同济大学(高等数学)_第六篇_多元微积分学

合集下载

同济大学教材高等数学答案

同济大学教材高等数学答案

同济大学教材高等数学答案高等数学作为理工科学生必修的一门课程,涉及到许多复杂的数学概念和计算方法。

对于学生来说,解答作业题目是提高数学能力和理解程度的重要途径之一。

因此,提供同济大学教材高等数学答案对于学习者来说具有重要意义。

本篇文章将针对同济大学教材高等数学课程中的一些主要章节和题型,提供相应的答案解析,以供学习者参考。

一、微积分:1. 极限与连续:答案解析:对于求极限的题目,常用的方法有代入法、夹逼法、洛必达法则等。

对于连续性的题目,需要根据函数定义进行证明。

2. 一元函数微分学:答案解析:对于一元函数的导数计算,常用的方法有基本导数公式、链式法则、隐函数求导等。

对于函数的单调性和极值,需要结合导数的符号和二阶导数进行讨论。

3. 一元函数积分学:答案解析:对于定积分的计算,常用的方法有不定积分法、定积分法和分部积分法等。

对于曲线下面积和弧长的计算,需要根据题目给出的条件进行求解。

4. 多元函数微分学:答案解析:对于多元函数的偏导数计算,需要使用偏导数的定义和基本公式。

对于函数的方向导数和梯度,需要根据给定的方向向量进行计算。

二、线性代数:1. 向量与空间:答案解析:对于向量的线性相关性和线性无关性,需要根据向量的线性组合进行判断。

对于向量空间的基和维数,需要找出向量组的极大无关组。

2. 矩阵与行列式:答案解析:对于矩阵的运算,包括矩阵的相加、相乘、转置等,需要使用相应的定义和规则。

对于行列式的计算,可以使用余子式展开或高斯消元法等方法。

3. 线性方程组:答案解析:对于线性方程组的解的存在性和唯一性,可以通过矩阵的秩和行最简形判断。

对于齐次线性方程组和非齐次线性方程组的解的求法,可以使用矩阵的初等变换。

三、常微分方程:1. 一阶常微分方程:答案解析:对于一阶常微分方程的可分离变量型、一阶线性微分方程和齐次线性微分方程,可以使用相应的解法进行求解。

对于一阶常微分方程的变量分离型、恰当微分方程和一般线性微分方程,需要使用相应的变换方法。

《高等数学(下)》自学内容安排

《高等数学(下)》自学内容安排

三峡大学成人教育学院函授课程《高等数学(下)》自学内容安排年级:2007 级专业:电气、工程造价、机电、计算机、建工、水电、发电、输电层次:高升专主讲老师姓名:覃太贵联系电话:8511866 邮箱地址:qintaigui2004@ 一:各主要章节及主要内容第四章向量代数与空间解析几何1、知识点:§4.1空间直角坐标系§4.2向量及其运算§4.3向量的空间坐标§4.4空间曲面与曲线§4.5空间平面和直线方程2、重难点:(1)、向量及其运算(2)、向量的空间坐标(3). 空间平面和直线方程3、自学方法:看书和做课后相应的练习4、作业题:课后相应的练习以及老师出的复习思考题第五章多元函数微分学及其应用1、知识点:§5.1多元函数的基本概念§5.2偏导数§5.3全微分§5.5隐函数及其求导法§5.7多元函数的极值与最大(小)值2、重难点:(1)偏导数(2)隐函数及其求导法(3)多元函数的极值与最大(小)值3、自学方法:看书和做课后相应的练习4、作业题:课后相应的练习以及老师出的复习思考题第六章多元函数积分学——重积分1、知识点:§6.1重积分的概念与性质§6.2二重积分的计算§6.2.1在直角坐标系下计算二重积分§6.2.2在极坐标系下计算二重积分2、重难点:(1)在直角坐标系下计算二重积分(2)在极坐标系下计算二重积分3、自学方法:看书和做课后相应的练习4、作业题:课后相应的练习以及老师出的复习思考题第八章无穷级数1、知识点:§8.1常数项级数的概念和性质§8.2常数项级数的审敛法§8.3幂级数§8.4函数展开成幂级数§8.5函数的幂级数展开式的应用2、重难点:(1)常数项级数的审敛法(2)幂级数3、自学方法:看书和做课后相应的练习4、作业题:课后相应的练习以及老师出的复习思考题第九章常微分方程1、知识点:§9.1微分方程中的基本概念§9.2一阶微分方程§9.3可降阶的高阶微分方程§9.4高阶线性微分方程§9.5常系数线性微分方程2、重难点:(1)一阶微分方程(2)常系数线性微分方程3、自学方法:看书和做课后相应的练习4、作业题:课后相应的练习以及老师出的复习思考题二、考试说明1、题型:计算题2、说明:以老师出的复习题为主三、参考书目:1、同济大学应用数学系编《高等数学》。

微积分的基本公式_2022年学习资料

微积分的基本公式_2022年学习资料

2.微积分基本公式-如果f∈C[a,b],则ftdt为fx在[a,b]上-的一个原函数-若已知Fx为fx的 函数,则有-∫fdt=Fx+Co.-令x=a,则0=∫fdt=Fa+C,故C。=-Fa-取x=b,则得到fodufodx=ro-ra
定理-牛顿一莱布尼茨公式-若fx∈C[a,b],Fx为fx在[a,b]上的-一个原函数,则-["fxdx= x"=Fb-Fa.-将定积分的计算与求原数的计算联系起来了
定理2-若fx∈C[a,b,则Fx=∫fdt在[a,b]-上可导,且-F'=-fadr-fo-a≤x≤b.
定理3-若fx∈R[a,b],且在点x,∈[a,b]处连续-则Fx=ftdt在点x处可导,且F'xo=fx .-在端点处是指的左右导数
例1-easrdry-dIcosdr-cosx-Fx-cosxdx'=?-/-定积分与积分变量的记号无关. cosxdx'=cosx.
定积分的计算-问题转化为已-知函数的导函-数,求原来函数-的问题.
例5-sin x'=cosx,-π -[2cosxdx=sinx2=-sin 0=1.-问题的关键是如何求一 -函数的原函数,
例6-cnantn-unslan--兀-2-●-sinO=
例7-计算∫1+cos2xdx.-去绝对-值符号如果-是分段函数-解-o+cos2xdx=f2cosdx利用积分-的性质将积-分分成几个-怎么办?方201cos1dx-部分的和的-形式--cd+cd.x-=v2 inx-2sinx=2v2.
积分上限函数的几何意义-y-y-a-xx-b-X-曲边梯形的面积的代数和随x的位置而变化.
由积分的性质:fxdx=-∫公fxdx,有-∫fodr=-∫fodt.-所以,我们只需讨论积分上限函数.fdr称为积分下限函数

自考高等数学(一)第六章 多元函数微积分

自考高等数学(一)第六章 多元函数微积分

第六章多元函数微积分6.1 空间解析几何基础知识一、空间直角坐标系三个坐标轴的正方向符合右手系。

即以右手握住z轴,当右手的四个手指从正向x轴以角度转向正向y轴时,大拇指的指向就是z轴的正向。

空间直角坐标系共有八个卦限空间的点有序数组(x,y,z)特殊点的表示:坐标轴上的点P,Q,R;坐标面上的点A,B,C;0(0,0,0)空间两点间距离公式:特殊地:若两点分别为M(x,y,z),0(0,0,0)。

二、空间中常见图形的方程1、球面已知球心M0(x0,y0,z0),半径为R,则对于球面上任意点M(x,y,z),有,称为球面方程。

特别地,以原点为球心,半径为R的球面方程是。

2、平面到两点等距离的点的轨迹就是这两点组成线段的垂直平分面。

例1、已知A(1,2,3),B(2,-1,4),求线段AB的垂直平分面的方程。

【答疑编号11060101】解:设M(x,y,z)是所求平面上任一点,根据题意有|MA|=|MB|,化简得所求方程2x-6y+2z-7=0。

x,y,z的一次方程表示的图形是一个平面。

3、柱面定义平行于定直线并沿定曲线C移动的直线L所形成的曲面称为柱面。

这条定曲线C叫柱面的准线,动直线L叫柱面的母线。

柱面举例4、二次曲面三元二次方程所表示的曲面称之为二次曲面。

(1)椭球面椭球面与三个坐标面的交线:(2)x2+y2=2pz的图形是一个旋转抛物面。

6.2 多元函数的基本概念一、准备知识1、邻域设P0(x0,y0)是xoy平面上的一个点,δ是某一正数,与点P0(x0,y0)距离小于δ的点P(x,y)的全体,称为点p0的δ邻域,记为U(P0, δ),。

2、区域平面上的点集称为开集,如果对任意一点,都有的一个邻域。

设D是开集。

如果对于D内任何两点,都可用折线连结起来且该折线上的点都属于D,则称开集D是连通的。

连通的开集称为区域或开区域。

开区域连同它的边界一起称为闭区域。

3、n维空间设n为取定的一个自然数,我们称n元数组的全体为n维空间,而每个n元数组称为n维空间中的一个点,数x i称为该点的第i个坐标说明:n维空间的记号为R n;n维空间中两点间距离公式:设两点为特殊地当n=1,2,3时,便为数轴、平面、空间两点间的距离。

