角形,故AE AF +=3,选B .6.把物体放在空气中冷却,如果物体原来的温度是1C θ︒,空气的温度是0C θ︒,那么min t后物体的温度θ(单位:C ︒)满足公式010()e kt θθθθ−=+−(其中k 为常数).现有52C ︒的物体放在12C ︒的空气中冷却,2min 后物体的温度是32C ︒.则再经过4min 该物体的温度可冷却到A .12C ︒B .14.5C ︒ C .17C ︒D .22C ︒ 答案:C解析:221321240e e 2k k −−=+⇒=,6311240e 1240()172k θ−=+=+⨯=,故选C . 7.已知双曲线C :22221(00)x y a b a b−=>>,的左、右顶点分别为A ,B ,其中一条渐近线与以线段AB 为直径的圆在第一象限内的交点为P ,另一条渐近线与直线PA 垂直,则C 的离心率为A .3B .2CD 答案:B解析:将直线AP 与斜率为正数的渐近线方程联立:()a y x a bb y x a ⎧=+⎪⎪⎨⎪=⎪⎩,解得P(322a b a −,222a b b a −),因为OP =a ,则322222222()()a a b a b a b a+=−−,化简得2222222334a b a c a c a =⇒=−⇒=2e ⇒=,选B .8.已知函数()(1)e x f x a x x =+−,若存在唯一的正整数0x ,使得0()0f x <,则实数a 的取值范围是 A .[12e −,334e ) B .[334e ,223e ) C .[223e ,12e ) D .[12e ,12) 答案:C解析:0()0f x <,参变分离得:000(1)e x x a x <+,令000()(1)(1)e x x g x x x =≥+,2000201()0(1)e x x x g x x +−'=−<+,所以0()g x 在[1,+∞)且0x Z ∈单调递增, 求得1(1)2e g =,22(2)3eg =,故要使存在唯一的正整数0x ,使得0()0f x <, 则223e ≤a <12e,选C . 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.为落实《山东省学生体质健康促进条例》的要求,促进学生增强体质,健全人格,锤炼意志,某学校随机抽取了甲、乙两个班级,对两个班级某一周内每天的人均体育锻炼时间(单位:分钟)进行了调研.根据统计数据制成折线图如下:下列说法正确的是A .班级乙该周每天的人均体育锻炼时间的众数为30B .班级甲该周每天的人均体育锻炼时间的中位数为72C .班级甲该周每天的人均体育锻炼时间的极差比班级乙的小D .班级甲该周每天的人均体育锻炼时间的平均值比班级乙的大 答案:AC解析:班级甲该周每天的人均体育锻炼时间的中位数为65,故B 错误;班级甲该周每天的人均体育锻炼时间的平均值比班级乙的小,故D 错误.综上选AC .10.已知函数12()sin(2)cos(2)f x a x b x ϕϕ=+++(()f x 不恒为0),若()06f π=,则下列说法一定正确的是 A .()12f x π−为奇函数 B .()f x 的最小正周期为π C .()f x 在区间[12π−,125π]上单调递增 D .()f x 在区间[0,2021π]上有4042个零点答案:BD解析:()12f x π−为偶函数,故A 错误;()f x 在区间[12π−,125π]上单调,但不一定是单调递增,故C 错误.综上选BD .11.如图,在正四棱柱ABCD—A 1B 1C 1D 1中,AA 1=2AB =2,点P 为线段AD 1上一动点,则下列说法正确的是A .直线PB 1∥平面BC 1DB .三棱锥P—BC 1D 的体积为13C .三棱锥D 1—BC 1D 外接球的表面积为32πD .直线PB 1与平面BCC 1B 1答案:ABD解析:因为平面AB 1D 1∥平面BC 1D ,PB 1⊂平面AB 1D 1,所以直线PB 1∥平面BC 1D ,A 正确;V P—BC1D =V A—BC1D =V C1—ABD =111112=323⨯⨯⨯⨯,故B 正确;三棱锥D 1—BC 1D=S 球=246ππ=,故C 错误;PB 1min 点P 到平面BCC 1B 1的距离为1,所以直线PB 1与平面BCC 1B 1所成角的正弦值的最,故D 正确.综上选ABD .12.已知红箱内有5个红球、3个白球,白箱内有3个红球、5个白球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,依次类推,第k +1次从与第k 次取出的球颜色相同的箱子内取出一球,然后再放回去.记第n 次取出的球是红球的概率为n P ,则下列说法正确的是A .21732P =B .117232n n P P +=+C .211221()2n n n n n n P P P P P P ++++−=−+D .对任意的i ,j N *∈且1i j n ≤<≤,11111()()(14)(14)22180n n i ji j nP P −−≤<≤−−=−−∑ 答案:ACD解析:第n 此取出球是红球的概率为n P ,则白球概率为(1)n P −,对于第1n +次,取出红球有两种情况. ①从红箱取出1(1)58n n P P +=⋅(条件概率), ②从白箱取出2(1)3(1)8n nP P +=−⋅, 对应121(1)(1)3184n n n n P P P P +++=+=+(转化为数列问题), 所以1111()242n n P P +−=−, 令12n n a P =−,则数列{n a 为等比数列,公比为14,因为158P =,所以118a =, 故2(21)2n n a −+=即对应(21)122n n P −+=+, 所以21732P =,故选项A 正确; [2(1)1](21)231111112[2]222224n n n n n P P −++−+−−+−=+−⨯+=−,故117232n n P P +=+不成立,故选项B 错误; 经验证可得,211221()2n n n n n n P P P P P P ++++−=−+,故选项C 正确;1(21)(21)11111()()2222n ni j i j i j n i j i P P −−+−+<==+−−=⋅∑∑∑ 1(21)(23)(23)142[22]3n i i n i −−+−+−+==⋅−∑11(44)(23)(21)114[222]3n n i n i i i −−−+−+−+===−∑∑ 844(23)3214164[(22)2(22)]3153n n n −−−−+−−−=−−⋅− 424141122218045369n n n −−−=−⋅−⋅+⋅ 421(14252)180n n −−=+⋅−⋅ 221(142)(12)180n n −−=−⋅−11(14)(14)180n n −−=−−,故D 正确. 三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知1sin()63απ+=,则5sin()6απ−的值为 . 答案:13解析:51sin()sin[()]sin()6663ππαπααπ−=−+=+=. 14.若实数x ,y 满足lg lg lg()x y x y +=+,则xy 的最小值为 .答案:4解析:11lg lg lg()1x y x y xy x y x y+=+⇒=+⇒+=, 11()()24y xxy x y x y x y x y=+=++=++≥,当且仅当x =y =2时取“=”.15.已知奇函数()f x 在(0,+∞ )上单调递减,且(4)0f =,则不等式(1)0xf x +>的解集为 .答案:(0,3)(﹣5,﹣1)解析:0(1)0(1)0x xf x f x >⎧+>⇒⎨+>⎩或003(1)0x x f x <⎧⇒<<⎨+<⎩或51x −<<−,故原不等式的解集为(0,3)(﹣5,﹣1).16.已知直线l 与抛物线C :28y x =相切于点P ,且与C 的准线相交于点T ,F 为C 的焦点,连接PF 交C 于另一点Q ,则△PTQ 面积的最小值为 ;若|TF |5=,则|PQ |的值为 .(本小题第一空2分,第二空3分)答案:16,252解析:当PQ 为抛物线通径时△PTQ 的面积最小,为16;当TF =5时,可得线段PQ 中点的纵坐标为3或﹣3,故PQ 的斜率为43或43−,故PQ =2228254sin 2()5p α==. 四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在平面四边形ABCD 中,AB =2,BC =5,∠ABC =120°,AD,∠ADC =2∠ACD ,求△ACD 的面积.解:在△ABC 中,由余弦定理可得:所以在△ACD 中,由正弦定理可得:,即所以所以 因为,所以所以所以18.(本小题满分12分)已知数列{}n a 的前n 项和2n S n =. (1)求数列{}n a 的通项公式; (2)在①218()n n n nb a a +=⋅,②2n n n b a =⋅,③(1)n n n b S =−⋅这三个条件中任选一个,补充在下面的问题中,并求解该问题.若 ,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 解:(1)因为所以所以当时,适合上式,所以(2)若选①: 因为所以若选②:因为所以则两式相减可得:所以若选③:当n为偶数时,当n为奇数时,综上:19.(本小题满分12分)如图,在三棱柱ABC—A1B1C1中,AB=AC=2,D为BC的中点,平面BB1C1C⊥平面ABC,设直线l为平面AC1D与平面A1B1C1的交线.(1)证明:l⊥平面BB1C1C;(2)已知四边形BB1C1C为边长为2的菱形,且∠B1BC=60°,求二面角D—AC1—C的余弦值.解:(1)证明:因为AB=AC=2,D为BC的中点,所以AD⊥BC,又因为平面BB1C1C⊥平面ABC,且平面BB1C1C平面ABC=BC,AD 平面ABC,所以AD⊥平面BB1C1C,而AD∥平面A1B1C1,且AD⊂平面AC1D,平面AC1D平面A1B1C1=l,所以AD∥l,所以l⊥平面BB1C1C;(2)因为AD⊥平面BB1C1C,AD⊂平面AC1D,所以平面AC1D⊥平面BB1C1C,在平面BB1C1C内,过C作CH⊥DC1于点H,则CH⊥平面AC1D,过C作CG⊥AC1于点G,则G为线段AC1的中点,连接HG,则∠CGH就是二面角D—AC1—C的平面角,在直角中,在中,,在中,,在直角中,,所以所以二面角D—AC1—C的余弦值为20.(本小题满分12分)某县在实施脱贫工作中因地制宜,着力发展枣树种植项目.该县种植的枣树在2020年获得大丰收,依据扶贫政策,所有红枣由经销商统一收购.为了更好的实现效益,县扶贫办从今年收获的红枣中随机选取100千克,进行质量检测,根据检测结果制成如图所示的频率分布直方图.右表是红枣的分级标准,其中一级品、二级品统称为优质品.经销商与某农户签订了红枣收购协议,规定如下:从一箱红枣中任取4个进行检测,若4个均为优质品,则该箱红枣定为A 类;若4个中仅有3个优质品,则再从该箱中任意取出1个,若这一个为优质品,则该箱红枣也定为A 类;若4个中至多有一个优质品,则该箱红枣定为C 类;其它情况均定为B 类.已知每箱红枣重量为10千克,A 类、B 类、C 类的红枣价格分别为每千克20元、16元、12元.现有两种装箱方案:方案一:将红枣采用随机混装的方式装箱;方案二:将红枣按一、二、三、四等级分别装箱,每箱的分拣成本为1元. 以频率代替概率解决下面的问题.(1)如果该农户采用方案一装箱,求一箱红枣被定为A 类的概率;(2)根据所学知识判断,该农户采用哪种方案装箱更合适,并说明理由. 解:(1)从红枣中任意取出一个,则该红枣为优质品的概率是,记“如果该农户采用方案一装箱,一箱红枣被定为A 类”为事件A ,则(2)记“如果该农户采用方案一装箱,一箱红枣被定为B 类”为事件B ,“如果该农户采用方案一装箱,一箱红枣被定为C 类”为事件C ,则所以如果该农户采用方案一装箱,每箱红枣收入的数学期望为:元;由题意可知,如果该农户采用方案二装箱,则一箱红枣被定为A 类的概率为,被定为C 类的概率也为,所以如果该农户采用方案二装箱,每箱红枣收入的数学期望为: 元;所以该农户采用方案二装箱更合适.21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>(1)求椭圆C 的标准方程;(2)若折线0)y k x =≠与C 相交于A ,B 两点(点A 在直线x =的右侧),设直线OA ,OB 的斜率分别为1k ,2k ,且212k k −=,求k 的值.解:(1)由题可知22c a b a⎧=⎪⎪⎨⎪=⎪⎩,又因为,所以所以椭圆C 的标准方程为(2)因为折线与椭圆C 相交于A ,B 两点,设点B 关于x 轴的对称点为B′, 则直线与椭圆C 相交于A ,B′两点,设则由得所以所以整理得解得22.(本小题满分12分)已知函数()ln(1)f x a x x =−+. (1)讨论()f x 的单调性;(2)若1()e 1x f x x −≥−+对任意的x ∈(0,+∞)恒成立,求实数a 的取值范围. 解:(1)若,,此时在上单调递减;若,由得,此时在上单调递减,在上单调递增;综上所述,,在上单调递减;,在上单调递减,在上单调递增;(2)因为记所以在上单调递增,所以,所以恒成立;若不合题意;若,由(1)知,在上单调递减,所以不合题意;若,记记所以在上单调递增,所以所以符合题意;综上实数a的取值范围是.。

2020-2021学年四川省成都市石室中学高三(上)期末数学试卷(文科)(解析版)

2020-2021学年四川省成都市石室中学高三(上)期末数学试卷(文科)(解析版)

