基因克隆常用的方法
基因克隆的技巧
基因克隆的技巧
基因克隆是生物学研究中常用的技术之一,它可以将感兴趣的基因从一个生物体中复制到另一个生物体中。
以下是基因克隆的一些常见技巧:
1. DNA提取:从源生物体中提取目标基因的DNA。
常见的方法包括溶解细胞膜、蛋白质降解和碱解。
2. 剪切和黏贴:利用限制酶(也称为内切酶)剪切目标DNA,并在相应的酶切位点上黏合连接,形成重组DNA。
3. DNA扩增:通过聚合酶链式反应(PCR)或其他扩增方法,复制目标DNA 片段,以获得足够数量的DNA进行后续实验。
4. 重组载体构建:将目标DNA插入载体DNA,形成重组载体。
载体可以是质粒、噬菌体或其他类型的DNA。
常见的方法包括限制酶消化和连接、启动子和终止子的选择,以及DNA酶切和黏接。
5. 转化:将重组载体导入宿主细胞。
常见的方法包括化学法、电穿孔法和基因枪法。
6. 筛选:使用适当的筛选标记(例如抗生素抗性基因)鉴定并筛选成功转化的细胞。
7. 分离和培养:分离并培养选出的转化细胞,以获得包含目标基因的克隆。
这些技巧在基因克隆中被广泛使用,但具体的操作和条件可能会因实验需求和研究对象而有所不同。
DNA分子克隆技术(也称基因克隆技术)
DNA分子克隆技术(也称基因克隆技术):在体外将DNA分子片段与载体DNA片段连接,转入细胞获得大量拷贝的过程中DNA分子克隆(或基因克隆)。
其基本步骤包括:制备目的基因→将目的基因与载体用限制性内切酶切割和连接,制成DNA重组→导入宿主细胞→筛选、鉴定→扩增和表达。
载体(vecors)在细胞内自我复制,并带动重组的分子片段共同增殖,从而产生大量的DNA分子片段。
主要目的是获得某一基因或NDA片段的大量拷贝,有了这些与亲本分子完全相同的分子克隆,就可以深入分析基因的结构与功能,随着引入的DNA片段不同,有两种DNA库,一种是基因组文库(genomic library),另一种是cDNA库。
载体所谓载体是指携带靶DNA片段进入宿主细胞进行扩增和表达的工具。
细菌质粒是一种细菌染色体外小型双链环状结构的DNA,分子大小为1-20kb,对细菌的某些代谢活动和抗药性表型具有一定的作用。
质粒载体是在天然质粒的基础上人工改造拼接而成。
最常用的质粒是pBR322。
基因库的建造含有某种生物体全部基历的随机片段的重组DNA克隆群体,其含有感光趣的基因片段的重组子,可以通过标记探针与基因库中的重组子杂交等方法而筛选出来,所得到的克隆经过纯化和扩增,可用于进一步的研。
其主步骤包括:(1)构建基因库迅速的载体;(2)DNA片段的制备;(3)DNA片段与载体DNA 的连接;(4)包装和接种。
cDNA库的建造是指克隆的DNA片段,是由逆转录酶自mRNA制备的cDNA。
cDNA库包括某特定细胞的全部cDNA克隆的文库,不含内含子。
特异基因的筛选常用的方法有:(1)克隆筛选即探针筛选法;(2)抗体检测法,检测其分泌蛋白质来筛选目的基因;(3)放射免疫筛选法,查出分泌特异抗原的基因;(4)免疫沉淀法,进行特异基因的筛选。
核酸序列测定DNA的碱基序列决定着基因的特性,DNA序列分析(测序,sequencing)是分子生物学重要的基本技术。
基因的克隆方法大全
1.2.3 差异显示PCR〔DD RT-PCR〕
最先由Liang等于1992年报道,目前已广 泛在实验室使用.
主要LY〔A〕结构,在其3`端设计象5`-
T11GA样引物,该引物可与mRNA总数的
十二分之一结合,从而使这部分基因得到
逆转录,同时结合5`端的随机引物〔20条
染色体 T-DNA
染色体 目的基因野生株构建基因组 基因苗构建基因组文 库基因苗
阳性克隆
获得阳性克隆 目的基因
基因序列分析2,4 确定为基因
转座子标签法
转座子又称转座因子或者跳跃因 子,实际上也是DNA片段,它可以在生 物的染色体组中移动,从染色体的一个 位点跳到另一个位点,或从一条染色体 跳到另一条染色体上,引起基因功能的 改变.
