九年级数学下册:相似三角形
九年级数学下册《相似三角形的性质》教案、教学设计
-学生回顾全等三角形的性质,为新课的学习打下基础。
(二)讲授新知
1.教师引导学生从相似三角形的定义入手,探讨相似三角形的性质。
-解释相似三角形的定义,强调比例关系。
-引导学生观察相似三角形的边长和角度,发现性质。
2.教师运用几何画板动态展示相似三角形的性质,帮助学生形象理解。
-学生能够运用相似三角形的性质,进行严密的几何证明,掌握证明过程中的逻辑关系。
-学生能够灵活运用相似三角形的性质,解决复合几何问题,提高解题技巧。
3.学会运用相似三角形的性质解决实际问题,增强数学应用能力。
-学生能够运用相似三角形的性质,解决生活中的实际问题,如测量高度、距离等。
-学生能够将相似三角形的性质与其他数学知识相结合,解决综合性的数学问题。
3.培养学生的创新精神和实践能力,激发学生探索未知世界的热情。
-教师鼓励学生提出问题、解决问题,培养学生的创新思维。
-学生通过解决实际问题,感受数学与现实生活的联系,激发探索未知世界的热情。
4.培养学生的严谨学生严谨对待数学问题,养成良好的学习习惯。
(二)教学难点
1.相似三角形性质的推理和证明过程。
2.学生在解决实际问题中,对相似三角形性质的应用。
3.帮助学生建立几何直观,理解相似三角形的空间变化。
教学设想:
1.采用情境导入法,引发学生兴趣
-通过展示生活中与相似三角形相关的实例,如建筑物的立面设计、摄影中的构图等,激发学生的学习兴趣,引导学生认识到相似三角形在实际中的应用。
九年级数学下册《相似三角形的性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解相似三角形的定义及其判定条件,掌握相似三角形的性质和比例关系。
九年级数学下册272《相似三角形》PPT课件
3. 解等式求出三角形的面积。
注意事项:在解题过程中,要确保已知的三边长度是准 确的,避免因为数据不准确而导致错误。同时,要注意 选择合适的公式或方法进行计算。
典型例题四:综合应用举例
• 解题思路:综合运用相似三角形的性质和判定方法,解决 复杂的实际问题。
典型例题四:综合应用举例
解题步骤 1. 分析问题,确定需要使用的相似三角形的性质和判定方法;
利用相似三角形的面积比等于相似比的平 方性质,求解面积问题 通过已知三角形的面积和相似比,计算另 一个三角形的面积 结合图形变换和面积公式,利用相似三角 形解决复杂面积问题
利用相似三角形解决综合问题
综合运用相似三角形 的性质,解决涉及线 段、角度和面积的复 杂问题
结合多种数学方法, 如代数运算、方程求 解等,提高解决问题 的效率
通过分析问题的条件 ,选择合适的相似三 角形性质和定理进行 求解
04
典型例题分析与解题思路展示
典型例题一:已知两边求第三边长度
解题思路:利用相似三角形的性质, 即对应边成比例,可以通过已知的两
边长度求出第三边的长度。
解题步骤
2. 利用相似三角形的性质列出比例式 ;
3. 解比例式求出第三边的长度。
1. 确定已知的两边和夹角;
注意事项:在解题过程中,要确保已 知的两边和夹角是对应的,避免因为 数据不对应而导致错误。
典型例题二:已知两角求第三角大小
01
解题思路:根据三角形内角和为180°的性质,可以通过 已知的两角求出第三角的大小。
04
2. 利用三角形内角和为180°的性质列出等式;
02
解题步骤
对应角相等,对应边成比例的两 个三角形叫做相似三角形。
数学人教版九年级下册27.2相似三角形的判定定理教案
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形判定定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形判定定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.提高学生的数学建模能力,使学生能够将现实问题转化为数学模型,运用相似三角形的性质解决实际问题;
4.培养学生的数据分析能力,通过分析相似三角形的判定定理在不同情境中的应用,提高学生解决复杂问题的能力;
5.培养学生的数学抽象思维,让学生从具体的几何图形中提炼出相似三角形的判定定理,并应用于不同的问题情境中。
三、教学难点与重点
1.教学重点
-本节课的核心内容是相似三角形的判定定理,包括AAA、AA和SSS相似定理。以下是具体细节:
-理解并掌握相似三角形的定义,即对应角相等且对应边成比例的两个三角形为相似三角形;
-掌握AAA相似定理,即如果两个三角形有三个角分别相等,则这两个三角形相似;
-掌握AA相似定理,即如果两个三角形有两个角分别相等,并且它们的夹角相等,则这两个三角形相似;
新课讲授中的重点难点解析部分,我发现学生在区分AAA和AA相似定理的应用条件上存在一些困难。这可能是因为我在讲解时没有足够地强调这两个定理的区别,或者举例不够典型。在后续的教学中,我需要针对这一点进行改进,设计更多具有针对性的例题和练习。