2020-2021学年四川省成都市石室中学高三(上)期末数学试卷(文科)一、选择题(共12小题).1.设集合A={x|﹣2≤x≤3},B={x|2x﹣a≤0},且A∩B={x|﹣2≤x≤1},则a=()A.﹣4B.﹣2C.2D.42.抛物线y2=﹣8x的准线方程为()A.x=﹣2B.x=﹣1C.y=1D.x=23.已知等差数列{a n}的前n项和为S n,且S7=28,a2+a4=7,则a6=()A.3B.4C.5D.64.欧拉公式e iθ=cosθ+i sinθ把自然对数的底数e,虚数单位i,三角函数cosθ和sinθ联系在一起,充分体现了数学的和谐美,被誉为“数学的天桥”若复数z满足(e iπ+i)•z=i,则|z|=()A.1B.C.D.5.2020年初,新型冠状病毒(COVID﹣19)引起的肺炎疫情爆发以来,各地医疗机构采取了各种针对性的治疗方法,取得了不错的成效,某地开始使用中西医结合方法后,每周治愈的患者人数如表所示:周数(x)12345治愈人数(y)2791314由表格可得y关于x的线性回归方程为=3x+,则此回归模型第4周的残差(实际值与预报值之差)为()A.4B.1C.0D.﹣16.已知向量,的夹角为,,,则等于()A.B.C.D.7.已知直线l和两个不同的平面α,β,则下列结论正确的是()A.若l∥α,l⊥β,则α⊥βB.若α⊥β,l⊥α,则l⊥βC.若l∥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β8.已知函数的图象关于点成中心对称,且与直线y=a的两个相邻交点间的距离为,则下列叙述正确的是()A.函数f(x)的最小正周期为πB.函数f(x)图象的对称中心为C.函数f(x)的图象可由y=tan2x的图象向左平移得到D.函数f(x)的递增区间为9.若函数f(x),g(x)的图象都是一条连续不断的曲线,定义:d(f,g)=|f(x)﹣g (x)|min.若函数f(x)=x+a和g(x)=lnx的定义域是(0,+∞),则“a>2”是“d (f,g)>2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.圆C:x2+y2﹣10x+16=0上有且仅有两点到双曲线的一条渐近线的距离为1,则该双曲线离心率的取值范围是()A.B.C.D.11.已知数列{a n}的前n项和为S n,且满足a n+S n=1,则=()A.1013B.1035C.2037D.205912.已知x为实数,[x]表示不超过x的最大整数,若函数f(x)对定义域内任意x,有f(x)+f(2+x)=0,f(x)+f(2﹣x)=0,且x∈[﹣1,0]时,f(x)=x﹣[x],则函数在区间[﹣1,2021]的零点个数为()A.1009B.1010C.1011D.1012二、填空题(共4小题).13.在“一带一路”(英文:TheBel tan dRoad,缩写B&R)知识问答竞赛中,“江苏”代表队的七名选手的比赛成绩的茎叶统计图如图所示,去掉一个最高分和一个最低分,所剩数据的方差为.14.已知a,b∈R+,若直线(a﹣1)x+2y﹣1=0与直线x+by+7=0互相垂直,则ab的最大值等于.15.直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若△ABC是边长为的等边三角形,AA1=5,则V的最大值为.16.已知定义在R上的函数f(x)的图象连续不断,若存在常数t(t∈R),使得f(x+t)+tf(x)=0对任意的实数x成立,则称f(x)是回旋函数.给出下列四个命题中,正确的命题是.①若f(x)是的回旋函数,则函数f(x)至少有一个零点;②若y=a x(a>1)为回旋函数,则t>0;③函数f(x)=x2不是回旋函数:④函数y=tanω1x(ω1>0),函数y=sinω2x(ω2>0)是回旋函数,则ω1,ω2的取值的集合是相等的.三、解答题(一)必考题17.在①c sin=a sin C,②2cos A(b cos C+c cos B)=a,③(sin B﹣sin C)2=sin2A﹣sin B sin C 中任选一个,补充在横线上,并回答下面问题.在△ABC中,已知内角A,B,C所对的边分别为a,b,c.若c=(﹣1)b,_____.(1)求C的值;(2)若△ABC的面积为3﹣,求b的值.18.2020年4月,各行各业开始复工复产,生活逐步恢复常态,某物流公司承担从成都到重庆的蔬菜运输业务.已知该公司统计了往年同期100天内每天配送的蔬菜量X(40≤X <160,单位:件.注:蔬菜全部用统一规格的包装箱包装),并分组统计得到表格如表:蔬菜量X[40,80)[80,120)[120,160)天数204040试解答如下问题:(Ⅰ)该物流公司负责人决定用分层抽样的形式在[40,80)、[80,120)两组数据中抽6天来分析配送的蔬菜量的情况,再从这六天中随机抽2天调研,求这2天配送的蔬菜量中至少有1天小于80件的概率;(Ⅱ)该物流公司拟一次性租赁一批货车专门运营从成都到重庆的蔬菜运输.已知一辆货车每天只能运营一趟.每辆货车每趟最多可装载40件,满载才发车,否则不发车.若发车,则每辆货车每趟可获利2000元;若未发车,则每辆货车每天平均亏损400元.该物流公司负责人甲提出的方案是租赁2辆货车,负责人乙提出的方案是租赁3辆货车,为使该物流公司此项业务的平均营业利润最大,应该选用哪种方案?19.如图(1),在矩形ABCD中,E,F在边CD上,BC=CE=FF=FD.沿BE,AF,将△CBE和△DAF折起,使平面CBE和平面DAF都与平面ABEF垂直,如图(2).(Ⅰ)试判断图(2)中直线CD与AB的位置关系,并说明理由;(Ⅱ)若平面DFA∩平面CEB=l,证明:l⊥平面ABEF.20.已知函数f(x)=x2lnx﹣2x.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:存在唯一的x0∈(1,2),使得曲线y=f(x)在点(x0,f(x0))处的切线的斜率为f(2)﹣f(1);(Ⅲ)比较f(1.01)与﹣2.01的大小,并加以证明.21.设椭圆C:+=1(a>b>0),定义椭圆C的“相关圆”方程为x2+y2=.若抛物线y2=4x的焦点与椭圆C的一个焦点重合,且椭圆C短轴的一个端点和两个焦点构成直角三角形.(Ⅰ)求椭圆C的方程和“相关圆”E的方程;(Ⅱ)过“相关圆”E上任意一点P作“相关圆”E的切线与椭圆C交于A,B两点,O 为坐标原点.(ⅰ)证明:∠AOB为定值;(ⅱ)连接PO并延长交“相关圆”E于点Q,求△ABQ面积的取值范围.(二)选考题[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l1的参数方程为为参数),直线l2的参数方程为参数).若直线l1,l2的交点为P,当k变化时,点P的轨迹是曲线C.(1)求曲线C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴且取相同的单位长度建立极坐标系,直线l:,已知点P在曲线C上,点P到直线l和极轴的距离分别为d1,d2,求d1+d2的最大值.[选修4-3;不等式选讲]23.已知函数f(x)=|2x﹣1|﹣|x﹣3|.(Ⅰ)解不等式f(x)>0;(Ⅱ)若不等式m2﹣4|m|+|x﹣3|>f(x)对x∈R恒成立,求实数m的取值范围.参考答案一、选择题(共12小题).1.设集合A={x|﹣2≤x≤3},B={x|2x﹣a≤0},且A∩B={x|﹣2≤x≤1},则a=()A.﹣4B.﹣2C.2D.4解:∵集合A={x|﹣2≤x≤3},B={x|2x﹣a≤0}={x|x≤},且A∩B={x|﹣2≤x≤1},∴=1,解得a=2.故选:C.2.抛物线y2=﹣8x的准线方程为()A.x=﹣2B.x=﹣1C.y=1D.x=2解:抛物线y2=﹣8x的开口向左,2p=8,∴抛物线y2=﹣8x的准线方程为x==2故选:D.3.已知等差数列{a n}的前n项和为S n,且S7=28,a2+a4=7,则a6=()A.3B.4C.5D.6解:设等差数列{a n}的公差为d,∵S7=28,a2+a4=7,∴7a1+21d=28,2a1+4d=7.解得:a1=,d=.则a6=+5×=5.故选:C.4.欧拉公式e iθ=cosθ+i sinθ把自然对数的底数e,虚数单位i,三角函数cosθ和sinθ联系在一起,充分体现了数学的和谐美,被誉为“数学的天桥”若复数z满足(e iπ+i)•z=i,则|z|=()A.1B.C.D.解:由e iθ=cosθ+i sinθ,得e iπ=cosπ+i sinπ=﹣1,则由(e iπ+i)•z=i,得z=,∴|z|=.故选:B.5.2020年初,新型冠状病毒(COVID﹣19)引起的肺炎疫情爆发以来,各地医疗机构采取了各种针对性的治疗方法,取得了不错的成效,某地开始使用中西医结合方法后,每周治愈的患者人数如表所示:周数(x)12345治愈人数(y)2791314由表格可得y关于x的线性回归方程为=3x+,则此回归模型第4周的残差(实际值与预报值之差)为()A.4B.1C.0D.﹣1解:,,则样本点的中心坐标为(3,9),代入,得a=9﹣3×3=0,∴线性回归方程为,取x=4,可得,则此回归模型第4周的残差为13﹣12=1.故选:B.6.已知向量,的夹角为,,,则等于()A.B.C.D.解:∵向量,的夹角为,,,所以:||=;∴•(+2)=+2=5+2××||•cos=0⇒||=;故选:A.7.已知直线l和两个不同的平面α,β,则下列结论正确的是()A.若l∥α,l⊥β,则α⊥βB.若α⊥β,l⊥α,则l⊥βC.若l∥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β解:设m⊂α,且m∥l,由l⊥β,则m⊥β,由面面垂直的判定定理可得:α⊥β,即选项A正确,故选:A.8.已知函数的图象关于点成中心对称,且与直线y=a的两个相邻交点间的距离为,则下列叙述正确的是()A.函数f(x)的最小正周期为πB.函数f(x)图象的对称中心为C.函数f(x)的图象可由y=tan2x的图象向左平移得到D.函数f(x)的递增区间为解:∵直线y=a的两个相邻交点间的距离为,∴函数f(x)的最小正周期为,A错,∴,∵图象关于点成中心对称,∴2×+φ=,k∈Z,∵0<φ<,∴φ=.∴函数f(x)图象的对称中心为(,0),k∈Z,B错;∴f(x)=tan(2x+),∴函数f(x)的图象可由y=tan2x的图象向左平移得到,C错;∵﹣+kπ<2x+<+kπ,∴函数f(x)的递增区间为,D对.故选:D.9.若函数f(x),g(x)的图象都是一条连续不断的曲线,定义:d(f,g)=|f(x)﹣g (x)|min.若函数f(x)=x+a和g(x)=lnx的定义域是(0,+∞),则“a>2”是“d (f,g)>2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:根据题意,f(x)=x+a,g(x)=lnx,设F(x)=f(x)﹣g(x)=x﹣lnx+a,则F′(x)=1﹣=,在区间(0,1)上,F′(x)<0,F(x)为减函数,在区间(1,+∞)上,F′(x)>0,F(x)为增函数,则F(x)在(0,+∞)的最小值为F(1)=1﹣ln1+a=a+1,当a>﹣1时,F(x)>0恒成立,则f(x)的图象在g(x)的上方,此时d(f,g)=a+1>0,当a≤﹣1时,F(x)=0有解,f(x)与g(x)的图象有交点,此时d(f,g)=0,若“a>2”,则d(f,g)=a+1>3>2,则“a>2”是“d(f,g)>2”充分条件,反之,若d(f,g)>2,即a+1>2,解可得a>1,则“a>2”是“d(f,g)>2”的不必要条件,故“a>2”是“d(f,g)>2”的充分不必要条件,故选:A.10.圆C:x2+y2﹣10x+16=0上有且仅有两点到双曲线的一条渐近线的距离为1,则该双曲线离心率的取值范围是()A.B.C.D.解:圆C:x2+y2﹣10x+16=0可化为(x﹣5)2+y2=9,∵圆C:x2+y2﹣10x+16=0上有且仅有两点到双曲线的一条渐近线的距离为1,∴圆心到双曲线渐近线的距离大于2且小于4,由对称性不妨取双曲线的一条渐近线为y=x,即ax﹣by=0,∴2<<4,即2<<4,解得:.即双曲线离心率的取值范围是(,).故选:A.11.已知数列{a n}的前n项和为S n,且满足a n+S n=1,则=()A.1013B.1035C.2037D.2059解:n=1时,a1+S1=1,1=,n≥2时,a n+S n=1,a n﹣1+S n﹣1=1,∴a n=a n﹣1,则数列{a n}是首项为公比为的等比数列.∴,S n=.∴.则=2+22+…+29﹣9=1024﹣11=1013.故选:A.12.已知x为实数,[x]表示不超过x的最大整数,若函数f(x)对定义域内任意x,有f(x)+f(2+x)=0,f(x)+f(2﹣x)=0,且x∈[﹣1,0]时,f(x)=x﹣[x],则函数在区间[﹣1,2021]的零点个数为()A.1009B.1010C.1011D.1012解:x∈[﹣1,0)时,[x]=﹣1,所以f(x)=x+1,因为f(x)+f(2+x)=0,所以f(x+2)=﹣f(x),则有f(x+4)=﹣f(x+2)=f(x),故函数f(x)的周期为4,又f(x)+f(2﹣x)=0,则有f(x+2)=﹣f[2﹣(x+2)]=﹣f(﹣x),又f(x+2)=﹣f(x),所以f(﹣x)=f(x),故函数f(x)为偶函数,令,则,令h'(x)=0,解得x=2,当x<2时,h'(x)<0,h(x)在(﹣∞,2)上单调递减,当x>2时,h'(x)>0,h(x)在(2,+∞)上单调递增,所以,当x=2时,,函数的零点个数等价于y=f(x)与y=h(x)图象的交点个数,作出函数y=f(x)和y=h(x)的图象如图所示,在区间[﹣1,3)内有2个交点,在[3,7)上有2个交点,即每个周期都有2个交点,将区间[﹣1,2021]分为两部分[﹣1,3)和[3,2021],在[3,2021]上共有504个周期余前半个周期,而在[3,2021]上,每个周期的前半个周期都没有交点,后半个周期有2个交点,所以在区间[﹣1,2021]上的交点个数为2+504×2=1010,故函数在区间[﹣1,2021]的零点个数为1010个.故选:B.二、填空题13.在“一带一路”(英文:TheBel tan dRoad,缩写B&R)知识问答竞赛中,“江苏”代表队的七名选手的比赛成绩的茎叶统计图如图所示,去掉一个最高分和一个最低分,所剩数据的方差为.解:在“一带一路”(英文:The Belt and Road,缩写B&R)知识问答竞赛中,“江苏”代表队的七名选手的比赛成绩的茎叶统计图如图所示,去掉一个最高分和一个最低分,所剩数据为:84,84,84,86,87,∴所剩数据平均数为=(84+84+84+86+87)=85,∴所剩数据的方差为:S2=[(84﹣85)2+(84﹣85)2+(84﹣85)2+(86﹣85)2+(87﹣85)2]=.故答案为:.14.已知a,b∈R+,若直线(a﹣1)x+2y﹣1=0与直线x+by+7=0互相垂直,则ab的最大值等于.解:∵直线(a﹣1)x+2y﹣1=0与直线x+by+7=0互相垂直,∴(a﹣1)×1+2×b=0,解得a+2b=1,∵a,b∈R+,∴2ab≤=,当且仅当2a=b,即a=,b=时取等号,∴ab的最大值等于.故答案为:.15.直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若△ABC是边长为的等边三角形,AA1=5,则V的最大值为π.解:如图,等边三角形内切球的半径r=3>,要使球的体积最大,则球与直三棱柱ABC﹣A1B1C1的上下底面相切,∴球半径R=,∴V max==.故答案为:π.16.已知定义在R上的函数f(x)的图象连续不断,若存在常数t(t∈R),使得f(x+t)+tf(x)=0对任意的实数x成立,则称f(x)是回旋函数.给出下列四个命题中,正确的命题是①③④.①若f(x)是的回旋函数,则函数f(x)至少有一个零点;②若y=a x(a>1)为回旋函数,则t>0;③函数f(x)=x2不是回旋函数:④函数y=tanω1x(ω1>0),函数y=sinω2x(ω2>0)是回旋函数,则ω1,ω2的取值的集合是相等的.解:对于①,若f(x)是t=的回旋函数,则f(x+)+f(x)=0,即f(x+)=﹣f(x)恒成立,∴f(x)•f(x+)≤0,∴由零点存在性定理可得,函数f(x)在区间[x,x+]上至少有一个零点,故①正确;对于②,若指数函数y=a x为阶数为t回旋函数,则a x+t+ta x=0,a t+t=0,∴t<0,故②错误;对于③,若(x+a)2+ax2=0对任意实数都成立,令x=0,则必须有a=0,令x=1,则有a2+3a+1=0,a=0不是这个方程的解,故假设不成立,该函数不是回旋函数,故③正确;对于④,∵函数y=tanω1x(ω1>0),函数y=sinω2x(ω2>0)是回旋函数,∴tanω1(x+t)+t•tanω1x=0,sinω2(x+t)+t•sinω2x=0,∴ω1,ω2的取值的集合是相等的,故④正确.故答案为:①③④.三、解答题(一)必考题17.在①c sin=a sin C,②2cos A(b cos C+c cos B)=a,③(sin B﹣sin C)2=sin2A﹣sin B sin C 中任选一个,补充在横线上,并回答下面问题.在△ABC中,已知内角A,B,C所对的边分别为a,b,c.若c=(﹣1)b,_____.(1)求C的值;(2)若△ABC的面积为3﹣,求b的值.解:(1)选①,,由正弦定理可得sin C sin=sin A sin C,因为C为三角形内角,sin C>0,所以sin=sin A,即cos=2sin cos,因为A为三角形内角,∈(0,),所以sin=,可得=,可得A=,可得B=﹣C,又c=()b,由正弦定理可得sin C=(﹣1)sin B,即sin C=(﹣1)sin(﹣C)=cos C+sin C,可得sin C﹣cos C=0,即sin(C﹣)=0,又C∈(0,π),所以C﹣∈(﹣,),选②,2cos A(b cos C+c cos B)=a,由正弦定理可得2cos A(sin B cos C+sin C cos B)=sin A,所以2cos A sin(B+C)=2cos A sin A=sin A,因为sin A≠0,所以cos A=,又A为三角形内角,A∈(0,π),所以A=,可得B=﹣C,又c=()b,由正弦定理可得sin C=(﹣1)sin B,即sin C=(﹣1)sin(﹣C)=cos C+sin C,可得sin C﹣cos C=0,即sin(C﹣)=0,又C∈(0,π),所以C﹣∈(﹣,),所以C﹣=0,即C=.选③,(sin B﹣sin C)2=sin2A﹣sin B sin C,由正弦定理可得(b﹣c)2=a2﹣bc,即b2+c2﹣a2=bc,因此cos A==,又A为三角形内角,A∈(0,π),所以A=,可得B=﹣C,又c=()b,由正弦定理可得sin C=(﹣1)sin B,即sin C=(﹣1)sin(﹣C)=cos C+sin C,可得sin C﹣cos C=0,即sin(C﹣)=0,又C∈(0,π),所以C﹣=0,即C=.(2)因为△ABC的面积为3﹣=bc sin A=bc=b2,所以解得b=2.18.2020年4月,各行各业开始复工复产,生活逐步恢复常态,某物流公司承担从成都到重庆的蔬菜运输业务.已知该公司统计了往年同期100天内每天配送的蔬菜量X(40≤X <160,单位:件.注:蔬菜全部用统一规格的包装箱包装),并分组统计得到表格如表:蔬菜量X[40,80)[80,120)[120,160)天数204040试解答如下问题:(Ⅰ)该物流公司负责人决定用分层抽样的形式在[40,80)、[80,120)两组数据中抽6天来分析配送的蔬菜量的情况,再从这六天中随机抽2天调研,求这2天配送的蔬菜量中至少有1天小于80件的概率;(Ⅱ)该物流公司拟一次性租赁一批货车专门运营从成都到重庆的蔬菜运输.已知一辆货车每天只能运营一趟.每辆货车每趟最多可装载40件,满载才发车,否则不发车.若发车,则每辆货车每趟可获利2000元;若未发车,则每辆货车每天平均亏损400元.该物流公司负责人甲提出的方案是租赁2辆货车,负责人乙提出的方案是租赁3辆货车,为使该物流公司此项业务的平均营业利润最大,应该选用哪种方案?【解答】(Ⅰ)记事件A为“2天配送的蔬菜量中至多有1天小于80件的概率”,在[40,80)、[80,120)两组数据中用分层抽样抽6天,[40,80)中抽的天数为天,记为A,B,[80,120)中抽的天数为天,记为a,b,c,d,则从这6天中随机抽取2天的所有可能情况有以下:(A,B),(A,a),(A,b),(A,c),(A,d),(B,a),(B,b),(B,c),(B,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共15种,选中的2天中配送的蔬菜量中至少有1天小于80件的可能情况有以下:(A,B),(A,a),(A,b),(A,c),(A,d),(B,a),(B,b),(B,c),(B,d),共9种∴选中的2天中配送的蔬菜量中至少有1天小于80件概率为.(Ⅱ)若租赁2辆车,平均利润为若租赁3辆车,平均利润为∵4080>3520,所以应该选择租赁3辆货车,此时平均营业利润最大.19.如图(1),在矩形ABCD中,E,F在边CD上,BC=CE=FF=FD.沿BE,AF,将△CBE和△DAF折起,使平面CBE和平面DAF都与平面ABEF垂直,如图(2).(Ⅰ)试判断图(2)中直线CD与AB的位置关系,并说明理由;(Ⅱ)若平面DFA∩平面CEB=l,证明:l⊥平面ABEF.【解答】证明:(Ⅰ)CD∥AB.理由如下:连结CD,分别取AF,BE的中点M,N,连结DM,CN,MN,由图(1)可得,△ADF与△BCE都是等腰直角三角形且全等,则DM⊥AF,CN⊥BE,DM=CN ∵平面ADF⊥平面ABEF,交线为AF,DM⊂平面ADF,DM⊥AF∴DM⊥平面ABEF.同理得,CN⊥平面ABEF,∴DM∥CN.又∵DM=CN∴四边形CDMN为平行四边形,∴CD∥MN.∵M,N分别是AF,BE的中点,∴MN∥AB∴CD∥AB.(Ⅱ)证明:∵DM∥CN,DM⊆平面DFA,CN⊄平面DFA∴CN∥面DFA∵CN⊂平面CEB,面DFA∩平面CEB=l∴CN∥l∵DM∥CN∴DM∥l由(Ⅰ)问有DM⊥平面ABEF.∴l⊥平面ABEF.20.已知函数f(x)=x2lnx﹣2x.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:存在唯一的x0∈(1,2),使得曲线y=f(x)在点(x0,f(x0))处的切线的斜率为f(2)﹣f(1);(Ⅲ)比较f(1.01)与﹣2.01的大小,并加以证明.解:(Ⅰ)函数f(x)=x2lnx﹣2x的定义域是(0,+∞),导函数为f'(x)=2xlnx+x﹣2,所以f'(1)=﹣1,又f(1)=﹣2,所以曲线y=f(x)在点(1,f(1))处的切线方程为y=﹣x﹣1;(Ⅱ)证明:由已知f(2)﹣f(1)=4ln2﹣2,所以只需证明方程2xlnx+x﹣2=4ln2﹣2在区间(1,2)有唯一解.即方程2xlnx+x﹣4ln2=0在区间(1,2)有唯一解.设函数g(x)=2xlnx+x﹣4ln2,则g'(x)=2lnx+3.当x∈(1,2)时,g'(x)>0,故g(x)在区间(1,2)单调递增.又g(1)=1﹣4ln2<0,g(2)=2>0,所以存在唯一的x0∈(1,2),使得g(x0)=0.综上,存在唯一的x0∈(1,2),使得曲线y=f(x)在点(x0,f(x0))处的切线的斜率为f(2)﹣f(1);(Ⅲ)f(1.01)>﹣2.01.证明如下:首先证明:当x>1时,f(x)>﹣x﹣1.设h(x)=f(x)﹣(﹣x﹣1)=x2lnx﹣x+1,则h'(x)=x+2xlnx﹣1.当x>1时,x﹣1>0,2xlnx>0,所以h'(x)>0,故h(x)在(1,+∞)单调递增,所以x>1时,有h(x)>h(1)=0,即当x>1时,有f(x)>﹣x﹣1.所以f(1.01)>﹣1.01﹣1=﹣2.01.21.设椭圆C:+=1(a>b>0),定义椭圆C的“相关圆”方程为x2+y2=.若抛物线y2=4x的焦点与椭圆C的一个焦点重合,且椭圆C短轴的一个端点和两个焦点构成直角三角形.(Ⅰ)求椭圆C的方程和“相关圆”E的方程;(Ⅱ)过“相关圆”E上任意一点P作“相关圆”E的切线与椭圆C交于A,B两点,O 为坐标原点.(ⅰ)证明:∠AOB为定值;(ⅱ)连接PO并延长交“相关圆”E于点Q,求△ABQ面积的取值范围.解:(Ⅰ)∵抛物线y2=4x的焦点与椭圆C的一个焦点重合,且椭圆C短轴的一个端点和两个焦点构成直角三角形,∴b=c=1,∴a2=1+1=2,∴椭圆C的方程为.∴“相关圆”E的方程为x2+y2=.证明:(Ⅱ)(i)当直线l的斜率不存在时,不妨设直线AB方程为x=,则A(,),B(,﹣),∴,当直线l的斜率存在时,设其方程为y=kx+m,设A(x1,y1),B(x2,y2),联立方程组,得x2+2(kx+m)2=2,即(1+2k2)x2+4kmx+2m2﹣2=0,△=16k2m2﹣4(1+2k2)(2m2﹣2)=8(2k2﹣m2+1)>0,即2k2﹣m2+1>0,(*),∵直线与圆相切,∴==,∴3m2=2+2k2,∴+km(x1+x2)+m2===0,∴,∴为定值.解:(ii)∵PQ是“相关圆”的直径,∴,∴要求△ABQ的面积的取值范围,只需求弦长|AB|的范围,当直线AB的斜率不存在时,由(i)知|AB|=,|AB|====,①当k≠0时,|AB|=,∵,∴0<,∴≤3,∴<|AB|,当且仅当k=时,取“=”号.②当k=0时,|AB|=.|AB|的取值范围为≤|AB|,∴△ABQ面积的取值范围是[,].(二)选考题[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l1的参数方程为为参数),直线l2的参数方程为参数).若直线l1,l2的交点为P,当k变化时,点P的轨迹是曲线C.(1)求曲线C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴且取相同的单位长度建立极坐标系,直线l:,已知点P在曲线C上,点P到直线l和极轴的距离分别为d1,d2,求d1+d2的最大值.解:(1)直线l1的参数方程为参数),转换为直线l1的普通方程为y=k (﹣x),直线l2的参数方程为参数).转化为直线l2的普通方程为y﹣2=,联立直线l1,l2方程,消去参数k,得曲线C的普通方程为y(y﹣2)=﹣x2,整理得x2+(y﹣1)2=1(x≠0).(2)直线l:,即为ρ(cosθ+sinθ)=2,即ρcosθ+ρsinθ﹣4=0,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,由x2+(y﹣1)2=1(x≠0),可得C的参数方程为(α为参数,且0≤α<2π,且α≠),可设P(cosα,1+sinα),d1===(3﹣cosα﹣sinα),又d2=1+sinα,则d1+d2=+sinα﹣cosα=sin(α﹣)+,当α=时,sin(α﹣)取得最大值1,则d1+d2取得最大值.[选修4-3;不等式选讲]23.已知函数f(x)=|2x﹣1|﹣|x﹣3|.(Ⅰ)解不等式f(x)>0;(Ⅱ)若不等式m2﹣4|m|+|x﹣3|>f(x)对x∈R恒成立,求实数m的取值范围.解:(Ⅰ)f(x)>0即为|2x﹣1|>|x﹣3|,∴|2x﹣1|2>|x﹣3|2,即4x2﹣4x+1>x2+9﹣6x,∴3x2+2x﹣8>0,解得或x<﹣2,∴不等式的解集为;(Ⅱ)m2﹣4|m|+|x﹣3|>|2x﹣1|﹣|x﹣3|即m2﹣4|m|>|2x﹣1|﹣|2x﹣6|恒成立,由||2x﹣1|﹣|2x﹣6||≤|(2x﹣1)﹣(2x﹣6)|=5(x=3时等号成立),可知m2﹣4|m|>5,解得|m|>5,∴m>5或m<﹣5,即实数m的取值范围为(﹣∞,﹣5)∪(5,+∞).。