8
已发展的相应基因克隆方法:
差减杂交〔SH〕 抑制性差减杂交〔SSH〕 差异显示PCR〔DD RT-PCR〕 DNA代表性差异分析〔DNA RDA〕 扩增限制性片段长度多样性〔AFLP〕 cDNA微阵列
9
差减杂交〔SH〕
最早由Lamar和Palmer于1984年提 出并用于雄鼠Y染色体的DNA研究.
10-mer〕,可m以RN使A不同长度的基因得到扩
增5. `
RP
A T C G
AAAAAAAA
A C
TTTTTTTTTT
G
3`
15
mRNA
5` RP
A T C G
AAAAAAAA
A C
TTTTTTTTTT
G
3`
AATTTTTTTT
ACTTTTTTTT
AGTTTTTTTT
TATTTTTTTT
TCTTTTTTTT
41
基因克隆与表达及功能鉴定研究
基因克隆与表达及功能鉴定研究在现代生命科学领域中,基因克隆与表达以及功能鉴定是非常重要的研究方向之一,它涉及到许多生物医学、农业、工业和环境等领域的研究和实际应用。
本文将从基因克隆与表达的基本原理、方法、技术和应用,以及功能鉴定的原理、方法、技术和应用等方面进行探讨。
一、基因克隆与表达基因克隆是指通过分子生物学技术,将含有某个或某些特定基因的DNA序列从一个大的DNA分子(如染色体)中分离出来,然后插入到特定的载体DNA中,形成重组DNA分子的过程。
基因表达是指基因信息的转录和翻译过程,将基因的DNA序列转录成RNA分子,然后翻译成蛋白质分子的过程。
基因表达是生物体形成和发展的基础,也是生命活动的重要表现形式。
1. 基因克隆原理基因克隆的主要原理是利用限制酶、DNA连接酶、DNA聚合酶以及质粒或噬菌体等DNA载体的特性,将特定DNA序列插入到载体DNA中,形成重组DNA分子。
限制酶是一种能够识别、切割DNA分子特定序列的酶,其识别序列具有一定的特异性。
DNA连接酶是一种能够连接两个DNA分子的酶,常用的有T4 DNA连接酶和快速连接酶等。
DNA聚合酶是一种能够在DNA模板上合成互补链的酶,其作用是在重组DNA分子中完成互补链的合成。
2. 基因克隆方法基因克隆的主要方法有限制性片段长度多态性(RFLP)分析、聚合酶链式反应(PCR)克隆、原核表达克隆和真核表达克隆等。
RFLP分析是一种利用限制酶对DNA序列进行切割,并根据不同的RFLP位点进行区分的方法,其主要应用于基因型鉴定和进化研究等领域。
PCR克隆是一种利用PCR技术扩增目标基因或DNA片段,并将扩增产物克隆到载体DNA中的方法,其主要应用于基因检测、DNA测序和分子克隆等领域。
原核表达克隆是一种利用质粒或噬菌体等原核生物作为DNA载体,将外源基因转入细菌或古细菌等原核生物细胞中,通过蛋白质表达实现基因功能研究的方法。
真核表达克隆是一种利用真核生物(如哺乳动物、鸟类、昆虫、线虫等)作为DNA载体,将外源基因转入具有表达能力的真核细胞中,通过蛋白质表达实现基因功能研究的方法。
cdna基因克隆的基本原理和流程
一、CDNA基因克隆的基本原理CDNAplementary DNA)是DNA的互补序列,通过反转录酶将mRNA作为模板合成的一种DNA。
CDNA基因克隆是利用逆转录酶将mRNA逆转录合成cDNA,并通过PCR或其他方法将cDNA插入到质粒载体中,实现对目标基因的克隆。
二、CDNA基因克隆的流程1. RNA提取:首先需要从细胞中提取出总RNA,可以使用TRIzol等试剂进行RNA的提取纯化工作。
2. 反转录合成cDNA:将提取得到的RNA作为模版,利用逆转录酶进行cDNA的合成。