沪教版九年级数学下册
沪教版九年级数学下册一、知识点汇总。
1. 相似三角形。
- 相似三角形的定义:对应角相等,对应边成比例的三角形叫做相似三角形。
- 相似三角形的判定定理。
- 两角分别相等的两个三角形相似。
- 两边成比例且夹角相等的两个三角形相似。
- 三边成比例的两个三角形相似。
- 相似三角形的性质。
- 相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比。
- 相似三角形周长的比等于相似比,面积的比等于相似比的平方。
2. 锐角三角比。
- 锐角三角函数的定义。
- 在Rt△ABC中,∠C = 90°,正弦sin A=(a)/(c)(a为∠A的对边,c为斜边),余弦cos A=(b)/(c)(b为∠A的邻边),正切tan A=(a)/(b)。
- 特殊角(30°、45°、60°)的三角函数值。
- sin30^∘=(1)/(2),cos30^∘=(√(3))/(2),tan30^∘=(√(3))/(3);- sin45^∘=(√(2))/(2),cos45^∘=(√(2))/(2),tan45^∘=1;- sin60^∘=(√(3))/(2),cos60^∘=(1)/(2),tan60^∘=√(3)。
3. 二次函数。
- 二次函数的表达式。
- 一般式y = ax^2+bx + c(a≠0)。
- 顶点式y=a(x - h)^2+k(a≠0),顶点坐标为(h,k)。
- 二次函数的图象性质。
- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 对称轴为x =-(b)/(2a)(一般式)或x = h(顶点式)。
- 顶点坐标为(-(b)/(2a),frac{4ac - b^2}{4a})(一般式)或(h,k)(顶点式)。
4. 圆。
- 圆的基本概念。
- 圆的定义:平面内到定点的距离等于定长的点的集合。
- 圆心、半径、直径等概念。
- 圆的性质。
- 垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧。
人教版初中数学九年级下册 27.2.1 相似三角形的判定(第4课时)课件 【经典初中数学课件】
A
3.如图,△ABC中,DE∥BC,EF∥AB,
D
E
试说明△ADE∽△EFC.
B
F
C
4.已知如图,∠ABD=∠C,AD=2,AC=8,求AB.
A D
B
C
相似三角形的判别方法有那些?
方法1:通过定义
三个角对应相等 三边对应成比例
方法2:平行于三角形一边的直线.
方法3:三边对应成比例.
方法4:两边成比例且夹角相等. 方法5:两角分别相等.
A
3.如图,△ABC中,DE∥BC,EF∥AB,
D
E
试说明△ADE∽△EFC.
B
F
C
4.已知如图,∠ABD=∠C,AD=2,AC=8,求AB.
A D
B
C
相似三角形的判别方法有那些?
方法1:通过定义
三个角对应相等 三边对应成比例
方法2:平行于三角形一边的直线.
方法3:三边对应成比例.
方法4:两边成比例且夹角相等. 方法5:两角分别相等.
一定需三个角对应相等吗?
相似三角形的判别方法: 两角分别相等的两个三角形相似.
如果两个三角形仅有一组角是对应相等的,那么它们是否 一定相似?
相似三角形的判别
用数学符号表示: ∵∠A=∠A', ∠B=∠B' ∴ ΔABC ∽ ΔA'B'C'
A A'
B
C B' C'
(两个角分别相等的两个三角形相似.)
条件 DE‖BC ,就可以使△ADE与原△ABC相似.
(或者∠B=∠ADE) (或者∠C=∠AED)
2.如图,在□ABCD中,EF∥AB,
DE:EA=2:3,EF=4,求CD的长.
27.2.2 相似三角形的性质 九年级数学下册人教版课件
AB BC CA k, A'B' B'C' C' A'
因此 AB=k A'B',BC=kB'C',CA=kC'A',
从而
AB BC CA kA' B ' kB 'C ' kC ' A' k. A' B ' B 'C ' C ' A' A' B ' B 'C ' C ' A'
归纳:相似三角形周长的比等于相似比.
∵△ABC∽△A'B'C'
AD AB k AE AB
B/
A
D
C
A/
D/
C/
归纳
由此我们可以得到: 相似三角形对应高的比等于相似比. 类似地,可以证明相似三角形对应中线、角平分线的比也 等于相似比.
一般地,我们有:相似三角形对应线段的比等于相似比.
1. 如果两个相似三角形的对应高的比为 2 : 3,那么对 应角平分线的比是 2 : 3 ,对应边上的中线的比是 __2_:_3__ .
2. 相似三角形有哪些性质? 对应角相等,对应边成比例
三角形中有各种各样的几何量,例如三条边的长度, 三个内角的度数,高、中线、角平分线的长度,以及周长、 面积等。如果两个三角形相似,那么它们的这些量之间有 什么关系呢?