2020-2021学年辽宁省营口市高三(上)期末数学试题(原卷+答案)_

2020-2021学年辽宁省营口市高三(上)期末数学试题(原卷+答案)_

2020-2021学年辽宁省营口市高三(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)已知集合M={x|﹣x2+2x>0},,则M∩N=()A.(0,2)B.[0,2)C.(2,+∞)D.[1,2)2.(5分)在复平面内,复数z对应的点的坐标是(2,3),则iz=()A.2+3i B.2﹣3i C.﹣3+2i D.﹣3﹣2i3.(5分)已知空间中不过同一点的三条直线a,b,l,则“a,b,l两两相交”是“a,b,l共面”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)勒洛三角形是定宽曲线所能构成的面积最小的图形,它是德国机械学家勒洛首先进行研究的,其画法是:先画一个正三角形,再以正三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,如图所示,若正三角形ABC的边长为2,则勒洛三角形面积为()A.B.C.D.4π5.(5分)某射击运动员进行射击训练,若他连续射击7次,其中射中5发,2发未中,则他前4发均射中的概率是()A.B.C.D.6.(5分)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,若数列{a n+b n}的前n项和为S n=n﹣1+2n (n∈N*),则d﹣q的值是()A.2B.1C.﹣1D.﹣27.(5分)酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100ml血液中酒精含量低于20mg的驾驶员可以驾驶汽车,酒精含量大于等于20mg且小于80mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1.5mg/ml,如果在停止喝酒以后,他血液中酒精含量会以每小时36%的速度减少,那么他至少经过几个小时才能驾驶汽车?()(参考数据:lg2≈0.301,lg3≈0.477)A.3B.4C.5D.68.(5分)已知圆C的半径为3,AB是圆C的一条直径,M,N为圆上动点,且MN=4,点E在线段MN上,则的最小值为()A.﹣3B.﹣4C.﹣5D.﹣6二、选择题:本题共4小题,每小题5分,共20分.在每个小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.(5分)下列四个函数中,以π为周期的偶函数为()A.f(x)=sin2x B.f(x)=cos2xC.D.f(x)=|tan x|10.(5分)若a,b,c满足a>b>c,且ac<0,则下列选项正确的是()A.B.ac<bcC.a5>b5D.11.(5分)曲线G是平面内到直线l1:x=2和直线l2:y=3的距离之积等于常数t(t>0)的点的轨迹,动点M在曲线G上,以下结论正确的有()A.曲线G关于点(2,3)对称B.曲线G共有2条对称轴C.若点A,B分别在直线l1,l2上,则|MA|+|MB|不小于D.点M关于l1,l2的对称点分别为P,Q,则△MPQ的面积为4t12.(5分)函数,则()A.f(x)存在对称中心B.f(x)存在对称轴C.D.|f(x)|≤2|x|三、填空题:本题共4小题,每小题5分,共20分.13.(5分)若a>0,b>0,且a,4,b成等差数列,则ab的最大值是.14.(5分)若直线l1:y=kx+4与直线l2关于点M(1,2)对称,则当l2经过点N(0,﹣1)时,点M到直线l2的距离为.15.(5分)定义在R的偶函数f(x)在(﹣∞,0]上单调递增,且f(3)=0,则不等式(m+1)f(m﹣2)≤0的解集是.16.(5分)直三棱柱ABC﹣A1B1C1的棱长均为,M为AB的中点,过点M的平面截三棱柱ABC﹣A1B1C1的外接球,则所得的截面面积的取值范围为.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,内角A、B、C所对的边分别为a、b、c,且sin2B﹣sin2A=sin2C﹣sin A sin C.(1)求角B的大小;(2)若△ABC的周长为9,且b=4,求△ABC的面积.18.设正项等比数列{a n}中,a1=1,前n项和为S n,且____.(1)求数列{a n}的通项公式;(2)若,求数列{a n b n}的前n项和T n.在①;②;③S3=13.这三个条件中,请选择一个满足题意的正确的条件将上面的题目补充完整,并解答本题.19.三棱锥P﹣ABC中,AC⊥BC,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F分别为PC和PB的中点,平面ABC∩平面AEF=l.(1)证明:直线l∥BC;(2)设直线PM与直线EF所成的角为α,直线PM与平面AEF所成的角为β,则在直线l上是否存在一点M,使得.若存在,求出|AM|的值;若不存在,说明理由.20.某医院已知5名病人中有一人患有一种血液疾病,需要通过化验血液来确定患者,血液化验结果呈阳性的即为患病,呈阴性即没患病.院方设计了两种化验方案:方案甲:对患者逐个化验,直到能确定患者为止;方案乙:先将3人的血液混在一起化验,若结果呈阳性则表明患者在此三人中,然后再逐个化验,直到能确定患者为止;若结果呈阴性则在另外2人中选取1人化验.(1)求方案甲化验次数X的分布列;(2)求甲方案所需化验次数不少于乙方案所需化验次数的概率.21.已知椭圆过点P(0,﹣1),离心率为.(1)求椭圆C的方程;(2)l1,l2是过点P且互相垂直的两条直线,其中l1交圆x2+y2=a2于A,B两点,l2交椭圆C于另一个点Q,求△QAB面积取得最大值时直线l1的方程.22.已知函数f(x)=e x﹣a(lnx+1)(a>0)(1)若f(x)在区间上存在极值,求实数a的范围;(2)若f(x)在区间上的极小值等于0,求实数a的值;(3)令g(x)=x2﹣ax+a2,h(x)=a(f(x)﹣e x)+g(x).曲线y=h(x)与直线y=m交于A(x1,y1),B(x2,y2)两点,求证:.2020-2021学年辽宁省营口市高三(上)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)已知集合M={x|﹣x2+2x>0},,则M∩N=()A.(0,2)B.[0,2)C.(2,+∞)D.[1,2)【解答】解:∵集合M={x|﹣x2+2x>0}={x|0<x<2},={y|≥0},∴M∩N={x|1≤x<2}=(0,2).故选:A.2.(5分)在复平面内,复数z对应的点的坐标是(2,3),则iz=()A.2+3i B.2﹣3i C.﹣3+2i D.﹣3﹣2i【解答】解:复平面内,复数z对应的点的坐标是(2,3),则z=2+3i,所以iz=i(2+3i)=2i﹣3=﹣3+2i.故选:C.3.(5分)已知空间中不过同一点的三条直线a,b,l,则“a,b,l两两相交”是“a,b,l共面”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:空间中不过同一点的三条直线m,n,l,若m,n,l在同一平面,则m,n,l相交或m,n,l有两个平行,另一直线与之相交,或三条直线两两平行.而若“m,n,l两两相交”,则“m,n,l在同一平面”成立.故“a,b,l两两相交”是“a,b,l共面”的充分不必要条件,故选:A.4.(5分)勒洛三角形是定宽曲线所能构成的面积最小的图形,它是德国机械学家勒洛首先进行研究的,其画法是:先画一个正三角形,再以正三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,如图所示,若正三角形ABC的边长为2,则勒洛三角形面积为()A.B.C.D.4π【解答】解:如图:BC=2,以B为圆心的扇形面积是=,△ABC的面积是×2×2×=,∴勒洛三角形的面积为3个扇形面积减去2个正三角形面积,即×3﹣2=2π﹣2.故选:A.5.(5分)某射击运动员进行射击训练,若他连续射击7次,其中射中5发,2发未中,则他前4发均射中的概率是()A.B.C.D.【解答】解:某射击运动员进行射击训练,若他连续射击7次,其中射中5发,2发未中,基本事件总数n==21,他前4发均射中包含的基本事件个数m==3,∴他前4发均射中的概率是P===.故选:D.6.(5分)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,若数列{a n+b n}的前n项和为S n=n﹣1+2n (n∈N*),则d﹣q的值是()A.2B.1C.﹣1D.﹣2【解答】解:设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,若数列{a n+b n}的前n项和为S n=n﹣1+2n(n∈N*),则a1+b1=2,a2+b2=a1+d+b1q=3,a3+b3=a1+2d+b1q2=5,a4+b4=a1+3d+b1q3=9,解得a1=1,d=0,b1=1,q=2,则d﹣q=﹣2,故选:D.7.(5分)酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100ml血液中酒精含量低于20mg的驾驶员可以驾驶汽车,酒精含量大于等于20mg且小于80mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1.5mg/ml,如果在停止喝酒以后,他血液中酒精含量会以每小时36%的速度减少,那么他至少经过几个小时才能驾驶汽车?()(参考数据:lg2≈0.301,lg3≈0.477)A.3B.4C.5D.6【解答】解:设他至少经过x个小时才能驾驶汽车,则150(1﹣36%)x<20,∴0.64x<,∴x>==≈≈4.51,∴他至少经过5个小时才能驾驶汽车,故选:C.8.(5分)已知圆C的半径为3,AB是圆C的一条直径,M,N为圆上动点,且MN=4,点E在线段MN上,则的最小值为()A.﹣3B.﹣4C.﹣5D.﹣6【解答】解:由题意得,,=()•()=++,=++,=,当时,||取最小值,此时||min==.故的最小值为﹣9+5=4.故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每个小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.(5分)下列四个函数中,以π为周期的偶函数为()A.f(x)=sin2x B.f(x)=cos2xC.D.f(x)=|tan x|【解答】解:因为f(x)=sin2x,所以周期为,又f(﹣x)=sin(﹣2x)=﹣sin2x=﹣f(x),所以函数为奇函数,故选项A错误;因为f(x)=cos2x,所以周期为,又f(﹣x)=cos(﹣2x)=cos2x=f(x),所以函数为偶函数,故选项B正确;因为=cos x,所以周期为2π,故选项C错误;因为f(x)=|tan x|,所以周期为π,又f(﹣x)=|tan(﹣x)|=|tan x|=f(x),所以函数为偶函数,故选项D正确.故选:BD.10.(5分)若a,b,c满足a>b>c,且ac<0,则下列选项正确的是()A.B.ac<bcC.a5>b5D.【解答】解:a>b>c,且ac<0,则a>0,c<0,由于<,故A错误;∵a>b,∴ac<bc,a5>b5,故B,C正确;由于y=()x为减函数,故D错误.故选:BC.11.(5分)曲线G是平面内到直线l1:x=2和直线l2:y=3的距离之积等于常数t(t>0)的点的轨迹,动点M在曲线G上,以下结论正确的有()A.曲线G关于点(2,3)对称B.曲线G共有2条对称轴C.若点A,B分别在直线l1,l2上,则|MA|+|MB|不小于D.点M关于l1,l2的对称点分别为P,Q,则△MPQ的面积为4t【解答】解:由题意设动点坐标为(x,y),则利用题意及点到直线的距离公式可得曲线G的方程为|x﹣2||y﹣3|=t,对比曲线方程|xy|=t,可知曲线G是由|xy|=t向右平移2个单位,再向上平移3个单位得到的,平移只改变位置,不改变曲线的性质,对于A,因为|xy|=t关于原点(0,0)对称,可得曲线G:|x﹣2||y﹣3|=t关于点(2,3)对称,故A正确;对于B,因为|xy|=t有4条对称轴,x=0,y=0,y=±x,可得曲线G有四条对称轴,故B错误;对于C,设点M到直线l1的距离为d1,点M到直线l2的距离为d2,则|MA|+|MB|≥d1+d2≥2=2,故C 正确;对于D,点M关于l1,l2的对称点分别为P,Q,则|PM|=2d1,|QM|=2d2,S△MPQ=|PM||QM|=2d1d2=2t,故D错误.故选:AC.12.(5分)函数,则()A.f(x)存在对称中心B.f(x)存在对称轴C.D.|f(x)|≤2|x|【解答】解:因为函数y=sinπx的值域为[﹣1,1],对称轴为x=+k(k∈Z),对称中心为(k,0)(k∈Z),而函数y=x2+3x+4=(x+)2+≥,对称轴为x=﹣,没有对称中心,故函数f(x)存在对称轴x=﹣,没有对称中心,且f(x)≤,因为函数y=x﹣sin x,y′=1﹣cos x,在[0,+∞)上,y′=1﹣cos x≥0,所以y=x﹣sin x递增,所以x≥sin x,因为函数y=|x|和y=|sin x|都为偶函数,所以总有|x|≥|sin x|.即|πx|≥|sinπx|.故|f(x)|≤≤π|x≤2|x|,结合选项可知BCD正确.故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.13.(5分)若a>0,b>0,且a,4,b成等差数列,则ab的最大值是16.【解答】解:若a>0,b>0,且a,4,b成等差数列,则a+b=8,则ab≤()2=16,当且仅当a=b=4时取等号,故答案为:16.14.(5分)若直线l1:y=kx+4与直线l2关于点M(1,2)对称,则当l2经过点N(0,﹣1)时,点M到直线l2的距离为.【解答】解:因为直线l1:y=kx+4恒过定点P(0,4),所以P(0,4)关于点M(1,2)对称,所以P(0,4)关于点M(1,2)的对称点为(2,0),此时(2,0)和N(0,﹣1)都在直线l2上,由直线方程的两点式可得,即x﹣2y﹣2=0,所以点M到直线l2的距离为.故答案为:.15.(5分)定义在R的偶函数f(x)在(﹣∞,0]上单调递增,且f(3)=0,则不等式(m+1)f(m﹣2)≤0的解集是{m|m=﹣1或m≥5}.【解答】解:∵偶函数f(x)在(﹣∞,0]上单调递增,且f(3)=0,∴f(x)的图象如图:当m﹣2=3时,即m=5,则不等式等价为6f(3)≤0成立,当m﹣2=﹣3时,即m=﹣1,则不等式等价为0f(﹣3)≤0成立,当m≠﹣1且m≠5时,不等式等价为或,得或,即或,得m>5或是空集,综上m≥5或m=﹣1,即不等式的解集为{m|m=﹣1或m≥5},故答案为:{m|m=﹣1或m≥5}.16.(5分)直三棱柱ABC﹣A1B1C1的棱长均为,M为AB的中点,过点M的平面截三棱柱ABC﹣A1B1C1的外接球,则所得的截面面积的取值范围为[3π,7π].【解答】解:依题意可知,三棱柱ABC﹣A1B1C1的外接球球心O为上下底面的外接圆的圆心的连线的中点,如图所示:即可知当过点M的平面为平面ABC时,截得的截面圆最小,圆的半径为,当过点M的平面与上下底面垂直且过球心时,截得的截面圆最大,圆的半径即为球的半径.设上底面的外接圆半径为r,则2r=,所以r=2,设三棱柱ABC﹣A1B1C1的外接球的半径为R,则R2=r2+=7,即R=.所以截面圆最大为πR2=7π,截面圆最小为π=3π.所以所得的截面面积的取值范围为[3π,7π].故答案为:[3π,7π].四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,内角A、B、C所对的边分别为a、b、c,且sin2B﹣sin2A=sin2C﹣sin A sin C.(1)求角B的大小;(2)若△ABC的周长为9,且b=4,求△ABC的面积.【解答】解:(1)由题意可得:sin2C+sin2A﹣sin2B=sin A sin C,由正弦定理得c2+a2﹣b2=ac,∴,∵0<B<π,∴.(2)∵△ABC周长a+b+c=9,且b=4,∴a+c=5,由已知,16=a2+c2﹣ac=(a+c)2﹣3ac,可得:ac=3,∴.18.设正项等比数列{a n}中,a1=1,前n项和为S n,且____.(1)求数列{a n}的通项公式;(2)若,求数列{a n b n}的前n项和T n.在①;②;③S3=13.这三个条件中,请选择一个满足题意的正确的条件将上面的题目补充完整,并解答本题.【解答】解:(Ⅰ)若选①,∵,∴a2=9又∵S3=28=1+9+a3∴a3=18,,所以不满足{a n}是等比数列(或a1≠1).若选②,因为,所以a2=3,,.若选③,因为a1=1,S3=13,所以,q2+q﹣12=(q+4)(q﹣3)=0,解得q=3或q=﹣4,因为a n>0,所以q=3,则:.(Ⅱ).令,前n项和为T n,①,②,①﹣②得:=,所以.19.三棱锥P﹣ABC中,AC⊥BC,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F分别为PC和PB的中点,平面ABC∩平面AEF=l.(1)证明:直线l∥BC;(2)设直线PM与直线EF所成的角为α,直线PM与平面AEF所成的角为β,则在直线l上是否存在一点M,使得.若存在,求出|AM|的值;若不存在,说明理由.【解答】(Ⅰ)证明:∵E、F分别为PB、PC的中点,∴BC∥EF,又∵EF⊂面EFA,BC⊄面EFA,∴BC∥面EFA,又∵BC⊂面ABC,面EFA∩面ABC=1,∴BC∥l(Ⅱ)解:以C为坐标原点,CB所在直线为x轴,CA所在直线为y轴,过C垂直于面ABC的直线为z轴,建立空间直角坐标系,则A(0,2,0),B(4,0,0),,,,设M(m,2,0),则,,=,,可求得面AEF法向量,设PM与面AEF所成角为β,则,∵,∴cosα=sinβ,即,∴m±1,即存在M满足题意,此时|AM|=1.20.某医院已知5名病人中有一人患有一种血液疾病,需要通过化验血液来确定患者,血液化验结果呈阳性的即为患病,呈阴性即没患病.院方设计了两种化验方案:方案甲:对患者逐个化验,直到能确定患者为止;方案乙:先将3人的血液混在一起化验,若结果呈阳性则表明患者在此三人中,然后再逐个化验,直到能确定患者为止;若结果呈阴性则在另外2人中选取1人化验.(1)求方案甲化验次数X的分布列;(2)求甲方案所需化验次数不少于乙方案所需化验次数的概率.【解答】解:(1)依题知X的可能取值为1,2,3,4,,,故方案甲化验次数X的分布列为:X1234P (2)若乙验两次时,有两种可能:①验3人结果为阳性,再从中逐个验时,恰好一次验中,②先验3人结果为阴性,再从其他两人中验出阳性,故乙用两次的概率为,若乙验三次时,只有一种可能:先验3人结果为阳性,再从中逐个验时,第一次为阴性,第二次为阴性或阳性,其概率为,故甲方案的次数不少于乙次数的概率为.21.已知椭圆过点P (0,﹣1),离心率为.(1)求椭圆C 的方程;(2)l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆x 2+y 2=a 2于A ,B 两点,l 2交椭圆C 于另一个点Q ,求△QAB 面积取得最大值时直线l 1的方程.【解答】解:(1)由题意得,解得,所以椭圆C 的方程为.(2)由题知,直线l 1的斜率存在,不妨设为k ,则l 1:y =kx ﹣1.若k =0时,直线l 1的方程为y =﹣1,l 2的方程为x =0,易求得,|PQ |=2,此时.若k ≠0时,则直线l 2:.圆心(0,0)到直线l 1的距离为.直线l1被圆x2+y2=4截得的弦长为|AB|=,联立,得(k2+4)x2+8kx=0,则,所以|PQ|=.所以===.当且仅当即时,等号成立.因为,所以△ABQ面积取得最大值时,直线l1的方程应该是.22.已知函数f(x)=e x﹣a(lnx+1)(a>0)(1)若f(x)在区间上存在极值,求实数a的范围;(2)若f(x)在区间上的极小值等于0,求实数a的值;(3)令g(x)=x2﹣ax+a2,h(x)=a(f(x)﹣e x)+g(x).曲线y=h(x)与直线y=m交于A(x1,y1),B(x2,y2)两点,求证:.【解答】解:(1)由f(x)=e x﹣a(lnx+1)(a>0),得,∴,∴f'(x)在上为增函数,∵f(x)在区间上存在极值,∴且f'(2)>0,解得,∴a的取值范围为.(2)由(1)知,设x0为f(x)在区间上的极小值点,故,∴.设,,则,∴g'(x)<0,即g(x)在上单调递减,易得出g(1)=0,故f(x0)=0,∴x0=1,代入,可得a=e,满足,故a=e.(3)证明:∵g(x)=x2﹣ax+a2,h(x)=a(f(x)﹣e x)+g(x),∴h(x)=﹣a2lnx+x2﹣ax,则,由题意,知h(x)=m有两解x1,x2,不妨设x1<x2,要证,即证,只需证(*),又,,∴两式相减,并整理,得.把代入(*)式,得,即.令,则.令,则,∴φ(t)在其定义域上为增函数,∴φ(t)<φ(1)=0,∴成立.。