高等数学(同济大学第五版)第六章 定积分的应用

高等数学(同济大学第五版)第六章 定积分的应用

习题6−21. 求图6−21 中各画斜线部分的面积:(1)解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为61]12[)(12231=−=−=x x dx x x A . 2300∫ 解法一x 轴上的投影区间为[0, 1]. 所求的面积为0 画斜线部分在y 轴上的区间为[1, e ]. 所求的面积为(2)画斜线部分在 1|)()(11=−=−=∫x x e ex dx e e A ,0 解法二投影 1)1(|ln ln =−−=−==∫∫e e dy y y ydy A e e e . 111(3)解 画斜线部分在x 轴上的投影区间为[−3, 1]. 所求的面积为332]2)3[(132=−−=∫−dx x x A . (4)解 [−1, 3]. 所求的面积为画斜线部分在x 轴上的投影区间为 332|)313()32(3132312=−+=−+=−−∫x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积:(1) 221x y =与x 2+y 2=8(两部分都要计算); 解:388282)21222228(2020020221−−=−−=−−=∫∫∫∫dx x dx x dx x dx x x A 323cos 16402+=−=∫πtdt . 48π346)212−=−ππS . 2(2=A (2)xy =1与直线y =x 及x =2; 解:所求的面积为∫=A −=−202ln 23)1(dx x x . e x , y =e −x 与直线x =1;解:所求的 (3) y =面积为∫−+=−=−1021)(e e dx e e A x x . (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0).解所求的面积为a b e dy e A ba yb a y −===∫ln ln ln ln3. 求抛物线y =−x 2+4x −3及其在点(0, −3)和(3, 0)处的切线所围成的图形的面积. 解: 过点(0, −3)处的切线的斜率为4, 切线方程为y =4(x −3)., 切线方程为y =−2x +6.y ′=−2 x +4.过点(3, 0)处的切线的斜率为−2两切线的交点为)3 ,23(, 所求的面积为 49]34(62[)]34(34[2302332=−+−−+−+−+−−−=∫∫dx x x x x x x A . 4. 求抛物线y 2=2px 及其在点),2(p p 处的法线所围成的图形的面积. 解2y ⋅y ′=2p .在点处, 1),2(==′p p y p y ,),2(p p 法线的斜率k =−1, 法线的方程为)2(p x p y −−=−, 即y p x −=23.),2(p p 求得法线与抛物线的两个交点为和)3,29(p p −. 法线与抛物线所围成的图形的面积为233232316)612123()223(p y p y y p dy p y y p A p p pp =−−=−−=−−∫. 5. 求由下列各曲线 所围成的图形的面积;(1)ρ=2a cos θ ;解:所求的面积为∫∫==2221πθθ −202cos 4)cos 2(2ππθθd a d a A =πa 2. a cos 3t , y =a sin 3t ;解2(2)x =所求的面积为∫∫∫===204220330sin cos 34)cos ()sin (44ππtdt t a t a d t a ydx A a 2206204283]sin sin [12a tdt tdt a πππ=−=∫∫.(3)ρ=2 解所求的面积为a (2+cos θ ) 2202220218)cos cos 44(2)]cos 2(221a d a d a A πθθθθθππ=++=+=∫∫. 6. 求由摆线x =a (t −sin t ), y =a (1−cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积. 解:所求的面积为∫∫∫−=−−==a a a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a =++−=∫. 7. 求对数螺线ρ=ae θ(−π≤θ≤π)及射线θ=π所围成的图形面积.解所求的面积为)(42)(2ππ−−∫∫e d e a d ae 11222222πππθπθθθ−−===e a . 8. 求下列各曲线所围成图形的公共部分的面积.(1)ρ=3cos θ 及ρ=1+cos θ解曲线ρ=3cos θ 与ρ=1+cos θ 交点的极坐标为A)3,23(πA , )3,23(π−B . 由对称性, 所求的面积为 πθθθθπππ45])cos 3(21)cos 1(21[2232302=++=∫∫d d A . (2)θρsin 2=及解θρ2cos 2=.6,22(π.曲线θρsin 2=与θρ2cos 2=的交点M 的极坐标为M 所求的面积为 2316]2cos 21)sin 2(21[24602−+=+=∫∫πθθθθπππd d A .于曲线e x 下方, 9. 求位y =该曲线过原点的切线的左方以及x 轴上方之间的图形的面积. 解 设直线y =kx 与曲线y =e x 相切于A (x 0, y 0)点, 则有x y e y kx y x x 00)(0000, , y 0=e , k =e .所求面 ⎪⎩⎪⎨⎧==′==ke 求得x 0=1积为21ln 21)ln 1(00020e dy y y y y y e dy y y e e e e e=⋅+−=−∫∫. 10. 求由抛物线y 2=4ax 与过焦点的弦所围成的图形的面积的最小值. 解 设弦的倾角为α. 由图可以看出, 抛物线与过焦点的弦所围成的图形的面积为10A A A +=. 显然当2πα=时1=0; 当, A 2πα1因此, 抛物线与过焦点的弦所围成的图形的面积的最小值为 <时, A >0. 20300383822a x a dx ax A a a ===∫. 1. 把抛物线y 2=4ax 及直线x =x 0(x 0>0)所围成的图形绕x 轴旋转, 计算得旋转体的体积.1所 解 所得旋转体的体积为20022224000x a axdx dx y V xx x πππ====∫ 00x a π∫. 12. 由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得转所得旋转体的体积为两个旋转体的体积.解 绕x 轴旋πππ712871207206202====∫∫x dx x dx y V x . 绕y 轴旋转所得旋转体的体积为∫∫−=−⋅⋅=803280223282dy y dy x V y ππππ ππ56453328035=−=y . 所围成的图形, 绕x 轴旋, 计算所得旋转体的体积. 解 由对称性, 所求旋转体的体积为13. 把星形线转3/23/23/2a y x =+ dx x a dx y V a a ∫=2222π∫−=0333)(2π 0 3024224210532)33(2a dx x x a x a a a π=−+−=∫.14. 用积分方法证明图中球缺的体积为)(2H R H V −=π.3证明 ∫∫−−−==R H R RH R dy y R dy y x V )()(222ππ)3()1(32y y R R H R =−=−ππ 32H R H −.15. 求下列已知曲线所围成的图形, 按指定的轴旋转所产生的体积:(1的旋转体)2x y =,2y x =, 绕y 轴; πππ)(22=−=∫∫dy y ydy V 解 103)5121(10521010=−y y . (2)ax a y ch =, x =0, x =a , y =0, 绕x 轴; 解 ∫∫∫===102ch udu 302202 ch )(a x dx a x a dx x y V a aπππ令 au1022)()2(u u u du e e −=++=∫2231032122144u e u e a a −−+ππ )2sh 2(43+a π= . (3)216)5(2=−y , 绕x 轴.解 +x ∫∫−−−−−−+=44224422)165()165(dx x dx x Vππ 24021601640π∫=−=dx x .x =(t −sin t ),=a (1−cos t )的一拱, y =0, 绕直线y =2a . 解 a dy y a dx a V02202)2()2( 23237)8πππa t a a =+−=. 16. 求圆盘 (4)摆线a y a 2∫∫−−=ππππ∫−+−=πππ202223)sin (])cos 1([8t t da t a a 0sin cos 1(tdt a ∫232222a y x ≤+绕x =−b (b >a >0)旋转所成旋转体 解 的体积.∫∫−−−−−−+=a a a a dy y a b dy y a b V222222)()(ππ 2202228ππb a dy y a b a=−=∫.17. 设有一截锥体, 其高为h , 上、下底均为椭圆, 椭圆的轴2a 、2b 和2A 、求这截锥体的体积.解 建立坐标系如图. 过y 轴上y 点作垂直于y 轴的平面, 则 易得其长分别为2B , 平面与截锥体的截面为椭圆,长短半轴分别为y h a A A −−, y hb B B −−. 积为π)()(y 截面的面h h B B y a A A −⋅b −−−.于是截锥体的体积为])(2[61)()(b V h=∫0AB a h dy y h b B B y h a A A +++=−−⋅−−π.计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角.x 且垂直于x () 件知, 它是边长为bA aB 18. 形的立体体积 解 设过点轴的截面面积为A x ,由已知条xR −2的等边三角形的面积, 其值为)(3)(22x R x A −=, 322334)(3R dx x R VR=−=∫R所以 − a.如图, 在x 处取一宽为dx 的边梯形, 小曲边梯形绕y 积近似为2πx ⋅f (x )dx , 这就是体积元素, 即 dV =2πx ⋅f (x )dx ,y 轴旋转所成的旋转体的体积为==bab dx x xf dx x xf V)(2)(2ππ.用题19和结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积. 解.19. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为=bdx x xf V )(2π∫ 证明 小曲轴旋转所得的旋转体的体于是平面图形绕 ∫a∫ 20. 利2002)sin cos (2cos 2sin 2πππππππ=+−=−==∫∫x x x x xd xdx x V .y =ln x 上相应于83≤≤ 21. 计算曲线x 的一段弧的长度.解 ∫∫∫+=+=′+=82838x32321)1(1)(1dx x x dx dx x y s ,t 12−=t x ,x +21=, 即 则令23ln 211111113223232222322+=−+=t s −=−⋅−=∫∫∫∫dt t dt d t t dt t tt t .)3(x − 22. 计算曲线3弧的长度. x y =上相应于1≤x ≤3的一段 解x x x y 3−=, 1x y 2−=′,x 121x x y 4112+−=′, 214)(12x y +=′+,121x为所求弧长3432)232(21)1(213131−=+=+=∫x x x dx xx s .23. 计算半立方抛物线被抛物线32x y =32)1(32−=x y 截得的一段弧的长度.解 由⎪⎩⎪⎨⎧=−=3)1( 32232x y x y 得两曲线的交点的坐标为36 ,2(, )36 ,2(−. 所求弧长为∫′+=21212dx y s .因为2y x y 2)1(−=′,)1(23)1()134−=−2)1(2−=′y y x ,32()1(242−−==′y x y 所以 x x x . ]1)25[(98)1)1−x 3(13232(231232121−=−=−+=∫∫d x dx x s . 抛物线y 2=2px 从顶点到这曲线上的一点M (x , y )的弧长.24. 计算∫∫∫+=+=′+=y yydy sy p p dy p y dy y x 02202021)(1)(1 解y y p y p p 2222])2[+++=y p y 02ln(21+p 2y p y py p py 2222ln2++++=.25. 计算星形线t a x 3cos =, 的全长.解 用参数方程的弧长公式.t a y 3sin = dt t y t x s =∫′+′2022)()(4π∫⋅+−⋅=202222]cos sin 3[)]sin (cos 3[4πdt t t a t t aa tdt t 6cos sin 1220==∫π.26. 将绕在圆(半径为a )上的细线放开拉直, 使细线与圆周始终相切, 细线端点画出的轨迹叫做圆的渐伸线, 它的方程为 )sin (cos t t t a x +=, )cos (sin t t t a y −=.计算这曲线上相应于t 从0变到π的一段弧的长度. 解 由参数方程弧长公式∫∫+=′+′=ππ022022)sin ()cos ()]([)]([dtt at t at dt t y t x s 0∫22ππa tdt a ==.cos t )上求分摆线第一拱成1: 3 解 设t 从0变化到t 0时摆线第一拱上对应的弧长为s (t 0), 则 27. 在摆线x =a (t −sin t ), y =a (1−的点的坐标.∫∫+−=′+′=0220220]sin [)]cos 1([)]t ([)]([)(t t dt t a t a dt y t x t s)2cos 1(42sin 2000ta dt t a t −==∫.当t 0=2π时, 得第一拱弧长s (2π)=8a . 为求分摆线第一拱为1: 3的点为A (x , y ), 令a ta 22cos 1(40=−,32解得0π=t , 因而分点的坐标为:a a x )32()2sin 2(−=−=πππ, 横坐标23 纵坐标33a a y 23)32cos1(=−=π,故所求分点的坐标为)23 ,)2332((a a −π. ρθa e =相应于自θ=0到的一段弧长 28. 求对数螺线θ=ϕ. 解 用极坐标的弧长公式. θθθρθρϕθθϕd ae e d a a ∫∫+=′+=22022)()()()(s )1−θ(11202+=+=∫ϕθθa a e aa d e a .29线1相应于自 . 求曲ρθ=43=θ至34=θ.的一段弧长 极坐标公式可得所求的弧长 解 按∫∫−+=′+=344322234322)1()1()()(θθθθθρθρd d s23ln 1251134322+=+=∫θθθd .30. 求心形线ρ=a (1+cos θ )的全长. 解 用极坐标的弧长公式. θθθθθρθρππd a a d s ==2 ∫∫−++′+0222022)sin ()cos 1()()(2a d a 82∫cos 4==πθθ.习题6−31. 由实验知道, 弹簧在拉伸过程中, 需要的力F (单位: N )与伸长量s (单位: cm)成正比, 即F =ks (k 为比例常数). 如果把弹簧由原长拉伸6cm , 计算所作的功.解 将弹簧一端固定于A , 另一端在自由长度时的点O 为坐标原点, 建立坐标系. 功元素为dW =ksds , 所求功为18216260===∫s k ksds W k(牛⋅厘米).2. 直径为20cm 、高80cm 的圆柱体内充满压强为10N/cm 2的蒸汽. 设温度保持不变, 要使蒸汽体积缩小一半, 问需要作多少功? 解 由玻−马定律知:ππ80000)8010(102=⋅⋅==k PV .设蒸气在圆柱体内变化时底面积不变, 高度减小x 厘米时压强 为P (x )牛/厘米2, 则ππ80000)]80)(10[()(2=−⋅x x P , π−=80800)(x P .功元素为dx x P dW )()10(2⋅=π,所求功为 2ln 8008018000080800)10(400402πππππ=−=−⋅⋅=∫∫dx dx W(J).3. (1)证明: 把质量为m 的物体从地球表面升高到h 处所作的功是 hR mgRhW +=,其中g 是地面上的重力加速度, R 是地球的半径;(2)一颗人造地球卫星的质量为173kg , 在高于地面630km 处进入轨道. 问把这颗卫星从地面送到630的高空处, 克服地球引力要作多少功?已知g =9.8m/s 2, 地球半径R =6370km .证明 (1)取地球中心为坐标原点, 把质量为m 的物体升高的功元素为dy ykMm dW 2=, 所求的功为 )(2h R R mMh k dy y kMm W hR R+⋅==∫+.(2)533324111075.910)6306370(106370106301098.51731067.6×=×+×××××⋅×=−W (kJ).4. 一物体按规律3ct x =作直线运动, 媒质的阻力与速度的平方成正比. 计算物体由x =0移至x =a 时, 克服媒质阻力所作的功. 解 因为3ct x =, 所以23)(cxt x v =′=, 阻力4229t kc kv f −=−=. 而32)(cx t =, 所以34323429)(9)(x kc cx kc x f −=−=. 功元素dW =−f (x )dx , 所求之功为 37320343203432072799)]([a kc dx x kcdx x kc dx x f Wa aa ===−=∫∫∫. 5. 用铁锤将一铁钉击入木板, 设木板对铁钉的阻力与铁钉击入木板的深度成正比, 在击第一次时, 将铁钉击入木板1cm . 如果铁锤每次打击铁钉所做的功相等, 问锤击第二次时, 铁钉又击入多少?解 设锤击第二次时铁钉又击入h cm , 因木板对铁钉的阻力f 与铁钉击入木板的深度x (cm)成正比, 即f =kx , 功元素dW =f dx =kxdx , 击第一次作功为 k kxdx W 21101==∫,击第二次作功为 )2(212112h h k kxdx W h+==∫+.因为, 所以有 21W W =)2(21212h h k k +=, 解得12−=h (cm).6. 设一锥形贮水池, 深15m , 口径20m , 盛满水, 今以唧筒将水吸尽, 问要作多少功?解 在水深x 处, 水平截面半径为x r 3210−=, 功元素为dx x x dx r x dW 22)3210(−=⋅=ππ,所求功为 ∫−=1502)3210(dx x x Wπ∫+−=15032)9440100(dx x x x π =1875(吨米)=57785.7(kJ).7. 有一闸门, 它的形状和尺寸如图, 水面超过门顶2m . 求闸门上所受的水压力. 解 建立x 轴, 方向向下, 原点在水面. 水压力元素为xdx dx x dP 221=⋅⋅=, 闸门上所受的水压力为21252252===∫x xdx P (吨)=205. 8(kN).8. 洒水车上的水箱是一个横放的椭圆柱体, 尺寸如图所示. 当水箱装满水时, 计算水箱的一个端面所受的压力.解 建立坐标系如图, 则椭圆的方程为11)43()43(2222=+−y x .压力元素为dx x x dx x y x dP 22)43()43(38)(21−−⋅=⋅⋅=,所求压力为∫∫−⋅⋅+=−−⋅=222322cos 43cos 43)sin 1(4338)43()43(38ππtdx t t dx x x Pππ169cos 49202==∫tdx (吨)=17.3(kN). (提示: 积分中所作的变换为t x sin 4343=−)9. 有一等腰梯形闸门, 它的两条底边各长10m 和6m , 高为20m . 较长的底边与水面相齐. 计算闸门的一侧所受的水压力.解 建立坐标系如图. 直线AB 的方程为x y 1015−=,压力元素为dx x x dx x y x dP )5110()(21−⋅=⋅⋅=,所求压力为1467)5110(200=−⋅=∫dx x x P (吨)=14388(千牛).10. 一底为8cm 、高为6cm 的等腰三角形片, 铅直地沉没在水中, 顶在上, 底在下且与水面平行, 而顶离水面3cm , 试求它每面所受的压力. 解 建立坐标系如图.腰AC 的方程为x y 32=, 压力元素为dx x x dx x x dP )3(34322)3(+=⋅⋅⋅+=,所求压力为168)2331(34)3(34602360=+=+=∫x x dx x x P (克)=1.65(牛).11. 设有一长度为l 、线密度为μ的均匀细直棒, 在与棒的一端垂直距离为a 单位处有一质量为m 的质点M , 试求这细棒对质点M 的引力.解 建立坐标系如图. 在细直棒上取一小段dy , 引力元素为dy ya Gm y a dy m G dF 2222+=+⋅=μμ, dF 在x 轴方向和y 轴方向上的分力分别为dF r a dF x −=, dF rydF y =.2202222022)(1)(l a a l Gm dy y a y a aGm dy y a Gm r a F l lx +−=++−=+⋅−=∫∫μμμ,)11()(12202222022l a a Gm dy y a y a Gm dy y a Gm r y F l ly +−=++=+⋅=∫∫μμμ. 12. 设有一半径为R 、中心角为 ϕ 的圆弧形细棒, 其线密度为常数 μ . 在圆心处有一质量为m 的质点F . 试求这细棒对质点M 的引力. 解 根据对称性, F y =0.θμcos 2⋅⋅⋅=Rdsm G dF xθθμθθμd R Gm R Rd Gm cos cos )(2=⋅=,θθμϕϕd R Gm F x ∫−=2cos2sin 2cos 220ϕμθθμϕR Gm d R Gm ==∫. 引力的大小为2sin 2ϕμR Gm , 方向自M 点起指向圆弧中点.总 习 题 六1. 一金属棒长3m , 离棒左端xm 处的线密度为11)(+=x x ρ (kg/m ). 问x 为何值时, [0, x ]一段的质量为全棒质量的一半? 解 x 应满足∫∫+=+300112111dt t dt t x.因为212]12[110−+=+=+∫x t dt t x x, 112[2111213030=+=+∫t dt t ,所以1212=−+x ,45=x (m).2. 求由曲线ρ=a sin θ, ρ=a (cos θ+sin θ)(a >0)所围图形公共部分的面积. 解∫++⋅=43222)sin (cos 21)2(21ππθθθπd a a S24322241)2sin 1(28a d a a −=++=∫πθθπππ.3. 设抛物线c bx ax y ++=2通过点(0, 0), 且当x ∈[0, 1]时, y ≥0. 试确定a 、b 、c 的值, 使得抛物线与直线x =1, y =0所围图形的面积为c bx ax y ++=294,且使该图形绕x 轴旋转而成的旋转体的体积最小.y c bx ax +=+ 解 因为抛物线2y 通过点(0, 0), 所以c =0, 从而 bx ax +=2.bx ax y +=2与直线x =1, y =0所围图形的面积为抛物线23)(102b a dx bx ax S +=+=∫. 令9423=+b a , 得968a b −=. 该图形绕x 轴旋转而成的旋转体的体积为 )235()(221022ab b a dx bx ax V ++=+=∫ππ)]968(2)968(315[22a a a a −+−+=π. 令0)]128(181********[=−+−⋅+2=a a a ddV π, 得35−=a , 于是b =2. 4. 求由曲线23x y =与直线x =4, x 轴所围图形绕y 轴旋转而成的旋转体的体积.解 所求旋转体的体积为πππ751272224027403=⋅=⋅=∫x dx x x V . 5. 求圆盘1)2(22≤+−y x 绕y 轴旋转而成的旋转体的体积.解 )2(122312∫−−⋅⋅=dx x x Vπ 2224cos )sin 2(4 sin 2ππππ=+=−∫−tdt t t x 令.6. 抛物线221x y =被圆322=+y x 所需截下的有限部分的弧长. 解 由⎪⎩⎪⎨⎧==+222213x y y x 解得抛物线与圆的两个交点为)1 ,2(−, )1 ,2(, 于是所求的弧长为2022202])1ln(2112[212x x x x dx x s ++++=+=∫ )32ln(6++=.,解 建立坐标系如图. 将球从水中取出时, 球的各点上升的高度均为2r . 在x 处取一厚度为dx 的薄片, 在将球从水中取出的过程中, 薄片在水下上升的高度为r +x ,在水上上升的高度为r −x . 在水下对薄片所做的功为零,在水上对薄片所做的功为dx x r x r g dW ))((22−−=π,对球所做的功为g r x d x r x r g W rr 22234))((ππ=−−=∫−. 8. 边长为a 和b 的矩形薄板, 与液面成α 角斜沉于液体内,长边平行于液面而位于深h 处, 设a >b , 液体的比重为ρ, 试求薄板每面所受的压力.解 在水面上建立x 轴, 使长边与x 轴在同一垂面上, 长边的在x 轴上的投影区间为[0, b cos α], 在x 处x 轴到薄板的距离为h +x tan α. 压力元素为 上端点与原点对应. 长边dx x h ga dx a x h g dP )tan (cos cos )tan (ααρααρ+=⋅⋅+⋅=, 薄板各面所受到的压力为)sin 2(21)tan (cos cos 0αρααραb h gab dx x h ga P b +=+=∫. 9. 设星形线t a x 3cos =,t a y 3sin =上每一点处的线密度的大小等于该点到原点距离的立方, 在原点O 处有一单位质点, 求星形线在第一象限的弧段对这质点的引力. 解 取弧微分ds 为质点, 则其质量为ds y x ds y x 322322)()(+=+, 其中tdt t a dt t a t a ds cos sin 3])sin [(])cos [(2323=′+′=.设所求的引力在x 轴、y 轴上的投影分别为F x 、F y , 则有∫+⋅++⋅⋅=202222322)()(1πds y x x y x y x G F x 2204253sin cos 3Ga tdt t Ga ==∫π, ∫+⋅++⋅⋅=22222322)()(1πds y x y y x y x G F x 2204253sin cos 3Ga tdt t Ga ==∫π, 所以)53 ,53(22Ga Ga =F .。