1. 理解并掌握相似三角形中对应线段的比等于相似比,并 运用其解决问题 2. 理解相似三角形面积的比等于相似比的平方,并运用其 解决问题.
2. 已知△ABC ∽ △A'B'C' ,相似比为3 : 4,若 BC 边 上的高 AD=12 cm,则 B'C' 边上的高 A'D' =_1_6_c_m__ .
九年级数学相似三角形
如果两个多边形的对应角相等且对应 边成比例,则这两个多边形相似。
06
总结回顾与练习题解答
本节课重点知识点总结回顾
• 相似三角形的定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。
利用角平分线构造
角平分线将角平分,并且与对边相交,将对边分 为两段,这两段与角的两边构成的两个三角形与 原三角形相似。
05
拓展:高级几何中相似三角形相关知识点介绍
射影几何中相似三角形概念及性质
01
相似三角形的定义:在射影几何中,如果两个三角形的对 应角相等,则称这两个三角形相似。
04
对应角相等。
02
相似比:相似三角形的对应边之间的比值称为相似比。
05
对应边成比例。
03
相似三角形的性质
06
面积比等于相似比的平方。
解析几何中相似三角形表示方法
解析几何中的表示方法
在解析几何中,可以使用向量 或坐标来表示三角形,并通过 比较对应向量或坐标之间的关 系来判断两个三角形是否相似 。
向量表示法
通过三角形的三个顶点可以确 定三个向量,如果两个三角形 的对应向量之间的比值相等, 则这两个三角形相似。
1. 题目
解答
2. 题目
已知△ABC和△DEF中,∠A = ∠D, ∠B = ∠E,AB = 6,AC = 8,DE = 3。求DF和EF的长。
根据相似三角形的性质,我们有 $frac{AB}{DE} = frac{AC}{DF} = frac{BC}{EF}$。代入已知条件, 得$frac{6}{3} = frac{8}{DF} = frac{BC}{EF}$。解得$DF = 4$, $EF$可以通过勾股定理求得, $EF = sqrt{DE^2 + DF^2} = 5$。
相似三角形的性质+课件+人教版数学九年级下册
周长比等于相似比,面积比等于相似比的平方
验一验:是不是任何相似三角形都有此关系呢?
你能加以证明吗?
已知:ΔABC∽ΔA´B´C´,相似比为k.
求证: ΔABC的周长
ΔA’B’C’的周长
=k
sABC sA´B´C´
=k2
A
A’
B
B’
C’
C
已知:ΔABC∽ΔA´B´C´,相似比为k.
求证:
ΔABC的周长 ΔA’B’C’的周长
相似三角形的周长比等于相似比吗?
A B
C D
相似三角形的周长比等于相似比. E
F
已知:如图, △ABC∽△A’B’C’,它们的相似比是K,
AD、A’D’分别是高.
A
求证:S ABC : S A'B'C ' = K 2
证明: ∵△ABC∽△A’B’C’
B
DC
A’
BC = AD = K B'C' A' D'
A
D
解: ∵AD∥BC
O
∴△AOD∽△COB S△AOD:S△COB=4:9
∴OD:OB=2:3
B
C
∴S△AOD:S△AOB=2:3
∴S△AOB=6cm2 ∴梯形ABCD的面积为25cm2
做一做:
如图,D,E分别是AC,AB边上的点,∠ADE=∠B, AG⊥BC于点G,AF⊥DE于点F,若AD=3,AB=5。 求:(1) AG ;
A'B' B'C' 72
C B'
又 AB=15厘米 B'C'=24厘米
C'
所以 A'B'=18厘米 BC=20厘米
九年级下册数学 两个三角形相似的判定
在九年级下册数学中,我们学习了关于两个三角形相似的判定。
相似三角形是指具有相同形状但大小不同的三角形,它们的对应角度相等,对应边长成比例。
这一概念对于我们理解图形的性质和解决实际问题都至关重要。
首先要判断两个三角形是否相似,我们可以运用如下几种方法:1. 直角三角形的判定:当一个三角形中有一个角为直角时,可以直接利用两个直角三角形的斜边比相等的条件来判定两个三角形是否相似。
2. 两角对应相等的判定:如果两个三角形中分别有两个角各相等,则这两个三角形一定相似。
这是利用相似三角形的特性之一,即对应角相等。
3. 边对应成等比例的判定:如果两个三角形的对应边长成等比例,则这两个三角形也是相似的。
这个方法是根据相似三角形的定义进行判定的。
以上三种方法是我们在九年级下册数学学习中经常使用的三角形相似的判定方法。
通过这些方法,我们可以在解决实际问题中运用相似三角形的性质,比如利用相似三角形进行测量距离、高度等问题的解决。
在我看来,相似三角形的判定方法不仅仅是学习数学知识,更是培养我们逻辑思维和解决问题的能力。
通过对相似三角形的学习,我们可以锻炼自己的观察力和分析能力,培养自己对于形状和结构的认知。
九年级下册数学中关于两个三角形相似的判定是一个非常重要且有价值的内容。
通过深入学习和理解这一内容,我们可以提升自己的数学水平,同时也培养自己的思维能力和解决问题的能力。
希望通过本文的阐述,你能更深入地理解并应用这一知识点。
:九年级下册数学中关于相似三角形的判定,不仅在数学知识上具有重要意义,而且在实际生活中也有着广泛的应用。
通过学习相似三角形的判定方法,我们可以更好地理解图形的形状和特性,从而更准确地解决实际问题。
除了学习相似三角形的判定方法,我们还需要掌握利用相似三角形解决实际问题的技巧。
在实际测量中,如果无法直接测量某个物体的高度或距离,可以利用相似三角形的性质进行间接测量。
通过测量已知物体的高度和距离,以及与被测物体的对应角度,可以利用相似三角形的比例关系计算出被测物体的高度和距离。
27.2.2+相似三角形的性质++课件++-2024-2025学年人教版九年级数学下册
数关系往往需要考虑相似比与对应线段的比,以及相似比
与面积比之间的关系.