反转录反应通常包括RNA模版、随机引物、dNTPs、逆转录酶和缓冲液,并经过一系列温度循环反应,将mRNA 逆转录成cDNA。
3. cDNA纯化:为了避免反转录反应中产生的非特异性产物和杂质,需要对反转录反应产物进行纯化。
4. cDNA扩增:对cDNA进行PCR扩增,以获得目标基因的cDNA 片段。
PCR反应体系包括cDNA模板、引物、dNTPs、Taq聚合酶和缓冲液,通过一系列温度循环反应,扩增目标基因cDNA片段。
5. 酶切与连接:将PCR扩增得到的cDNA片段与质粒载体进行酶切,并在两者的黏端上连接。
6. 转化:将连接得到的质粒转化入大肠杆菌等细菌中,使其进行复制。
7. 筛选与鉴定:通过筛选和鉴定,选出携带目标基因cDNA片段的质粒,进行测序和分析,最终确定目标基因序列。
三、CDNA基因克隆的应用CDNA基因克隆技术已广泛应用于基因克隆、基因表达等多个领域。
在科研领域中,通过CDNA基因克隆技术可以方便快捷地获得目标基因的cDNA,实现对目标基因的研究和功能分析;在医药领域,CDNA基因克隆技术也被应用于基因治疗、蛋白表达等方面。
总结:CDNA基因克隆是一种重要的基因工程技术,通过反转录酶合成cDNA并将其插入到质粒中,可以方便地获取目标基因序列,具有广泛的应用前景。
掌握CDNA基因克隆的基本原理和流程对于开展相关实验研究具有重要意义。
基因工程的基本步骤
基因工程的基本步骤
基因工程是一种利用生物技术手段来改变或调节生物体
自身基因表达的方法,从而达到改善生物体性状的目的。
其基本步骤可以概括为以下几个方面:
1. 基因克隆
基因克隆是基因工程学的基础技术之一。
首先要从生物
体的DNA中选取目标基因,并将其放入载体中,然后进行转化,使其进入宿主细胞中并被表达出来。
常用的克隆方法是PCR、
限制酶切和连接等。
2. 基因转染
基因转染是指将已构建好的目标基因载体导入到目标细
胞中,使其发生基因表达和突变。
目前常用的转染方式有病毒介导转染、转染剂克服细胞膜屏障、电穿孔和微射流等。
3. 基因突变
基因突变是一种常用的基因工程手段。
通过改变基因的
序列或结构,使其在生物体内表达的蛋白质产生变异,从而实现对生物体性状的改变。
突变方法包括化学诱变、定向突变等。
4. 基因表达
基因表达是指将生物体中的目标基因导入到宿主细胞中,并使其在细胞中高效表达的过程。
通过各种方式(如新增启动子序列、加强mRNA稳定性、引入信号肽等)来提高基因表达
效率。
5. 基因分析
基因工程完成后,需要进行基因的分析和检验,以确保
目标基因已成功表达且维持了稳定性。
常用的基因分析方法包括PCR、南方杂交、Western blot和质谱分析等。
总之,基因工程是一种综合使用多种生物技术手段的专业技术,它可以很好地提升生物体的性状和生命活力,为人类的健康和福祉做出贡献。
基因工程操作技术及原理之基因克隆
基因工程操作技术及原理之基因克隆1.克隆已知序列的基因根据已知基因的序列设计引物(primer),利用PCR方法克隆基因。
即使不同种属之间,基因编码区序列的同源性高于非编码区的序列。
在某种植物的同源基因被克隆的条件下,可先构建eDNA文库或基因组文库,然后以该基因(或部分序列)为探针来筛选目的基因的克隆。
2.功能克隆根据基因的产物蛋白质克隆基因,利用这种方法分离基因,首先应根据已知的生化缺陷或特征确认与该功能有关的蛋白质,再分离纯化这一蛋白并制备相应抗体;或测定其氨基酸序列,推测可能的mRNA序列,根据mRNA序列设计相应的核苷酸探针或寡核苷酸引物。
利用抗体或核苷酸探针筛选基因组DNA文库或cDNA文库,也可利用寡核苷酸引物对核D NA或cDNA进行PCR扩增。