同济大学高等数学

同济大学高等数学

同济大学高等数学同济大学高等数学是一门综合性较强的学科,涉及到许多数学分支和学科,例如微积分、复变函数、多元函数、线性代数等等。

在学习这门课程时,我们需要深入理解数学知识的本质,掌握数学分析方法和技巧,才能更好地解决数学问题。

本文将介绍同济大学高等数学的课程内容和学习方法,以供大家参考。

一、同济大学高等数学课程内容1.微积分微积分是同济大学高等数学的重点内容之一。

它主要包括函数与极限、导数与微分、定积分、不定积分、微分方程等方面内容。

这些知识点是理解数学问题的基础,是数学分析的核心。

2.多元函数与偏导数多元函数与偏导数是同济大学高等数学的必修内容之一。

这个部分主要包括多元函数的概念、问题的极值、条件极值与拉格朗日乘数法、偏导数、全微分与梯度等一系列知识点。

掌握这些内容对于理解微积分、微分方程、线性代数等学科都有很大的帮助。

3.线性代数线性代数是同济大学高等数学的重要组成部分。

它是现代数学的一个重要分支,涉及到线性方程组、矩阵论、向量空间等内容。

在学习这个部分时需要掌握向量空间的基本概念、矩阵的运算法则、行列式与行列式的性质,线性方程组的解法等等。

4.复变函数同济大学高等数学还包括复变函数的内容。

这个部分主要涉及到复数的概念与运算、复变函数的概念与性质、解析函数、调和函数等内容,是理解复杂变量函数、微积分、实变函数等学科的基础。

二、同济大学高等数学的学习方法1.理解数学概念同济大学高等数学的知识点繁多,而许多数学概念又有着自己的特殊性质,要想有效学习,首先需要对数学概念有较为深入的理解和认识。

对于一些不太理解的概念,可以通过查阅相关书籍或咨询教师来进一步理解。

2.掌握数学分析方法和技巧学习同济大学高等数学,需要掌握许多数学分析方法和技巧,例如微分、积分、极限、泰勒公式等等。

这些方法和技巧在解决数学问题时都非常重要。

掌握这些知识点和技巧,可以提高我们的数学问题解决能力。

3.学会归纳总结同济大学高等数学的知识点很多,掌握和记忆是非常大的一个挑战。

多元函数微分学求最值,直接建立拉格朗日乘数法

多元函数微分学求最值,直接建立拉格朗日乘数法

多元函数微分学求最值,直接建立拉格朗日乘数法【多元函数微分学求最值,直接建立拉格朗日乘数法】引言在高等数学中,多元函数微分学是一个重要的分支,它研究多元函数的极值与最值问题。

其中一种常见的求最值的方法是通过建立拉格朗日乘数法。

本文将从简单到复杂的角度,逐步探讨多元函数微分学求最值的方法,并结合拉格朗日乘数法来解决实际问题。

一、多元函数的极值1.1 极值概念在单变量函数中,我们通过求导数,令导数为零来判断函数的极值点。

而在多元函数中,我们需要通过求偏导数来判断函数的极值点。

对于一个n元函数$f(x_1,x_2,…,x_n)$,偏导数用$\frac{\partial f}{\partial x_i}$表示。

1.2 极值的判断条件多元函数的极值点与一元函数类似,也需要满足导数为零的条件。

对于一个n元函数$f(x_1,x_2,…,x_n)$,如果在某一点$(a_1,a_2,…,a_n)$处,满足以下条件:$\frac{\partial f}{\partial x_1}(a_1,a_2,…,a_n)=0\\\frac{\partial f}{\partial x_2}(a_1,a_2,…,a_n)=0\\……\\\frac{\partial f}{\partial x_n}(a_1,a_2,…,a_n)=0$那么该点就是函数的极值点。

但这仅仅是极值的必要条件,并不一定是充分条件。

二、最值问题的解决方法2.1 直接法在一元函数中,我们通过求导数来解决最值问题,而在多元函数中,我们也可以直接计算偏导数,并令其为零来解决最值问题。

举例说明:设有一个二元函数$f(x,y)=2x^2+3y^2$,我们要求在$x^2+y^2=1$的条件下,函数$f(x,y)$的最小值。

解法:根据条件$x^2+y^2=1$,我们可以得到一个方程组:$2x-λ\cdot2x=0\\2y-λ\cdot2y=0\\x^2+y^2-1=0$其中,λ为拉格朗日乘子。

同济大学教材高等数学目录

同济大学教材高等数学目录

同济大学教材高等数学目录第一章微积分基础1.1 函数与极限- 1.1.1 实数与数轴- 1.1.2 函数的概念- 1.1.3 函数的极限1.2 导数与微分- 1.2.1 导数的概念- 1.2.2 导数的计算- 1.2.3 高阶导数与微分1.3 微分中值定理与导数的应用- 1.3.1 中值定理概念与证明- 1.3.2 罗尔定理与拉格朗日中值定理- 1.3.3 泰勒公式与应用第二章微分学的应用2.1 曲线的性质与图形的简单变换- 2.1.1 形状和方程- 2.1.3 图形的伸缩与旋转2.2 函数的单调性与曲线的凹凸性- 2.2.1 单调函数的概念- 2.2.2 定理与判定- 2.2.3 凹凸函数的概念与定理2.3 不定积分- 2.3.1 原函数与不定积分- 2.3.2 基本积分公式- 2.3.3 积分法与应用第三章多元函数微分学3.1 多元函数的极限与连续性- 3.1.1 多元函数的极限概念- 3.1.2 多元函数的连续性- 3.1.3 极限和连续性的性质3.2 偏导数与全微分- 3.2.1 偏导数的概念- 3.2.3 全微分与边界条件3.3 隐函数与参数方程的偏导数- 3.3.1 隐函数的概念与求导法则- 3.3.2 参数方程的导数与高阶导数- 3.3.3 隐函数与参数方程的微分第四章微分方程4.1 一阶常微分方程- 4.1.1 基础概念与解的存在唯一性- 4.1.2 常微分方程的解法- 4.1.3 可降阶的高阶方程4.2 高阶线性常微分方程- 4.2.1 高阶常微分方程的基本概念- 4.2.2 欧拉方程与特征方程- 4.2.3 高阶常微分方程的解法4.3 常系数线性齐次微分方程- 4.3.1 广义指数函数与欧拉公式- 4.3.2 常系数齐次线性微分方程的解- 4.3.3 常系数齐次高阶微分方程的解第五章微分方程的应用5.1 函数的级数展开与Fourier级数- 5.1.1 幂级数的定义和性质- 5.1.2 幂级数的收敛性- 5.1.3 Fourier级数的定义和应用5.2 傅里叶变换- 5.2.1 傅里叶变换的定义和性质- 5.2.2 傅里叶变换的求解方法- 5.2.3 傅里叶变换的应用5.3 积分变换- 5.3.1 Laplace变换的定义和性质- 5.3.2 Laplace变换的求解方法- 5.3.3 积分变换的应用领域以上为同济大学教材《高等数学》的目录概要。

《高等数学》(同济六版)教学★

《高等数学》(同济六版)教学★
旳切线与直线
平行 ? 写出其切线方程.
解:


相应
则在点(1,1) , (–1,–1) 处与直线
平行旳切线方程分别为

故在原点 (0 , 0) 有铅直切线
四、 函数旳可导性与连续性旳关系
定理1.
证:

在点 x 处可导,
存在 ,
所以必有
其中

所以函数
在点 x 连续 .
注意: 函数在点 x 连续,但在该点未必可导.
证明中利用了两个主要极限
初等函数求导问题
本节内容
一、四则运算求导法则
定理1.
旳和、
差、
积、
商 (除分母
为 0旳点外) 都在点 x 可导,

下面分三部分加以证明,
并同步给出相应旳推论和
例题 .
此法则可推广到任意有限项旳情形.
证: 设

故结论成立.
例如,
(2)
证: 设
则有
故结论成立.
推论:
( C为常数 )
反例:
在 x = 0 处连续 , 但不可导.