综合应用创新
题型
4 利用相似三角形的性质解决实际问题
例 7 课本中有一道复习题:如图27.2-37 ①所示,有一
块三角形材料ABC,它的边BC=120 mm,高AD=
80 mm,要把它加工成正方形零件,使正方形的边
′′
= =k
′′
相似比为k
感悟新知
知1-讲
续表
图形
推理
结论
由两角分别相等
的两个三角形相 相 似 三 角
对应
似 , 得 △ABD ∽ 形 对 应 高
高的
AD , A′D′ 分 别 为 △A′B′D′ , 再 由 相 的 比 等 于
比
△ABC 和 △A′B′C′ 的 似 三 角 形 的 性 质 ,相似比
-6
3
2
6
3 2
2
) ×24= x -
2
12x
+24.
3
8
3
2
9
8
∴ y=S△A1MN-S△A1EF= x2-( x2-12x+24=- x2+12x-
24(4 <x<8).
16
易知当x= 时,y最大=8.
3
16
3
∵ 8>6,∴当x= 时,y最大,y 最大=8.
综合应用创新
解法提醒
本题运用了分类讨论思想,对点A1与四边形BCNM的
的平分线.
感悟新知
知1-练
例 1 如图27.2-32,在△ABC中,AD是BC边上的高,矩形
EFGH内接于△ABC,且长边FG在BC上,AD与EH的
九年级下册数学第3课时 相似三角形的判定定理3优秀课件
2、 已知:如图,∠ABD=∠C, AD=2 且 AC=8, 求AB 长.
提示:可证明△ACB~△ABD 从而求出AB=4
3、如图,AD⊥BC于点D, CE⊥AB于点 E , 且交AD于F,你能从中找出几对相似三角形?
A
E F
B
C
D
4、如图,AB•AE=AD•AC,且1=∠2, 求证:△ABC∽△ADE.
3、(简称:三边):如果两个三角形的三组对应边 的比相等,那么这两个三角形相似.
4、(简称:两边夹角):如果两个三角形的两组对 应边的比相等,并且相应的夹角相等,那么这两个 三角形相似. 5、(简称:两角):如果一个三角形的两个角与 另一个三角形的两个角对应相等,那么这两个三 角形相似.
谢谢使用
你能得到判定两个三角形相似的又一方法吗?
如果一个三角形的两个角与另一个三角形的 两个角对应相等,那么这两个三角形相似.
如图,已知△ABC和△A'B'C'中,∠A=∠A', ∠B=∠B', 求证: △ABC∽△A'B'C'
证明:在△ABC的边AB(或延长线)上,截取AD=A'B',过点D 作DE//BC,交AC于点E,则有△ADE∽△ABC
C E
A
Hale Waihona Puke 解:∵ED⊥AB,∴∠EDA=90?
D
B
又∠C=90?,∠A=∠A,∴△AED~△ABC.
∴ AD = AE .∴AD= AC·AE = 8 5 =4
AC AB
AB 10
我们知道,两个直角三角形全等可以用“HL” 来判定,那么,满足斜边和一条直角边成比 例的两个直角三角形相似吗?
人教版九年级数学下册1相似三角形应用举例
探
索
新
知
分析:如图,设观察者眼睛的位置 (视点) 为点 F,画出观察者的水平视
线 FG,它交 AB,CD 于点 H,K.视线 FA,FG 的夹角 ∠AFH 是观察点
A 的仰角. 类似地,∠CFK 是观察点 C 时的仰角,由于树的遮挡,区域
Ⅰ和Ⅱ都在观察者看不到的区域 (盲区) 之内. 再往前走就根本看不到 C
第二十七章 相似
27.2 相似三角形
相似三角形应用举例
学
习
目
标
1. 能够利用相似三角形的知识,求出不能直接测量
的物体的高度和宽度. (重点)
2. 进一步了解数学建模思想,能够将实际问题转化
为相似三角形的数学模型,提高分析问题、解决
问题的能力. (难点)
0 1 . 课 前 导 入
0 2 . 探 索 新 知
∴ BO
FD
3
=134 (m).