通过对阳性克隆或PCR扩增产物的序列分析鉴定分离基因。
3.作图克隆作图克隆又称图位克隆,是随着分子标记图谱的建立而发展起来的基因克隆技术。
根据连锁图谱定位的基因来克隆目的基因。
作图克隆是从连锁标记出发,通过大片段克隆(BA C库或YAC库)的染色体步移(chromommewalking)到达靶基因。
4.表型差异克隆利用表型差异或组织器官特异表达产生的差异来克隆基因,对于有些植物的性状,既不了解它们的基因产物也没有对它们进行基因定位,但已知它们的表型存在差异,利用这些差异,用下述方法也可克隆植物基因。
(1)消减杂交法即消减杂交法(subtractive hybridization)是通过鉴定两个mRNA间差异而分离基因的方法。
其基本方法是:提取两种差异细胞或组织的DNA后,反转录合成c DNA,并用限制性内切核酸酶切割成小片段。
将其中一个样品的酶切产物分成两份,分别连接不同的含有特定酶切位点的40bp左右的寡核苷酸接头,作为检测者(tester)。
用另外一个样品过量的酶切产物作为驱动者(driver)与带有不同接头的tester进行第一次杂交。
DNA分子克隆技术(也称基因克隆技术)
DNA分子克隆技术(也称基因克隆技术):在体外将DNA分子片段与载体DNA片段连接,转入细胞获得大量拷贝的过程中DNA分子克隆(或基因克隆)。
其基本步骤包括:制备目的基因→将目的基因与载体用限制性内切酶切割和连接,制成DNA重组→导入宿主细胞→筛选、鉴定→扩增和表达。
载体(vecors)在细胞内自我复制,并带动重组的分子片段共同增殖,从而产生大量的DNA分子片段。
主要目的是获得某一基因或NDA片段的大量拷贝,有了这些与亲本分子完全相同的分子克隆,就可以深入分析基因的结构与功能,随着引入的DNA片段不同,有两种DNA库,一种是基因组文库(genomic library),另一种是cDNA库。
载体所谓载体是指携带靶DNA片段进入宿主细胞进行扩增和表达的工具。
细菌质粒是一种细菌染色体外小型双链环状结构的DNA,分子大小为1-20kb,对细菌的某些代谢活动和抗药性表型具有一定的作用。
质粒载体是在天然质粒的基础上人工改造拼接而成。
最常用的质粒是pBR322。
基因库的建造含有某种生物体全部基历的随机片段的重组DNA克隆群体,其含有感光趣的基因片段的重组子,可以通过标记探针与基因库中的重组子杂交等方法而筛选出来,所得到的克隆经过纯化和扩增,可用于进一步的研。
其主步骤包括:(1)构建基因库迅速的载体;(2)DNA片段的制备;(3)DNA片段与载体DNA 的连接;(4)包装和接种。
cDNA库的建造是指克隆的DNA片段,是由逆转录酶自mRNA制备的cDNA。
cDNA库包括某特定细胞的全部cDNA克隆的文库,不含内含子。
特异基因的筛选常用的方法有:(1)克隆筛选即探针筛选法;(2)抗体检测法,检测其分泌蛋白质来筛选目的基因;(3)放射免疫筛选法,查出分泌特异抗原的基因;(4)免疫沉淀法,进行特异基因的筛选。
核酸序列测定DNA的碱基序列决定着基因的特性,DNA序列分析(测序,sequencing)是分子生物学重要的基本技术。
目的基因的克隆方法
目的基因的克隆方法
1. 直接克隆法呀,这就好比你直接去商店挑了一个你最喜欢的玩具,简单又直接!比如说,我们想克隆某个特定基因,就像你一眼看中那个可爱的小熊玩偶,直接把它拿过来就行啦。
2. 还有反转录克隆法哦,哎呀,就好像把一段声音录下来再倒放出来一样神奇!比如从细胞中的 mRNA 反转录得到 cDNA,不就是很有趣的过程嘛?