在点
旳某个右 邻域内
五、 单侧导数
若极限
则称此极限值为
记作

(左)
(左)
例如,
在 x = 0 处有
定义2 . 设函数
有定义,
存在,
定理2. 函数
在点

简写为
定理3. 函数
(左)
(左)
若函数

都存在 ,
则称
显然:
在闭区间 [a , b] 上可导
可导, 且

时, 有

高等数学同济下册教材目录

高等数学同济下册教材目录

高等数学同济下册教材目录第一章无穷级数1.1 数项级数1.1.1 数项级数的概念1.1.2 数项级数的性质1.1.3 极限形式的级数1.2 幂级数1.2.1 幂级数的概念1.2.2 幂级数的收敛域1.2.3 幂级数的和函数1.3 函数项级数1.3.1 函数项级数的概念1.3.2 函数项级数的一致收敛性第二章傅里叶级数2.1 傅里叶级数的定义2.1.1 周期函数的傅里叶级数2.1.2 奇偶延拓的傅里叶级数2.2 傅里叶级数的性质2.2.1 傅里叶级数的线性性质2.2.2 傅里叶级数的逐项积分与逐项微分 2.2.3 傅里叶级数的逐项积分和逐项微分 2.3 傅里叶级数的收敛性2.3.1 傅里叶级数一致收敛的性质2.3.2 周期函数的傅里叶级数收敛性2.3.3 局部函数化的傅里叶级数第三章一元函数积分学3.1 定积分3.1.1 定积分的定义3.1.2 定积分的性质3.1.3 线性运算与换元积分法3.2 反常积分3.2.1 第一类反常积分3.2.2 第二类反常积分3.3 微积分基本定理3.3.1 牛顿-莱布尼茨公式3.3.2 积分求导法3.3.3 函数定积分的应用第四章多元函数微分学4.1 多元函数的极限与连续4.1.1 多元函数的极限4.1.2 多元函数的连续性4.2 多元函数的偏导数与全微分 4.2.1 多元函数的偏导数4.2.2 多元函数的全微分4.3 隐函数与参数方程的偏导数 4.3.1 隐函数的偏导数4.3.2 参数方程的偏导数第五章多元函数的积分学5.1 二重积分5.1.1 二重积分的概念5.1.2 二重积分的性质5.1.3 二重积分的计算方法5.2 三重积分5.2.1 三重积分的概念5.2.2 三重积分的性质5.2.3 三重积分的计算方法5.3 曲线积分与曲面积分5.3.1 第一类曲线积分5.3.2 第二类曲线积分5.3.3 曲面积分第六章多元函数的向量微积分6.1 多元函数的梯度、散度与旋度 6.1.1 多元函数的梯度6.1.2 多元函数的散度6.1.3 多元函数的旋度6.2 多元函数的曲线积分与曲面积分 6.2.1 多元函数的第一类曲线积分 6.2.2 多元函数的第二类曲线积分6.2.3 多元函数的曲面积分第七章序列与函数的多元极限7.1 多元函数的序列极限7.1.1 多元函数序列极限的概念7.1.2 多元函数序列极限的性质7.2 多元函数的函数极限7.2.1 多元函数函数极限的概念7.2.2 多元函数函数极限的性质第八章多元函数的泰勒展开8.1 函数的多元Taylor展开8.1.1 函数的多元Taylor展开定理 8.1.2 函数的多元Taylor展开的应用 8.2 隐函数存在定理与逆函数存在定理 8.2.1 隐函数存在定理8.2.2 逆函数存在定理第九章向量场与散度定理9.1 向量场9.1.1 向量场的定义9.1.2 向量场与流线9.2 散度与散度定理9.2.1 向量场的散度9.2.2 散度定理的概念与性质第十章曲线积分与斯托克斯定理10.1 向量值函数的曲线积分10.1.1 向量值函数的曲线积分的定义 10.1.2 向量值函数的曲线积分的计算 10.2 Stokes定理10.2.1 Stokes定理的概念与性质第十一章重积分与高斯定理11.1 二重积分与三重积分的概念11.1.1 二重积分与三重积分的定义 11.1.2 二重积分与三重积分的性质 11.2 高斯定理11.2.1 高斯定理的概念与性质第十二章序列与级数的广义极限12.1 无穷小量和无穷大量12.1.1 无穷小量的概念与性质12.1.2 无穷大量的概念与性质12.2 级数极限与广义极限12.2.1 级数极限的概念与性质12.2.2 广义极限的概念与性质第十三章多项式逼近与傅里叶级数近似13.1 约束方程组的最小二乘解13.1.1 约束方程组的最小二乘解的概念 13.1.2 约束方程组的最小二乘解的计算 13.2 多项式逼近13.2.1 多项式逼近的概念与性质13.2.2 最佳一致逼近13.3 傅里叶级数的近似13.3.1 傅里叶级数的收敛性13.3.2 傅里叶级数的部分和逼近第十四章偏微分方程初步14.1 偏导数14.1.1 偏导数的定义与性质14.1.2 高阶偏导数14.2 偏微分方程的分类与例子14.2.1 第一阶偏微分方程14.2.2 二阶线性偏微分方程14.2.3 泊松方程与拉普拉斯方程第十五章全微分方程初步15.1 微分方程的定义与解15.1.1 微分方程的概念与性质15.1.2 微分方程解的存在唯一性 15.2 一阶线性微分方程15.2.1 齐次线性微分方程15.2.2 非齐次线性微分方程15.3 可降阶的高阶线性微分方程15.3.1 可降阶的高阶线性微分方程第十六章复变函数初步16.1 复数的性质与运算16.1.1 复数的概念与性质16.1.2 复数的运算与表示16.2 复变函数的导数16.2.1 复变函数的导数的定义 16.2.2 复变函数的导数的性质 16.3 复变函数的积分16.3.1 复变函数的积分的定义 16.3.2 复变函数的积分的性质第十七章应用篇17.1 牛顿法与割线法17.1.1 牛顿迭代法17.1.2 割线法17.2 微分方程的应用17.2.1 放射性衰变方程17.2.3 流体的入口速度与出口速度之间的关系17.3 级数的应用17.3.1 泰勒级数的应用17.3.2 调和级数的收敛性与发散性希望以上内容能满足您对《高等数学同济下册教材目录》的需求,如有任何疑问或其他需求,请随时告知。

同济大学高数PPT课件

同济大学高数PPT课件

一门科学, 只有当它成功地运用数学时, 才能达到真正完善的地步 .
马克思
要辨证而又唯物地了解自然 ,
就必须熟悉数学.
恩格斯
2. 学数学最好的方式是做数学.
聪明在于学习 , 天才在于积累 .
学而优则用 , 学而优则创 .
华罗庚 CHENLI 由薄到厚 , 由厚到薄 .
3
第一节 目录 上页 下页 返回 结束
引言
一、什么是高等数学 ?
初等数学 — 研究对象为常量, 以静止观点研究问题. 高等数学 — 研究对象为变量, 运动和辩证法进入了数学.
恩格斯
CHENLI
数学中的转折点是笛卡儿的变数. 有了变数 , 运动进入了数学, 有了变数,辩证法进入了数学 ,
有了变数 , 微分和积分也就立刻成 为必要的了,而它们也就立刻产生.
1
笛卡儿 目录 上页 下页 返回 结束
主要内容
1. 分析基础: 函数 , 极限, 连续 2. 微积分学: 一元微积分 (上册)
多元微积分 (下册) 3. 向量代数与空间解析几何 4. 无穷级数 5. 常微分方程
CHENLI
2
ቤተ መጻሕፍቲ ባይዱ
机动 目录 上页 下页 返回 结束
二、如何学习高等数学 ?
1. 认识高等数学的重要性, 培养浓厚的学习兴趣.

同济大学高等数学教材书

同济大学高等数学教材书

同济大学高等数学教材书同济大学高等数学教材书是同济大学编写的一本专门面向高等数学课程的教材。

该教材的编写旨在帮助学生系统深入地学习高等数学的理论和应用,培养学生的数学思维能力和解决实际问题的能力。

本文将探讨同济大学高等数学教材书的特点、内容结构以及对学生学习的作用。

一、教材特点同济大学高等数学教材书具有以下几个特点:1. 理论与实践相结合:教材综合了数学理论和实际应用,并通过大量的例子和练习题,帮助学生理解并掌握数学知识的实际应用。

2. 逻辑性强:教材根据数学知识的逻辑关系有条不紊地组织内容,使学生能够清晰地理解和掌握数学的基本概念和原理。

3. 突出问题解决:教材注重培养学生的问题解决能力,通过丰富的习题和案例分析,引导学生运用数学方法解决实际问题。

二、教材内容结构同济大学高等数学教材书的内容结构主要包括以下几个方面:1. 微积分:教材以微积分为核心,涵盖了导数和微分、积分和定积分、微分方程等内容。

通过理论和实际问题的结合,帮助学生建立微积分知识体系。

2. 数列与级数:教材对数列和级数的概念、性质和运算进行了全面而深入的讲解,通过典型例题的引导,培养学生对数学模式的分析和构建能力。

3. 无穷级数:教材详细介绍了无穷级数的收敛性与敛散判别法,以及常见的级数收敛性判断方法。

4. 多元函数微积分学:教材对多元函数的概念、极限和连续性、偏导数、多元函数积分等进行了系统性的阐述,通过实际问题的讨论和分析,帮助学生建立对多元函数微积分的整体认识。

5. 空间解析几何:教材介绍了空间中的点、直线、平面及其相互位置关系以及相关的几何计算方法,使学生理解和掌握空间几何的基本概念和原理。

三、教材对学生学习的作用同济大学高等数学教材书对学生学习高等数学具有重要的作用:1. 培养数学思维:教材通过丰富的例题和习题,培养学生的数学思维能力,激发学生对数学的兴趣。

2. 提高理论应用能力:教材以实际问题为背景,注重理论与实践的结合,帮助学生将数学知识应用于解决实际问题。

同济大学-高等数学微积分教案

同济大学-高等数学微积分教案

第一章:函数与极限1.1 初等函数图象及性质1。

1。

1 幂函数函数(m 是常数)叫做幂函数。

幂函数的定义域,要看m 是什么数而定。

例如,当m = 3时,y=x3的定义域是(—∞ ,+∞);当m = 1/2时,y=x1/2的定义域是[0,+∞);当m = -1/2时,y=x-1/2的定义域是(0,+∞)。

但不论m 取什么值,幂函数在(0,+∞)内总有定义。

最常见的幂函数图象如下图所示:[如图]1.1.2 指数函数与对数函数1.指数函数函数y=a x(a是常数且a>0,a≠1)叫做指数函数,它的定义域是区间(—∞ ,+∞)。

因为对于任何实数值x,总有a x >0,又a0=1,所以指数函数的图形,总在x轴的上方,且通过点(0,1)。

若a〉1,指数函数a x是单调增加的。

若0〈a〈1,指数函数a x是单调减少的。

由于y=(1/a)—x=a—x,所以y=a x的图形与y=(1/a)x的图形是关于y轴对称的(图1—21)。

[如图]2.对数函数指数函数y=a x的反函数,记作y=log a x(a是常数且a〉0,a≠1),叫做对数函数。

它的定义域是区间(0,+∞).对数函数的图形与指数函数的图形关于直线y = x对称(图1—22)。

y=log a x的图形总在y轴上方,且通过点(1,0)。

若a>1,对数函数log a x是单调增加的,在开区间(0,1)内函数值为负,而在区间(1,+∞)内函数值为正。

若0〈a〈1,对数函数log a x是单调减少的,在开区间(0,1)内函数值为正,而在区间(1,+∞)内函数值为负。

[如图]1。

1.3 三角函数与反三角函数1.三角函数正弦函数和余弦函数都是以2π为周期的周期函数,它们的定义域都是区间(—∞ ,+∞),值域都是必区间[-1,1]。

正弦函数是奇函数,余弦函数是偶函数。

正切函数和余切函数都是以π为周期的周期函数,它们都是奇函数。

2.反三角函数反三角函数是三角函数的反函数,其图形都可由相应的三角函数的图形按反函数作图法的一般规则作出。

高等数学同济第八版教材

高等数学同济第八版教材

高等数学同济第八版教材高等数学是大学数学的重要组成部分,它主要包含微积分和线性代数两个方面的内容。

而同济大学出版社的《高等数学同济第八版教材》是目前国内应用最广泛的高等数学教材之一。

本文将对该教材进行全面介绍,以帮助读者更好地理解和学习高等数学知识。

第一章微积分基础《高等数学同济第八版教材》的第一章主要介绍了微积分的基本概念、函数与极限、连续与间断等内容。

在这一章中,教材详细而全面地解释了微积分的起源和发展,为读者奠定了扎实的数学基础。

第二章一元函数微分学在第二章中,教材围绕一元函数的微分学展开讲解。

从导数的定义和性质开始,逐步引入微分的概念,并介绍了一元函数的凹凸性、单调性以及最值问题等重要内容。

此外,教材还给出了一些常见函数的导数和微分计算方法,为读者提供了丰富的例题和习题。

第三章一元函数积分学第三章主要介绍了一元函数的积分学。

教材从不定积分的定义和性质开始,讲解了反常积分和定积分的概念及其计算方法。

同时,教材还对定积分的应用进行了深入的讲解,如曲线长度、旋转体的体积等。

这些应用案例的介绍有助于读者理解积分在实际问题中的应用。

第四章微分方程本章主要介绍了微分方程的基本概念和解法。

教材首先介绍了一阶微分方程和高阶微分方程的概念,并详细讲解了可分离变量、齐次方程和一阶线性微分方程等常见的解法。

此外,教材还对二阶线性齐次微分方程的解法进行了详尽的介绍,并给出了一些典型的例题供读者练习。

第五章多元函数微分学在第五章中,教材引入了多元函数的微分学。

从偏导数和全微分的概念开始,教材展示了多元函数的极值、条件极值的判定方法,并详细介绍了隐函数的微分法和参数方程的微分法等内容。

本章的讲解重点在于培养读者对多元函数微分学的直观理解和应用能力。

第六章多元函数积分学多元函数积分学是本教材的第六章内容,它是微积分的重要组成部分。

教材从二重积分的概念和计算开始,讲解了二重积分的应用,如计算平面图形的面积、质量和重心等。

《多元微积分》教学大纲

《多元微积分》教学大纲

《多元微积分》教学大纲课程编号:091012课程中文名称:多元微积分课程英文名称:Multivariable Calculus学时/学分:48/3开课学期:春季先修课程:一元微积分常微分方程执笔人:吴纪桃一、课程教学目标通过多元微积分课程的学习,使学生掌握多元函数微积分、空间解析几何的基本概念、基本理论和基本运算技能,为学生进一步获得数学知识、学好以后的各门专业基础课、各科专业课奠定必要的数学基础。