因此金字塔的高度为
134 m.
探
索
新
知
方法总结:
测量不能到达顶部的物体的高度,可以用“在同一
时刻物高与影长成正比例”的原理解决.
表达式:物1高 :物2高 = 影1长 :影2长
探
索
新
知
小明身高 1.5 米,在操场的影长为 2 米,同时
测得教学大楼在操场的影长为 60 米,则教学大楼
因此,河宽大约为 90 m.
探
索
新
知
方法总结:
测量如河宽等不易直接测量的物体的宽度,常构造相
似三角形求解.
探
索
新
知
如图,为了测量水塘边 A、B 两点之间的距离,在可以看
人教版九年级数学下册相似三角形全章课件
∴△A′B′C′∽△ABC
B
E C
A A′
B
B′ C
C′
△ABC∽△A′B′C′
如果一个三角形的三条边和另一个三角形的三条边 对应成比例,那么这两个三角形相似. 简单地说:三边对应成比例,两三角形相似.
【例】在△ABC和△A′B′C′中,已知:AB=6cm,BC= 8cm,AC=10cm,A′B′=18cm,B′C′=24cm,A′C′ =30cm.试证明△ABC与△A′B′C′相似.
A C
B
D
P2 P3
P1 P4
E
P5 F
【解析】(1)△ABC和△DEF相似.根据勾股定理,
得
, ,BC=5;
,,
.
∵
,∴ △ABC∽△DEF.
(2) 答案不唯一,下面6个三角形中的任意2个均可.
A C
B
P3 E
D P1 P2
P4
P5 F
△P2P5D,△P4P5F,△P2P4D,
△P4P5D,△P2P4 P5,△P1FD.
4.(成都中考)如图,已知线段AB∥CD,AD与B
C相交于点K,E是线段AD上一动点。 (1)若BK= KC,
求 的值;
(2)连接BE,若BE平分∠ABC,则当AE= AD时,猜想线
段AB、BC、CD三者之间有怎样的等量关系?请写出你的
结论并予以证明.再探究:当AE= AD (n>2),而其余
MN∥AB交BC于N,量得MN=38cm,则AB的长为 152c . m
2.如图,在△ABC中,DG∥EH∥FI∥BC, (1)请找出图中所有的相似三角形;
△ADG∽△AEH∽△AFI∽△ABC
(2)如果AD=1,DB=3,那么DG:BC=_1_:_4__. A
27.2.2 相似三角形的性质 人教版九年级数学下册课件
解:如图,分别作出 △ABC 和△A' B' C' 的角平分线 A
AD 和 A'D',则∠BAD =∠B' A' D'
∵△ABC ∽△A′B′C′ ∴∠B=∠B' , AB k
A'B' ∴△ABD ∽△A' B' D'
(两角分别相等的两个三角形相似) ∴ AD AB k
A'D' A'B'
BD
C
相似三角形的性质
——第二十七章相似
教学目标
01.掌握相似三角形对应高线、中线和角 平分线的比与相似比之间的关系 重点
02.理解并掌握相似三角形周长与面积的的 比与相似比之间的关系. 重点
03.能够运用相似三角形的性质解决相 关问题 难点
大家回忆一下相似三角形的定义是什么?
三个角分别相等,三边成比例的两个三角形相似.
AM AM
AB AB
k
由两角分别相等的两个三角形相
似,得△ABN∽△ABN ,再由相似 对 应 角 平 分 线 的
三角形的定义,得
AN AN
AB AB
k
比等于相似比
相似三角形的周长有什么关系呢?