3. 载体介导克隆法呢,就好像给基因找了一辆专门的车来运输它!像把基因放到特定的载体里,让它顺利到达目的地。
4. 基因文库筛选法呀,哇,这就像是在一个超级大的宝库中找宝贝!比如说在庞大的基因文库中去努力找到我们想要的那个目的基因。
5. PCR 扩增克隆法哟,这就跟变魔术一样厉害呢!比如通过 PCR 技术把特定基因大量扩增出来,好神奇呀!
6. 杂交捕获克隆法,哈哈,就好像用一个小陷阱去抓住我们想要的基因!像是专门设计来抓住目标基因一样。
7. cDNA 末端快速扩增法,这不就像是跑步冲刺一样快速到达终点嘛!像快速扩增 cDNA 的末端,得到我们要的基因片段。
8. 人工合成克隆法,哇塞,这可真牛,就像自己动手做一个超级厉害的东西出来!比如人工合成一些小的基因片段呢。
9. 染色体步移克隆法,嘿嘿,就好像一步一步探索一个神秘的地方一样!像是沿着染色体逐步找到我们的目的基因。
我觉得这些目的基因的克隆方法都超级有趣,各有各的神奇之处呀!真的是让我们对基因世界的探索更加丰富多彩了呢!。
目的基因克隆
一、目的基因克隆的策略有哪些?其理论依据什么?如何根据具体条件,如目的性状的特点,已知控制目的性状的基因的信息合理选择基因克隆的方法?1、主要有以下几个克隆的策略:(1)PCR法分离目的基因:从蛋白质的一级序列分析得到核酸序列的相关信息,设计简并引物,通过对mRNA进行反转录得到cDNA,以cDNA为模板,然后将目的基因通过PCR方法扩增,或者直接从基因组DNA扩增的方法。
(2)核酸杂交的方法:通过对蛋白质的氨基酸序列分析,设计简并引物,通过核酸杂交的方法从基因文库中筛选得到目的基因。
(3)免疫学筛选法分离目的基因:利用免疫学原理,通过目的蛋白的特异抗体与目的蛋白的专一结合,从表达文库中分离目的蛋白基因。
2、若控制该性状的目的蛋白质不容易分离纯化,这PCR方法比较适宜,若蛋白质分离纯化容易,且有现成的基因文库,则后两种方法较为简单。
二、蛋白组学方法克隆目的基因的理论依据是什么?有哪些技术环节?要用到哪些技术?1、理论依据:以分离纯化的目的蛋白为研究起点,通过对目的蛋白的一级结构分析,获得起码的氨基酸序列信息后,反推可能的DNA序列,然后设计引物,从cDNA中将目的基因扩增出来,或者设计核酸探针,通过杂交技术将目的基因从基因文库中筛选出来。
或通过抗体抗原免疫反应从表达文库中将该基因分离出来。
2、技术环节是确定并制备出高纯度的蛋白质。
3、所需要的实验技术有:蛋白质的双向电泳技术,由第一向的等电聚焦电泳和第二向的SDS-PAGE电泳组成;蛋白质氨基酸序列分析。
三、基因组学方法克隆基因的策略有哪些?各有什么特点?如何选择恰当的基因组学方法克隆目的基因?1、基因文库筛选方法通过对基因文库的筛选将目的基因分离出来,一般有两种方法:核酸杂交法,原理是分子杂交;PCR筛选法,通过PCR方法将目的基因分离出来,对于以混合形式保存的文库,先将文库分成几份,每份为一个“反应池”进行PCR反应,待选出阳性池后,将阳性池的混合克隆稀释,然后等量分置96孔板中,进行横向池及纵向池的PCR反应,然后将阳性菌落群进行稀释,重复上述工作,直到筛出阳性单克隆。
基因克隆步骤完整版
基因克隆步骤完整版基因克隆是一项复杂的生物技术,可以用于生物研究、药物开发和农业改良等领域。
下面是基因克隆的完整步骤:1.设计克隆实验方案:首先,确定要克隆的基因序列。
这可以是来自同一物种的已知基因,或者是从其他物种中提取的基因。
然后,设计适当的引物(引物是专门设计用来扩增特定DNA序列的短片段)用于PCR扩增。
2.DNA提取:提取目标组织或细胞中的DNA。
常用的DNA提取方法包括酚/氯仿法、盐法和商业DNA提取试剂盒等。
3.PCR扩增:使用引物和DNA模板进行多轮PCR扩增,从而产生大量目标基因的复制。
4.凝胶电泳:将PCR产物进行凝胶电泳分析,以确认扩增是否成功,并确定目标基因的大小。
5.DNA纯化:将目标基因的PCR产物从凝胶中切割并纯化。
这通常通过使用商业DNA凝胶提取试剂盒来完成。
6.多重限制性内切酶切割和连接:根据克隆方案中的设计,使用适当的限制性内切酶切割DNA。