通过多元微积分课程的整个教学过程逐渐培养学生的抽象概括问题的能力、逻辑推理能力、空间想象能力、自学能力以及创新能力,培养学生具有比较熟练的运算能力和综合运用多元微积分方法去分析问题、解决问题的能力。

二、教学内容及基本要求第一章多元函数微分法及其应用(16学时)1.理解多元函数概念;了解二元函数的极限、连续概念;了解有界闭域上连续函数性质。

2.理解偏导数、全微分概念;掌握偏导数、全微分计算;了解全微分存在的充分条件和必要条件。

3.掌握多元复合函数的微分法(包括隐函数以及高阶偏导数情况)。

4.了解方向导数及梯度概念,掌握其计算法。

5.了解偏导几何应用(曲线的切线及法平面、曲面的切平面及法线)。

6.理解多元函数值概念;会求函数的极值(一般函数的无条件极值,用拉格朗日乘数法求条件极值),会解决有实际背景的简单优化问题。

第二章重积分(16学时)1.理解二、三重积分概念,了解重积分性质。

2.掌握二重积分计算方法(直角坐标下,极坐标下);掌握三重积分计算方法(直角坐标下,柱面坐标下,球面坐标下)。

3.能用重积分表达一些几何量(面积、体积、曲面面积等)与物理量(质量、重心、引力等)。

第三章曲线积分与曲线积分(16学时)1.理解两类曲线积分概念;了解两类曲线积分性质;掌握两类曲线积分的计算。

2.理解格林公式,会利用格林公式及与路径无关的条件计算某些对坐标的曲线积分;会计算二元函数的全微分求积。

3.理解两类曲面积分概念;了解两类曲面积分性质;掌握两类曲面积分计算。

高等数学 第六章 微积分方程62

高等数学 第六章 微积分方程62
一、可分离变量的微分方程
g( y)dy f ( x)dx 可分离变量的微分方程.
例如 dy
4
2x2 y5
4
y 5dy
2 x2dx,
dx
解法 设函数g( y)和 f ( x)是连续的,
g( y)dy f (x)dx 分离变量法
设函数G( y)和F ( x)是依次为g( y) 和 f ( x) 的原函
(ex y ex )dx (ex y e y )dy 0
解:
ex (ey 1)dx ey (ex 1)dy 0
ey dy ex dx
ey 1
ex 1
积分得: ln | ey 1| ln | ex 1| ln C
求下列方程的通解
xy y y(ln x ln y)
解:
d (xy) y ln(xy)
dx
u xy
du
u
ln u
du
dx
dx x
u ln u x
ln | ln u | ln x ln C
例 3 衰变问题:衰变速度与未衰变原子含量M 成
正比,已知 M t0 M0,求衰变过程中铀含量M (t ) 随时间t 变化的规律.
解 衰变速度 dM , 由题设条件
dt
dM M ( 0衰变系数) dt
得m
dv dt
mg
kv 且有初始条件:v
|t 0
0于是,所给问题归
结为求解初值问题
m
dv dt
mg
kv,
v |t0 0,
对上述方程分离变量得
dv dt ,
mg kv m
两边积分得
dv mg
kv
dt m

可得

《高等数学》 第六章 二元函数微积分及其应用3—4节 课堂笔记及练习题2

《高等数学》 第六章 二元函数微积分及其应用3—4节 课堂笔记及练习题2

高等数学 第六章 二元函数微积分及其应用3—4节 课堂笔记及练习题主 题:第六章 二元函数微积分及其应用3—4节 学习时间:2016年1月4日—1月10日内 容:这周我们将学习第七章多元函数的积分,第五节二重积分。

在一元函数积分学中我们已经知道,定积分是某种特定形式的和的极限,把这种和的极限的概念推广到定义在某个区域或某段曲线上的多元函数的情形,便得到二重积分的概念。

其学习要求及需要掌握的重点内容如下:1、了解二重积分的概念、性质及几何意义。

2、掌握二重积分的计算方法—直角坐标和极坐标,会利用二重积分计算简单的平面图形的面积。

基本概念:二重积分的概念、性质及几何意义 知识点:二重积分的计算方法知识结构图一、二重积分的概念和性质定义:设),(y x f 是有界闭区域D 上的有界函数。

将闭区域D 任意分成n 个小闭区域k σσσ∆∆∆,,,21 。

其中k σ∆表示第k 个小区域,也表示它的面积。

在每个k σ∆上任取一点),(i i ηξ,作和k i i ni f σηξ∆=∑),(1。

如果当各小闭区域的直径中的最大值λ趋于零时,这和的极限总存在,则称此极限为函数),(y x f 在闭区域D 上的二重积分,记作σd y x f D⎰⎰),(,即k i i ni Df d y x f σηξσλ∆==→∑⎰⎰),(lim ),(10。

),(y x f 为被积函数,σd y x f ),(为被积表达式,σd 为面积元素,y x ,为积分变量,D 为积分区域,积分和。

(请了解此概念)直角坐标系中的面积元素:如果在直角坐标系中用平行于坐标轴的直线网来划分D ,那么除了包含边界点的一些小闭区域外,其余的小闭区域都是矩形闭区域。

设矩形闭区域i σ∆的边长为i x ∆和i y ∆,则i i i y x ∆∆=∆σ,因此在直角坐标系中,有时也把面积元素σd 记作dxdy ,而把二重积分记作dxdy y x f D⎰⎰),(。

同济大学高等数学课件

同济大学高等数学课件
同济大学高等数学课件
目录
• 函数与极限 • 导数与微分 • 不定积分与定积分 • 多元函数微积分 • 常微分方程
01
函数与极限
函数的概念与性质
函数定义
01
函数是数学上的一个概念,它定义了一个输入值对应一个输出
值的规则。
函数的性质
02
函数的性质包括奇偶性、单调性、周期性等,这些性质对于理
解和应用函数都非常重要。
03
全微分的概念与计 算
理解全微分的概念,掌握全微分 的计算方法,理解全微分在近似 计算中的应用。
二重积分
1 2
总结词
理解二重积分的概念及性质,掌握计算二重积分 的方法。
二重积分的定义与性质
理解二重积分的定义,掌握二重积分的计算方法 ,理解二重积分在面积和体积计算中的应用。
3
二重积分的几何意义与物理应用
分部积分法
通过将两个函数的乘积进行积分,将问题转化为求两个函数的原函 数的问题。
04
多元函数微积分
多元函数的极限与连续性
总结词
理解多元函数的极限与连续性的 概念和性质,掌握判断多元函数 极限与连续性的方法。
多元函数的极限
理解极限的定义,掌握计算多元 函数极限的方法,包括累次极限 和同时极限的概念及计算方法。
导数的计算
基本初等函数的导数
对于一些常见的初等函数,如幂函数、指数函数、三角函数等, 可以直接查表得到它们的导数。
链式法则
如果一个复合函数由两个或多个函数组成,那么它的导数可以通 过链式法则进行计算。
参数式函数的导数
对于参数式函数,可以通过对参数求导来得到函数的导数。
微分的概念与性质
微分的定义
微分是函数在某一点的变化率的近似值,表示函数在 该点附近的小增量。

《高等数学(一)微积分》讲义

《高等数学(一)微积分》讲义
f −1 : f (D) → D
5. 复合函数
给定函数链 f : D1 → f (D1) g : D → g(D) ⊂ D1
则复合函数为 f o g : D → f [g(D) ]
6. 初等函数 由基本初等函数经有限次四则运算与复合而成的由一个表达式表示的函
数。
4/69
二、 极限 (1.概念回顾 2、极限的求法,)
=
lim
x→π
1 cos x
sin x
-2 ⋅ 2(π