解:如图 △ABC ∽△A'B'C',相似比为 k,那么 AB BC CA k, A'B' B'C ' C ' A'
应角相等,所以∠BB=∠A′D′B′=90°.根据两角对应相
A'
等的两个三角形相似得到△ABD和△A′B′D′相似,
然后由相似三角形的对应边成比例得到
AD AD
九年级下册数学相似知识点汇总
九年级下册数学相似知识点汇总在九年级下册数学中,相似是一个重要的概念。
相似可以理解为两个几何图形在形状上保持一定的比例关系。
本文将对九年级下册数学中的相似知识点进行汇总,以帮助同学们更好地理解和应用这些知识。
1. 相似三角形相似三角形是九年级下册数学中的一个重要概念。
两个三角形相似的条件是:对应角相等,对应边成比例。
同学们应该注意掌握相似三角形的判定方法和应用。
2. 相似比例相似比例是相似的基本性质,它表示两个相似图形中对应边的比例关系。
例如,如果两个三角形相似,那么它们的对应边的比例相等。
同学们需要灵活运用相似比例来求解各种几何问题。
3. 三角形的面积比如果两个三角形相似,那么它们的面积比等于它们相应边长的平方比。
同学们应该掌握如何计算三角形的面积,并且了解面积比的性质及应用。
4. 相似三角形的性质相似三角形具有一些特殊的性质,比如它们的对应角相等,对应边成比例。
同学们应该学会利用这些性质解决各种几何问题,如长度比、面积比等。
5. 相似图形的比例尺对于相似的几何图形,我们可以定义一个比例尺来表示它们的对应边长之间的比例关系。
同学们需要了解比例尺的概念和使用方法,并且能够将实际问题转化为比例尺问题进行求解。
6. 平行线与相似平行线与相似有密切的联系。
同学们应该了解平行线与相似的性质,如平行线分割的三角形相似、平行线分割的四边形相似等。
7. 相似三角形的判定如何快速判断两个三角形是否相似是一个重要的问题。
同学们应该熟练掌握相似三角形的判定方法,如AAA判定法、相似三角形对应角相等等。
8. 应用题相似的知识在应用题中经常会出现。
同学们需要善于将实际问题转化为相似三角形问题,并通过相似的性质和方法解决问题。
总结:通过对九年级下册数学相似知识点的汇总,我们可以看到相似是一个重要的几何概念。
同学们在学习相似知识时,应该注重理解概念和性质,熟练掌握判定方法和计算技巧,并能够将相似的知识灵活应用到实际问题中。
数学九年级相似三角形知识点
数学九年级相似三角形知识点
在九年级数学中,相似三角形是一个重要的知识点。
下面是与相似三角形相关的主要知识点:
1. 相似三角形的定义:两个三角形的对应角相等,并且对应边成比例,则这两个三角形相似。
2. 相似三角形的性质:相似三角形的对应边比例相等,即如果ABC和A'B'C'是相似三角形,那么AB/A'B' = AC/A'C' = BC/B'C'。
3. 相似三角形的判定方法:
- AAA判定法:如果两个三角形的对应角分别相等,则这两个三角形相似。
- SSS判定法:如果两个三角形的对应边成比例,则这两个三角形相似。
- SAS判定法:如果两个三角形的一个对应角相等,且对应边成比例,则这两个三角形相似。
4. 相似三角形的应用:
- 求比例:已知两个相似三角形的一个边和它的对应边比例,可以求出其他对应边的比例。
- 求长度和面积:已知一个三角形及其相似三角形的一些边的长度,可以通过比例关系求出其他边的长度和面积。
- 证明定理:可通过相似三角形的性质证明一些重要的几何定理,如角平分线定理、四边形内角和定理等。
以上介绍了一些九年级数学中关于相似三角形的知识点,希望对您有帮助!。
27.2.3++(2)相似三角形的周长和面积+课件+2023-2024学年人教版数学九年级下册
思维拓展
返回目录
6.如图,一块材料的形状是锐角三角形ABC,边BC=120 mm,高AD= 80 mm,把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别 在AB,AC上,设EG=x mm,EF=y mm. (1)写出x与y的关系式; 解:易得四边形 EGDK 为矩形,则 KD=EG=x mm, ∴AK=AD-DK=(80-x)mm,∵EF∥BC, ∴△AEF∽△ABC,∴BECF=AADK,即12y0=808-0 x,∴y=-32x+120(0<x<80);
例1
变1
例2
变2
例3
变3
例4
变4
例变稳中练
返回目录
(2022 秋·安岳县期末)如图,在四边形 ABCD 中,AD∥BC,AC 与 BD
相交于点 O.若SS△△ABOODC=14,则SS△△DBOOCC的值为( B )
A.23
B.12
C.13
D.14
例1
变1
例2
变2
例3
变3
例4
变4
例变稳中练
返回目录
思维拓展
返回目录
6.如图,一块材料的形状是锐角三角形ABC,边BC=120 mm,高AD= 80 mm,把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别 在AB,AC上,设EG=x mm,EF=y mm. (2)用S表示矩形EGHF的面积,当x为何值时,S最大?并求出S的最大 值. 解:S=xy=-32x2+120x=-32(x-40)2+2 400, 当 x=40 时,S 有最大值,为 2 400 mm2.