然后,将目标基因连接到一个载体DNA中,这个载体DNA称为克隆载体。
克隆载体通常是一个圆形的质粒DNA。
7.转化:将克隆载体插入到宿主细胞中。
这可以通过热激冷转化、电转化或化学转化等方法实现。
8.筛选转化子:使用适当的筛选方法筛选转化子。
这可以通过选择性培养基,例如含有抗生素的培养基,或者通过对转化子进行荧光筛选等方法。
9.扩增:从筛选出的阳性克隆中提取DNA,并使用PCR或其他方法进行扩增。
10.序列分析:对扩增的DNA进行序列分析,以确认克隆是否成功。
这可以通过将DNA提交给商业实验室进行测序,或者使用自动测序设备进行测序。
11.功能分析:对克隆所得基因进行功能分析。
可以通过转基因生物的研究,观察基因对生物表型的影响。
12.存储和应用:将克隆所得的基因保存在冷冻库中,以备后续研究或应用。
总结:基因克隆是一项复杂的过程,包括基因序列设计、DNA提取、PCR扩增、凝胶电泳、DNA纯化、限制性内切酶切割和连接、转化和筛选转化子、扩增、序列分析、功能分析和存储等步骤。
基因克隆的几种常见方法
基因克隆得几种常见方法基因(gene)就是遗传物质得最基本单位,也就是所有生命活动得基础。
不论要揭示某个基因得功能,还就是要改变某个基因得功能,都必须首先将所要研究得基因克隆出来。
特定基因得克隆就是整个基因工程或分子生物学得起点。
本文就基因克隆得几种常用方法介绍如下。
1 根据已知序列克隆基因对已知序列得基因克隆就是基因克隆方法中最为简便得一种。
获取基因序列多从文献中查取,即将别人报道得基因序列直接作为自己克隆得依据。
现在国际上公开发行得杂志一般都不登载整个基因序列,而要求作者在投稿之前将文章中所涉及得基因序列在基因库中注册,拟发表得文章中仅提供该基因在基因库中得注册号(accession number),以便别人参考与查询。
目前,世界上主要得基因库有1)EMBL,为设在欧洲分子生物学实验室得基因库,其网上地址为;(2)Genbank,为设在美国国家卫生研究院(NIH)得基因库,其网上地址为;(3)Swissport与TREMBL,Swissport就是一蛋白质序列库,其所含序列得准确度比较高,而TREMBL只含有从EMBL库中翻译过来得序列。
目前,以Genbank得应用最频繁。
这些基因库就是相互联系得,在Genbank注册得基因序列,也可能在Swissport注册。
要克隆某个基因可首先通过Internet查询一下该基因或相关基因就是否已经在基因库中注存。
查询所有基因文库都就是免费得,因而极易将所感兴趣得基因从库中拿出来,根据整个基因序列设计特异得引物,通过PCR从基因组中克隆该基因,也可以通过RT-PCR克隆cDNA。
值得注意得就是,由于物种与分离株之间得差异,为了保证PCR扩增得准确性,有必要采用两步扩增法,即nested PCR。
根据蛋白质序列也可以将编码该蛋白质得基因扩增出来。
在基因文库中注册得蛋白质序列都可以找到相应得DNA或cDNA序列。
如蛋白质序列就是自己测定得,那么需要设计至少1对简并引物(degenerated primer),从cDNA文库中克隆该基因。
植物基因克隆的方法
阳性克些候选基因,再进行别离,时空表达
特点,同源性比较等分析确定目的基因。
1. 序列克隆 利用目标基因的近等基因系或别离群体分组分析法〔BSA〕进行连锁分析,筛选目标基因所在局部区域的分子标记。
4、目的区域的精细作图 的标记和通过转座子在染色体上
植物基因克隆的方法
基因:为RNA或蛋白质编码的核苷酸序 列。
基因克隆:利用体外重组技术,将特定 基因
体中。
和其它DNA顺序插入到载
克隆目标:识别、别离特异基因并获得 基因
的完整全序列,确定染色
植物基因克隆的方法
能的mRNA序列,据此合成寡核苷酸探针从文
抑制性扣除杂交〔suppression subtractive
人工合成并克隆基因
方法:根据的氨基酸或核苷酸序列,采 用植物偏爱的密码子,人工合成并
克 隆该基因。〔可对基因进行改造〕
例子:根据蜘蛛毒素的氨基酸序列,人பைடு நூலகம் 合
成并克隆了此肽的基因。
表 型 克 隆〔phonetypical cloning〕