2 x)=
lim
x→π
1 -4 sin
cos x
x(π − 2x)
2
2
2
=
lim
x→π
1 -4 sin
x

cos
lxi→mπ(π −
2xx )=
1 -4
lim
x→π

sin −2
x =

1 8
2
2
2
13/69
注:使用洛必达法则必须判断所求的极限是分式型的未定式 ∞ 、 0 。 ∞0
例 5:
求 lim x→∞
x+5 x2 − 9

解:
lim
x→∞
x+5 x2 − 9
=
lim
x→∞
1 x
+
5 x2
1−
9 x2
=
1 lim( x→∞ x
+
5 x2
)
=
0
=
0.
lim(1 −
x→∞
9 x2
)
1
知识点:设a0 ≠ 0, b0 ≠ 0, m, n ∈ N ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六篇 多元微积分学第九章 多元函数微分学及其应用我们以前学习的函数只有一个自变量,这种函数我们称为一元函数.一元函数的微积分解决了很多初等数学无法解决的问题.但是,在实际问题中往往牵扯到多方面的因素,解决这类问题必须引进多元函数.本章将在一元函数微分学的基础上,讨论多元函数的微分及其应用.从一元函数的情形推广到二元函数时会产生一些新的问题,而从二元函数推广到二元以上的多元函数则可以类推.通过本章的学习,学生要掌握多元函数微分学的基本原理以及解决几何、经济与管理、工程等领域的实际问题的具体方法.第1节 多元函数的基本概念1.1 平面点集为了介绍二元函数的概念,有必要介绍一些关于平面点集的知识,在一元函数微积分中,区间的概念是很重要的,大部分问题是在区间上讨论的.在平面上,与区间这一概念相对应的概念是邻域.1.1.1 邻域设000(,)P x y 是xOy 平面上的一定点,δ是某一正数,与点000(,)P x y 的距离小于δ的点(,)P x y 的全体,称为点000(,)P x y 的δ邻域,记为0(,)δU P ,即{}00(,)U P P P P δδ=<,亦即 {}0(,)(,U P x y δδ=<. 0(,)δU P 在几何上表示以000(,)P x y 为中心,δ为半径的圆的内部(不含圆周).上述邻域0(,)δU P 去掉中心000(,)P x y 后,称为000(,)P x y 的去心邻域,记作o0(,)U P δ. {}o0(,)(,)0U P x y δδ=<<.如果不需要强调邻域的半径δ,则用0()U P 表示点000(,)P x y 的邻域,用o 0()U P 表示000(,)P x y 的去心邻域.1.1.2 区域下面用邻域来描述平面上的点与点集之间的关系.设E 是xOy 平面上的一个点集,P 是xOy 平面上的一点,则P 与E 的关系有以下三种情形:(1) 内点:如果存在P 的某个邻域()U P ,使得()⊂U P E ,则称点P 为E 的内点.(2) 外点:如果存在P 的某个邻域()U P ,使得()=∅U P E ,则称P 为E 的外点.(3) 边界点:如果在点P 的任何邻域内,既有属于E 的点,也有不属于E 的点,则称点P 为E 的边界点.E 的边界点的集合称为E 的边界,记作∂E .例如:点集(){}221,|01=<+<E x y x y ,除圆心与圆周上各点之外圆的内部的点都是1E 的内点,圆外部的点都是1E 的外点,圆心及圆周上的点为1E 的边界点;又如平面点集(){}2,|1=+≥E x y x y ,直线上方的点都是2E 的内点,直线下方的点都是2E 的外点,直线上的点都是2E 的边界点(图9—1).图9—1显然,点集E 的内点一定属于E ;点集E 的外点一定不属于E ;E 的边界点可能属于E ,也可能不属于E .如果点集E 的每一点都是E 的内点,则称E 为开集,点集(){}221,|01=<+<E x y x y 是开集,(){}2,|1=+≥E x y x y 不是开集.设E 是开集,如果对于E 中的任何两点,都可用完全含于E 的折线连接起来,则称开集E 是连通集(图9—2) .点集E 1和E 2都是连通的,点集(){}3,|0=>E x y xy 不是连通的(图9—2).图9—2连通的开集称为开区域(开域).从几何上看,开区域是连成一片的且不包括边界的平面点集.如E 1是开区域.开区域是数轴上的开区间这一概念在平面上的推广.开区域E 连同它的边界E ∂构成的点集,称为闭区域(闭域),记作E (即=E E E +∂). 闭区域是数轴上的闭区间这一概念在平面上的推广.如E 2及(){}224,|1=+≤E x y x y 都是闭域,而(){}225,|12=≤+<E x y x y 既非闭域,又非开域.闭域是连成一片的且包含边界的平面点集.本书把开区域与闭区域统称为区域.如果区域E 可包含在以原点为中心的某个圆内,即存在正数r ,使(),E U O r ⊂,则称E 为有界区域,否则,称E 为无界区域.例如E 1是有界区域,E 2是无界区域.记E 是平面上的一个点集,P 是平面上的一个点.如果点P 的任一邻域内总有无限多个点属于点集E ,则称P 为E 的聚点.显然,E 的内点一定是E 的聚点,此外,E 的边界点也可能是E 的聚点.例如,设(){}226,|01=<+≤E x y x y ,那么点()0,0既是6E 的边界点又是6E 的聚点,但6E 的这个聚点不属于6E ;又如,圆周221x y +=上的每个点既是6E 的边界点,也是6E 的聚点,而这些聚点都属于6E .由此可见,点集E 的聚点可以属于E ,也可以不属于E .再如点()7111111=1,1(,)(,),,(),2233,,E n n ⎧⎫⎨⎬⎩⎭,原点()0,0是它的聚点,7E 中的每一个点都不是聚点.1.1.3 n 维空间R n一般地,由n 元有序实数组()12,,,n x x x 的全体组成的集合称为n 维空间,记作R n .即 (){}12,,,|,1,2,,n n i R x x x x R i n =∈=. n 元有序数组()12,,,n x x x 称为n 维空间中的一个点,数x i 称为该点的第i 个坐标.类似地规定,n 维空间中任意两点()12,,,n P x x x 与()12,,,n Q x x x 之间的距离为 (n PQ y x =++-前面关于平面点集的一系列概念,均可推广到n 维空间中去,例如,0∈n P R ,δ是某一正数,则点0P 的δ邻域为(){}00|,,n U P P PP P R δδ=<∈.以邻域为基础,还可以定义n 维空间中内点、边界点、区域等一系列概念.1.2 多元函数的概念1.2.1 n 元函数的定义定义1 设D 是n R 中的一个非空点集,如果存在一个对应法则f , 使得对于D 中的每一个点()12,,,n P x x x ,都能由f 唯一地确定一个实数y ,则称f 为定义在D 上的n 元函数,记为 ()()1212,,,,,,,n n y f x x x x x x D =∈.其中12,,,n x x x 叫做自变量,y 叫做因变量,点集D 叫做函数的定义域,常记作()D f .取定()12,,,n x x x D ∈,对应的()12,,,n f x x x 叫做()12,,,n x x x 所对应的函数值.全体函数值的集合叫做函数f 的值域,常记为()f D [或()R f ],即()()()(){}1212|,,,,,,,n n f D y y f x x x x x x D f ==∈.当n =1时,D 为实数轴上的一个点集,可得一元函数的定义,即一元函数一般记作(),,y f x x D D R =∈⊂;当n =2时,D 为xOy 平面上的一个点集,可得二元函数的定义,即二元函数一般记作()()2,,,,z f x y x y D D R =∈⊂,若记(),P x y =,则也记作()z f P =.二元及二元以上的函数统称为多元函数.多元函数的概念与一元函数一样,包含对应法则和定义域这两个要素.多元函数的定义域的求法,与一元函数类似.若函数的自变量具有某种实际意义,则根据它的实际意义来决定其取值范围,从而确定函数的定义域. 对一般的用解析式表示的函数,使表达式有意义的自变量的取值范围,就是函数的定义域.例1 在生产中,设产量Y 与投入资金K 和劳动力L 之间的关系为Y AK L αβ=(其中,,A αβ均为正常数).这是以K ,L 为自变量的二元函数,在西方经济学中称为生产函数.该函数的定义域为(){},|0,0K L K L >>.例2 求函数()ln z y x =-的定义域D ,并画出D 的图形.解 要使函数的解析式有意义,必须满足220,0,10,y x x x y ->⎧⎪≥⎨⎪-->⎩即(){}22,|0,,1D x y x x y x y =≥<+<,如图9—3划斜线的部分.图9—3 图9—41.2.2. 二元函数的几何表示 设函数(),=z f x y 的定义域为平面区域D ,对于D 中的任意一点(),P x y ,对应一确定的函数值()(),=z z f x y .这样便得到一个三元有序数组(),,x y z ,相应地在空间可得到一点(),,M x y z .当点P 在D 内变动时,相应的点M 就在空间中变动,当点P 取遍整个定义域D 时,点M 就在空间描绘出一张曲面S (图9—4).其中 ()()(){},,|,,,S x y z z f x y x y D ==∈.而函数的定义域D 就是曲面S 在xO y 面上的投影区域.例如z ax by c =++表示一平面;221z x y =--表示球心在原点,半径为1的上半球面.1.3二元函数的极限二元函数的极限概念是一元函数极限概念的推广.二元函数的极限可表述为定义1 设二元函数()z f P =的定义域是某平面区域D ,P 0为D 的一个聚点,当D 中的点P 以任何方式无限趋于P0时,函数值f (P )无限趋于某一常数A ,则称A 是函数()f P 当P 趋于P 0时的(二重)极限.记为0lim ()P P f P A →=或()0()f P A P P →→,此时也称当0→P P 时()f P 的极限存在, 否则称()f P 的极限不存在.若0P 点的坐标为00(,)x y ,P 点的坐标为(),x y ,则上式又可写为()()00,lim (,),→=x y x y f x y A 或 f (x , y )→A (x →x 0,y →y 0). 类似于一元函数,()f P 无限趋于A 可用()f P A ε-<来刻画,点(),P P x y =无限趋于0000(,)P P x y =可用22000()()P P x x y y δ=-+-<刻画,因此,二元函数的极限也可如下定义.定义2 设二元函数()(,)z f P f x y ==的定义域为D ,000(,)P x y 是D 的一个聚点,A 为常数.若对任给的正数ε,不论ε多小,总存在0δ>,当(,)P x y D ∈,且0P P δ=时,总有(),f P A ε-<则称A 为()z f P =当0P P →时的(二重)极限.注 ①定义中要求0P 是定义域D 的聚点,是为了保证在P 0的任何邻域内都有D 中的点. ②注意到平面上的点P 趋近于0P 的方式可以多种多样:P 可以从四面八方趋于0P ,也可以沿曲线或点列趋于0P .定义1指出:只有当P 以任何方式趋近于0P ,相应的()f P 都趋近于同一常数A 时,才称A 为()f P 当0P P →时的极限.如果(,)P x y 以某些特殊方式(如沿某几条直线或几条曲线)趋于000(,)P x y 时,即使函数值()f P 趋于同一常数A ,我们也不能由此断定函数的极限存在.但是反过来,当P 在D 内沿不同的路径趋于0P 时,()f P 趋于不同的值,则可以断定函数的极限不存在.③二元函数极限有与一元函数极限相似的运算性质和法则,这里不再一一叙述.例3 设222222,0,(,)0,0,xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩判断极限()(),0,0lim (,)→x y f x y 是否存在? 解 当(,)P x y 沿x 轴趋于(0,0)时,有y =0,于是()()22,0,0000lim (,)lim 00→→===+x y x y f x y x ; 当(,)P x y 沿y 轴趋于(0,0)时,有x =0,于是()()22,0,0000lim (,)lim 00→→===+x y y x f x y y . 但不能因为(,)P x y 以上述两种特殊方式趋于(0,0)时的极限存在且相等,就断定所考察的二重极限存在.因为当(,)P x y 沿直线()0=≠y kx k )趋于(0,0)时,有()()2222,0,00lim (,)lim (1)1→→===++x y x y kx kx k f x y k x k, 这个极限值随k 不同而变化,故()(),0,0lim (,)→x y f x y 不存在.例4 求下列函数的极限: (1) ()(),0,0lim →x y (2) ()()222,0,0lim →+x y xy x y ; (3)()(,0,0ln 1lim →+x y xy 解(1)()()()(()(,0,0,0,0,0,01lim lim lim 4→→→==-=-x y x y x y . (2)当0,0→→x y 时,220x y +≠,有222x y xy +≥. 这时,函数22xy x y +有界,而y 是当x →0且y →0时的无穷小,根据无穷小量与有界函数的乘积仍为无穷小量,得()()222,0,0lim 0→=+x y xy x y . (3) ()(()(()(,0,0,0,0,0,0ln 1lim lim lim 1→→→+===x y x y x y xy .从例4可看到求二元函数极限的很多方法与一元函数相同.1.4 二元函数的连续性类似于一元函数的连续性定义,我们用二元函数的极限概念来定义二元函数的连续性. 定义3 设二元函数(,)z f x y =在点000(,)P x y 的某邻域内有定义,如果()()()00,0,0lim .(,)→=x y f x y f x y ,则称函数(,)f x y 在点000(,)P x y 处连续,000(,)P x y 称为(,)f x y 的连续点;否则称(,)f x y 在000(,)P x y 处间断(不连续),000(,)P x y 称为(,)f x y 的间断点.与一元函数相仿,二元函数(,)z f x y =在点000(,)P x y 处连续,必须满足三个条件:①函数在点000(,)P x y 有定义;②函数在000(,)P x y 处的极限存在;③函数在000(,)P x y 处的极限与000(,)P x y 处的函数值相等,只要三条中有一条不满足,函数在000(,)P x y 处就不连续.由例3可知,222222,0,(,)0,0,xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0,0)处间断;函数1z x y =+在直线0x y +=上每一点处间断.如果(,)f x y 在平面区域D 内每一点处都连续,则称(,)f x y 在区域D 内连续,也称(,)f x y 是D 内的连续函数,记为()(,)f x y C D ∈.在区域D 上连续函数的图形是一张既没有“洞”也没有“裂缝”的曲面.一元函数中关于极限的运算法则对于多元函数仍适用,故二元连续函数经过四则运算后仍为二元连续函数(在商的情形要求分母不为零);二元连续函数的复合函数也是连续函数.与一元初等函数类似,二元初等函数是可用含,x y 的一个解析式所表示的函数,而这个式子是由常数、x 的基本初等函数、y 的基本初等函数经过有限次四则运算及复合所构成的,例如()sin x y +,22xy x y +,arcsin x y等都是二元初等函数.二元初等函数在其定义域的区域内处处连续.与闭区间上一元连续函数的性质相类似,有界闭区域上的连续函数有如下性质.性质1(最值定理) 若(,)f x y 在有界闭区域D 上连续,则(,)f x y 在D 上必取得最大值与最小值.推论 若(,)f x y 在有界闭区域D 上连续,则(,)f x y 在D 上有界.性质2 (介值定理) 若(,)f x y 在有界闭区域D 上连续,M 和m 分别是(,)f x y 在D 上的最大值与最小值,则对于介于M 与m 之间的任意一个数C ,必存在一点00(,)x y D ∈,使得00(,)f x y C =.以上关于二元函数的极限与连续性的概念及有界闭区域上连续函数的性质,可类推到三元以上的函数中去.习题9—11.判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点组成的点集和边界.