例1
变1
例2
变2
例3
变3
例4
变4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学下册:相似三角形专题一相似形中的开放题1.如图,在正方形网格中,点A﹨B﹨C﹨D都是格点,点E是线段AC上任意一点.如果AD=1,那么当AE=时,以点A﹨D﹨E为顶点的三角形与△ABC相似.1.已知:如图,△ABC中,点D﹨E分别在边AB﹨AC上.连接DE并延长交BC的延长线于点F,连接DC﹨BE,∠BDE+∠BCE=180°.(1)写出图中三对相似三角形(注意:不得添加字母和线);(2)请你在所找出的相似三角形中选取一对,说明它们相似的理由.专题二相似形中的实际应用题3.如图,已知零件的外径为a,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=n,且量得CD=b,求厚度x.专题三相似形中的探究规律题4.某班在布置新年联欢晚会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条,如图在Rt△ABC中,∠C=90°,AC=30cm,AB=50 cm,依次裁下宽为1 cm的矩形纸条a1﹨a2﹨a2…若使裁得的矩形纸条的长都不小于5 cm,则每张直角三角形彩纸能裁成的矩形纸条的总数是( )A.24 B.25 C.26 D.275.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.(1)如图①,四边形DEFG为△ABC的内接正方形,求正方形的边长;(2)如图②,正方形DKHG,EKHF组成的矩形内接于△ABC,求正方形的边长;(3)如图③,三个正方形组成的矩形内接于△ABC,求正方形的边长;(4)如图④,n个正方形组成的矩形内接于△ABC,求正方形的边长.专题四相似形中的阅读理解题6.某校研究性学习小组在研究相似图形时,发现相似三角形的定义﹨判定及其性质,可以拓展到扇形的相似中去,例如,可以定义:圆心角相等且半径和弧长对应成比例的两个扇形叫相似扇形;相似扇形有性质:弧长比等于半径比,面积比等于半径比的平方…,请你协助他们探索下列问题:(1)写出判定扇形相似的一种方法:若,则两个扇形相似;(2)有两个圆心角相同的扇形,其中一个半径为a,弧长为m,另一个半径为2a,则它的弧长为;(3)如图1,是—完全打开的纸扇,外侧两竹条AB和AC的夹角为120°,AB为30cm,现要做一个和它形状相同,面积是它的一半的纸扇(如图2),求新做纸扇(扇形)的圆心角和半径.图1 图2专题五相似形中的操作题7.宽与长的比是215的矩形叫黄金矩形,心理测试表明:黄金矩形令人赏心悦目,它给我们以协调﹨匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):第一步:作一个正方形ABCD;第二步:分别取AD,BC的中点M,N,连接MN;第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;第四步:过E作EF⊥AD,交AD的延长线于F.请你根据以上作法,证明矩形DCEF为黄金矩形.8.如图①,将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一起.(1)操作:如图②,将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,设旋转时F C交BA于点H(H点不与B点重合),FE交DA于点G(G点不与D点重合).求证:BH•GD=BF2;(2)操作:如图③,△ECF的顶点F在△ABD的BD边上滑动(F点不与B﹨D点重合),且CF始终经过点A,过点A作AG∥CE,交FE于点G,连接DG.探究:FD+DG= DB,请给予证明.专题六相似形中的综合题9.正方形ABCD的边长为4,M﹨N分别是BC﹨CD上的两个动点,且始终保持AM⊥MN.当BM=时,四边形ABCN的面积最大.10.如图,在锐角△ABC 中,AC 是最短边,以AC 的中点O 为圆心,21AC 长为半径作⊙O ,交BC 于E ,过O 作OD ∥BC 交⊙O 于D ,连接AE ﹨AD ﹨DC .(1)求证:D 是 ⌒AE 的中点;(2)求证:∠DAO =∠B +∠BAD ;(3)若21=∆∆OCD CEF S S ,且AC =4,求CF 的长.【知识要点】1.平行线分线段成比例定理:三条平行线截两条直线,所得对应线段成比例.2.平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等.3.平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似.5.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.6.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.7.相似三角形周长的比等于相似比.相似多边形周长的比等于相似比.8.相似三角形对应高的比等于相似比.9.相似三角形面积的比等于相似比的平方. 相似多边形面积的比等于相似比的平方.【温馨提示】1.平行线分线段成比例时,一定找准对应线段.2.