2020-2021学年山东省德州市高三(上)期末数学试卷

2020-2021学年山东省德州市高三(上)期末数学试卷

2020-2021学年山东省德州市高三(上)期末数学试卷试题数:22,总分:1501.(单选题,5分)设集合A={x|-x2+5x+6≥0},B={x|x-2<0},则A∩B=()A.[-1,2)B.[-3,2)C.[-2,2)D.(2,6]2.(单选题,5分)若复数z满足2z- z =1+3i,则z =()A.1+iB.1-iC.-1+iD.-1-i3.(单选题,5分)已知a>0,b>0,且1a +2b=4,4a+6b的最小值是()A.4+ √3B.4+2 √3C.8+2 √3D.4+ √334.(单选题,5分)函数f(x)=2sinx+3xcosx+x2在[-π,π]的图象大致为()A.B.C.D.5.(单选题,5分)已知直线l:ax+y-2=0与⊙C:(x-1)2+(y-a)2=4相交于A、B两点,则△ABC为钝角三角形的充要条件是()A.a∈(1,3)B.a∈(2- √3,2+ √3)C.a∈(2- √3,1)∪(1,2+ √3)D. a∈(−∞,2−√3)∪(2+√3,+∞)6.(单选题,5分)“微信红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的金额为10元,被随机分配成1.36元,1.59元,2.31元,3.22元,1.52元,供甲乙丙丁戊5人抢,每人只能抢一次,则甲乙二人抢到的金额之和不低于4.5元的概率是()A. 12B. 25C. 35D. 457.(单选题,5分)阿基米德是伟大的古希腊数学家,他和高斯、牛顿并列为世界三大数学家,他一生最为满意的一个数学发现就是“圆柱容球”定理,即圆柱容器里放了一个球,该球顶天立地,四周碰边(即球与圆柱形容器的底面和侧面都相切),球的体积是圆柱体积的三分之二,球的表面积也是圆柱表面积的三分之二.今有一“圆柱容球”模型,其圆柱表面积为12π,则该模型中球的体积为()A.8πB.4πC. 83πD. 8√23π8.(单选题,5分)设双曲线C:x2a2−y2b2=1(a>0,b>0)的左焦点为F,直线x−2y+√5=0过点F且与双曲线C在第一象限的交点为P,O为坐标原点,|OP|=|OF|,则双曲线的离心率为()A. √2B. √3C.2D. √59.(多选题,5分)已知向量a⃗ =(2,1),b⃗⃗ =(-3,1),则()A.(a⃗ + b⃗⃗)⊥ a⃗B.| a⃗ +2 b⃗⃗ |=5C.向量a⃗在向量b⃗⃗上的投影是√22D.向量a⃗的单位向量是(2√55,√55)10.(多选题,5分)为了了解某外贸企业职工对“一带一路”的认知程度,随机抽取了100名职工组织了“一带一路”知识竞赛,满分为100分(80分及以上为认知程度较高),并将所得成绩分组得到了如图所示的频率分布折线图.从频率分布折线图中得到的这100名职工成绩的以下信息正确的是()A.成绩是50分或100分的职工人数是0B.对“一带一路”认知程度较高的人数是35人C.中位数是74.5D.平均分是75.511.(多选题,5分)若(1-2x)2021=a0+a1x+a2x2+a3x3+…+a2021x2021(x∈R),则()A.a0=1B. a1+a3+a5+⋯+a2021=32021+12C. a0+a2+a4+⋯+a2020=32021−12D. a12+a222+a323+⋯+a202122021=−112.(多选题,5分)关于函数f(x)= √3 |sinx|-|cosx|有下述四个结论正确的有()A.f(x)的最小正周期为πB.f(x)在(−π2,π2)上单调递增C.f(x)在[-π,π]上有四个零点D.f(x)的值域为[-1,2]13.(填空题,5分)已知直线y=2x+b是曲线y=lnx+3的一条切线,则b=___ .14.(填空题,5分)如图,在四棱锥P-ABCD中,底面ABCD为菱形,PD⊥底面ABCD,O为对角线AC与BD的交点,若PD=2,∠APD=∠BAD=π3,则三棱锥P-AOD的外接球表面积为___ .15.(填空题,5分)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九韶的许多创造性成就,其中在卷五“三斜求积“中提出了已知三角形三边a,b,c求面积的公式,这与古希腊的海伦公式完全等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即S=√1 4[c2a2−(c2+a2−b22)2],S为三角形的面积,a,b,c为三角形的三边长,现有△ABC满足sinA:sinB:sinC= 3:2√2:√5且S△ABC=12.则△ABC的外接圆的半径为___ .16.(填空题,5分)F为抛物线C:y2=4x的焦点,过F且斜率为k的直线l与抛物线交于P、Q两点,线段PQ的垂直平分线交x轴于点M,且|PQ|=6,则|MF|=___ .17.(问答题,10分)① a2+a4=6,S9=45;② S n= n22+n2;③ a na n−1=nn−1(n≥2),a1 =1这三个条件中任选一个补充在下面的问题中,并加以解答.设等差数列{a n}的前n项和为S n,_____,数列{b n}为等比数列,b1=2a1,b2=2a2,求数列{a n b n}的前n项和T n.18.(问答题,12分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosBb +cosCc=1a且a=4,b>a>c.(1)求bc的值;(2)若△ABC的面积S=2√7,求cosB.19.(问答题,12分)某研究院为了调查学生的身体发育情况,从某校随机抽测120名学生检测他们的身高(单位:米),按数据分成[1.2,1.3],(1.3,1.4],…(1.7,1.8]这6组,得到如图所示的频率分布直方图,其中身高大于或等于1.59米的学生有20人,其身高分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,1.68,1.69,1.69,1.71,1.72,1.74,以这120名学生身高在各组的身高的频率估计整个学校的学生在各组身高的概率.(1)求该校学生身高大于1.60米的频率,并求频率分布直方图中m ,n ,t 的值; (2)若从该校中随机选取3名学生(学生数量足够大),记X 为抽取学生的身高在(1.4,1.6]的人数,求X 的分布列和数学期望.20.(问答题,12分)在四棱锥P-ABCD 中,△PAB 为直角三角形,∠APB=90°且 PA =12AB =CD ,四边形ABCD 为直角梯形,AB || CD 且∠DAB 为直角,E 为AB的中点,F 为PE 的四等分点且 EF =14EP ,M 为AC 中点且MF⊥PE . (1)证明:AD⊥平面ABP ;(2)设二面角A-PC-E 的大小为α,求α的取值范围.21.(问答题,12分)已知点F 1,F 2分别是椭圆C 的左、右焦点,离心率为 √22 ,点P 是以坐标原点O 为圆心的单位圆上的一点,且 PF 1⃗⃗⃗⃗⃗⃗⃗⃗•PF 2⃗⃗⃗⃗⃗⃗⃗⃗=0 .(1)求椭圆C的标准方程;(2)设斜率为k的直线l(不过焦点)交椭圆于M,N两点,若x轴上任意一点到直线MF1与NF1的距离均相等,求证:直线l恒过定点,并求出该定点的坐标.22.(问答题,12分)已知函数f(x)=alnx+x+2x+2a(a∈R).(1)讨论函数f(x)的单调性;(2)若0<a<e4,求证f(x)<x+e x+2x.2020-2021学年山东省德州市高三(上)期末数学试卷参考答案与试题解析试题数:22,总分:1501.(单选题,5分)设集合A={x|-x2+5x+6≥0},B={x|x-2<0},则A∩B=()A.[-1,2)B.[-3,2)C.[-2,2)D.(2,6]【正确答案】:A【解析】:求出集合A,B,由此能求出A∩B.【解答】:解:∵集合A={x|-x2+5x+6≥0}={x|-1≤x≤6},B={x|x-2<0}={x|x<2},∴A∩B={x|-1≤x<2}=[-1,2).故选:A.【点评】:本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.(单选题,5分)若复数z满足2z- z =1+3i,则z =()A.1+iB.1-iC.-1+iD.-1-i【正确答案】:B【解析】:设z=a+bi(a,b∈R),代入2z−z=1+3i,整理后利用复数相等,求得a与b 的值,再得到z.【解答】:解:设z=a+bi(a,b∈R),则z=a−bi,代入2z- z =1+3i,得2(a+bi)-(a-bi)=a+3bi=1+3i,∴a=b=1,则z=1−i.故选:B.【点评】:本题考查复数的基本概念和复数相等,是基础题.3.(单选题,5分)已知a>0,b>0,且1a +2b=4,4a+6b的最小值是()A.4+ √3B.4+2 √3C.8+2 √3D.4+ √33【正确答案】:B【解析】:利用“乘1法”与基本不等式的性质即可得出.【解答】:解:已知a>0,b>0,且1a +2b=4,则有14a+ 12b=1,所以4a+6b=(4a+6b)(14a + 12b)=1+ 2ab+ 3b2a+3≥4+2 √2ab•3b2a=4+2 √3,当且仅当2ab = 3b2a且14a+ 12b=1时取等号,则4a+6b的最小值是4+2 √3.故选:B.【点评】:本题考查了“乘1法”与基本不等式的性质,属于基础题.4.(单选题,5分)函数f(x)=2sinx+3xcosx+x2在[-π,π]的图象大致为()A.B.C.D.【正确答案】:C【解析】:判断函数的奇偶性和对称性,利用函数值的范围,结合排除法进行判断即可.【解答】:解:f(-x)= −2sinx−3xcosx+x2=-f(x),则f(x)是奇函数,图象关于原点对称,排除A,当0<x<π时,f(x)>0,排除D,f(π)= 3ππ2−1>0,排除B,故选:C.【点评】:本题主要考查函数图象的识别和判断,利用函数奇偶性和对称性,以及排除法是解决本题的关键,是基础题.5.(单选题,5分)已知直线l:ax+y-2=0与⊙C:(x-1)2+(y-a)2=4相交于A、B两点,则△ABC为钝角三角形的充要条件是()A.a∈(1,3)B.a∈(2- √3,2+ √3)C.a∈(2- √3,1)∪(1,2+ √3)D. a∈(−∞,2−√3)∪(2+√3,+∞)【正确答案】:C【解析】:利用圆的方程求出圆心和半径,然后利用点到直线的距离公式求出d,再利用弦长公式求出AB,然后结合△ABC为钝角三角形,列出关于a的不等式求解即可.【解答】:解:⊙C:(x-1)2+(y-a)2=4的圆心为C(1,a),半径r=2,故点C到直线l:ax+y-2=0的距离为d=√a2+1=√a2+1故AB= 2√4−d2=4√2aa2+1,又CA=CB=2,因为△ABC为钝角三角形,故AC2+BC2<AB2,即4+4 <16•2aa2+1,化简可得a 2-4a+1<0, 解得 2−√3<a <2+√3 ,当三点A ,B ,C 共线时,有a+a-2=0,即a=1,此时△ABC 不存在, 所以△ABC 为钝角三角形的充要条件是a∈(2- √3 ,1)∪(1,2+ √3 ). 故选:C .【点评】:本题考查了直线与圆位置关系的应用,涉及了点到直线距离公式的应用,解题的关键是将问题转化为AC 2+BC 2<AB 2,属于中档题.6.(单选题,5分)“微信红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的金额为10元,被随机分配成1.36元,1.59元,2.31元,3.22元,1.52元,供甲乙丙丁戊5人抢,每人只能抢一次,则甲乙二人抢到的金额之和不低于4.5元的概率是( ) A. 12 B. 25 C. 35 D. 45【正确答案】:B【解析】:考虑甲、乙二人抢到的金额之和,基本事件总数n= C 52=10,利用列举法求出甲乙二人抢到的金额之和不低于4.5元包含的基本事件有4个,由此能求出甲乙二人抢到的金额之和不低于4.5元的概率.【解答】:解:若所发红包的金额为10元,被随机分配成1.36元,1.59元,2.31元,3.22元,1.52元,供甲乙丙丁戊5人抢,每人只能抢一次,考虑甲、乙二人抢到的金额之和,基本事件总数n= C 52=10,甲乙二人抢到的金额之和不低于4.5元包含的基本事件有:(1.36,3.22),(1.59,3.22),(2.31,3.22),(3.22,1.52),共4个, ∴甲乙二人抢到的金额之和不低于4.5元的概率是P= 410= 25. 故选:B .【点评】:本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.7.(单选题,5分)阿基米德是伟大的古希腊数学家,他和高斯、牛顿并列为世界三大数学家,他一生最为满意的一个数学发现就是“圆柱容球”定理,即圆柱容器里放了一个球,该球顶天立地,四周碰边(即球与圆柱形容器的底面和侧面都相切),球的体积是圆柱体积的三分之二,球的表面积也是圆柱表面积的三分之二.今有一“圆柱容球”模型,其圆柱表面积为12π,则该模型中球的体积为()A.8πB.4πC. 83πD. 8√23π【正确答案】:D【解析】:法一、由已知中圆柱的轴截面为正方形,根据圆柱的表面积公式,可得圆柱的底面半径R,进而求出圆柱的体积,即可求出球的体积.法二、由已知求得球的表面积后得球的半径,从而可得体积.【解答】:解:法一、设该圆柱的底面半径为R,则圆柱的高为2R则圆柱的表面积S=S底+S侧=2×πR2+2•π•R•2R=12π,解得R2=2,即R= √2.∴圆柱的体积为:V=πR2×2R= 4√2π,∴该圆柱的内切球体积为:23 × 4√2π= 8√23π.故选:D.法二、由题意球的表面积为12π×23=8π,即4πr2=8π,得r= √2,∴球的体积为V= 43πr3=43π×(√2)3=8√23π.故选:D.【点评】:本题考查圆柱的结构特征以及球的体积计算,根据已知条件计算出圆柱的底面半径是解答本题的关键,是中档题.8.(单选题,5分)设双曲线C:x2a2−y2b2=1(a>0,b>0)的左焦点为F,直线x−2y+√5=0过点F且与双曲线C在第一象限的交点为P,O为坐标原点,|OP|=|OF|,则双曲线的离心率为()A. √2B. √3C.2D. √5【正确答案】:D【解析】:由已知即可求出c的值,过原点作OH垂直直线l,垂足为H,设双曲线的右焦点为M,连接PM,由|OP|=|OF|=|PM|可得三角形PMF为直角三角形,进而可得H为PF的中点,利用点到直线的距离求出OH,进而可知|PM|,再利用勾股定理以及双曲线的定义建立等式即可求解.【解答】:解:由已知直线过点F,则令y=0,所以x=- √5,所以c= √5,如图所示:过原点作OH垂直直线l,垂足为H,设双曲线的右焦点为M,连接PM,因为|OP|=|OF|=|OM|,所以由直角三角形的性质可得PF⊥PM,所以OH || PM,又O为FM的中点,所以H是PF的中点,所以|PM|=2|OH|,而|OH|= |√5|√12+22=1,所以|PM|=2,由双曲线的定义可得:|PF|-|PM|=2a,即|PF|=2+2a,在直角三角形PFM中,由勾股定理可得:|PF|2+|PM|2=|FM|2,即(2+2a)2+4=4×5=20,解得a=1或-3(舍去),所以双曲线的离心率为e= ca =√51=√5,故选:D.【点评】:本题考查了椭圆的性质以及直角三角形的性质,涉及到双曲线的定义以及勾股定理的应用,考查了学生的运算转化能力,属于中档题.9.(多选题,5分)已知向量a⃗ =(2,1),b⃗⃗ =(-3,1),则()A.(a⃗ + b⃗⃗)⊥ a⃗B.| a⃗ +2 b⃗⃗ |=5C.向量a⃗在向量b⃗⃗上的投影是√22D.向量a⃗的单位向量是(2√55,√55)【正确答案】:AB【解析】:可求出(a⃗+b⃗⃗)•a⃗=0,从而得出选项A正确;可得出a⃗+2b⃗⃗=(−4,3),进而判断选项B正确;可求出a⃗在b⃗⃗上的投影是−√102,从而判断选项C错误;根据向量a⃗可求出向量a⃗的单位向量,从而判断选项D错误.【解答】:解:∵ a⃗+b⃗⃗=(−1,2),a⃗=(2,1),∴ (a⃗+b⃗⃗)•a⃗=−2+2=0,∴ (a⃗+b⃗⃗)⊥a⃗,即A正确;a⃗+2b⃗⃗=(−4,3),∴ |a⃗+2b⃗⃗|=5,即B正确;a⃗在b⃗⃗上的投影是a⃗⃗•b⃗⃗|b⃗⃗|=−5√10=−√102,即C错误;向量a⃗的单位向量为:a⃗⃗|a⃗⃗|=(2√55,√55),或−a⃗⃗|a⃗⃗|=(−2√55,−√55),即D错误.故选:AB.【点评】:本题考查了向量垂直的充要条件,向量坐标的加法、数乘和数量积的运算,投影的计算公式,单位向量的求法,考查了计算能力,属于基础题.10.(多选题,5分)为了了解某外贸企业职工对“一带一路”的认知程度,随机抽取了100名职工组织了“一带一路”知识竞赛,满分为100分(80分及以上为认知程度较高),并将所得成绩分组得到了如图所示的频率分布折线图.从频率分布折线图中得到的这100名职工成绩的以下信息正确的是()A.成绩是50分或100分的职工人数是0B.对“一带一路”认知程度较高的人数是35人C.中位数是74.5D.平均分是75.5【正确答案】:BD【解析】:估计频率分布折线图对应各个选项逐个求解即可.【解答】:解:选项A:50分或100分不能判断有多少人,A错误,选项B:a=1-(0.04+0.015+0.005+0.01)×10=0.3,所以成绩大于80分的有100×(0.3+0.05)=35人,B正确,选项C:设中位数与70的距离为x,则(0.01+0.015)×10+0.04×x=0.5,解得x=6.25,所以中位数为70+6.25=76.25,C错误,选项D:平均分为55×0.01×10+65×0.015×10+75×0.04×10+85×0.03×10+95×0.005×10=75.5,D正确,故选:BD.【点评】:本题考查了频率分布折线图的性质,考查了中位数以及估计平均分等的问题,属于中档题.11.(多选题,5分)若(1-2x)2021=a0+a1x+a2x2+a3x3+…+a2021x2021(x∈R),则()A.a0=1B. a1+a3+a5+⋯+a2021=32021+12C. a0+a2+a4+⋯+a2020=32021−12D. a12+a222+a323+⋯+a202122021=−1【正确答案】:ACD【解析】:分别令x=0和x=±1,x= 12,即可解出所求.【解答】:解:当x=0时,a0=1,当a=1时,a0+a1+a2+a3+…+a2021=-1,① ,当a=-1时,a0-a1+a2-a3+…-a2021=32021,② ,由① + ② 可得,a0+a2+…+a2020= 32021−12,由① - ② 可得,a1+a3+…+a2021= 32021+12,令x= 12,可得a0+ a12+ a222+ a323+…+ a202122021=0,则a12+ a222+ a323+…+ a202122021=-1,故选:ACD.【点评】:本题考查赋值法在研究二项展开式中系数的问题,同时考查方程思想在解题中的作用.属于中档题.12.(多选题,5分)关于函数f(x)= √3 |sinx|-|cosx|有下述四个结论正确的有()A.f(x)的最小正周期为πB.f(x)在(−π2,π2)上单调递增C.f(x)在[-π,π]上有四个零点D.f(x)的值域为[-1,2]【正确答案】:AC【解析】:直接利用三角函数中正弦型函数的性质的应用和函数的关系式的变换判断A、B、C、D的结论.【解答】:解:根据函数数f(x)=√3|sinx|−|cosx|,对于A:f(x+kπ)= √3|sin(x+kπ)|−|cos(x+kπ)| =f(x)所以函数的周期为kπ,最小值正周期为π,故A正确;对于B:对于函数f(x)=√3|sinx|−|cosx|,由于函数g(x)= √3|sinx|在区间x∈ (−π2,π2)上有增有减,故B错误;对于C:由于函数满足f(−x)=√3|sin(−x)|−|cos(−x)| =f(x),所以函数为偶函数,函数的图象关于y轴对称,当x= ±π6或±5π6时函数的值为0,故函数在[-π,π]上有四个零点,故C正确;对于D:函数当满足x ∈[2kπ,2kπ+π2](k∈Z)时,函数的值域为[-1,√3 ],根本取不到最大值2,故D错误;故选:AC.【点评】:本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质,函数的零点和方程的根的关系,主要考查学生的运算能力和转换能力及思维能力,属于中档题.13.(填空题,5分)已知直线y=2x+b是曲线y=lnx+3的一条切线,则b=___ .【正确答案】:[1]2-ln2【解析】:求出函数的导数,利用导数为2,求出切点坐标,然后求出b的值.【解答】:解:函数y=lnx+3(x>0)的导数为:y′= 1x,由题意直线y=2x+b是曲线y=lnx+3(x>0)的一条切线,可知1x=2,所以x= 12,所以切点坐标为(12,ln 12+3),切点在直线上,所以b=y-2x=ln 12+3-1=2-ln2.故答案为:2-ln2.【点评】:本题是中档题,考查曲线的导数与切线方程的关系,考查计算能力,是中档题.14.(填空题,5分)如图,在四棱锥P-ABCD中,底面ABCD为菱形,PD⊥底面ABCD,O为对角线AC与BD的交点,若PD=2,∠APD=∠BAD=π3,则三棱锥P-AOD的外接球表面积为___ .【正确答案】:[1]16π【解析】:取PA中点M,AD中点N,连接OM,ON,MN,求解三角形证明OM=MA=MD=MP,可得M为三棱锥P-AOD的外接球的球心,外接球的半径为2,代入球的表面积公式得答案.【解答】:解:如图,取PA中点M,AD中点N,连接OM,ON,MN,∴MN || PD,MN= 12 PD,∵PD⊥底面ABCD,∴PD⊥AD,PD⊥ON,在Rt△PDA中,PD=2,∠APD= π3,∴PM=MN= 12PA=2,MD= 12PA=2.∵MN || PD,∴MN⊥ON,在菱形ABCD中,∠BAD=π3,则AB=AD= √42−22=2√3,∴ON= 12 AB= √3,MN= 12PD=1.∴OM= √ON2+MN2=2,∵OM=MA=MD=MP,∴M为三棱锥P-AOD的外接球的球心,外接球的半径为2.∴三棱锥P-AOD的外接球表面积为4π×22=16π,【点评】:本题考查三棱锥的外接球的表面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.15.(填空题,5分)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九韶的许多创造性成就,其中在卷五“三斜求积“中提出了已知三角形三边a,b,c求面积的公式,这与古希腊的海伦公式完全等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即S=√1 4[c2a2−(c2+a2−b22)2],S为三角形的面积,a,b,c为三角形的三边长,现有△ABC满足sinA:sinB:sinC= 3:2√2:√5且S△ABC=12.则△ABC的外接圆的半径为___ .【正确答案】:[1] √10【解析】:根据正弦定理可知,a:b:c=sinA:sinB:sinC= 3:2√2:√5,利用余弦定理求出cosC,再结合三角形面积公式即可求出c的值,利用正弦定理即可求解.【解答】:解:由正弦定理可得,sinA:sinB:sinC=a:b:c= 3:2√2:√5,设a=3k(k>0),则b=2 √2 k,c= √5 k,由余弦定理可得,cosC= a 2+b2−c22ab= 2222×3k×2√2k= √22,因为C∈(0,π),可得C= π4,由S=√14[c2a2−(c2+a2−b22)2] =12,将a=3k,b=2 √2 k,c= √5 k代入,解得k=2,所以可得c=2 √5,设△ABC的外接圆的半径为R,由正弦定理可知,2R= csinC =√5√22=2 √10,即△ABC的外接圆的半径为√10.【点评】:本题主要考查利用正、余弦定理解三角形,以及三角形面积公式的应用,考查了计算能力和转化思想,属于中档题.16.(填空题,5分)F 为抛物线C :y 2=4x 的焦点,过F 且斜率为k 的直线l 与抛物线交于P 、Q 两点,线段PQ 的垂直平分线交x 轴于点M ,且|PQ|=6,则|MF|=___ . 【正确答案】:[1]3【解析】:先根据抛物线方程求出p 的值,然后再由抛物线的性质求出PQ 的垂直平分线方程,求出点M ,从而可求出所求.【解答】:解:因为F 为抛物线C :y 2=4x 的焦点,则F (1,0),p=2, 则直线l 的方程为y=k (x-1),设P (x 1,y 1),Q (x 2,y 2), 联立 {y =k (x −1)y 2=4x ,消去y 并整理得:k 2x 2-(2k 2+4)x+k 2=0,则 x 1+x 2=2+4k 2 ,利用抛物线得定义可知:|PQ|=x 1+x 2+p=x 1+x 2+2=6, 则 x 1+x 2=2+4k 2 =4,解得k= ±√2 , 而线段PQ 中点的横坐标为x 1+x 22=2 ,则纵坐标为k ,所求线段PQ 的垂直平分线的方程为 y −k =−1k(x −2) , 令y=0,可得x=4,即M (4,0), 所以|MF|=3. 故答案为:3.【点评】:本题主要考查了抛物线的性质,解题时要注意等价思想的合理运用,确定线段PQ 的垂直平分线时关键,属于中档题. 17.(问答题,10分) ① a 2+a 4=6,S 9=45; ② S n = n 22+n2 ; ③ a nan−1=nn−1(n ≥2),a 1 =1这三个条件中任选一个补充在下面的问题中,并加以解答.设等差数列{a n }的前n 项和为S n ,_____,数列{b n }为等比数列 ,b 1=2a 1,b 2=2a 2 ,求数列{a n b n }的前n 项和T n .【正确答案】:【解析】:直接利用数列的递推关系式的应用求出数列的通项公式,进一步利用乘公比错位相减法在数列求和中的应用求出结果.【解答】:解:选 ① 时, 由于a 2+a 4=6,S 9=45; 所以 {a 2+a 4=6S 9=45 ,整理得 {a 3=3a 5=5,故d=a 5−a 32=1 ,所以a n =a 3+(n-3)=n ,数列{b n }为等比数列 ,b 1=2a 1,b 2=2a 2 , 整理得 q =b2b 1=2 ,所以 b n =b 1•q n−1=2n , 所以 c n =a n b n =n •2n ,故 T n =1×21+2×22+⋯+n •2n ① , 2 T n =1×22+2×23+⋯+n •2n+1 ② , ① - ② 得: −T n =2+22+23+⋯+2n −n •2n= 2(2n −1)2−1−n •2n ,整理得 T n =(n −1)•2n+1+2 . 选 ② 时,当n=1时,a 1=S 1=1,当n≥2时,a n =S n -S n-1=n ,(首项符合通项), 故a n =n .数列{b n }为等比数列 ,b 1=2a 1,b 2=2a 2 , 整理得 q =b2b 1=2 ,所以 b n =b 1•q n−1=2n , 所以 c n =a n b n =n •2n ,故 T n =1×21+2×22+⋯+n •2n ① , 2 T n =1×22+2×23+⋯+n •2n+1 ② , ① - ② 得: −T n =2+22+23+⋯+2n −n •2n= 2(2n −1)2−1−n •2n ,整理得 T n =(n −1)•2n+1+2 . 选 ③ 时, a nan−1=nn−1(n ≥2),a 1 =1,利用叠乘法,a na1=nn−1•n−1n−2…21=n,故a n=n.数列{b n}为等比数列,b1=2a1,b2=2a2,整理得q=b2b1=2,所以b n=b1•q n−1=2n,所以c n=a n b n=n•2n,故T n=1×21+2×22+⋯+n•2n① ,2 T n=1×22+2×23+⋯+n•2n+1② ,① - ② 得:−T n=2+22+23+⋯+2n−n•2n = 2(2n−1)2−1−n•2n,整理得T n=(n−1)•2n+1+2.【点评】:本题考查的知识要点:数列的通项公式的求法和应用,乘公比错位相减法在数列求和中的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.18.(问答题,12分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosBb +cosCc=1a且a=4,b>a>c.(1)求bc的值;(2)若△ABC的面积S=2√7,求cosB.【正确答案】:【解析】:(1)由正弦定理,两角和的正弦公式化简已知等式可得sinBsinC=sin2A,由正弦定理即可求解bc的值;(2)由已知利用三角形的面积公式可求sinA,利用同角三角函数基本关系式可求cosA的值,由余弦定理解得b2+c2=40,又bc=16,解得b,c的值,进而可求cosB的值.【解答】:解:(1)因为cosBb +cosCc=1a,由正弦定理可得cosBsinB+cosCsinC= 1sinA,可得 sinCcosB+cosCsinBsinBsinC = sin(B+C)sinBsinC= sinAsinBsinC= 1sinA,所以sinBsinC=sin2A,由正弦定理可得bc=a2=16;(2)因为S△ABC= 12bcsinA=8sinA=2 √7,解得sinA= √74,又b>a>c,所以cosA= √1−sin2A = 34,在△ABC中,由余弦定理cosA= b 2+c2−a22bc= b2+c2−1632= 34,解得b2+c2=40,又bc=16,解得b=4 √2,c=2 √2,所以cosB= a 2+c2−b22ac= 42+(2√2)2−(4√2)22×4×2√2=- √24.【点评】:本题主要考查了正弦定理,两角和的正弦公式,三角形的面积公式,同角三角函数基本关系以及余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.(问答题,12分)某研究院为了调查学生的身体发育情况,从某校随机抽测120名学生检测他们的身高(单位:米),按数据分成[1.2,1.3],(1.3,1.4],…(1.7,1.8]这6组,得到如图所示的频率分布直方图,其中身高大于或等于1.59米的学生有20人,其身高分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,1.68,1.69,1.69,1.71,1.72,1.74,以这120名学生身高在各组的身高的频率估计整个学校的学生在各组身高的概率.(1)求该校学生身高大于1.60米的频率,并求频率分布直方图中m,n,t的值;(2)若从该校中随机选取3名学生(学生数量足够大),记X为抽取学生的身高在(1.4,1.6]的人数,求X的分布列和数学期望.【正确答案】:【解析】:(1)120名学生中身高大于1.6米的有18人,从而该校学生身高大于1.6米的频率为0.15,设a为学生的身高,分别滶出P(1.2≤a≤1.3)=P( 1.7<a≤1.8)=0.025,P(1.3<a≤1.4)=P(1.6<a≤1.7)=0.125,P (1.4<a≤1.5)=P(1.5<a≤1.6)=0.35,由此能求出m,n,t.(2)学生身高在[1.4,1.6]的概率为0.7,随机变量X服从二项分布X~B(3,0.7),由此能求出X的分布列和数学期望.【解答】:解:(1)由题意知,120名学生中身高大于1.6米的有18人, ∴该校学生身高大于1.6米的频率为 18120 =0.15, 设a 为学生的身高,则P (1.2≤a≤1.3)=P ( 1.7<a≤1.8)= 3120 =0.025, P (1.3<a≤1.4)=P (1.6<a≤1.7)= 15120 =0.125,P (1.4<a≤1.5)=P (1.5<a≤1.6)= 12 (1-2×0.025-2×0.125)=0.35, ∴m=0.0250.1 =0.25,n= 0.1250.1 =1.25,t= 0.350.1=3.5. (2)由(1)知学生身高在[1.4,1.6]的概率为p=2×0.35=0.7, 随机变量X 服从二项分布X ~B (3,0.7),则P (X=0)= C 30×0.33 =0.027, P (X=1)= C 31×0.7×0.32 =0.189, P (X=2)= C 32×0.72×0.3 =0.441, P (X=3)= C 33×0.73 =0.343,∴X 的分布列为: X1 2 3 P0.027 0.189 0.441 0.343∴EX=3×0.7=2.1.【点评】:本题考查频率=离散型随机变量的分布列、数学期望的求法,考查频率分布直方图、二项分布等基础知识,考查运算求解能力,是中档题.20.(问答题,12分)在四棱锥P-ABCD 中,△PAB 为直角三角形,∠APB=90°且 PA =12AB =CD ,四边形ABCD 为直角梯形,AB || CD 且∠DAB 为直角,E 为AB 的中点,F 为PE 的四等分点且 EF =14EP ,M 为AC 中点且MF⊥PE . (1)证明:AD⊥平面ABP ;(2)设二面角A-PC-E 的大小为α,求α的取值范围.【正确答案】:【解析】:(1)取PE 的中点N ,连结DN ,AN ,利用平面几何知识证明得到AN⊥PE ,DN⊥PE ,然后再利用线面垂直的判定定理进行证明即可;(2)建立合适的空间直角坐标系,求出所需各点的坐标,然后求出两个平面的法向量,利用二面角的计算公式表示出cosα,利用cosα的取值范围求解α的范围即可.【解答】:(1)证明:取PE 的中点N ,连结DN ,AN , 在直角梯形ABCD 中,CD || AB 且 CD =12AB , 又E 为AB 的中点,所以四边形AECD 为矩形, 所以M 为DE 的中点, 所以MF 为△DEN 的中位线, 又MF⊥PE ,所以DN⊥PE , 在直角△ABP 中, AP =12AB , 所以△AEP 为等边三角形,所以AN⊥PE ,又DN∩AN=N ,DN ,AN⊂平面AND , 所以PE⊥平面AND ,又AD⊂平面AND ,所以PE⊥AD ,又因为AD⊥AB ,AB∩PE=E ,AB ,PE⊂平面ABP , 所以AD⊥平面ABP ;(2)解:如图,建立空间直角坐标系A-xyz , 不妨设AB=2PA=2,AD=h >0,则A (0,0,0), P (√32,12,0),E(0,1,0),C(0,1,ℎ) , 所以 PC⃗⃗⃗⃗⃗⃗=(−√32,12,ℎ),AP ⃗⃗⃗⃗⃗⃗=(√32,12,0),EP ⃗⃗⃗⃗⃗⃗=(√32,−12,0) , 设平面EPC 的一个法向量为 m ⃗⃗⃗=(a ,b ,c) , 则有 {m ⃗⃗⃗•PC ⃗⃗⃗⃗⃗⃗=0m ⃗⃗⃗•EP ⃗⃗⃗⃗⃗⃗=0 ,即 {−√32a +12b +ℎ•c =0√32a −12b =0,取a=1,则 b =√3,c =0 , 故 m ⃗⃗⃗=(1,√3,0) ,同理可得平面PAC 的一个法向量 n ⃗⃗=(1,−√3,√3ℎ) , 由图可知,二面角α为锐二面角, 所以 cosα=|m ⃗⃗⃗⃗•n ⃗⃗||m ⃗⃗⃗⃗||n ⃗⃗|=|1−3|√1+3×√1+3+3ℎ2=1√4+3ℎ2∈(0,12) ,又0<α< π2 , 所以 α∈(π3,π2) .【点评】:本题考查了立体几何的综合应用,涉及了线面垂直的判定定理和性质定理的应用、利用向量法求解二面角的应用,解题的关键是建立合适的空间直角坐标系,得到所需的向量,将问题转化为空间向量之间的关系进行研究,属于中档题.21.(问答题,12分)已知点F 1,F 2分别是椭圆C 的左、右焦点,离心率为 √22,点P 是以坐标原点O 为圆心的单位圆上的一点,且 PF 1⃗⃗⃗⃗⃗⃗⃗⃗•PF 2⃗⃗⃗⃗⃗⃗⃗⃗=0 . (1)求椭圆C 的标准方程;(2)设斜率为k 的直线l (不过焦点)交椭圆于M ,N 两点,若x 轴上任意一点到直线MF 1与NF 1的距离均相等,求证:直线l 恒过定点,并求出该定点的坐标.【正确答案】:【解析】:(1)由已知建立等式关系即可求解;(2)设出直线l 的方程y=kx+m 以及M ,N 的坐标,利用已知可得x 轴为直线MF 1与NF 1的夹角的角平分线,所以k MF 1+k NF 1=0 ,然后联立直线与椭圆的方程,利用韦达定理以及斜率关系化简可得m=2k ,进而可以求解.【解答】:解:(1)设椭圆的方程为:x 2a2+y2b2=1(a>b>0),设P(x,y),F1(-c,0),F2(c,0),则由已知可得:{ca =√22(x−c,y)•(x+c,y)=0 x2+y2=1a2=b2+c2,即{ca=√22x2+y2−c2=0x2+y2=1a2=b2+c2,解得a= √2,b=c=1,故椭圆的方程为:x 22+y2=1;(2)证明:设直线l的方程为:y=kx+m,M(x1,y1),N(x2,y2),则k MF1=y1x1+1=kx1+mx1+1,k NF1=y2x2+1=kx2+mx2+1,若x轴上任意一点到直线MF1与NF1的距离均相等,则x轴为直线MF1与NF1的夹角的角平分线,所以k MF1+k NF1=0,即kx1+mx1+1+kx2+mx2+1=0,整理可得:2kx1x2+(m+k)(x1+x2)+2m=0… ①联立方程{y=kx+mx22+y2=1,消去y整理可得:(1+2k2)x2+4mkx+2m2-2=0,则Δ=16m2k2-4(1+2k2)(2m2-2)>0,解得m2<1+2k2,且x 1+x2=−4mk1+2k2,x 1x2=2m2−21+2k2,代入① 整理可得:m=2k,即直线l的方程为:y=kx+2k=k(x+2),故直线l恒过定点(-2,0).【点评】:本题考查了椭圆的方程以及直线与椭圆的位置关系的应用,涉及到向量的坐标运算以及角平分线的性质,考查了学生的运算转化能力,属于中档题.22.(问答题,12分)已知函数f(x)=alnx+x+2x+2a(a∈R).(1)讨论函数f(x)的单调性;(2)若0<a<e4,求证f(x)<x+e x+2x.【正确答案】:【解析】:(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)问题转化为证e xx2>a(lnx+2)x,设g(x)= e xx2(x>0),h(x)= a(lnx+2)x(x>0),根据函数的单调性分别求出函数g(x)的最小值和h(x)的最大值,从而证明结论成立.【解答】:解:(1)f(x)=alnx+x+2x+2a(a∈R),定义域是(0,+∞),则f′(x)= ax +1- 2x2= x2+ax−2x2,设t=x2+ax-2(x>0),其中Δ=a2+8>0,故令x2+ax-2=0,解得:x= −a±√a 2+82又x>0,故x= −a+√a2+82,令f′(x)>0,解得:x>−a+√a 2+82,令f′(x)<0,解得:0<x<−a+√a 2+82,故f(x)在(0,−a+√a 2+82)递减,在(−a+√a2+82,+∞)递增;(2)证明:要证f(x)<x+ e x+2x,即证e xx>a(lnx+2),即证e xx2>a(lnx+2)x,设g(x)= e xx2(x>0),则g′(x)= (x−2)e xx3,令g′(x)≤0,得0<x<2,令g′(x)>0,解得:x>2,故g(x)在(0,2)递减,在(2,+∞)递增,故g(x)min=g(2)= e24,即g(x)≥ e24,令h(x)= a(lnx+2)x (x>0),则h′(x)=- a(lnx+1)x2,令h′(x)>0,解得:0<x<1e ,令h′(x)<0,解得:x>1e,故h(x)在(0,1e )递增,在(1e,+∞)递减,故h(x)max=h(1e)=ae,又∵0<a<e4,∴h(x)≤ae<e4•e= e24,故h(x)<g(x),故f(x)<x+ e 2+2x成立.【点评】:本题考查了函数的单调性,最值问题,考查导数的应用以及不等式的证明,考查转化思想,是中档题.。