(1)(){},|0,0≠≠x y x y ; (2) (){}22,|14<+≤x y x y ; (3) (){}2,|>x y y x . 2.求下列函数的定义域,并画出其示意图:(1)z = (2)1ln()z x y =-;(3)=z(4)=u .3.设函数()32,23f x y x xy y =-+,求(1)()2,3f -; (2)12,f x y ⎛⎫ ⎪⎝⎭; (3) (),f x y x y +-.4.讨论下列函数在点()0,0处的极限是否存在: (1) 24xy z x y=+; (2)x y z x y +=-. 5.求下列极限:(1) ()(),0,0sin lim→x y xy x ; (2)()()22,0,11lim →-+x y xy x y ; (3)()(,1,0ln lim →+y x y x e ; (4)()(),0,0lim →x y .6.证明:二元函数()22220,,0,0.+≠=+=⎩x y f x y x y 在()0,0点连续.7.设二元函数()()11sin sin ,0,,0,0.⎧+≠⎪=⎨⎪=⎩x y xy x y f x y xy ,试判断(),f x y 在点()0,0处的连续性.8.函数2222+=-y x z y x在何处是间断的?第2节 偏导数与全微分2.1 偏导数的概念2.1.1 偏导数的定义在研究一元函数时,我们从研究函数的变化率引入了导数概念.由于二元函数的自变量有两个,关于某点处函数的变化率问题相当复杂,因此我们不能笼统地讲二元函数在某点的变化率.在这一节,我们考虑二元函数关于某一个自变量的变化率,这就是偏导数的概念.设函数(),z f x y =在点()00,x y 的某邻域内有定义,x 在0x 有改变量()0x x ∆∆≠,而0y y =保持不变,这时函数的改变量为()()0000,,x z f x x y f x y ∆=+-,x z ∆称为函数(),f x y 在()00,x y 处关于x 的偏改变量(或偏增量).类似地可定义(),f x y 关于y 的偏增量为()()0000,,y z f x y y f x y ∆=+-.有了偏增量的概念,下面给出偏导数的定义.定义1 设函数(),z f x y =在()00,x y 的某邻域内有定义,如果 000000(,)(,)limlim x x x z f x x y f x y x x ∆→∆→∆+∆-=∆∆ 存在,则称此极限值为函数(),z f x y =在()00,x y 处关于x 的偏导数,并称函数(),z f x y =在点()00,x y 处关于x 可偏导.记作00000000,,,(,).======∂∂∂∂x x x x y y y y x x x y y x zf z f x y x x类似地,可定义函数(),z f x y =在点()00,x y 处关于自变量y 的偏导数为000000(,)(,)lim lim y y y z f x y y f x y y y∆→∆→∆+∆-=∆∆, 记作00000000,,,(,).======∂∂∂∂x x x x y y y y x x y y y y zf z f x y y y如果函数(),z f x y =在区域D 内每一点(),x y 处的偏导数都存在,即0(,)(,)(,)lim x x f x x y f x y f x y x∆→+∆-=∆(,)(,)(,)limy y f x y y f x y f x y y∆→+∆-=∆存在,则上述两个偏导数还是关于x ,y 的二元函数,分别称为z 对x ,y 的偏导函数(简称为偏导数).并记作,,,(,)(,)或或或,∂∂∂∂∂∂∂∂x y x y z z f fz z f x y f x y x y x y. 不难看出,(),z f x y =在()00,x y 关于x 的偏导数00(,)x f x y 就是偏导函数(,)x f x y 在()00,x y 处的函数值,而00(,)y f x y 就是偏导函数(,)y f x y 在()00,x y 处的函数值.由于偏导数是将二元函数中的一个自变量固定不变,只让另一个自变量变化,相应的偏增量与另一个自变量的增量的比值的极限;因此,求偏导数问题仍然是求一元函数的导数问题.求fx∂∂时,把y 看做常量,将(),z f x y =看做x 的一元函数对x 求导;求f y ∂∂时,把x看做常量,将(),z f x y =看做y 的一元函数对y 求导.三元及三元以上的多元函数的偏导数,完全可以类似地定义和计算,这里就不讨论了. 例1 求函数()sin +xyz x y e =在点()1,1-处的偏导数.解 将y 看成常量,对x 求导得e [cos()sin()]xy zx y y x y x∂=+++∂; 将x 看成常量,对y 求导得e [cos()sin()]xy zx y x x y y∂=+++∂. 再将1,1x y ==-代入上式得111111e ,e x x y y z z xy--===-=-∂∂==∂∂.例2 求函数22ln 4z x y y x =++的偏导数.解22z y xy x x∂=+∂,22ln zx y x y ∂=+∂. 例3 设()0,1yz xx x =>≠,求证:12ln x z zz y x x y∂∂+=∂∂.证 因为1y zyx x-∂=∂,ln y z x x y ∂=∂,所以111ln 2ln ln y yy y x z z x yx x x x x z y x x y y x-∂∂+=+=+=∂∂. 例4 求函数()2sin x u x y e =+-的偏导数. 解 将y 和z 看做常量,对x 求导得()2cos z ux y e x∂=+-∂, 同样可得()22cos x u y x y e y ∂=+-∂,()2cos z z u e x y e z∂=-+-∂. 2.1.2 二元函数偏导数的几何意义由于偏导数实质上就是一元函数的导数,而一元函数的导数在几何上表示曲线上切线的斜率,因此,二元函数的偏导数也有类似的几何意义.设(),z f x y =在点()00,x y 处的偏导数存在,由于00(,)x f x y 就是一元函数()0,f x y 在0x 处的导数值,即00(,)x f x y =00d (,)d x x f x y x =⎡⎤⎢⎥⎣⎦,故只须弄清楚一元函数()0,f x y 的几何意义,再根据一元函数的导数的几何意义,就可以得到00(,)x f x y 的几何意义.(),z f x y =在几何上表示一曲面,过点()00,x y 作平行于xz 面的平面0y y =,该平面与曲面(),z f x y =相截得到截线1Γ:0(,),.z f x y y y =⎧⎨=⎩若将0y y =代入第一个方程,得()0,z f x y =.可见截线Γ1是平面0y y =上一条平面曲线,1Γ在0y y =上的方程就是()0,z f x y =.从而00(,)x f x y =00d (,)d x x f x y x =⎡⎤⎢⎥⎣⎦表示1Γ在点()()000001,,,M x y f x y Γ=∈处的切线对x 轴的斜率(图9-5).同理,00(,)y f x y =00d (,)d y y f x y y =⎡⎤⎢⎥⎣⎦表示平面0x x =与(),z f x y =的截线 2Γ:0(,),.z f x y x x =⎧⎨=⎩在()()000002,,,M x y f x y Γ=∈处的切线对y 轴的斜率(图9—5).图9—5例5 讨论函数222222,0,(,)0,0,xyx y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩在点(0,0)处的两个偏导数是否存在.解 0(0,0)(0,0)(0,0)limx x f x f f x∆→+∆-=∆220(0)0(0)0lim 0x x x x ∆→+∆-+∆+==∆. 同样有(0,0)0=y f .这表明(),f x y 在(0,0)处对x 和对y 的偏导数存在,即在(0,0)处两个偏导数都存在.由上节例3知:该函数在(0,0)处不连续.本例指出,对于二元函数而言,函数在某点的偏导数存在,不能保证函数在该点连续.但在一元函数中,我们有结论:可导必连续.这并不奇怪,因为偏导数只刻画函数沿x 轴与y 轴方向的变化率,00(,)x f x y 存在,只能保证一元函数()0,f x y 在x 0处连续,即0y y =与(),z f x y =的截线1Γ在()0000,,M x y z 处连续.同时00(,)y f x y 只能保证2Γ在()0000,,M x y z 处连续,但两曲线1Γ,2Γ在()0000,,M x y z 处连续并不能保证曲面(),z f x y =在()0000,,M x y z 处连续.2.2 高阶偏导数设函数(),z f x y =在区域D 内具有偏导数zx∂∂=(,)x f x y ,(,)∂=∂y z f x y y ,那么在D 内(,)x f x y 及(,)y f x y 都是x , y 的二元函数.如果这两个函数的偏导数还存在,则称它们是函数(),z f x y =的二阶偏导数.按照对变量求导次序的不同有下列四个二阶偏导数:22()(,)∂∂∂==∂∂∂xx z zf x y x x x,2()(,)∂∂∂==∂∂∂∂xy z z f x y y x x y ,2()(,)∂∂∂==∂∂∂∂yx z z f x y x y y x ,22()(,)∂∂∂==∂∂∂yy z zf x y y y y, 其中xy f (或12f '')与yx f (或21f '')称为(),f x y 的二阶混合偏导数.同样可定义三阶,四阶,…,n 阶偏导数.二阶及二阶以上的偏导数统称为高阶偏导数.例6 求函数2sin =+z xy x y 的所有二阶偏导数和32zy x∂∂∂. 解 因为zx∂∂=y +2x sin y , z y ∂∂=x +x 2cos y ,所以 22zx∂∂=2sin y , 2z x y ∂∂∂=1+2x cos y , 2z y x∂∂∂=1+2x cos y , 22z y ∂∂=x 2sin y ,322cos zy y x ∂=∂∂. 从本例我们看到22z zx y y x∂∂=∂∂∂∂,即两个二阶混合偏导数相等,这并非偶然. 事实上,有如下定理.定理1 如果函数(),z f x y =的两个二阶混合偏导数2z x y ∂∂∂和2zy x∂∂∂在区域D 内连续,则在该区域内有22z zx y y x∂∂=∂∂∂∂. 定理1表明:二阶混合偏导数在连续的条件下与求导的次序无关.对于二元以上的函数,也可以类似的定义高阶偏导数,而且高阶混合偏导数在偏导数连续的条件下也与求导的次序无关.例7 验证函数22ln z x y =+满足方程22220z zx y∂∂+=∂∂.解 ()22221ln 2z x y x y =+=+ 所以2222,,z x z y x x y y x y∂∂==∂+∂+()()()2222222222222x y x x z y x x x y x y +-⋅∂-==∂++, ()()()2222222222222x y y y z x y y x y x y +-⋅∂-==∂++, 故()()222222222222220z z y x x y x y x y x y ∂∂--+=+=∂∂++.2.3 全微分2.3.1 全微分的概念我们知道,一元函数()y f x =如果可微,则函数的增量Δ y 可用自变量的增量Δx 的线性函数近似求得.在实际问题中,我们会遇到求二元函数(),z f x y =的全增量的问题,一般说来,计算二元函数的全增量Δ z 更为复杂,为了能像一元函数一样,用自变量的增量Δx 与Δ y 的线性函数近似代替全增量,我们引入二元函数的全微分的概念.定义2 设函数(),z f x y =在()000,P x y 的某邻域内有定义,如果函数z 在0P 处的全增量()()0000,,z f x x y y f x y ∆=+∆+∆-可表示成()+ρ∆=∆+∆z A x B y o ,其中A ,B 是与Δx ,Δy 无关,仅与00,x y 有关的常数,ρ22()()x y ∆+∆o (ρ)表示当Δx →0,Δy →0时关于ρ的高阶无穷小量,则称函数(),z f x y =在()000,P x y 处可微,而称∆+∆A x B y 为(),f x y 在点()000,P x y 处的全微分,记作0d x x y y z==或00d x x y y f==,即00d ===∆+∆x x y y zA xB y .若(),z f x y =在区域D 内处处可微,则称(),f x y 在D 内可微,也称(),f x y 是D 内的可微函数.(),z f x y =在(),x y 处的全微分记作d z ,即d =∆+∆z A x B y .二元函数(),z f x y =在点P (x ,y )的全微分具有以下两个性质: (1) d z 是,∆∆x y 的线性函数,即d =∆+∆z A x B y ;(2) z d ∆≈z ,()()z d 0ρρ∆-=→z o ,因此,当,∆∆x y 都很小时,可将dz 作为计算Δ z 的近似公式.多元函数在某点的偏导数即使都存在,也不能保证函数在该点连续.但是对于可微函数却有如下结论:定理2 如果函数(),z f x y =在点(),x y 处可微,则函数在该点必连续. 这是因为由可微的定义,得()()(),,+ρ∆=+∆+∆-=∆+∆z f x x y y f x y A x B y o()(),0,0lim 0x y z ∆∆→∆=,即()(),0,0lim (,)(,)x y f x x y y f x y ∆∆→+∆+∆=.即函数(),z f x y =在点(),x y 处连续.一元函数可微与可导是等价的,那么二元函数可微与可偏导之间有何关系呢? 定理3 如果函数(),z f x y =在点(),x y 处可微,则(),z f x y =在该点的两个偏导数,z zx y∂∂∂∂都存在,且有 z zdz x y x y∂∂=∆+∆∂∂. 证 因为函数(),z f x y =在点(),x y 处可微,故()+ρ∆=∆+∆z A x B y o , ρ令0y ∆=,于是()(),,x z f x x y f x y A x o ∆=+∆-=∆+.由此得 ()()000(),,limlim lim x x x x x x f x x y f x y zx x x xοA A ∆→∆→∆→∆∆+∆-∆==+=∆∆∆∆,即zA x∂=∂. 同理可证得zB y∂=∂. 定理3的逆命题是否成立呢? 即二元函数在某点的两个偏导数存在能否保证函数在该点可微分呢? 一般情况下答案是否定的.如函数222222,0,(,)0,0xyx y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在()0,0处两个偏导数都存在,但(),f x y 在()0,0处不连续,由定理2知,该函数在()0,0处不可微.但两个偏导数既存在且连续时,函数就是可微的.我们不加证明地给出如下定理.定理 4 如果函数(),z f x y =在(),x y 处的偏导数,z zx y∂∂∂∂存在且连续,则函数(),z f x y =在该点可微.类似于一元函数微分的情形,规定自变量的微分等于自变量的改变量.即d ,d =∆=∆x x y y ,于是由定理3有d d d z zz x y x y∂∂=+∂∂. 以上关于二元函数的全微分的概念及结论,可以类推到三元以上的函数中去.比如若三元函数(),,=u f x y z 在点(),,P x y z 处可微,则它的全微分为d d d d u u uu x y z x y z∂∂∂=++∂∂∂. 例8 求下列函数的全微分:(1) 2sin 2=z x y ; (2) =yzu x .解 (1) 因为2sin 2∂=∂zx y x,22cos 2∂=∂z x y y ,所以22sin 22cos 2=+dz x ydx x ydy .(2) 因为1-∂=∂yz uyzx x,ln ∂=∂yz u zx x y ln ∂=∂yz uyx x z, 所以 1ln ln -=++yz yz yz du yzx dx zx xdy yx xdz .例9 求xyz xy e =+在点()1,2处的全微分.