当已知两个三角形有一组对应角相等,利用夹这个角的两边对应成比例来判定它们相似时,比例式常有两种情况,考虑不全面是遗漏解的主要原因.3.数学猜想需要严密的推理论证说明其正确性,规律的发现与提出需要从特殊到一般的数学归纳思想,平时要养成观察﹨分析问题的习惯.【方法技巧】1.相似三角形对应角平分线的比等于相似比;相似三角形对应中线的比等于相似比.2.在平面几何中,求图形中等积式或等比式时,一般地首先通过观察找出图形中相似的三角形,再从理论上证明观察结论的正确性,最后运用相似形的性质来解决问题.参考答案1.22或42 【解析】根据题意得AD =1,AB=3,AC =2266+=26,∵∠A=∠A ,∴若△ADE ∽△ABC 时,ACAE AB AD =,即2631AE =,解得AE =22. 若△ADE ∽△ACB 时,AB AE AC AD =362AE =,解得AE=42. ∴当AE =22或42时,以点A ﹨D ﹨E 为顶点的三角形与△ABC 相似. 2.解:(1)△ADE ∽△ACB ,△CEF ∽△DBF ,△EFB ∽△CFD (不唯一).(2)由∠BDE+∠BCE =180°,可得∠ADE=∠BCE . ∵∠A=∠A ,∴△ADE ∽△ACB ; ∴AC AD =ABAE .∵ ∠A=∠A , ∴△AEB ∽△ADC ;∵∠BDE+∠BC E =180°,∠BCE+∠ECF =180°,∴∠ECF=∠BDF ,又∠F=∠F ,∴△CEF ∽△DBF ;∴BF EF =DFCF ,而∠F=∠F ,∴△EFB ∽△CFD . 3.解:∵ OA :OC =OB :OD =n 且∠AOB =∠COD,∴△AOB ∽△COD .∵ OA:OC =AB:CD =n ,又∵CD =b,∴AB=CD ·n =nb ,∴x =a -AB 2 =a -nb 2. 4.C 【解析】设裁成的矩形纸条的总数为n ,且每条纸条的长度都不小于5cm ,2240(cm)BC AB AC =-=.设矩形纸条的长边分别与AC ﹨AB 交于点M ﹨N ,因为 △AMN ∽△ACB ,所以BC MN AC AM =.又因为AM=AC-1·n=30-n ,MN ≥5 cm ,所以4053030≥-n ,得n ≤26.25,所以n 最多取整数26.5.解:(1)在题图①中过点C 作CN ⊥AB 于点N ,交GF 于点M .因为∠C =90°,AC =4,BC =3,所以AB =5. 因为21×5CN=21×3×4,所以CN=512.因为GF ∥AB ,所以∠CGF=∠A ,∠CFG=∠B ,所以△CGF ∽△CAB ,所以AB GF CN CM =. 设正方形的边长为x ,则1251255x x -=,解得3760=x .所以正方形的边长为3760. (2)同(1),有12251255x x -=,解得4960=x . (3)同(1),有12351255x x -=,解得6160=x . (4)同(1),有1251255x nx -=,解得nx 122560+=. 6.解:(1)答案不唯一,如“圆心角相等” “半径和弧长对应成比例”(2)由相似扇形的性质知半径和弧长对应成比例,设另一个扇形的弧长为x ,则a a 2=x m ,∴x =2m.(3)∵两个扇形相似,∴新做扇形的圆心角与原来扇形的圆心角相等,等于120°.设新做扇形的半径为γ,则230γ⎛⎫ ⎪⎝⎭=21,γ=152,即新做扇形的半径为152㎝. 7.证明:在正方形ABCD 中,取AB=2a ,∵N 为BC 的中点,∴12NC BC a ==. 在Rt △DNC 中,2222(2)5.ND NC CD a a a +=+=∵NE=ND ,∴(51)CE NE CN a =-=. ∴2152)15(-=-=a a CD CE ,故矩形DCEF 为黄金矩形. 8.解:(1)证明:∵将菱形纸片AB (E )CD (F )沿对角线BD (EF )剪开,∴∠B =∠D . ∵将△ECF 的顶点F 固定在△ABD 的BD 边上的中点处,△ECF 绕点F 在BD 边上方左右旋转,∴BF =DF .∵∠HFG =∠B ,∴∠GFD =∠BHF ,∴△BFH ∽△DGF ,∴ BF BH DG DF=, ∴BH•GD =BF 2.(2)证明:∵AG ∥CE ,∴∠F AG ∥∠C .∵∠CFE=∠CEF ,∴∠AGF=∠CFE ,∴AF=AG . ∵∠BAD=∠C ,∴∠BAF=∠DAG ,△ABF ≌△ADG ,∴FB=DG ,∴FD+DG=DB ,9.210.解:(1)证明:∵AC 是⊙O 的直径,∴AE ⊥BC . ∵OD ∥B C ,∴AE ⊥OD ,∴D 是 ⌒AE 的中点.(2)方法一:证明:如图,延长OD交AB于G,则OG∥BC.∴∠AGD=∠B.∵OA=OD,∴∠DAO=∠ADO.∵∠ADO=∠BAD+∠AGD,∴∠DAO=∠B +∠BAD.方法二:证明:如图,延长AD交BC于H,则∠ADO=∠AHC.∵∠AHC=∠B +∠BAD,∴∠ADO =∠B +∠BAD. ∵OA=OD,∴∠DAO=∠B +∠BAD.(3)∵AO=OC,∴12OCD ACDS S∆∆=.∵12CEFOCDSS∆∆=,∴14CEFACDSS∆∆=.∵∠ACD=∠FCE,∠ADC=∠FEC=90°,∴△ACD∽△FCE.∴2CEFACDS CFS AC∆∆⎛⎫= ⎪⎝⎭,即2144CF⎛⎫= ⎪⎝⎭,∴CF=2.。