山东省枣庄市、滕州市2020届高三上期末数学试卷及答案

山东省枣庄市、滕州市2020届高三上期末数学试卷及答案

小岛
三、填空题:本题共 4 小题,每小题 5 分,共 20 分.
13.谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》、《好玩的数学》、《故
事中的数学》等书,题材广泛、妙趣横生,深受广大读者喜爱.下面我们一起来看《好
玩的数学》中谈老的一篇文章《五分钟内挑出埃及分数》:文章首先告诉我们,古埃
及人喜欢使用分子为1 的分数(称为埃及分数).如用两个埃及分数 1 与 1 的和表示 2
2 19
10.在平面直角坐标系 xOy 中,抛物线 C :y2 2 px( p 0) 的焦点为 F ,准线为 l .设 l 与
x 轴的交点为 K ,P 为 C 上异于 O 的任意一点,P 在 l 上 的射影为 E ,EPF 的外角平分线交 x 轴于点 Q ,过 Q 作 QM PF 于 M ,过 Q 作 QN PE 交线段 EP 的延长线 于点 N ,则
3 15
5
等.从 1 , 1 , 1 ,…, 1 , 1 这100 个埃及分数中挑出不同的 3 个,使得它们
234
100 101
的和为1 ,这三个分数是
.(按照从大到小的顺序排列)
14.在平面直角坐标系 xOy 中,角 的顶点是 O ,始边是 x 轴的非负半轴, 0 2π ,
点 P(1 tan π ,1 tan π ) 是 终边上一点,则 的值是
需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡 上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回. 一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.已知集合 A {x | 1 x 1},则 A N

黑龙江省伊春市第二中学2020届高三上学期期末考试数学(文)试题 含答案

黑龙江省伊春市第二中学2020届高三上学期期末考试数学(文)试题 含答案

伊春市第二中学2020届第一学期期末考试高三学年 文科数学试卷分值:150分 时间:120分钟一、选择题(每小题5分,每题只有一个正确选项)1.已知集合A ={x|(x+1)(x ﹣3)<0},B ={1,2,3},则A ∩B =( ) A .{x|﹣1<x <3} B .{x|1≤x ≤2}C .{1,2,3}D .{1,2}2.已知复数z 满足(1+i )z =2i ,则z =( ) A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i3.命题“∃α∈R ,sin α=0”的否定是( ) A .∃α∈R ,sin α≠0 B .∀α∈R ,sin α≠0 C .∀α∈R ,sin α<0D .∀α∈R ,sin α>04.下列函数中,既是奇函数又在(﹣∞,+∞)上单调递增的是( ) A .y =sinx B .y =||xC .y =﹣3xD .y =)1ln(2x x ++5.已知向量=(2,﹣1),=(0,1),(+k )•=3,则k =( ) A .﹣2B .2C .﹣4D .46.在等差数列{a n }中,142,a a 是方程x 2+6x+2=0的两个实根,则1428a a a ⋅=( ) A .23-B .﹣3C .﹣6D .27.将包含甲、乙两人的4位同学平均分成2个小组参加某项公益活动,则甲、乙两名同学分在同一小组的概率为( ) A . B . C . D .8.已知双曲线(a >0)的一条渐近线为y =,则双曲线的焦点坐标为( ) A .(±,0) B .(±,0) C .(0,±) D .(0,±)9.执行如右图所示的程序框图,若输出的结果为3,则可输入的实数x的值的个数为()A.1 B.2 C.3 D.410.某三棱锥的三视图如下图所示,则该三棱锥的体积为()A.B.C.D.111.函数y=的图象大致为()A.B.C.D.12.已知定义在R上的偶函数f(x)的导函数为f´(x),并且当x>0时,有2f(x)+xf´(x)>0,且 f(﹣1)=0,则使得f(x)>0成立的x的取值范围是()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(0,1)二、填空题(本大题共4个小题,每小题5分)13.已知函数f(x)=,则f[f(2)]=.14.设x、y满足约束条件,则z=2x﹣3y的最小值是________.15.点A,B,C,D均在同一球面上,AD⊥平面ABC,其中△ABC是边长为3的等边三角形,AD=2AB,则该球的表面积为.16.已知数列{an }的前n项和Sn满足,Sn=3an﹣2,数列{nan}的前n项和为Tn,则满足Tn>100的最小的n值为.三、解答题(本大题共6小题,解答应写出文字说明,证明过程或演算步骤)17.在△A BC中,∠A,∠B,∠C的对边分别为a,b,c,若bcos C=(2a-c)cosB ,(Ⅰ)求∠B 的大小;(Ⅱ)若b =7,a +c =4,求a,c 的值.18.在某次测验中,某班40名考生的成绩满分100分统计如下图所示. (Ⅰ)估计这40名学生的测验成绩的中位数x 0精确到0.1;(Ⅱ)记80分以上为优秀,80分及以下为合格,结合频率分布直方图完成下表,并判断是否有95%的把握认为数学测验成绩与性别有关?合格 优秀 合计 男生 16 女生 4 合计40附:x 2=19.如图所示,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,AD ∥BC ,AB ⊥BC ,AP =AD =2AB =2BC =2,点M 在棱PC 上. (Ⅰ)求证:AM ⊥CD ;(Ⅱ)当AM ⊥平面PCD 时,求三棱锥M ﹣PAD 的体积.P (x 2≥k 0)0.050 0010 0.001 k 03.8416.63510.82820.已知椭圆C :+=1(a <b <0)的离心率为,短轴长为4.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点N (0,2)作两条直线,分别交椭圆C 于A , B 两点(异于N ),当直线NA ,NB 的斜率之和为4时,直线AB 恒过定点,求出定点的坐标.21.已知函数f (x )=.(1)若f (x )在(0,+∞)上单调递增,求a 的取值范围; (2)当a =1且x >0时,f (x )>mln (x+1),求m 的取值范围.22.已知在直角坐标系xOy 中,圆锥曲线C 的参数方程为4cos 4sin x y θθ⎧⎨⎩==(θ为参数),直线l 经过定点P (2,3),倾斜角为3π. (1)写出直线l 的参数方程和圆的标准方程;(2)设直线l 与圆相交于A ,B 两点,求|PA |·|PB |的值.高三文科数学参考答案与试题解析一.选择题(共14小题)1.已知集合A={x|(x+1)(x﹣3)<0},B={1,2,3},则A∩B=()A.{x|﹣1<x<3} B.{x|1≤x≤2} C.{1,2,3} D.{1,2}【解答】解:A={x|﹣1<x<3};∴A∩B={1,2}.故选:D.2.已知复数z满足(1+i)z=2i,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i【解答】解:∵复数z满足(1+i)z=2i,∴(1﹣i)(1+i)z=(1﹣i)×2i,化为2z =2(i+1),∴z=1+i.故选:B.3.命题“∃α∈R,sinα=0”的否定是()A.∃α∈R,sinα≠0 B.∀α∈R,sinα≠0C.∀α∈R,sinα<0 D.∀α∈R,sinα>0【解答】解:特称命题的否定是全称命题,∴∃α∈R,sinα=0的否定为:∀α∈R,sinα≠0,故选:B.4.下列函数中,既是奇函数又在(﹣∞,+∞)上单调递增的是()A.y=sin x B.y=|x|C.y=﹣x3D.y=ln(+x)【解答】解:根据题意,依次分析选项:对于A,y=sin x,为正弦函数,在(﹣∞,+∞)上不是单调函数,不符合题意;对于B,y=|x|,为偶函数,不符合题意;对于C,y=﹣x3,是奇函数但在(﹣∞,+∞)上单调递减,不符合题意;对于D,y=lnx(+x),既是奇函数又在(﹣∞,+∞)上单调递增,符合题意;故选:D.5.已知向量=(2,﹣1),=(0,1),(+k)•=3,则k=()A.﹣2 B.2 C.﹣4 D.4【解答】解:因为=(2,﹣1),=(0,1),所以(+k)•=+k2=﹣1+k=3,解得k=4,故选:D.6.在等差数列{a n}中,a2,a14是方程x2+6x+2=0的两个实根,则=()A.B.﹣3 C.﹣6 D.2【解答】解:∵a2,a14是方程x2+6x+2=0的两个实根,∴a2+a14=﹣6,a2a14=2,由等差数列的性质可知,a2+a4=2a8=﹣6,∴a8=﹣3则=,故选:A.7.将包含甲、乙两人的4位同学平均分成2个小组参加某项公益活动,则甲、乙两名同学分在同一小组的概率为()A.B.C.D.【解答】解:将包含甲、乙两人的4位同学平均分成2个小组,共有=3种方法,甲、乙两名同学分在同一小组,共有1种方法所以甲、乙两名同学分在同一小组的概率为故选:C.8.已知双曲线(a>0)的一条渐近线方程为y=,则双曲线的焦点坐标为()A.(±,0)B.(±,0)C.(0,±)D.(0,±)【解答】解:双曲线(a>0)的渐近线方程为y=±x,由题意可得=,即有a=2,则双曲线的b=,c==,即有双曲线的焦点为(0,±),故选:D.9.执行如图所示的程序框图,若输出的结果为3,则可输入的实数x的值的个数为()A.1 B.2 C.3 D.4【解答】解:根据题意,该框图的含义是当x≤2时,得到函数y=x2﹣1;当x>2时,得到函数y=log2x.因此,若输出结果为3时,①若x≤2,得x2﹣1=3,解之得x=±2②当x>2时,得y=log2x=3,得x=8因此,可输入的实数x值可能是2,﹣2或8,共3个数.故选:C.10.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.D.1【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,棱锥的底面面积S=×1×1=,高为1,故棱锥的体积V==,故选:A.11.函数y=的图象大致为()A.B.C.D.【解答】解:根据题意,y=,其定义域为{x|x≠0},有f(﹣x)=﹣=﹣f(x),即函数f(x)为奇函数,排除B、D;当x>0时,e﹣x>0,则有ln(e x+e﹣x)>ln(e x)=x,必有>1,排除A;故选:C.12.已知定义在R上的偶函数f(x)的导函数为f'(x),当x>0时,有2f(x)+xf'(x)>0,且f(﹣1)=0,则使得f(x)>0成立的x的取值范围是()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(0,1)【解答】解:当x>0时,由2f(x)+xf'(x)>0可知:两边同乘以x得:2xf(x)+x2f′(x)>0,设:g(x)=x2f(x),则g′(x)=2xf(x)+x2f′(x)>0,恒成立:∴g(x)在(0,+∞)单调递增,定义在R上的偶函数f(x),f(﹣1)=0,可得f(1)=0,函数f(x)的图象如图:当x>0;f(x)>0成立的x的取值范围是:x>1,当x<0时,函数是偶函数,同理得:x<﹣1,综上可知:实数x的取值范围为(﹣∞,﹣1)∪(1,+∞),故选:B.13.已知函数f(x)=,则f[f(2)]=.【解答】解:∵函数f(x)=,∴f(2)=2﹣2=,f[f(2)]=f()==.故答案为:.14.设x、y满足约束条件,则z=2x﹣3y的最小值是【解答】解:由z=2x﹣3y得y=,作出不等式组对应的平面区域如图(阴影部分ABC):平移直线y=,由图象可知当直线y=,过点A时,直线y=截距最大,此时z最小,由得,即A(3,4),代入目标函数z=2x﹣3y,得z=2×3﹣3×4=6﹣12=﹣6.∴目标函数z=2x﹣3y的最小值是﹣6.15.点A,B,C,D均在同一球面上,AD⊥平面ABC,其中△ABC是等边三角形,AD=2AB=6,则该球的表面积为48π.【解答】解:如图,O′为底面的中心,OO′⊥底面ABC,E为AD中点,且OE⊥AD,在正三角形ABC中,由AB=3求得,又OO′=AE=3,∴OA=2,∴S球=4π×12=48π,故答案为:48π.16.已知数列{a n}的前n项和S n满足,S n=3a n﹣2,数列{na n}的前n项和为T n,则满足T n >100的最小的n值为7 .【解答】解:根据题意,数列{a n}满足S n=3a n﹣2,①当n≥2时,有S n﹣1=3a n﹣1﹣2,②,①﹣②可得:a n=3a n﹣3a n﹣1,变形可得2a n=3a n﹣1,当n=1时,有S1=a1=3a1﹣2,解可得a1=1,则数列{a n}是以a1=1为首项,公比为的等比数列,则a n=()n﹣1,数列{na n}的前n项和为T n,则T n=1+2×+3×()2+……+n×()n﹣1,③则有T n=+2×()2+3×()3+……+n×()n,④③﹣④可得:﹣T n=1+()+()2+……×()n﹣1﹣n×()n=﹣2(1﹣)﹣n×()n,变形可得:T n=4+(2n﹣4)×()n,若T n>100,即4+(2n﹣4)×()n>100,分析可得:n≥7,故满足T n>100的最小的n值为7;故答案为:7.17.(1)sinBcos C=(2sinA-sinc)cos Bsin(B+C)=2sinAcosBcosB=,B=。