解 因xy zy ye x ∂=+∂,xy zx xe y ∂=+∂得 11222222e ,1e x x y y z z xy====∂∂=+=+∂∂,于是 ()()1222d 22e d 1e d x y zx y ===+++ .3.1.2全微分的运算法则类似于一元函数微分的运算法则,有定理5 (全微分四则运算法则) 设(),f x y ,(),g x y 在(),P x y 处可微,则 1) ()()+±+f x y g x y 在(),x y 处可微,且[][][]()()()()+±+=+±+d f x y g x y d f x y d g x y ;2) 若k 为常数,()+kf x y 在点(),x y 处可微,且[][]()()+=+d kf x y kd f x y ;3) ()()+⋅+f x y g x y 在点(),x y 处可微,且[][][]()()()()()()+⋅+=+++++d f x y g x y g x y d f x y f x y d g x y ;4) 当g (x ,y )≠0时,()()f x yg x y ++在点(),x y 处可微,且 2()()d ()()d ()d ()()f x y g x y f x y f x y g x y g x y g x y ⎡⎤++++++=⎢⎥++⎣⎦. 例10 求()22sin z x x y =+的全微分.解()()22222sin 2cos zx y x x y x∂=+++∂,()222cos z xy x y y ∂=+∂,()()()222222sin sin sin dz d x x y xd x y x y dx ⎡⎤⎡⎤=+=+++⎣⎦⎣⎦ ()()()2222222sin 2cos 2cos x y x x y dx xy x y dy ⎡⎤=+++++⎣⎦习题9—21.求下列各函数的偏导数:(1) 22365z x xy y =++; (2) ln y z x=; (3) xyz xye =; (4) yz u x =.2.已知()(),2xf x y x y e =+,求()0,1x f ,()0,1y f .3.设z x y =+()()3,40,5,z z xy∂∂∂∂.4.设11+=e x y z ⎛⎫- ⎪⎝⎭,求证:222z z xy z x y∂∂+=∂∂.5.求下列函数的所有二阶偏导数.(1) 44224z x y x y =+-; (2) ()cos sin x z e y x y =+;(3) ()ln z x xy =; (4) arctanx u y=. 6.设()222,,f x y z xy yz zx =++,求()()()0,0,1,1,0,2,0,1,0xx xz yz f f f -及()2,0,1zzx f .7.验证r =2222222r r r x y z r∂∂∂++=∂∂∂.8.求下列函数的全微分.(1) 32645z xy x y =+; (2) x yz e =;(3 ) xz xyy=+; (4) z =9.设()1,,zy f x y z x ⎛⎫=⎪⎝⎭,求()1,1,1|dz . 10.设,1,1,0.15,0.1,xyz e x y x y ===∆=∆=求dz .第3节 多元复合函数和隐函数的求导法则3.1复合函数的求导法则 3.1.1 复合函数的求导法则现在要将一元函数微分学中复合函数的求导法则推广到多元复合函数的情形,多元复合函数的求导法则在多元函数微分学中也起着重要作用.定理1 设函数(),z f u v =), 其中()u x ϕ=,()v x ψ=.如果函数()u x ϕ=,()v x ψ=都在x 点可导,函数(),z f u v =在对应的点(),u v 处可微,则复合函数()()(),z f x x ϕψ=在x 处可导,且d d d d d d z z u z vx u x v x∂∂=+∂∂. (9-3-1) 证 设自变量x 的改变量为Δx ,中间变量()u x ϕ=和()v x ψ=的相应的改变量分别为Δu 和Δv ,函数z 的改变量为Δz .因(),z f u v =在(),u v 处可微,由可微的定义有()()+z zz dz o u v o u vρρ∂∂∆=+=∆+∆∂∂,其中ρ=,()()00o ρρ→→,且0()lim0ρορρ→=,故有()z z u z v x u x v x xορρρ∆∂∆∂∆=++∆∂∆∂∆∆. 因为()u x ϕ=和()v x ψ=在点x 可导,故当0x ∆→时,Δu →0,Δv →0,ρ→0,u x ∆∆→d d u x ,v x ∆∆→d d vx. 在上式中令Δx →0,两边取极限,得d d z z du z dvx u dx v dx∂∂=+∂∂. 注意,当Δx →0时,()xορρρ∆→0.这是由于limlim x x xρ∆→∆→==∆ 这说明Δx →0时,xρ∆是有界量,()ορρ为无穷小量.从而()ορρxρ∆→0(Δx →0). 用同样的方法,可以得到中间变量多于两个的复合函数的求导法则.比如(),,z f u v w =,而()u x ϕ=,()v x ψ=,()w w x =,则d d d d d d d d z z u z v z wx u x v x w x∂∂∂=++∂∂∂. (9-3-2)例1 设2z u v =,cos u t =,sin v t =求.dz dt解 利用公式(9-3-1)求导,因为22,=z zuv u u v ∂∂∂∂=, d sin d u t t =-, d cos d v t t=, 所以 223d d d sin cos 2cos sin cos d d d z z u z vuv t u t t t t t u t v t∂∂=+=-+=-+∂∂.本题也可将cos u t =,sin v t =代入函数2z u v =中,再用一元函数的取对数求导法,求得同样的结果.观察公式(9-3-1) ,(9-3-2)可以知道,若函数z 有2个中间变量,则公式右端是2项之和,若z 有3个中间变量,则公式右端是3项之和,一般地,若z 有几个中间变量,则公式右端是几项之和,且每一项都是两个导数之积,即z 对中间变量的偏导数再乘上该中间变量对x 的导数.公式(9-3-1),(9-3-2)可借助复合关系图来理解和记忆.图9—6公式(9-3-1) ,(9-3-2)称为多元复合函数求导的链式法则. 上述定理还可推广到中间变量依赖两个自变量x 和y 的情形.关于这种复合函数的求偏导问题,有如下定理:定理2 设(),=z f u v 在(u ,v )处可微,函数(),=u u x y 及(),=v v x y 在点(),x y 的偏导数存在,则复合函数()()(),,,z f u x y v x y =在(),x y 处的偏导数存在,且有如下的链式法则,.z z u z vx u x v xz z u z v y u y v y ∂∂∂∂∂⎧=+⎪∂∂∂∂∂⎪⎨∂∂∂∂∂⎪=+∂∂∂∂∂⎪⎩(9-3-3) 可以这样来理解(9-3-3):求zx∂∂时,将y 看做常量,那么中间变量u 和v 是x 的一元函数,应用定理1即可得zx∂∂.但考虑到复合函数()()(),,,z f u x y v x y =以及(),=u u x y 与(),=v v x y 都是x , y 的二元函数,所以应把(9-3-1)中的全导数符号“d ”改为偏导数符号“∂”.公式(9-3-3)也可以推广到中间变量多于两个的情形.例如,设(),u x y ϕ=,(),v x y ψ=,(),w w x y =的偏导数都存在,函数(),,z f u v w =可微,则复合函数()()()(),,,,,z f u x y v x y w x y =对x 和y 的偏导数都存在,且有如下链式法则,.z z u z v z wx u x v x w xz z u z v z w y u y v y w y∂∂∂∂∂∂∂⎧=++⎪∂∂∂∂∂∂∂⎪⎨∂∂∂∂∂∂∂⎪=++∂∂∂∂∂∂∂⎪⎩ (9-3-4)特别对于下述情形:(),,z f u x y =可微,而(),u x y ϕ=的偏导数存在,则复合函数()(),,,z f x y x y ϕ=对x 及y 的偏导数都存在,为了求出这两个偏导数,应将f 中的变量看做中间变量:(),,,u x y v x w y ϕ===.此时,1,=0,0,=1v v w wx y x y∂∂∂∂∂∂∂∂==. 由公式(9-3-4)得,.z f f u x x u x z f f u y y u y ∂∂∂∂⎧=+⋅⎪∂∂∂∂⎪⎨∂∂∂∂⎪=+⋅∂∂∂∂⎪⎩(9-3-5)注 这里z x ∂∂与f x ∂∂的意义是不同的.fx ∂∂是把(),,f u x y 中的u 与y 都看做常量对x 的偏导数,而zx∂∂却是把二元复合函数()(),,,f x y x y ϕ中y 看做常量对x 的偏导数.公式(9-3-3),(9-3-4),(9-3-5)可借助图9—7理解.图9—7例2 设sin ,,uz e v u xy v x y ===+, 求,z z x y∂∂∂∂. 解e sin e cos 1u u z z u z v v y v x u x v x∂∂∂∂∂=+=+∂∂∂∂∂ ()()e sin cos xy y x y x y =+++⎡⎤⎣⎦,=e sin e cos 1u u z z u z vv x v y u y v y∂∂∂∂∂=++∂∂∂∂∂ ()()e sin cos xy x x y x y =+++⎡⎤⎣⎦.例3 设(),z f u v =可微,求()22,xy z f x y e =-对x 及y 的偏导数.解 引入中间变量22u x y =-,xyv e =,由(9-3-3)得2222122e 2(,e )e (,e )xy xy xy xy z f f x y xf x y y f x y x u v∂∂∂''=+=-+-∂∂∂,222212(2)e 2(,e )e (,e )xy xy xy xy z f f y x yf x y x f x y y u v∂∂∂''=-+=--+-∂∂∂. 注 记号221(,e )xy f x y '-与222(,e )xyf x y '-分别表示(),f u v 对第一个变量与第二个变量在(22,e xyx y -)处的偏导数,可简写为1f '与2f ',后面还会用到这种表示方法.例4 设,x y z xyf y x ⎛⎫=⎪⎝⎭, 1221=(,(,)(,)()z x y x y x y y yf xy f f x y x y x yy x x ⎡⎤∂''+⎢⎥∂-⎣⎦)+ 212(,(,)(,)x y x y y x y yf xf f y x y x x y x''=-)+,1221=,,(),+z x y x y x x y xf +xy f f yy x y x y y x x ⎡⎤⎛⎫⎛⎫⎛⎫∂''-⎢⎥ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭⎣⎦ 212,,,x y x x y x y xf f yf y x y y x y x ⎛⎫⎛⎫⎛⎫''=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.下面给出经济学中经常遇到的齐次函数的概念.设函数(),z f x y =的定义域为D ,且当(),x y D ∈时,对任给的t ∈R ,t >0,仍有(),tx ty D ∈.如果存在非负常数k ,使对任意的(),x y D ∈,恒有()(),,k f tx ty t f x y =,则称二元函数(),z f x y =为k 次齐次函数.k =1时,称为线性齐次函数.例5 证明k 次齐次函数(),f x y 满足(,)(,)(,)x y xf x y yf x y kf x y ''+=.证明 在(),z f tx ty =中,令,u tx v ty ==,当取定一点(),x y 时(),f tx ty 是t 的一元函数,于是有d d d (,)(,)d d d x y z z u z v f tx ty x f tx ty y t u t v t∂∂''=+=+∂∂. 又因为(),kz t f x y =,所以有1d (,)d k zkt f x y t-=. 因此,对任意的t ,有1(,)(,)(,)k x y f tx ty x f tx ty y kt f x y -''+=.3.1.2 全微分形式不变性我们知道一元函数的一阶微分形式具有不变性,多元函数的全微分形式也具有不变性.下面以二元函数为例来说明.设(),z f u v =具有连续偏导数,则有全微分d d d z zz u v u v∂∂=+∂∂. 如果u ,v 是中间变量,即(),u x y ϕ=,(),v x y ψ=,且这两个函数也具有连续偏导数,则复合函数()()(),,,z fx y x y ϕψ=的全微分为d d d z zz x y x y∂∂=+∂∂d d z u z v z u z v x y u x v x u y v y ⎛⎫∂∂∂∂∂∂∂∂⎛⎫=+++ ⎪ ⎪∂∂∂∂∂∂∂∂⎝⎭⎝⎭ d d d d z u u z v v x y x y u x y v x y ⎛⎫⎛⎫∂∂∂∂∂∂=+++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭ d d z zu v u v∂∂=+∂∂. 可见,无论z 是自变量u ,v 的函数还是中间变量u ,v 的函数,它的全微分形式都是一样的,这种性质叫做多元函数的全微分形式的不变性.例6 利用一阶全微分形式的不变性求函数()22,xy z f x y e =-的偏导数与全微分. 解 引入中间变量22,xyu x y v e =-=,则(),z f u v =.2212d d d d()d(e )xy z z z u v f x y f u v∂∂''=+=-+∂∂ 2212(d d )e d()xy f x y f xy ''=-+ 12(2d 2d )e (d d )xy f x x y y f y x x y ''=-++ 1212(2e )d (2e )d xy xy xf y f x yf x f y ''''=++-+.因此12=2e xy zxf y f x∂''+∂,12=2e xy z yf x f y ∂''-+∂.3.2 隐函数的偏导数在一元函数的微分学中,我们曾介绍了隐函数的求导方法:方程(),0F x y =两边对x 求导,再解出y ′.现在我们介绍隐函数存在定理,并根据多元复合函数的求导法导出隐函数的求导公式. 3.2.1 一个方程的情形定理3 设函数(),F x y 在点()000,P x y 的某一邻域内有连续的偏导数且()00,0F x y =,()00,0y F x y ≠,则方程(),0F x y =在点()000,P x y 的某邻域内惟一确定一个具有连续导数的函数()y f x =,它满足条件()00y f x =,并且有d d x y F yx F '=-'. (9-3-6) 公式(9-3-6)就是隐函数的求导公式.这里仅对公式(9-3-6)进行推导.将函数()y f x =代入方程(),0F x y =得恒等式()(),0F x f x ≡.其左端可以看作是x 的一个复合函数,上式两端对x 求导,得d 0d F F y x y x∂∂+=∂∂. 由于y F 连续,且()00,0y F x y ≠,所以存在点()000,P x y 的一个邻域,在这个邻域内0y F ≠,所以有d d x yF yx F =-. 如果(),0F x y =的二阶偏导数也都连续,我们可以把(9-3-6)的两端看作x 的复合函数而再一次求导,得到22d d d d xxyy F F y yx x F y Fx ⎛⎫⎛⎫∂∂=-+- ⎪ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭22xx y yx xxy y yy x x y y y F F F F F F F F F F F F ⎛⎫--=--- ⎪ ⎪⎝⎭2232.xx y xy x y yy x yF F F F F F F F-+=-例7 验证方程2210x y +-=在点()0,1的某一邻域内能唯一确定一个有连续导数的隐函数()y f x =且0x =时1y =,并求这个函数的一阶与二阶导数在0x =的值.解 设()22,1F x y x y =+-,则()()2,2,0,10,0,120x y y F x F y F F ====≠.由此,由定理3可知,方程2210x y +-=在点()0,1的某一邻域内能唯一确定一个有连续导数的隐函数()y f x =且0x =时1y =.所以d d x y F y x x F y =-=-,01d 0d x y yx===;22220223321d 1d , 1.d d x y x y x y y y x y x y y y x==⎛⎫- ⎪+⎝⎭=-=-=-=-例8 设cos sin xyx y e +=, 求d d y x.。

相关文档
最新文档