2020-2021学年北京市人大附中高三(上)期末数学试卷

2020-2021学年北京市人大附中高三(上)期末数学试卷

2020-2021学年北京市人大附中高三(上)期末数学试卷试题数:21,总分:1501.(单选题,4分)已知集合A={x∈R|-1≤x≤3},B={x∈N|2x<4},则集合A∩B中元素的个数为()A.1B.2C.3D.42.(单选题,4分)若z(1-i)=2i,则z的虚部为()A.1B.-1C.iD.-i3.(单选题,4分)在(√x2−√x)6的二项展开式中,x2的系数为()A. 1516B. −1516C. 316D. −3164.(单选题,4分)已知平面向量a⃗=(√3,−1),|b⃗⃗|=4,且(a⃗−2b⃗⃗)⊥a⃗,则|a⃗−b⃗⃗| =()A.2B.3C.4D.55.(单选题,4分)如图,AB是⊙O的直径,PA垂直于⊙O所在平面,C是圆周上不同于A,B两点的任意一点,且AB=2,PA=BC=√3,则二面角A-BC-P的大小为()A.30°B.45°C.60°D.90°6.(单选题,4分)已知f(x)=√32sinωx+sin2ωx2−12(ω>0),则下列说法错误的是()A.若f(x)在(0,π)内单调,则0<ω≤23B.若f(x)在(0,π)内无零点,则0<ω≤16C.若y=|f(x)|的最小正周期为π,则ω=2D.若ω=2时,直线x=−2π3是函数f(x)图象的一条对称轴7.(单选题,4分)数列{a n}的前n项和记为S n,则“数列{S n}为等差数列”是“数列{a n}为常数列”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.(单选题,4分)设抛物线C:x2=2py(p>0)的焦点为F,点P在C上,|PF|= 174,若以线段PF为直径的圆过点(1,0),则C的方程为()A.x2=y或x2=8yB.x2=2y或x2=8yC.x2=y或x2=16yD.x2=2y或x2=16y9.(单选题,4分)在△ABC中,a=2 √3,√7 bcosA=3asinB,则△ABC面积的最大值是()A. 3√7B. 6√7C. 9√7D. 18√710.(单选题,4分)已知函数f(x)=sin[cosx]+cos[sinx],其中[x]表示不超过实数x的最大整数,关于f(x)有下述四个结论:① f(x)的一个周期是2π;② f(x)是偶函数;③ f(x)的最大值大于√2;④ f(x)在(0,π)单调递减.其中所有正确结论编号是()A. ① ②B. ① ③C. ① ④D. ② ④11.(填空题,5分)某单位有青年职工160人,中年职工人数是老年职工人数的2倍,老、中、青职工共有430人,为了解职工身体状况,现采用分层抽样方法进行抽查,在抽取的样本中有青年职工64人,则该样本中的老年职工人数为___ .12.(填空题,5分)在各项均为正数的等比数列{a n}中,已知a2•a4=16,a6=32,记b n=a n+a n+1,则数列{b n}的前六项和S6为___ .13.(填空题,5分)已知F是双曲线C:x2- y28=1的右焦点,P是双曲线C上的点,A(0,6√2).① 若点P在双曲线右支上,则|AP|+|PF|的最小值为 ___ ;② 若点P在双曲线左支上,则|AP|+|PF|的最小值为 ___ .14.(填空题,5分)已知函数f(x)={3x−1+kx−1,x≤0|lnx|+kx−2,x>0,若f(x)恰有4个零点,则实数k的取值范围为 ___ .15.(填空题,5分)某校开展“我身边的榜样”评选活动,现对3名候选人甲、乙、丙进行不记名投票,投票要求见选票,如下所示.这3名候选人的得票数(不考虑是否有效)分别为总票数的84%,75%,46%,则本次投票的有效率(有效票数与总票数的比值)最高可能为___ .乙2.每张选票“〇”的个数不超过2时才为有效票.丙16.(问答题,13分)已知△ABC中,bcosA-c>0.(Ⅰ)△ABC中是否必有一个内角为钝角,说明理由.(Ⅱ)若△ABC同时满足下列四个条件中的三个:① sinA=√22;② sinC=√32;③ a=2;④ c=√2.请证明使得△ABC存在的这三个条件仅有一组,写出这组条件并求出b的值.17.(问答题,13分)如图,在四面体ABCD中,E,F,M分别是线段AD,BD,AC的中点,∠ABD=∠BCD=90°,EC=√2,AB=BD=2.(Ⅰ)证明:EM || 平面BCD;(Ⅱ)证明:EF⊥平面BCD;(Ⅲ)若直线EC与平面ABC所成的角等于30°,求二面角A-CE-B的余弦值.18.(问答题,14分)某企业发明了一种新产品,其质量指标值为m(m∈[70,100]),其质量指标等级如表:质量指标值m [70,75)[75,80)[80,85)[85,90)[90,100]质量指标等级良好优秀良好合格废品为了解该产品的经济效益并及时调整生产线,该企业先进行试产生.现从试生产的产品中随机抽取了1000件,将其质量指标值m的数据作为样本,绘制如下频率分布直方图:(Ⅰ)若将频率作为概率,从该产品中随机抽取2件产品,求抽出的产品中至少有1件不是废品的概率;(Ⅱ)若从质量指标值m≥85的样本中利用分层抽样的方法抽取7件产品中任取3件产品,求m∈[90,95)的件数X 的分布列及数学期望;(Ⅲ)若每件产品的质量指标值m 与利润y (单位:元)的关系如表(1<t <4):均利润达到最大(参考数值:ln2≈0.7,ln5≈1.6).19.(问答题,15分)已知函数f (x )= 12 x 2-alnx- 12 (a∈R ,a≠0). (Ⅰ)当a=2时,求曲线y=f (x )在点(1,f (1))处的切线方程; (Ⅱ)求函数f (x )的单调区间;(Ⅲ)若对任意的x∈[1,+∞),都有f (x )≥0成立,求a 的取值范围.20.(问答题,15分)已知椭圆C : x 2a 2+y 2b 2=1(a >b >0) 的离心率为 √32 ,且经过点 (1,√32) . (Ⅰ)求椭圆C 的方程;(Ⅱ)已知O 为坐标原点,A ,B 为椭圆C 上两点,若 OA ⃗⃗⃗⃗⃗⃗•AB ⃗⃗⃗⃗⃗⃗=0 ,且 |AB||OA|=32 ,求△OAB的面积.21.(问答题,15分)已知项数为m (m∈N*,m≥2)的数列{a n }为递增数列,且满足a n ∈N*,若b n =(a 1+a 2+⋯+a m )−a nm−1∈Z ,则{b n }为{a n }的“关联数列”.(Ⅰ)数列1,4,7,10是否存在“关联数列”?若存在,求其“关联数列”;若不存在,请说明理由.(Ⅱ)若{b n }为{a n }的“关联数列”,{b n }是否一定具有单调性?请说明理由. (Ⅲ)已知数列{a n }存在“关联数列”{b n },且a 1=1,a m =2021,求m 的最大值.2020-2021学年北京市人大附中高三(上)期末数学试卷参考答案与试题解析试题数:21,总分:1501.(单选题,4分)已知集合A={x∈R|-1≤x≤3},B={x∈N|2x<4},则集合A∩B中元素的个数为()A.1B.2C.3D.4【正确答案】:B【解析】:求解指数不等式化简B,再由交集运算求得A∩B,得到集合A∩B中元素的个数.【解答】:解:∵A={x∈R|-1≤x≤3},B={x∈N|2x<4}={x∈N|x<2}={0,1},∴A∩B={x∈R|-1≤x≤3}∩{0,1}={0,1},∴集合A∩B中元素的个数为2.故选:B.【点评】:本题考查指数不等式的解法,交集及其运算,是基础题.2.(单选题,4分)若z(1-i)=2i,则z的虚部为()A.1B.-1C.iD.-i【正确答案】:B【解析】:把已知等式变形,利用复数代数形式的乘除运算化简,再由复数的基本概念得答案.【解答】:解:由z(1-i)=2i,得z= 2i1−i =2i(1+i)(1−i)(1+i)=2i+2i212+12= −2+2i2=−1+i,∴ z=−1−i,则z的虚部为-1.故选:B.【点评】:本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.(单选题,4分)在(√x2−√x)6的二项展开式中,x2的系数为()A. 1516B. −1516C. 316D. −316【正确答案】:D【解析】:求出二项展开式的通项公式,令x的指数为2,求出r的值,即可得解.【解答】:解:(√x2−√x)6的二项展开式的通项公式为T r+1= C6r•(-1)r•2r-6•x3-r,令3-r=2,求得r=1,故x2的系数为- C61•2-5=- 316.故选:D.【点评】:本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.4.(单选题,4分)已知平面向量a⃗=(√3,−1),|b⃗⃗|=4,且(a⃗−2b⃗⃗)⊥a⃗,则|a⃗−b⃗⃗| =()A.2B.3C.4D.5【正确答案】:C【解析】:由向量的模的定义和向量垂直的性质,求得a⃗• b⃗⃗,再由向量的平方即为模的平方,化简计算可得所求值.【解答】:解:由平面向量a⃗=(√3,−1),可得| a⃗ |= √3+1 =2,由(a⃗−2b⃗⃗)⊥a⃗,可得a⃗•(a⃗ -2 b⃗⃗)=0,即a⃗2=2 a⃗• b⃗⃗ =4,则a⃗• b⃗⃗ =2,|a ⃗−b ⃗⃗| = √(a ⃗−b ⃗⃗)2= √a ⃗2−2a ⃗•b ⃗⃗+b ⃗⃗2 = √4−2×2+16 =4, 故选:C .【点评】:本题考查向量数量积的性质和运用,考查方程思想和运算能力,属于中档题. 5.(单选题,4分)如图,AB 是⊙O 的直径,PA 垂直于⊙O 所在平面,C 是圆周上不同于A ,B 两点的任意一点,且AB=2, PA =BC =√3 ,则二面角A-BC-P 的大小为( )A.30°B.45°C.60°D.90°【正确答案】:C【解析】:以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出二面角A-BC-P 的大小.【解答】:解:∵AB 是⊙O 的直径,PA 垂直于⊙O 所在平面,C 是圆周上不同于A ,B 两点的任意一点,且AB=2, PA =BC =√3 ,∴AC⊥BC ,AC= √AB 2−BC 2 = √4−3 =1,以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系,P (0,0, √3 ),B ( √3 ,1,0),C (0,1,0), PB ⃗⃗⃗⃗⃗⃗ =( √3,1 ,- √3 ), PC⃗⃗⃗⃗⃗⃗ =(0,1,- √3 ), 设平面PBC 的法向量 n ⃗⃗ =(x ,y ,z ),则 {n ⃗⃗•PB ⃗⃗⃗⃗⃗⃗=√3x +y −√3z =0n ⃗⃗•PC⃗⃗⃗⃗⃗⃗=y −√3z =0 ,取z=1,得 n ⃗⃗ =(0, √3 ,1),平面ABC 的法向量 m ⃗⃗⃗ =(0,0,1), 设二面角A-BC-P 的平面角为θ, 则cosθ= |m ⃗⃗⃗⃗•n ⃗⃗||m ⃗⃗⃗⃗|•|n ⃗⃗| = 12 ,∴θ=60°, ∴二面角A-BC-P 的大小为60°, 故选:C .【点评】:本题考查二面角的大小的求法,涉及到空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想,是中档题. 6.(单选题,4分)已知 f (x )=√32sinωx +sin 2ωx2−12(ω>0) ,则下列说法错误的是( )A.若f (x )在(0,π)内单调,则 0<ω≤23 B.若f (x )在(0,π)内无零点,则 0<ω≤16 C.若y=|f (x )|的最小正周期为π,则ω=2 D.若ω=2时,直线 x =−2π3是函数f (x )图象的一条对称轴【正确答案】:C【解析】:根据题意,将函数的解析式变形可得f (x )=sin (ωx - π6 ),据此依次分析选项,综合可得答案.【解答】:解:根据题意,f (x )= √32 sinωx+sin 2 ωx 2 - 12 = √32 sinωx - 12 cosωx=sin (ωx - π6), 由此依次分析选项:对于A ,若f (x )在(0,π)内单调,则有ωπ- π6 ≤ π2 ,解可得ω≤ 23 ,A 正确,对于B,当x∈(0,π)时,则ωx- π6∈(- π6,ωπ- π6)若f(x)在(0,π)上无零点,则ωπ- π6≤0,解可得0<ω≤ 16,B正确,对于C,若y=|f(x)|的最小正周期为π,则πω=π,解可得ω=1,C错误,对于D,若ω=2,则f(x)=sin(2x- π6),当x=- 2π3时,2x- π6=- 3π2,则直线x=−2π3是函数f(x)图象的一条对称轴,D正确,故选:C.【点评】:本题考查三角函数的性质,涉及三角函数的恒等变形,属于中档题.7.(单选题,4分)数列{a n}的前n项和记为S n,则“数列{S n}为等差数列”是“数列{a n}为常数列”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【正确答案】:B【解析】:求出数列的通项公式,利用等差数列的定义及充分条件和必要条件概念进行判断即可.【解答】:解:若数列{a n}为常数列,则设a n=a,所以S n=na,于是S1=a1=a,S n+1-S n=a,所以{S n}为等差数列,所以“数列{S n}为等差数列”是“数列{a n}为常数列”的必要条件;若数列{S n}为等差数列,设公差为d,则S n=S1+(n-1)d,于是a1=S1,a n+1=S n+1-S n=(S1+nd)-(S1+(n-1)d)=d,当a1=S1≠d时,数列{a n}不是常数列,所以,“数列{S n}为等差数列”不是“数列{a n}为常数列”的充分条件;综上所述,“数列{S n}为等差数列”是“数列{a n}为常数列”的必要不充分条件.故选:B.【点评】:本题主要考查充分条件和必要条件的基本概念,考查了等差数列的基本性质,属于基础题.8.(单选题,4分)设抛物线C:x2=2py(p>0)的焦点为F,点P在C上,|PF|= 174,若以线段PF为直径的圆过点(1,0),则C的方程为()A.x2=y或x2=8yB.x2=2y或x2=8yC.x2=y或x2=16yD.x2=2y或x2=16y【正确答案】:C【解析】:设出点P坐标,根据抛物线定义和性质,可将点P坐标代入即可解出.【解答】:解:由题意可知F(0,p2),准线方程为y=- p2,设点P(m.n),|PF|=n+ p2 = 174,又线段PF为直径的圆过点(1,0),∴圆的半径为178,圆心坐标为(m2,178),√(m2−1)2+(178−0)2=178,∴m=2,即P(2,174−p2)代入抛物线方程得,4=2p×(174−p2),解得p=8或12,故选:C.【点评】:本题考查抛物线的性质,圆的方程,属于基础题.9.(单选题,4分)在△ABC中,a=2 √3,√7 bcosA=3asinB,则△ABC面积的最大值是()A. 3√7B. 6√7C. 9√7D. 18√7【正确答案】:A【解析】:由已知结合正弦定理及同角基本关系可求sinA,cosA,然后结合余弦定理及基本不等式可求bc的范围,进而可求.【解答】:解:由正弦定理及√7 bcosA=3asinB,得√7 sinBcosA=3sinAsinB,因为sinB>0,所以√7 cosA=3sinA,A为锐角,结合sin2A+cos2A=1,所以sinA= √74,cosA= 34,由余弦定理得,cosA= 34 = b2+c2−122bc,整理得,24=2b2+2c2-3bc≥4bc-3bc=bc,当且仅当b=c时取等号,即bc≤24,则△ABC面积S= 12bcsinA≤12×24×√74=3 √7,故选:A.【点评】:本题主要考查了正弦定理,余弦定理,三角形的面积公式,基本不等式在三角形求解中的应用,属于中档题.10.(单选题,4分)已知函数f(x)=sin[cosx]+cos[sinx],其中[x]表示不超过实数x的最大整数,关于f(x)有下述四个结论:① f(x)的一个周期是2π;② f(x)是偶函数;③ f(x)的最大值大于√2;④ f(x)在(0,π)单调递减.其中所有正确结论编号是()A. ① ②B. ① ③C. ① ④D. ② ④【正确答案】:B【解析】:① ,利用周期定义判断;② ,利用f(π4)和f(- π4)的值判断;③ 利用f(0)的值判断;④ 判断函数f(x)在(0,π2)的函数值判断即可.【解答】:解:① :因为f(x+2π)=sin[cos(x+2π)]+cos[sin (x+2π)]=sin[cosx]+sin[cosx]=f(x),所以函数的一个周期为2π,故① 正确;② :因为f(π4)=sin[cos π4]+cos[sin π4]=sin0+cos0=1,f(- π4)=sin[cos(- π4)]+cos[sin(- π4)]=sin0+cos(-1)=cos1,所以f(π4)≠f(−π4),故函数不是偶函数;故② 错误;③ 因为f(0)=sin[cos0]+cos[sin0]=sin1+1 >√22+1>√2,故③ 正确;④ :当x∈(0,π2)时,0<sinx<1,0<cosx<1,所以[sinx]=[cosx]=0,所以f(x)=sin[cosx]+cos[sinx]=sin0+cos0=1,即当x ∈(0,π2)时,f(x)=1为定值,故④ 错误; 故选:B .【点评】:本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题. 11.(填空题,5分)某单位有青年职工160人,中年职工人数是老年职工人数的2倍,老、中、青职工共有430人,为了解职工身体状况,现采用分层抽样方法进行抽查,在抽取的样本中有青年职工64人,则该样本中的老年职工人数为___ . 【正确答案】:[1]36【解析】:设老年职工有x 人,列方程求出x 的值,再设该样本中的老年职工人数为y 人,列方程求出y 的值即可.【解答】:解:设老年职工有x 人,则中年职工有2x 人,所以x+2x+160=430, x=90,所以老年职工有90人,设该样本中的老年职工人数为y 人,则 y90 = 64160 , 解得y=36,所以该样本中的老年职工人数为36人.【点评】:本题考查了分层抽样方法的应用问题,也考查了运算求解能力,是基础题. 12.(填空题,5分)在各项均为正数的等比数列{a n }中,已知a 2•a 4=16,a 6=32,记b n =a n +a n+1,则数列{b n }的前六项和S 6为___ . 【正确答案】:[1]189【解析】:先由题设求得a 3,进而求得公比q 与a n ,再求得b n ,然后利用等比数列的前n 项和公式求得结果.【解答】:解:设等比数列{a n }的公比为q , ∵a 2•a 4=16=a 32,a n >0,∴a 3=4, 又∵a 6=32,∴ a 6a 3=q 3=8,解得:q=2, ∴a n =a 6q n-6=2n-1, ∴b n =2n-1+2n =3×2n-1, ∴S 6=3(1−26)1−2=189,故答案为:189.【点评】:本题主要考查等比数列的性质及基本量的计算,属于基础题.=1的右焦点,P是双曲线C上的点,13.(填空题,5分)已知F是双曲线C:x2- y28A(0,6√2).① 若点P在双曲线右支上,则|AP|+|PF|的最小值为 ___ ;② 若点P在双曲线左支上,则|AP|+|PF|的最小值为 ___ .【正确答案】:[1]9; [2]11【解析】:由题意知,F(3,0),① 当A,P,F按此顺序三点共线时,|AP|+|PF|取得最小值;② 设双曲线的左焦点为F',由双曲线的定义可知,|PF|=|PF'|+2,当A,P,F'按此顺序三点共线时,|AP|+|PF|取得最小值.【解答】:解:由题意知,F(3,0),① |AP|+|PF|≥|AF|= √(0−3)2+(6√2−0)2 =9,当且仅当A,P,F按此顺序三点共线时,等号成立,所以|AP|+|PF|的最小值为9;② 设双曲线的左焦点为F'(-3,0),由双曲线的定义知,|PF|-|PF'|=2a=2,所以|AP|+|PF|=|AP|+|PF'|+2≥|AF'|+2= √(0+3)2+(6√2−0)2 +2=11,当且仅当A,P,F'按此顺序三点共线时,等号成立,所以|AP|+|PF|的最小值为11.故答案为:9;11.【点评】:本题考查双曲线的定义与几何性质,考查数形结合思想、逻辑推理能力和运算能力,属于基础题.14.(填空题,5分)已知函数f(x)={3x−1+kx−1,x≤0|lnx|+kx−2,x>0,若f(x)恰有4个零点,则实数k的取值范围为 ___ .【正确答案】:[1](-e-3,0)【解析】:首先将问题进行等价转化,然后结合函数的图像即可确定实数k的取值范围.【解答】:解:原问题等价于函数g(x)={2x−1−1|lnx|−2与函数y=-kx存在4个不同的交点.绘制函数g(x)的图像如图所示,很明显,当k≥0时,不满足题意,当k<0时,两函数在区间(-∞,0)和区间(0,1)上必然各存在一个交点,则函数g(x)与函数y=-kx在区间(1,+∞)上存在两个交点,临界条件为函数y=-kx与函数h(x)=lnx-2相切,考查函数h(x)=lnx-2过坐标原点的切线:由函数的解析式可得:ℎ′(x)=1x,设切点坐标为(x0,lnx0-2),则切线方程为:y−(lnx0−2)=1x0(x−x0),切线过坐标原点,则:0−(lnx0−2)=1x0(0−x0),解得:x0=e3,此时切线的斜率为:−k=ℎ′(x0)=e−3,据此可得:实数k的取值范围是(-e-3,0).故答案为:(-e-3,0).【点评】:本题主要考查由函数零点个数求参数的方法,等价转化的数学思想,数形结合的数学思想等知识,属于中等题.15.(填空题,5分)某校开展“我身边的榜样”评选活动,现对3名候选人甲、乙、丙进行不记名投票,投票要求见选票,如下所示.这3名候选人的得票数(不考虑是否有效)分别为总票数的84%,75%,46%,则本次投票的有效率(有效票数与总票数的比值)最高可能为___ .【解析】:假设总票数为100张,投1票的x,投2票的y,投3票的z,则可得{x+2y+3z=84+75+46x+y+z=100x,y,z∈N,整理后得到当x=0时z取最小值5,进而可计算出投票的有效率.【解答】:解:不妨设共有选票100张,投1票的x,投2票的y,投3票的z,则根据题意得{x+2y+3z=84+75+46x+y+z=100x,y,z∈N,整理可得z-x=5,即z=x+5,由题意,若要投票有效率越高,则z需越小,故当x=0时,z最小为5,此时y=95,此时投票的有效率为95÷100=95%,故答案为:95%.【点评】:本题考查了函数模型的选择,考查简单的逻辑推理,属于中档题.16.(问答题,13分)已知△ABC中,bcosA-c>0.(Ⅰ)△ABC中是否必有一个内角为钝角,说明理由.(Ⅱ)若△ABC同时满足下列四个条件中的三个:① sinA=√22;② sinC=√32;③ a=2;④ c=√2.请证明使得△ABC存在的这三个条件仅有一组,写出这组条件并求出b的值.【正确答案】:【解析】:(Ⅰ)由题意及正弦定理可得sinAcosB<0,再由A,B的范围可得cosB<0,求出B为钝角;(Ⅱ)由(Ⅰ)可得B为钝角,当① ② 条件时,求出A,C的值,进而求出B的值,不符合B为钝角的条件,所以① ② 不能同时成立;当① ③ ④ 时,求出C角,进而求出B的值,再由余弦定理可得b的值;当② ③ ④ 时,由正弦定理求出A的值,进而由三角形内角和可得B的值,由于不满足B 为钝角的条件故舍弃.【解答】:解:(Ⅰ)因为bcosA-c>0,由正弦定理可得sinBcosA-sinC>0,在△ABC中,C=π-A-B,sinC=sin(A+B)=sinAcosB+cosAsinB,所以不等式整理为sinAcosB+cosAsinB<sinBcosA,即sinAcosB<0,因为A∈(0,π),sinA>0,所以cosB<0,所以B为钝角;(Ⅱ)(i)若满足① ③ ④ ,则正弦定理可得asinA = csinC,即√22 = √2sinC,所以sinC= 12,又a>c,所以A>C,在三角形中,sinA= √22,所以A= π4或A= 34π,而由(Ⅰ)可得A= π4,所以可得C= π6,B=π-A-C=π- π4- π6= 712π;所以b= √a2+c2−2accosB = √4+2−2×2×√2(−√6−√24) = √3 +1;(ii)若满足① ② ,由(Ⅰ)B为钝角,A,C为锐角,及sinA= √22,sinC= √32,可得A= π4,C= π3,所以B= 512π 不符合B为钝角,故① ② 不同时成立;(iii)若满足② ③ ④ ,由B为钝角,sinC= √32,所以C= π3,而a>c,所以A>C,这时B <π3,不符合B为钝角的情况,所以这种情况不成立;综上所述:只有满足① ③ ④ 时b= √3 +1.【点评】:本题考查三角形的性质大边对大角及三角形正余弦定理的应用,属于中档题.17.(问答题,13分)如图,在四面体ABCD中,E,F,M分别是线段AD,BD,AC的中点,∠ABD=∠BCD=90°,EC=√2,AB=BD=2.(Ⅰ)证明:EM || 平面BCD;(Ⅱ)证明:EF⊥平面BCD;(Ⅲ)若直线EC与平面ABC所成的角等于30°,求二面角A-CE-B的余弦值.【正确答案】:【解析】:(Ⅰ)由中位线的性质知EM || CD,再由线面平行的判定定理,得证;(Ⅱ)由中位线的性质知EF || AB,EF=1,从而有EF⊥BD,再结合直角三角形的性质和勾股定理的逆定理可得EF⊥CF,然后由线面垂直的判定定理,得证;(Ⅲ)由(Ⅱ)中的EF⊥平面BCD,推出AB⊥CD,再利用线面垂直的判定定理可得CD⊥平面ABC,从而有EM⊥平面ABC,于是∠ACE=30°,然后可证明△BCD是等腰直角三角形,故以B为原点建立空间直角坐标系,求得平面ACE和平面BCE的法向量m⃗⃗⃗与n⃗⃗,由cos<m⃗⃗⃗,n⃗⃗>,得解.= m⃗⃗⃗⃗•n⃗⃗|m⃗⃗⃗⃗|•|n⃗⃗|【解答】:(Ⅰ)证明:∵E,M分别是线段AD,AC的中点,∴EM || CD,又EM⊄平面BCD,CD⊂平面BCD,∴EM || 平面BCD.AB=1,(Ⅱ)证明:∵E,F分别是线段AD,BD的中点,∴EF || AB,EF= 12∵∠ABD=90°,即AB⊥BD,∴EF⊥BD,BD=1,∵∠BCD=90°,F为BD的中点,∴CF= 12∵ EC=√2,∴EC2=EF2+CF2,即EF⊥CF,又BD∩CF=F,BD、CF⊂平面BCD,∴EF⊥平面BCD.(Ⅲ)由(Ⅱ)知,EF⊥平面BCD , ∵EF || AB ,∴AB⊥平面BCD ,∴AB⊥CD ,∵∠BCD=90°,即BC⊥CD ,且AB∩BC=B ,AB 、BC⊂平面ABC , ∴CD⊥平面ABC ,∵EM || CD ,∴EM⊥平面ABC ,∴∠ACE 为直线EC 与平面ABC 所成的角,即∠ACE=30°, ∵CD⊥平面ABC ,∴CD⊥AC ,∵E 为AD 的中点,∴CE= 12AD=AE ,即△ACE 是底角为30°的等腰三角形, ∵ EC =√2 ,∴AC= √6 ,BC= √AC 2−AB 2 = √6−4 = √2 , ∵BD=2,∠BCD=90°,∴△BCD 是等腰直角三角形,∴CF⊥BD ,以B 为原点,BD ,BA 所在直线分别为y ,z 轴,在平面BCD 内作Bx || CF ,建立如图所示的空间直角坐标系,则B (0,0,0),A (0,0,2),E (0,1,1),C (1,1,0), ∴ CE ⃗⃗⃗⃗⃗⃗ =(-1,0,1), AC ⃗⃗⃗⃗⃗⃗ =(1,1,-2), BC⃗⃗⃗⃗⃗⃗ =(1,1,0), 设平面ACE 的法向量为 m ⃗⃗⃗ =(x ,y ,z ),则 {m ⃗⃗⃗•CE ⃗⃗⃗⃗⃗⃗=0m ⃗⃗⃗•AC ⃗⃗⃗⃗⃗⃗=0 ,即 {−x +z =0x +y −2z =0 ,令z=1,则x=1,y=1,∴ m ⃗⃗⃗ =(1,1,1), 同理可得,平面BCE 的法向量为 n ⃗⃗ =(1,-1,1), ∴cos < m ⃗⃗⃗ , n ⃗⃗ >= m⃗⃗⃗⃗•n ⃗⃗|m ⃗⃗⃗⃗|•|n ⃗⃗|= √3×√3 = 13 , 由图可知,二面角A-CE-B 为锐角, 故二面角A-CE-B 的余弦值为 13 .【点评】:本题考查空间中线与面的位置关系、线面角和二面角的求法,熟练掌握线与面平行、垂直的判定定理或性质定理,理解线面角的定义,以及利用空间向量处理二面角的方法是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题.18.(问答题,14分)某企业发明了一种新产品,其质量指标值为m(m∈[70,100]),其质量指标等级如表:质量指标值m [70,75)[75,80)[80,85)[85,90)[90,100]质量指标等级良好优秀良好合格废品为了解该产品的经济效益并及时调整生产线,该企业先进行试产生.现从试生产的产品中随机抽取了1000件,将其质量指标值m的数据作为样本,绘制如下频率分布直方图:(Ⅰ)若将频率作为概率,从该产品中随机抽取2件产品,求抽出的产品中至少有1件不是废品的概率;(Ⅱ)若从质量指标值m≥85的样本中利用分层抽样的方法抽取7件产品中任取3件产品,求m∈[90,95)的件数X的分布列及数学期望;(Ⅲ)若每件产品的质量指标值m与利润y(单位:元)的关系如表(1<t<4):质量指标值m [70,75)[75,80)[80,85)[85,90)[90,100]利润y(元)4t 9t 4t 2t −5e t3试分析生产该产品能否盈利?若不能,请说明理由;若能,试确定t为何值时,每件产品的平均利润达到最大(参考数值:ln2≈0.7,ln5≈1.6).【正确答案】:【解析】:(Ⅰ)设事件A的合格率为P(A),则根据概率分布直方图求出一件产品为合格或合格以上等级的概率,由此能求出事件A发生的概率;(Ⅱ)由频率分布直方图和分层抽样求出抽取的7件产品中,m∈[85,90)的有4件,m∈[90,95)的有2件,m∈[95,100)的有1件,从这7件产品中,任取3件,质量指标值m∈[90,95)的件数X的所有可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和E(X);(Ⅲ)由频率分布直方图可得该产品的质量指标值k与利润y(元)的关系,从而求出每件产品的利润y=-0.5e t+2.5t,(1<t<4),则y′=-0.5e t+2.5,利用导数性质能求出生产该产品能够实现盈利,当t=ln5≈1.5时,每件产品的利润取得最大值为1.5元.【解答】:解:(Ⅰ)设事件A的概率为P(A),则由频率分布直方图可得,1件产品为废品的概率为P=5(0.04+0.02)=0.3,则P(A)=1-0.32=1-0.09=0.91,(Ⅱ)由频率分布直方图得指标值大于或等于85的产品中,m∈[85,90)的频率为0.08×5=0.4,m∈[90,95)的频率为0.04×5=0.2,m∈[95,100]的频率为0.02×5=0.1,∴利用分层抽样抽取的7件产中,m∈[85,90)的有4件,m∈[90,95)的有2件,m∈[95,100)的有1件,从这7件产品中,任取3件,质量指标值m∈[90,95)的件数X的所有可能取值为0,1,2,P(X=0)= C53C73 = 27,P(X=1)= C21C52C73 = 47,P(X=2)= C22C51C73 = 17,∴X的分布列为:E(X)=0×7 +1×7+2×7=7.(Ⅲ)由频率分布直方图可得该产品的质量指标值m与利润y(元)的关系与表所示(1<t <4),y=-0.5e t+0.8t+0.6t+0.9t+0.2t=-0.5e t+2.5t,(1<t<4),则y′=-0.5e t+2.5,令y′=-0.5e t+2.5=0,解得t=ln5,∴当t∈(1,ln5)时,y′>0,函数y=-0.5e t+2.5单调递增,当t∈(ln5,4)时,y′<0,函数y=-0.5e t+2.5t,单调递减,∴当t=ln5时,y取最大值,为-0.5e ln5+2.5×ln5=1.5,∴生产该产品能够实现盈利,当t=ln5≈1.6时,每件产品的利润取得最大值为1.5元.【点评】:本题考查离散型随机变量的分布列、数学期望、利润最大值的求法,考查频率分布直方图、分层抽样、导数性质等基础知识,考查运算求解能力,属于中档题.19.(问答题,15分)已知函数f(x)= 12 x2-alnx- 12(a∈R,a≠0).(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若对任意的x∈[1,+∞),都有f(x)≥0成立,求a的取值范围.【正确答案】:【解析】:(Ⅰ)当a=2时,写出f(x)的表达式,对f(x)进行求导,求出x=1处的斜率,再根据点斜式求出切线的方程;(Ⅱ)求出函数的定义域,令f′(x)大于0求出x的范围即为函数的增区间;令f′(x)小于0求出x的范围即为函数的减区间;(Ⅲ)由题意可知,对任意的x∈[1,+∞),使f(x)≥0成立,只需任意的x∈[1,+∞),f (x)min≥0.下面对a进行分类讨论,从而求出a的取值范围;【解答】:解:(Ⅰ)a=2时,f(x)=12x2−2lnx−12,f(1)=0f′(x)=x−2x,f′(1)=−1曲线y=f(x)在点(1,f(1))处的切线方程x+y-1=0(Ⅱ)f′(x)=x−ax =x2−ax(x>0)① 当a<0时,f′(x)=x2−ax>0恒成立,函数f(x)的递增区间为(0,+∞)② 当a>0时,令f'(x)=0,解得x=√a或x=−√a所以函数f (x )的递增区间为 (√a ,+∞) ,递减区间为 (0,√a)(Ⅲ)对任意的x∈[1,+∞),使f (x )≥0成立,只需任意的x∈[1,+∞),f (x )min ≥0 ① 当a <0时,f (x )在[1,+∞)上是增函数, 所以只需f (1)≥0 而 f (1)=12−aln1−12=0 所以a <0满足题意;② 当0<a≤1时, 0<√a ≤1 ,f (x )在[1,+∞)上是增函数, 所以只需f (1)≥0 而 f (1)=12−aln1−12=0 所以0<a≤1满足题意;③ 当a >1时, √a >1 ,f (x )在 [1,√a] 上是减函数, [√a ,+∞) 上是增函数, 所以只需 f(√a)≥0 即可 而 f(√a)<f (1)=0 从而a >1不满足题意;综合 ① ② ③ 实数a 的取值范围为(-∞,0)∪(0,1].【点评】:考查利用导数研究曲线上某点切线方程、利用导数研究函数的极值和单调性.恒成立的问题,一般都要求函数的最值,此题是一道中档题. 20.(问答题,15分)已知椭圆C : x 2a 2+y 2b 2=1(a >b >0) 的离心率为 √32 ,且经过点 (1,√32) . (Ⅰ)求椭圆C 的方程;(Ⅱ)已知O 为坐标原点,A ,B 为椭圆C 上两点,若 OA ⃗⃗⃗⃗⃗⃗•AB ⃗⃗⃗⃗⃗⃗=0 ,且 |AB||OA|=32 ,求△OAB的面积.【正确答案】:【解析】:(Ⅰ)由椭圆离心率为 √32 ,且经过点 (1,√32) ,列方程组,解得a ,b ,c ,进而可得答案.(Ⅱ)设直线AB 的方程为y=kx+m ,A (x 1,y 1),B (x 2,y 2),联立直线AB 与椭圆的方程,得x 2+4(kx+m )2=4,由Δ>0,得4k 2+1>m 2,结合韦达定理可得x 1+x 2,x 1x 2,由OA ⃗⃗⃗⃗⃗⃗•AB ⃗⃗⃗⃗⃗⃗=0 ,推出OA⊥AB ,进而设直线OA 的方程为y=- 1k x ,联立直线AB 的方程得y 1,x 1,代入椭圆的方程可得m 2=4(k 2+1)2k 2+4,再计算|AB|2=144(1+k 2)k 2(4k 2+1)2(k 2+4) ,|OA|2= 4(k 2+1)k 2+4,进而可得 |AB|2|OA|2 = 36k 2(4k 2+1)2 = 94 ,解得k 2= 14 ,进而可得△OAB 的面积S= 12 |OA||AB|= 34 |OA|2,即可得出答案.【解答】:解:(Ⅰ)由题意可得 { c a =√321a 2+34b 2=1a 2=b 2+c 2,解得a=2,b=1,c= √3 ,∴椭圆方程为 x 24 +y 2=1.(Ⅱ)设直线AB 的方程为y=kx+m ,A (x 1,y 1),B (x 2,y 2), 联立y=kx+m 与x 2+4y 2=4,得x 2+4(kx+m )2=4, ∴(4k 2+1)x 2+8kmx+4m 2-4=0,∴Δ=(8km )2-4(4k 2+1)(4m 2-4)=16(4k 2+1-m 2)>0,即4k 2+1>m 2, 则x 1+x 2=−8km 4k 2+1 ,x 1x 2= 4m 2−44k 2+1, 因为 OA ⃗⃗⃗⃗⃗⃗•AB ⃗⃗⃗⃗⃗⃗=0 ,所以OA⊥AB , 设直线OA 的方程为y=- 1k x ,联立直线AB 的方程得y 1= m k 2+1 ,x 1=-ky 1= −kmk 2+1 , 代入x 12+4y 12=4,所以( −km k 2+1 )2+4( mk 2+1 )=4,化简得m 2=4(k 2+1)2k 2+4,所以4k 2+1-m 2=4k 2+1-4(k+1)2k 2+4 = (4k 2+1)(k 2+4)−4(k 2+1)2k 2+4=9k 2k 2+4, 所以|AB|= √1+k 2 √(x 1+x 2)2−4x 1x 2 = √1+k 2 √(−8km 4k 2+1)2−4•4m 2−44k 2+1 = 4√1+k 2√4k 2+1−m 24k 2+1, 所以|AB|2=16(1+k 2)(4k 2+1−m 2)(4k 2+1)2 = 144(1+k 2)k 2(4k 2+1)2(k 2+4), 所以|OA|2=(-ky 1)2+y 12=(k 2+1)( mk 2+1 )2= m 2k 2+1 =4(k 2+1)k 2+4,所以 |AB|2|OA|2 = 36k 2(4k 2+1)2 = 94 ,得16k 2=(4k 2+1)2,解得k 2= 14 , 此时m 2= 4(k 2+1)2k 2+4= 2517 <4k 2+1,满足Δ>0,由|OA|2=4(k 2+1)k 2+4=4(14+1)14+4 = 2017 ,所以△OAB 的面积S= 12|OA||AB|= 12|OA|× 32|OA|= 34|OA|2= 1517.【点评】:本题考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的计算能力,属于中档题.21.(问答题,15分)已知项数为m (m∈N*,m≥2)的数列{a n }为递增数列,且满足a n ∈N*,若b n =(a 1+a 2+⋯+a m )−a nm−1∈Z ,则{b n }为{a n }的“关联数列”.(Ⅰ)数列1,4,7,10是否存在“关联数列”?若存在,求其“关联数列”;若不存在,请说明理由.(Ⅱ)若{b n }为{a n }的“关联数列”,{b n }是否一定具有单调性?请说明理由. (Ⅲ)已知数列{a n }存在“关联数列”{b n },且a 1=1,a m =2021,求m 的最大值.【正确答案】:【解析】:(Ⅰ)利用等差数列的通项公式求出a 1+a 2+a 3+a 4=22,再利用“关联数列”的定义进行分析求解即可;(Ⅱ)利用“关联数列”的定义结合数列单调性的判断方法,即作差法进行判断即可; (Ⅲ)利用已知条件分析得到a n+1-a n ≥m -1,然后表示出a m -1≥(m-1)2,从而得到m 的取值范围,再利用“关联数列”{b n },得到 b 1−b m =2020m−1∈N ∗ ,利用m-1为2020的正约数分析求解即可.【解答】:解:(I )1,4,7,10是项数为4的递增等差数列, 其中a 1=1,d=3,a n =1+(n-1)×3=3n-2,所以a 1+a 2+a 3+a 4=22, 则 b n =a 1+a 2+a 3+a 4−a n4−1=22−3n+23, 故b n =8-n ,1≤n≤4,n∈N*, 所以b 1=7,b 2=6,b 3=5,b 4=4,所以数列1,4,7,10存在“关联数列”为7,6,5,4;(Ⅱ)因为{a n}为递增数列,所以a n+1-a n>0,则b n+1−b n=(a1+a2+⋯+a m)−a n+1m−1 - (a1+a2+⋯+a m)−a nm−1= a n−a n+1m−1<0,所以b n+1<b n,故数列{b n}具有单调递减性;(Ⅲ)由于b n∈Z,则b n-b n+1≥1,故a n+1−a nm−1≥1,所以a n+1-a n≥m-1,又a m-1=(a m-a m-1)+(a m-1-a m-2)+…+(a2-a1)≥(m-1)+(m-1)+…+(m-1)=(m-1)2,所以(m-1)2≤2020,解得m≤45,所以{a n}存在“关联数列”{b n},所以b1−b m=(a1+a2+⋯+a m)−a1m−1 - (a1+a2+⋯+a m)−a mm−1=a m−a1m−1= 2020m−1∈N∗,因为m-1为2020的正约数,且m≤45,故m-1的最大值为20,所以m的最大值为21.【点评】:本题考查了新定义问题,解决此类问题,关键是读懂题意,理解新定义的本质,把新情境下的概念、法则、运算化归到常规的数学背景中,运用相关的数学公式、定理、性质进行解答,属于难题.。

2020-2021学年安徽省皖西南联盟高三(上)期末数学试卷(文科) (解析版)

2020-2021学年安徽省皖西南联盟高三(上)期末数学试卷(文科) (解析版)

2020-2021学年安徽省皖西南联盟高三(上)期末数学试卷(文科)一、选择题(共12小题).1.(1﹣i)(4+i)=()A.3+5i B.3﹣5i C.5+3i D.5﹣3i2.设集合A={x|(x﹣7)(x+12)<0},B={x|x+6>0},则A∩B=()A.{x|﹣6<x<12}B.{x|﹣6<x<7}C.{x|x>﹣12}D.{x|6<x<7} 3.函数f(x)=sin4x cos4x的最小正周期与最小值分别为()A.B.C.D.4.正八边形在生活中是很常见的对称图形,如图1中的正八边形的U盘,图2中的正八边形窗花.在图3的正八边形A1A2A3A4A5A6A7A8中,向量与的夹角为()A.B.C.D.5.若函数的极大值点与极小值点分别为a,b,则()A.a<b<a+b B.a<a+b<b C.b<a+b<a D.a+b<b<a6.在新冠肺炎疫情防控期间,某大型连锁药店开通网上销售业务,每天能完成600份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该药店某日积压800份订单未配货,预计第二天新订单超过1000份的概率为0.02.志愿者每人每天能完成35份订单的配货,为使第二天完成积压订单及当日订单配货的概率不小于0.98,则至少需要志愿者()A.32名B.33名C.34名D.35名7.若双曲线C:的实轴长与虚轴长的乘积等于离心率,则C的离心率为()A.B.C.D.8.已知一个扇形的圆心角为α(0<α<2π),弧长为,半径为2.若tanβ=2,则tan(α+2β)=()A.B.7C.D.﹣79.在正方体ABCD﹣A1B1C1D1中,E,F分别是棱A1B1,BC的中点,现有下列四个结论:①A,E,F,C1四点共面;②平面ACE⊥平面BDD1B1;③FC1∥平面ADD1A1;④FC1与平面ABCD所成角为60°.其中正确的结论的个数是()A.1B.2C.3D.410.设x,y满足约束条件,且z=ax+by(a>0,b>0)的最大值为1,则的最小值为()A.64B.81C.100D.12111.设函数f(x)=sin x﹣log3x,g(x)=3x﹣log0.5x,h(x)=sin x﹣log0.5x的零点分别为a,b,c,则()A.a>c>b B.c>b>a C.c>a>b D.a>b>c12.已知点P(m,n)是抛物线上一动点,则的最小值为()A.4B.5C.D.6二、填空题(共4小题).13.若从集合{1,2,3,5,7,8,10}中任选一个元素,则这个元素是奇数的概率为.14.在△ABC中,若,,AC=2,则AB=.15.已知f(x)是周期为4的奇函数,当0≤x≤1时,f(x)=x,当1<x≤2时,f(x)=﹣2x+4.若直线y=a与f(x)的图象在[﹣4,5]内的交点个数为m,直线与f(x)的图象在[﹣4,5]内的交点个数为n,且m+n=9,则a的取值范围是.16.在正方体ABCD﹣A1B1C1D1中,AB=2,E,F分别为棱AB,AA1的中点,则该正方体被平面CEF所截得的截面面积为,四面体BCEF外接球的表面积为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题;共60分.17.已知数列{a n}的前n项和.(1)证明:{a n}是等比数列.(2)求数列{log3a n}的前n项和.18.某企业投资两个新型项目,投资新型项目A的投资额m(单位:十万元)与纯利润n (单位:万元)的关系式为n=1.7m﹣0.5(m=1,2,3,4,5),投资新型项目B的投资额x(单位:十万元)与纯利润y(单元:万元)的散点图如图所示.(1)求y关于x的线性回归方程;(2)根据(1)中的回归方程,若A,B两个项目都投资60万元,试预测哪个项目的收益更好.附:回归直线的斜率和截距的最小二乘估计分别为=,=﹣.19.如图,在直四棱柱(侧棱垂直底面的棱柱称为直棱柱)ABCD﹣A1B1C1D1中,底面是边长为2的菱形,且∠DAB=60°,AA1=AB,点E,F分别为DD1,CC1的中点,点G在D1F上.(1)证明:BG∥平面ACE;(2)求三棱锥B﹣ACE的体积.20.已知椭圆的离心率为,且焦距为8.(1)求C的方程;(2)设直线l的倾斜角为,且与C交于A,B两点,点O为坐标原点,求△AOB面积的最大值.21.已知函数f(x)=x3﹣6x2+9x+1.(1)求曲线y=f(x)在点(0,1)处的切线方程;(2)证明:(x+1﹣lnx)f(x)>2cos x对恒成立.(二)选考题:共10分.请考生从第22,23两题中任选一题作答.如果多做,则按所做的第一个题目计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C的参数方程为(α为参数,a<0),且曲线C经过坐标原点O.以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为4ρcosθ﹣12ρsinθ+3a=0.(1)求C的极坐标方程;(2)设P是曲线C上一动点,l与极轴交于点A,求|PA|的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a3|+|x+3a|(a>0).(1)当a=1时,求不等式f(x)<6的解集;(2)若f(x)的最小值为4,且,证明:.参考答案一、选择题(共12小题).1.(1﹣i)(4+i)=()A.3+5i B.3﹣5i C.5+3i D.5﹣3i解:(1﹣i)(4+i)=1×4+1×i﹣i×4﹣i2=5﹣3i.故选:D.2.设集合A={x|(x﹣7)(x+12)<0},B={x|x+6>0},则A∩B=()A.{x|﹣6<x<12}B.{x|﹣6<x<7}C.{x|x>﹣12}D.{x|6<x<7}解:∵A={x|﹣12<x<7},B={x|x>﹣6},∴A∩B={x|﹣6<x<7}.故选:B.3.函数f(x)=sin4x cos4x的最小正周期与最小值分别为()A.B.C.D.解:,则,可得.故选:C.4.正八边形在生活中是很常见的对称图形,如图1中的正八边形的U盘,图2中的正八边形窗花.在图3的正八边形A1A2A3A4A5A6A7A8中,向量与的夹角为()A.B.C.D.解:因为正八边形的内角和为(8﹣2)π=6π,所以与的夹角为,故选:B.5.若函数的极大值点与极小值点分别为a,b,则()A.a<b<a+b B.a<a+b<b C.b<a+b<a D.a+b<b<a解:,当,f'(x)>0,当或时,f'(x)<0,故的极大值点与极小值点分别为,,则,,所以b<a+b<a,故选:C.6.在新冠肺炎疫情防控期间,某大型连锁药店开通网上销售业务,每天能完成600份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该药店某日积压800份订单未配货,预计第二天新订单超过1000份的概率为0.02.志愿者每人每天能完成35份订单的配货,为使第二天完成积压订单及当日订单配货的概率不小于0.98,则至少需要志愿者()A.32名B.33名C.34名D.35名解:由题意可知,第二天需要完成的订单数为800+1000=1800,因为.所以至少需要志愿者35名.故选:D.7.若双曲线C:的实轴长与虚轴长的乘积等于离心率,则C的离心率为()A.B.C.D.解:双曲线的标准方程为,依题意可得,解得,则.故选:C.8.已知一个扇形的圆心角为α(0<α<2π),弧长为,半径为2.若tanβ=2,则tan(α+2β)=()A.B.7C.D.﹣7解:因为tanβ=2,所以,又扇形的圆心角为α(0<α<2π),弧长为,半径为2,可得:,所以.故选:A.9.在正方体ABCD﹣A1B1C1D1中,E,F分别是棱A1B1,BC的中点,现有下列四个结论:①A,E,F,C1四点共面;②平面ACE⊥平面BDD1B1;③FC1∥平面ADD1A1;④FC1与平面ABCD所成角为60°.其中正确的结论的个数是()A.1B.2C.3D.4解:如图,因为AF与EC1异面,所以A,E,F,C1四点不共面,故①错误.在正方体中,AC⊥BD,AC⊥BB1,BD∩BB1=B,BD、BB1⊂平面BDD1B1,所以AC⊥平面BDD1B1,因为AC⊂平面ACE,所以平面ACE⊥平面BDD1B1,故②正确.因为平面BCC1B1∥平面ADD1A1,且FC1⊂平面BCC1B1,所以FC1∥平面ADD1A1,故③正确.因为FC1与平面ABCD所成角为∠C1FC,且tan∠C1FC=2,故④错误,所以正确的命题个数为2个,故选:B.10.设x,y满足约束条件,且z=ax+by(a>0,b>0)的最大值为1,则的最小值为()A.64B.81C.100D.121解:作出约束条件表示的可行域如图,∵a>0,b>0,∴当直线z=ax+by经过点(5,6)时,z取得最大值,则5a+6b=1,∴,当且仅当时,等号成立,∴的最小值为121.故选:D.11.设函数f(x)=sin x﹣log3x,g(x)=3x﹣log0.5x,h(x)=sin x﹣log0.5x的零点分别为a,b,c,则()A.a>c>b B.c>b>a C.c>a>b D.a>b>c解:设函数f1(x)=sin x,f2(x)=log3x,f3(x)=log0.5x,,则a是f1(x)与f2(x)图象交点的横坐标,b是f3(x)与f4(x)图象交点的横坐标,c是f1(x)与f3(x)图象交点的横坐标.在同一坐标系中,作出f1(x),f2(x),f3(x),f4(x)的图象,如图所示.由图可知a>c>b.故选:A.12.已知点P(m,n)是抛物线上一动点,则的最小值为()A.4B.5C.D.6解:由,得x2=﹣4y.则的焦点为F(0,﹣1).准线为l:y=1.几何意义是:点P(m,n)到F(0,﹣1)与点A(4,﹣5)的距离之和,根据抛物线的定义点P(m,n)到F(0,﹣1)的距离等于点P(m,n)到l的距离,所以的最小值为1﹣(﹣5)=6.故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.若从集合{1,2,3,5,7,8,10}中任选一个元素,则这个元素是奇数的概率为.解:题中的集合里共有7个元素,其中4个是奇数,故所求概率为.故答案为:.14.在△ABC中,若,,AC=2,则AB=.解:因为=,可得cos C=,又sin2C+cos2C=1,所以,因为,AC=2,由正弦定理得,可得.故答案为:.15.已知f(x)是周期为4的奇函数,当0≤x≤1时,f(x)=x,当1<x≤2时,f(x)=﹣2x+4.若直线y=a与f(x)的图象在[﹣4,5]内的交点个数为m,直线与f(x)的图象在[﹣4,5]内的交点个数为n,且m+n=9,则a的取值范围是.解:依题意可作出f(x)在[﹣4,5]上的图象,如图所示.因为a<a+,由图可知,解得﹣≤a<0,故a的取值范围是.故答案为:.16.在正方体ABCD﹣A1B1C1D1中,AB=2,E,F分别为棱AB,AA1的中点,则该正方体被平面CEF所截得的截面面积为,四面体BCEF外接球的表面积为14π.解:因为平面CEF与平面CDD1C1的交线为CD1,所以截面为四边形CEFD1,而四边形CEFD1为等腰梯形,且,,故其面积为.设线段CE的中点为G,四面体BCEF外接球的球心为O,则OG⊥平面BCE.设球O的半径为R,则R2=OG2+EG2=AG2+(OG﹣AF)2.因为,所以,从而,故球O的表面积为4πR2=14π.故答案为:;14π.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题;共60分.17.已知数列{a n}的前n项和.(1)证明:{a n}是等比数列.(2)求数列{log3a n}的前n项和.【解答】(1)证明:当n≥2时,,又a1=S1=9,所以{a n}的通项公式为.因为,所以{a n}是首项为9,公比为3的等比数列.(2)解:因为,所以log3a n=n+1,所以数列{log3a n}的前n项T n=2+3+…+n+1==.18.某企业投资两个新型项目,投资新型项目A的投资额m(单位:十万元)与纯利润n (单位:万元)的关系式为n=1.7m﹣0.5(m=1,2,3,4,5),投资新型项目B的投资额x(单位:十万元)与纯利润y(单元:万元)的散点图如图所示.(1)求y关于x的线性回归方程;(2)根据(1)中的回归方程,若A,B两个项目都投资60万元,试预测哪个项目的收益更好.附:回归直线的斜率和截距的最小二乘估计分别为=,=﹣.解:(1)由散点图可得,,,=,,则y关于x的线性回归方程为;(2)当m=6时,n=1.7×6﹣0.5=9.7(万元),当x=6时,(万元).∵9.7>8,∴A项目收益更好.19.如图,在直四棱柱(侧棱垂直底面的棱柱称为直棱柱)ABCD﹣A1B1C1D1中,底面是边长为2的菱形,且∠DAB=60°,AA1=AB,点E,F分别为DD1,CC1的中点,点G在D1F上.(1)证明:BG∥平面ACE;(2)求三棱锥B﹣ACE的体积.【解答】(1)证明:连接BD交AC于点O,则O为BD的中点,连接BF,OE,BD1,则BD1∥OE.∵BD1⊄平面ACE,OE⊂平面ACE,∴BD1∥平面ACE.∵ED1∥CF,ED1=CF,∴四边形D1ECF为平行四边形,∴D1F∥EC.又∵D1F⊄平面ACE,EC⊂平面ACE,∴D1F∥平面ACE.∵BD1∩D1F=D1,BD1⊂平面BD1F,D1F⊂平面BD1F,∴平面BD1F∥平面ACE,∵BG⊂平面BD1F,∴BG∥平面ACE.(2)解:在△ABC中,AB=BC=2,∠CAB=30°,则AC边上的高为1,,∴.又点E到平面ABC的距离为DE,且DE=1,,∵V B﹣ACE=V E﹣ABC,∴.20.已知椭圆的离心率为,且焦距为8.(1)求C的方程;(2)设直线l的倾斜角为,且与C交于A,B两点,点O为坐标原点,求△AOB面积的最大值.解:(1)依题意可知,解得a=2,b=2,c=4故C的方程为.(2)依题意可设直线l的方程为,联立,整理得,则△=300m2﹣64(5m2﹣20)>0,解得﹣8<m<8.设A(x1,y1),B(x2,y2),则,,,原点到直线l的距离,则△AOB的面积,当且仅当m2=32,即时,△AOB的面积有最大值,且最大值为2.21.已知函数f(x)=x3﹣6x2+9x+1.(1)求曲线y=f(x)在点(0,1)处的切线方程;(2)证明:(x+1﹣lnx)f(x)>2cos x对恒成立.解:(1)f′(x)=3x2﹣12x+9,则f′(0)=9,故曲线y=f(x)在点(0,1)处的切线方程为:y=9x+1;(2)证明:令f′(x)>0,解得:x>3或x<1,令f′(x)<0,解得:1<x<3,故f(x)在(,1)递增,在(1,3)递减,在(3,+∞)递增,∵f()>f(3)=1,故f(x)在(,+∞)上的最小值是f(3)=1,设函数g(x)=x+1﹣lnx,则g′(x)=(x>0),令g′(x)>0,解得:x>1,令g′(x)<0,解得:x<1,故g(x)在(,1)递减,在(1,+∞)递增,故g(x)≥g(1)=2;从而(x+1﹣lnx)f(x)≥2,但由于f(x)≥1与g(x)≥2的取等条件不同,故(x+1﹣lnx)f(x)>2,∵2cos x≤2,∴(x+1﹣lnx)f(x)>2cos x对恒成立.(二)选考题:共10分.请考生从第22,23两题中任选一题作答.如果多做,则按所做的第一个题目计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C的参数方程为(α为参数,a<0),且曲线C经过坐标原点O.以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为4ρcosθ﹣12ρsinθ+3a=0.(1)求C的极坐标方程;(2)设P是曲线C上一动点,l与极轴交于点A,求|PA|的取值范围.解:(1)由曲线C的参数方程为(α为参数,a<0),得x2+(y﹣a)2=16,即x2+y2﹣2ay=16﹣a2,因为曲线C经过坐标原点O,所以16﹣a2=0,又a<0,所以a=﹣4.故C的极坐标方程为ρ2+8ρsinθ=0,即ρ+8sinθ=0(或ρ=﹣8sinθ).(2)因为l的极坐标方程为4ρcosθ﹣12ρsinθ+3a=0,即4ρcosθ﹣12ρsinθ﹣12=0,所以l的直角坐标方程为x﹣3y﹣3=0.令y=0,得x=3,则A的直角坐标为(3,0),由(1)知,曲线C表示圆心为C(0,﹣4),半径为4的圆且|AC|=5,故|PA|的取值范围为[1,9].[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a3|+|x+3a|(a>0).(1)当a=1时,求不等式f(x)<6的解集;(2)若f(x)的最小值为4,且,证明:.【解答】(1)解:当a=1时,由f(x)<6,得|x﹣1|+|x+3|<6.当x≤﹣3时,﹣2x﹣2<6,则﹣4<x≤﹣3;当﹣3<x<1时,4<6,则﹣3<x<1;当x≥1时,2x+2<6,则1≤x<2.故不等式f(x)<6的解集为(﹣4,2).(2)证明:因为f(x)=|x﹣a3|+|x+3a|≥|x﹣a3﹣(x+3a)|=|a3+3a|,且a>0,所以f(x)的最小值为a3+3a=4.因为函数g(a)=a3+3a为增函数,且g(1)=4,所以a=1.从而,因为m>0,n>0,所以由柯西不等式得,即,所以(当且仅当,时等号成立)。

2020-2021学年北京市丰台区高三(上)期末数学试卷 (解析版)

2020-2021学年北京市丰台区高三(上)期末数学试卷 (解析版)

2020-2021学年北京市丰台区高三(上)期末数学试卷一、选择题1.(4分)已知集合A={x|x≥0},B={x∈Z|﹣2<x<2},那么A∩B=()A.{0,1}B.{x|0≤x<2}C.{﹣1,0}D.{0,1,2} 2.(4分)在等差数列{a n}中,若a1=1,a2+a4=10,则a20=()A.35B.37C.39D.413.(4分)某几何体的三视图如图所示,则该几何体的表面积等于()A.B.C.D.4.(4分)若函数f(x)=,则函数f(x)的值域为()A.[0,1)B.(﹣∞,0]C.(﹣∞,0)∪(0,1)D.(﹣∞,1)5.(4分)若关于x,y的方程组(a∈R)无解,则a=()A.2B.C.1D.6.(4分)下列函数中,同时满足①对于定义域内的任意x,都有f(﹣x)=﹣f(x);②存在区间D,f(x)在区间D上单调递减的函数是()A.y=sin x B.y=x3C.D.y=lnx7.(4分)已知{a n}是等比数列,S n为其前n项和,那么“a1>0”是“数列{S n}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(4分)某校实行选科走班制度(语文、数学、英语为必选科目,此外学生需在物理、化学、生物、历史、地理、政治六科中任选三科).根据学生选科情况,该校计划利用三天请专家对九个学科分别进行学法指导,每天依次安排三节课,每节课一个学科.语文、数学、英语只排在第二节;物理、政治排在同一天,化学、地理排在同一天,生物、历史排在同一天,则不同的排课方案的种数为()A.36B.48C.144D.2889.(4分)在平面直角坐标系中,A,B是直线x+y=m上的两点,且|AB|=10.若对于任意点P(cosθ,sinθ)(0≤θ<2π),存在A,B使∠APB=90°成立,则m的最大值为()A.B.4C.D.810.(4分)为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒.出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y(毫克/立方米)与时间t(分钟)之间的函数关系为y=(a为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是()A.9:40B.9:30C.9:20D.9:10二、填空题共5小题,每小题5分,共25分。

安徽省芜湖市第三中学2020年高三数学理期末试题含解析

安徽省芜湖市第三中学2020年高三数学理期末试题含解析

安徽省芜湖市第三中学2020年高三数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 某几何体的三视图如图所示,网格纸上的小正方形边长为1,则此几何体的外接球的表面积为( )A. B. C. D.参考答案:B【分析】由三视图可还原得到三棱锥,三棱锥可放在如图底面边长为2,侧棱长为4的正四棱柱中,E,F为棱中点,设O为三棱锥外接球的球心,分别为点Q在平面ABCD,平面ECD的投影.由于都为等腰三角形,故分别在中线FG,EG上.构造直角三角形可求解得到,结合即得解.【详解】由题设中的三视图,可得该几何体为如下图所示的三棱锥,放在底面边长为2,侧棱长为4的正四棱柱中,E,F为棱中点,取G为CD中点,连接GF,GE.设O为三棱锥外接球的球心,分别为点O在平面ABCD,平面ECD的投影.由于都为等腰三角形,故分别在中线FG,EG上.由于,在中,设;同理在中,设,外接球半径故外接球的表面积故选:B【点睛】本题考查了三视图和三棱锥的外接球,考查了学生空间想象,转化划归,数学运算的能力,属于较难题.2. 已知函数内是减函数,则()A.0<≤1B.-1≤<0 C.≥1D.≤-1参考答案:B略3. 与向量的夹角相等,且模为1的向量是( )A.B.C.D.参考答案:B考点:平面向量数量积坐标表示的应用.分析:要求的向量与一对模相等的向量夹角相等,所以根据夹角相等列出等式,而已知的向量模是相等的,所以只要向量的数量积相等即可.再根据模长为1,列出方程,解出坐标.解答:解:设与向量的夹角相等,且模为1的向量为(x,y),则解得或,故选B.点评:本题表面上是对向量数量积的考查,根据两个向量的坐标,用数量积列出式子,但是这步工作做完以后,题目的重心转移到解方程的问题,解关于x和y的一元二次方程.4. 如右图所示的算法流程图中输出的最后一个数为,则判断框中的条件是()A.B.C.D.参考答案:D 5. 设直线l:y=2x+2,若l与椭圆x2+=1的交点为A、B,点P为椭圆上的动点,则使△PAB的面积为﹣1的点P的个数为( )A.0 B.1 C.2 D.3参考答案:D考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:由直线l的方程与椭圆x2+=1的方程组成方程组,求出弦长AB,计算AB边上的高h,设出P的坐标,由点P到直线y=2x+2的距离d=h,结合椭圆的方程,求出点P的个数来.解答:解:由直线l的方程与椭圆x2+=1的方程组成方程组,解得或,则A(0,2),B(﹣1,0),∴AB==,∵△PAB的面积为﹣1,∴AB边上的高为h==.设P的坐标为(a,b),代入椭圆方程得:a2+=1,P到直线y=2x+2的距离d==,即2a﹣b=2﹣4或2a﹣b=﹣2;联立得:①或②,①中的b消去得:2a2﹣2(﹣2)a+5﹣4=0,∵△=4(﹣2)2﹣4×2×(5﹣4)>0,∴a有两个不相等的根,∴满足题意的P的坐标有2个;由②消去b得:2a2+2a+1=0,∵△=(2)2﹣4×2×1=0,∴a有两个相等的根,满足题意的P的坐标有1个.综上,使△PAB面积为﹣1的点P的个数为3.故选:D.点评:本题考查了直线与椭圆方程的综合应用问题,考查了直线方程与椭圆方程组成方程组的求弦长的问题,是综合性题目.6. 函数y=sin2x+acos2x的图象左移π个单位后所得函数的图象关于直线x=﹣对称,则a=( )A.1 B.C.﹣1 D.﹣参考答案:C考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:先将函数y=sin2x+acos2x利用辅角公式化简,然后求出平移后的解析式,根据正弦函数在对称轴上取最值可得答案.解答:解:由题意知y=sin2x+acos2x=sin(2x+φ),tanφ=a,函数y=sin2x+acos2x的图象左移π个单位后所得函数y=sin(2x+2π+φ)=sin(2x+φ),的图象,函数的图象关于直线x=﹣对称,∴φ=k,k∈Z,φ=kπ+,k∈Z,∵tanφ=a,∴a=tan(kπ+)=﹣1.故选:C.点评:本题主要考查三角函数的辅角公式,三角函数的图象的平移变换,考查正弦函数的对称性问题.属基础题.7. 在的展开式中,项的系数是项系数和项系数的等比中项,则实数的值为A. B. C. D.参考答案:【知识点】二项式系数的性质.J3A解析:展开式的通项为:,∴项的系数是,项的系数是,项的系数是,∵项的系数是的系数与项系数的等比中项,∴,∴a=.故选:A.【思路点拨】先写成展开式的通项,进而可得项的系数,利用项的系数是的系数与项系数的等比中项,可建立方程,从而求出的值.8. 已知方程有两个不相等的实根,则实数k的取值范围是()A. B. C.D.参考答案:B略9. 已知是定义在上的偶函数,且在上是增函数,设,则的大小关系是()A. B. C. D.参考答案:C,,,因为,因为是定义在上的偶函数,且在上是增函数,所以函数在上单调递减,所以,选C.10. 二项式展开式的常数项为()A.-80B. -16C. 80D. 16参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 对于函数,若存在区间,当时,函数的值域为,则称为倍值函数. 若是倍值函数,则实数的取值范围是_____▲______.参考答案:略12. 在中,已知,,,为线段上的点,且,则的最大值为.参考答案:3略13.已知集合,则▲.参考答案:14. 若数列的通项公式,记,试推测_________参考答案:15. 若的展开式中常数项为43,则.参考答案:21根据题意可得的展开式的通项为,当r=0时,的常数项为1,的常数项为3,而,令,解得r=2,所以当r=2时,的常数项为,综上,的展开式中常数项为=43,整理得,解得n=5,或n=-4(舍去),则.16. 若函数f(x)=在区间(m,2m+1)上是单调递增函数,则m的取值范围是__________.参考答案:略17. 对于正项数列,定义,若则数列的通项公式为.参考答案:三、解答题:本大题共5小题,共72分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高三数学上期末试卷(及答案)一、选择题1.下列结论正确的是( ) A .若a b >,则22ac bc > B .若22a b >,则a b > C .若,0a b c ><,则a c b c +<+D .若a b <,则a b <2.数列{}n a 满足()11nn n a a n ++=-⋅,则数列{}n a 的前20项的和为( ) A .100B .-100C .-110D .1103.已知数列{}n a 的通项公式是221sin2n n a n π+=(),则12310a a a a ++++=A .110B .100C .55D .04.等比数列{}n a 的前n 项和为n S ,若36=2S =18S ,,则105S S 等于( ) A .-3B .5C .33D .-315.已知等比数列{}n a 的各项都是正数,且13213,,22a a a 成等差数列,则8967a a a a +=+ A .6B .7C .8D .96.已知01x <<,01y <<,则()()()()222222221111x y x y x y x y +++-+-++-+-的最小值为( )A .5B .22C .10D .237.已知数列{}n a 中,()111,21,n n na a a n N S *+==+∈为其前n 项和,5S的值为( )A .63B .61C .62D .578.在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,若2b c =,6a =,7cos 8A =,则ABC ∆的面积为( ) A .17B .3C .15D .1529.如图,为了测量山坡上灯塔CD 的高度,某人从高为=40h 的楼AB 的底部A 处和楼顶B 处分别测得仰角为=60β,=30α,若山坡高为=35a ,则灯塔高度是( )A .15B .25C .40D .6010.等差数列{}n a 中,34512a a a ++=,那么{}n a 的前7项和7S =( ) A .22B .24C .26D .2811.设n S 为等差数列{}n a 的前n 项和,1(1)()n n n S nS n N *++∈<.若871a a <-,则( ) A .n S 的最大值为8S B .n S 的最小值为8S C .n S 的最大值为7S D .n S 的最小值为7S12.已知函数1()2xf x ⎛⎫= ⎪⎝⎭,则不等式()24(3)f a f a ->的解集为( )A .(4,1)-B .(1,4)-C .(1,4)D .(0,4)二、填空题13.设x >0,y >0,x +2y =4,则(4)(2)x y xy++的最小值为_________.14.已知数列{}n a 中,其中199199a =,11()an n a a -=,那么99100log a =________15.(广东深圳市2017届高三第二次(4月)调研考试数学理试题)我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法---“三斜求积术”,即ABC △的面积S =,其中a b c 、、分别为ABC △内角、、A B C 的对边.若2b =,且tan C =,则ABC △的面积S 的最大值为__________.16.若实数,x y 满足约束条件200220x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩,则3z x y =-的最小值等于_____.17.设122012(1)(1)(1)n n n x x x a a x a x a x ++++++=++++,其中n *∈N ,且2n ≥,若0121022n a a a a ++++=,则n =_____18.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N ,那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为______.19.在ABC ∆中,内角A ,B ,C 所对应的边长分别为a ,b ,c,且cos C =,cos cos 2b A a B +=,则ABC ∆的外接圆面积为__________. 20.设x ,y 满足则220,220,20,x y x y x y --≤⎧⎪-+≥⎨⎪++≥⎩则3z x y =-的最小值是______.三、解答题21.已知在等比数列{}n a 中, 11a =,且2a 是1a 和31a -的等差中项. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()*21n n b n a n N=-+∈,求{}nb 的前n 项和nS.22.已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,且2222cos cos b c a ac C c A +-=+.(1)求A ;(2)在ABC ∆中,3BC =,D 为边AC 的中点,E 为AB 边上一点,且DE AC ⊥,62DE =,求ABC ∆的面积. 23.设{}n a 是等比数列,公比不为1.已知113a =,且1a ,22a ,33a 成等差数列. (1)求{}n a 的通项公式;(2)设数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T .24.如图,在ABC ∆中,45B ︒∠=,10AC =,25cos 5C ∠=点D 是AB 的中点, 求(1)边AB 的长;(2)cos A 的值和中线CD 的长25.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且acos C +3asin C -b -c =0.(1)求A ;(2)若AD 为BC 边上的中线,cos B =17,AD =1292,求△ABC 的面积. 26.已知等差数列{}n a 的前n 项和为254,12,16n S a a S +==. (1)求{}n a 的通项公式; (2)数列{}n b 满足141n n n b T S =-,为数列{}n b 的前n 项和,是否存在正整数m ,()1k m k <<,使得23k m T T =?若存在,求出m ,k 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】选项A 中,当c=0时不符,所以A 错.选项B 中,当2,1a b =-=-时,符合22a b >,不满足a b >,B 错.选项C 中, a c b c +>+,所以C 错.选项D 中,因为0a ≤<b ,由不等式的平方法则,22a b <,即a b <.选D.2.B解析:B 【解析】 【分析】数列{a n }满足1(1)nn n a a n ++=-⋅,可得a 2k ﹣1+a 2k =﹣(2k ﹣1).即可得出.【详解】∵数列{a n }满足1(1)nn n a a n ++=-⋅,∴a 2k ﹣1+a 2k =﹣(2k ﹣1).则数列{a n }的前20项的和=﹣(1+3+……+19)()101192⨯+=-=-100.【点睛】本题考查了数列递推关系、数列分组求和方法,考查了推理能力与计算能力,属于中档题.3.C解析:C 【解析】 【分析】由已知条件得a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数,所以a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92,由此能求出结果. 【详解】∵2n 12+π =n π+2π,n ∈N *,∴a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数, ∴a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92=1+2+3+…+10=()101+10=552故选C . 【点睛】本题考查了等差数列的通项公式与求和公式、分类讨论方法、三角函数的周期性,属于中档题.4.C解析:C 【解析】 【分析】由等比数列的求和公式结合条件求出公比,再利用等比数列求和公式可求出105S S . 【详解】设等比数列{}n a 的公比为q (公比显然不为1),则()()61636333111119111a q S q q q S qa q q---===+=---,得2q ,因此,()()101105510555111111233111a q S q q q S q a qq---===+=+=---,故选C.本题考查等比数列基本量计算,利用等比数列求和公式求出其公比,是解本题的关键,一般在求解等比数列问题时,有如下两种方法:(1)基本量法:利用首项和公比列方程组解出这两个基本量,然后利用等比数列的通项公式或求和公式来进行计算;(2)性质法:利用等比数列下标有关的性质进行转化,能起到简化计算的作用.5.D解析:D 【解析】 【分析】设各项都是正数的等比数列{a n }的公比为q ,(q >0),由题意可得关于q 的式子,解之可得q ,而所求的式子等于q 2,计算可得. 【详解】设各项都是正数的等比数列{a n }的公比为q ,(q >0)由题意可得31212322a a a ⨯=+, 即q 2-2q-3=0, 解得q=-1(舍去),或q=3,故()26728967679a a qa a q a a a a .++===++ 故选:D . 【点睛】本题考查等差数列和等比数列的通项公式,求出公比是解决问题的关键,属基础题.6.B解析:B 【解析】 【分析】2+≥x y ,边分别相加求解。

【详解】因为222x y xy +≥所以22222)2((2)≥++=++x y xy x y x y2+≥x y所以两边分别相加得当且仅当12x y == 取等号 故选:B 【点睛】本题主要考查了均值不等式,还考查了运算求解的能力,属于中档题.7.D解析:D 【解析】解:由数列的递推关系可得:()11121,12n n a a a ++=++= , 据此可得:数列{}1n a + 是首项为2 ,公比为2 的等比数列,则:1122,21n n n n a a -+=⨯⇒=- ,分组求和有:()5521255712S ⨯-=-=- .本题选择D 选项.8.D解析:D 【解析】 【分析】三角形的面积公式为1sin 2ABC S bc A ∆=,故需要求出边b 与c ,由余弦定理可以解得b 与c . 【详解】解:在ABC ∆中,2227cos 28b c a A bc +-==将2b c =,a =22246748c c c +-=, 解得:2c =由7cos 8A =得sin A ==所以,111515sin 242282ABC S bc A ∆==⨯⨯⨯=故选D. 【点睛】三角形的面积公式常见形式有两种:一是12(底⨯高),二是1sin 2bc A .借助12(底⨯高)时,需要将斜三角形的高与相应的底求出来;借助1sin 2bc A 时,需要求出三角形两边及其夹角的正弦值.9.B解析:B 【解析】 【分析】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,在ABD ∆中由正弦定理求得AD ,在Rt ADF ∆中求得DF ,从而求得灯塔CD 的高度. 【详解】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,如图所示,在ABD ∆中,由正弦定理得,sin sin AB ADADB ABD=∠∠,即sin[90(90)]sin(90)h ADαβα=︒--︒-︒+,cos sin()h AD αβα∴=-,在Rt ADF ∆中,cos sin sin sin()h DF AD αβββα==-,又山高为a ,则灯塔CD 的高度是3340cos sin 22356035251sin()2h CD DF EF a αββα⨯⨯=-=-=-=-=-. 故选B .【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.10.D【解析】试题分析:由等差数列的性质34544123124a a a a a ++=⇒=⇒=,则考点:等差数列的性质11.C解析:C 【解析】 【分析】由已知条件推导出(n 2﹣n )d <2n 2d ,从而得到d >0,所以a 7<0,a 8>0,由此求出数列{S n }中最小值是S 7. 【详解】∵(n +1)S n <nS n +1, ∴S n <nS n +1﹣nS n =na n +1 即na 1()12n n d-+<na 1+n 2d ,整理得(n 2﹣n )d <2n 2d ∵n 2﹣n ﹣2n 2=﹣n 2﹣n <0 ∴d >0 ∵87a a -<1<0 ∴a 7<0,a 8>0 数列的前7项为负, 故数列{S n }中最小值是S 7 故选C . 【点睛】本题考查等差数列中前n 项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.12.B解析:B 【解析】 【分析】先判断函数1()2xf x ⎛⎫= ⎪⎝⎭的单调性,把()24(3)f a f a ->转化为自变量的不等式求解.【详解】可知函数()f x 为减函数,由2(4)(3)f a f a ->,可得243a a -<,整理得2340a a --<,解得14a -<<,所以不等式的解集为(1,4)-.【点睛】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.二、填空题13.9【解析】【分析】将分式展开利用基本不等式求解即可【详解】又x +2y =4即当且仅当等号成立故原式故填9【点睛】本题考查基本不等式求最值考查等价变换思想与求解能力注意等号成立条件解析:9 【解析】 【分析】将分式展开,利用基本不等式求解即可 【详解】(4)(2)82416161x y xy x y xy xy xy xy xy++++++===+又x +2y =4≥即2xy ≤,当且仅当2,1x y ==等号成立,故原式9≥ 故填9 【点睛】本题考查基本不等式求最值,考查等价变换思想与求解能力,注意等号成立条件14.1【解析】【分析】由已知数列递推式可得数列是以为首项以为公比的等比数列然后利用等比数列的通项公式求解【详解】由得则数列是以为首项以为公比的等比数列故答案为:1【点睛】本题考查数列的递推关系等比数列通解析:1 【解析】 【分析】由已知数列递推式可得数列99{log }n a 是以199991991log 9999log a ==为首项,以19999为公比的等比数列,然后利用等比数列的通项公式求解. 【详解】由11()an n a a -=,得991991log log n n a a a -=,∴199991991l 9og log 9nn a a a -==,则数列99{log }n a 是以199991991log 9999log a ==为首项,以19999为公比的等比数列, ∴19999991001log (99)199a =⋅=. 故答案为:1.【点睛】本题考查数列的递推关系、等比数列通项公式,考查运算求解能力,特别是对复杂式子的理解.15.【解析】由题设可知即由正弦定理可得所以当时故填 解析:3【解析】 由题设可知()sin 3sin sin 3sin cos cos sin cos 13cos C BC B C B C C B=⇒=+-,即sin 3sin C A =,由正弦定理可得3c a =,所以224421441384222a S a a a ⎛⎫-=-=-+- ⎪⎝⎭,当242a a =⇒=时, 4max 1284432S =-+⨯-=,故填3. 16.【解析】【分析】先画出可行域改写目标函数然后求出最小值【详解】依题意可行域为如图所示的阴影部分的三角形区域目标函数化为:则的最小值即为动直线在轴上的截距的最大值通过平移可知在点处动直线在轴上的截距最解析:72-【解析】 【分析】先画出可行域,改写目标函数,然后求出最小值 【详解】依题意,可行域为如图所示的阴影部分的三角形区域,目标函数化为:3y x z =-,则z 的最小值即为动直线在y 轴上的截距的最大值.通过平移可知在A 点处动直线在y 轴上的截距最大.因为20:220x y A x y +=⎧⎨-+=⎩解得11,2A ⎛⎫- ⎪⎝⎭, 所以3z x y =-的最小值()min 173122z =⋅--=-.【点睛】本题考查了线性规划的简单应用,一般步骤:画出可行域,改写目标函数,求出最值17.9【解析】【分析】记函数利用等比数列求和公式即可求解【详解】由题:记函数即故答案为:9【点睛】此题考查多项式系数之和问题常用赋值法整体代入求解体现出转化与化归思想解析:9 【解析】 【分析】记函数122012()(1)(1)(1)n n n f x x x x a a x a x a x =++++++=++++,012222(1)2n n f a a a a =+++=++++,利用等比数列求和公式即可求解. 【详解】由题:记函数212012()(1)(1)(1)n n n f x a a x a x a x x x x =++++=++++++,021222(12)(21)212n nn f a a a a -=++++++=-=+, 即1221022n +-=,121024,9n n +==故答案为:9 【点睛】此题考查多项式系数之和问题,常用赋值法整体代入求解,体现出转化与化归思想.18.6【解析】【分析】由题意公差d=1na1+=2668∴n (2a1+n-1)=5336=23×23×29得出满足题意的组数即可得出结论【详解】由题意公差d=1na1+=2668∴n (2a1+n-1)=解析:6 【解析】 【分析】由题意,公差d=1,na 1+()12n n -=2668,∴n (2a 1+n-1)=5336=23×23×29,得出满足题意的组数,即可得出结论. 【详解】由题意,公差d=1,na 1+()12n n -=2668,∴n (2a 1+n-1)=5336=23×23×29, ∵n <2a 1+n-1,且二者一奇一偶,∴(n ,2a 1+n-1)=(8,667),(23,232),(29,184)共三组; 同理d=-1时,也有三组. 综上所述,共6组. 故答案为6. 【点睛】本题考查组合知识的运用,考查等差数列的求和公式,属于中档题.19.【解析】【分析】根据正弦定理得到再根据计算得到答案【详解】由正弦定理知:即即故故答案为【点睛】本题考查了正弦定理外接圆面积意在考查学生的计算能力 解析:9π【解析】 【分析】根据正弦定理得到()1sin sin A B C R +==,再根据cos 3C =计算1sin 3C =得到答案. 【详解】由正弦定理知:cos cos 2sin cos 2sin cos 2b A a B R B A R A B +=⋅⋅+⋅=,即()1sin sin A B C R +==,cos 3C =,1sin 3C =, 即3R =.故29S R ππ==. 故答案为9π 【点睛】本题考查了正弦定理,外接圆面积,意在考查学生的计算能力.20.-4【解析】【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解把最优解的坐标代入目标函数得答案【详解】解:作出可行域如图所示当直线经过点时故答案为:【点睛】本题考查简单的线性解析:-4 【解析】 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】解:作出可行域如图所示,当直线3z x y =-经过点()2,2时,min 2324z =-⨯=-. 故答案为:4- 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.三、解答题21.(1) 12n n a (2) n S 221n n =+-【解析】 【分析】(1)由题意结合等差数列的性质得到关于公比的方程,解方程求得公比的值,然后结合首项求解数列的通项公式即可.(2)结合(1)的结果首先确定数列{}n b 的通项公式,然后分组求和即可求得数列{}n b 的前n 项和n S . 【详解】(1)设等比数列{}n a 的公比为q ,则2a q =,23a q =,∵2a 是1a 和31a -的等差中项, ∴()21321a a a =+-, 即()2211q q =+-, 解得2q =,∴12n n a -=.(2) 121212n n n b n a n -=-+=-+,则()()11321122n n S n -⎡⎤=+++-++++⎣⎦()12112212n n n ⎡⎤+--⎣⎦=+-. 221n n =+-.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.22.(1) 3A π=【解析】 【分析】(1)由余弦定理得2cos cos cos b A a C c A =+,再由正弦定理得2sin cos sin()B A A C ⋅=+,进而得1cos 2A =,即可求解(2)在Rt AED ∆中,求得2AD =,AC =,再ABC ∆中由正弦定理得4B π=,结合三角形的面积公式,即可求解. 【详解】(1)由余弦定理有22cos cos cos bc A ac C c A =+, 化简得2cos cos cos b A a C c A =+,由正弦定理得2sin cos sin cos cos sin sin()B A A C C A A C ⋅=⋅+=+ ∵A B C π++=,∴2sin cos sin B A B ⋅=,∵0B π<<,∴sin 0B ≠,∴1cos 2A = ,又由0A π<<,∴3A π=. (2)在AEC ∆中,D 为边AC 的中点,且DE AC ⊥,在Rt AED ∆中,DE =,3A π=,所以2AD =,AC =ABC ∆中由正弦定理得sin sin AC BC B A =,得sin B 4B π=,512C π=,所以13sin 24ABC S AC BC C ∆=⋅=【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.23.(1)13nn a ⎛⎫= ⎪⎝⎭; (2)13(21)34n n n T ++-⋅=【解析】 【分析】(1)由等差中项可得21343a a a =+,设数列{}n a 的公比为()1q q ≠,则211143a q a a q ⋅=+⋅,可解得q ,即可求得通项公式;(2)由(1)可得3n nnn a =⋅,再利用错位相减法求解即可. 【详解】解:(1)设数列{}n a 的公比为()1q q ≠,且1a ,22a ,33a 成等差数列,所以21343a a a =+,即211143a q a a q ⋅=+⋅,解得13q =, 因为113a =,所以13nn a ⎛⎫= ⎪⎝⎭(2)由(1)知,13nn a ⎛⎫= ⎪⎝⎭,所以3n nn n a =⋅, 所以1231323333n n T n =⨯+⨯+⨯++⋅,则234131323333n n T n +=⨯+⨯+⨯++⋅,作差可得,1231233333n n n T n +-=++++-⋅则()+13312331n n nT n --=-⋅-,即1132322n n T n +⎛⎫-=-⋅- ⎪⎝⎭,所以()132134n n n T ++-⋅=【点睛】本题考查等差中项的应用,考查等比数列的通项公式,考查错位相减法求数列的和. 24.(1)2 (2【解析】 【分析】 【详解】((1)由cos 05ACB ∠=>可知,ACB ∠是锐角,所以,sin 5ACB ∠===由正弦定理sin sin AC AB B ACB=∠,sin 2sin 2AC AB ACB B =∠== (2)cos cos(18045)cos(135)A C C ︒︒︒=--=-(cos sin )2C C =-+= 由余弦定理:CD === 考点:1正弦定理;2余弦定理. 25.(1)A =60°;(2)【解析】 【分析】(1)利用正弦定理,把边化为角,结合辅助角公式可求;(2)利用三角形内角关系求出sin C ,结合正弦定理求出,a c 关系,利用余弦定理可求,a c . 【详解】(1)acos C-b -c =0,由正弦定理得sin Acos C=sin B +sin C ,即sin Acos Csin Asin C =sin(A +C)+sin C ,又sin A -cos A =1,所以sin(A -30°)=12. 在△ABC 中,0°<A <180°,所以A -30°=30°,得A =60°. (2)在△ABC 中,因为cos B =17,所以sin B=7. 所以sin C =sin(A +B)17+12. 由正弦定理得,sin 7sin 5a A c C ==. 设a =7x ,c =5x(x >0),则在△ABD 中,AD 2=AB 2+BD 2-2AB·BDcos B, 即1294=25x 2+14×49x 2-2×5x×12×7x×17,解得x =1,所以a =7,c =5, 故S △ABC =12acsin B =【点睛】本题主要考查利用正弦定理和余弦定理解三角形,合理选择公式是求解的关键.26.(1)*21,n a n n N =-∈(2)存在,2,12m k ==【解析】【分析】(1)设等差数列{}n a 的公差为d ,由等差数列的通项公式与前n 项和公式得112512238a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,从而求出21n a n =-; (2)由(1)得()2122n n n S n n -=+⨯=,由211114122121n b n n n ⎛⎫==- ⎪--+⎝⎭,利用裂项相消法得21n n T n =+,若23k m T T =,则()2232121k m k m =++,整理得223412m k m m =+-,由1k m >>得11m <<+,从而可求出答案. 【详解】解:(1)设等差数列{}n a 的公差为d ,由2541216a a S +=⎧⎨=⎩得112512238a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,()*12121,n a n n n N ∴=+-=-∈;(2)()2122n n n S n n -=+⨯=,211114122121n b n n n ⎛⎫∴==- ⎪--+⎝⎭,1211111111111123352321212122121n n n T b b b n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=++⋅⋅⋅+=-+-+⋅⋅⋅+-+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥---+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,若23k m T T =,则()2232121k m k m =++,整理得223412m k m m =+-,又1k m >>,2234121m m m m m ⎧>⎪∴+-⎨⎪>⎩,整理得222104121m m m m m ⎧-->⎪+-⎨⎪>⎩,解得11m << 又*m N ∈,2m ∴=,12k ∴=, ∴存在2,12m k ==满足题意. 【点睛】本题主要考查等差数列的性质与求和,考查裂项相消法求和,属于中档题.。

相关文档
最新文档