方法:利用植物的表型差异或组织器官特 异 表达产生的差异来克隆植物基因。此方法 试图把表型与基因结构或基因表达联系起 来,从而别离特定表型相关基因。不必事 先知道基因的生化功能或图谱定位,根据 基因的表达效应就直接别离该基因。
3、构建目的基因区域跨叠克隆〔contig〕
测所测序列或氨基酸序列与序列是否同 定位克隆的优点和局限性
通过转座子上的标记基因〔如抗药性等〕就可以检测出突变基因的位置和克隆出突变基因来。
源→发 不必事先知道基因的生化功能或图谱定位,根据基因的表达效应就直接别离
方法二: 利用Velculescu等建立的基因 表达
基因克隆实验流程
基因克隆实验流程基因克隆技术,又称重组 DNA 技术,是将目的基因与具有自主复制能力的载体DNA 进行体外重组,获得新的重组DNA后导入受体细胞中表达相应蛋白,以研究蛋白结构与功能及其与其他分子的相互作用。
一、获取目的基因目的基因就是需要研究的特定基因或DNA片段。
获取目的基因的主要方法: 1、用限制性内切酶解染色体DNA,构建基因组文库,再从基因组文库中筛选目的基因。
该法的优点是获得的目的基因的组织结构与天然基因完全相同,在结构基因中也含有内含子序列,但是也正因为这一点构成了该法最大缺点,即含有内含子的基因在原核细胞中不能表达。
原因是原核细胞不能识别并剪切插入顺序(内含子),因而也不能表达出正确的基因产物。
2、分离纯化细胞中的mRNA,以mRNA为模板,在反转录酶作用下生成cDNA第一链,再以cDNA第一链为模板在DNA聚合酶作用下生成双链cDNA,构建cDNA文库,从中筛选所需的目的基因。
此法仅用于筛选为蛋白质编码的结构基因。
因成熟的mRNA分子中已经切除了内含子序列,具有完整的阅读框架,可在原核细胞中正确表达。
3、人工体外合成基因:由于当前人工体外合成DNA的长度有限,此法仅用于制备小分子生物活性多肽基因和小分子量蛋白基因。
在基因较大情况下,常需先合成多个DNA片段,然后拼接成完整的基因,此法还要求目的基因的全部碱基顺序已被阐明。
4、PCR法扩增基因:PCR(聚合酶链式反应)技术的出现和发展,为目的基因的寻找提供了有力技术工具。
用PCR法可选择性扩增基因组中所要研究的个别基因或DNA片段,或用反向PCR技术,先将特定mRNA反转录为cDNA第一链,然后再进行扩增。
用PCR法筛选基因,需要对目的基因的DNA序列至少有部分了解。
二、选择适当的载体按上述方法制备的目的基因如果没有合适的载体协助,很难进入受体细胞,即使能进入,往往也不能进行复制和表达,因为这些外源性DNA一般不带有复制调控系统。
为了保证目的基因或外源DNA片段能在细胞内克隆,必须将它们与适当的载体连接。
真核生物克隆的方法
真核生物克隆的方法
真核生物克隆的方法主要包括以下几种:
1.基因文库法:该方法主要涉及通过基因文库筛选和捕获所需的基因。
2.序列特异性引物法:这种方法基于已知的基因序列,设计特异性引物,通
过PCR技术进行基因克隆。
3.重组法:这是一种相对简单且直接的方法,基于DNA的碱基互补原则进行
操作。
4.人工染色体克隆法:这种方法是通过构建人工染色体来克隆基因。
5.转座子标签法:利用转座子标记的DNA片段进行基因克隆。
6.随机引物扩增法:通过随机引物进行PCR扩增,然后对产物进行测序和基
因文库筛选。
7.转录间隔区(TSD)克隆法:利用TSD的特异性扩增来克隆基因。
8.外显子跳跃法:利用特定的引物组合,跳过内含子进行外显子克隆。
9.锚定克隆法:利用已知的锚定序列进行基因克隆。
10.单链DNA构象捕获法(RNase protection):利用单链DNA的构象捕获技
术进行基因克隆。
以上是一些真核生物克隆的常用方法,根据具体的实验需求和条件选择合适的方法。
cDNA基因克隆的原理和步骤
cDNA基因克隆的原理和步骤基因克隆是分子生物学中一项重要的技术,它使得科研人员能够克隆、扩增和研究特定基因序列,为基因功能和调控机制的研究提供了强有力的工具。
cDNA克隆则是基因克隆的一种常见形式,它通过将mRNA 转录为DNA并将其插入细菌质粒中,用于研究基因的表达和功能。
本文将详细介绍基因克隆和cDNA克隆的原理和步骤。
一、基因克隆的原理和步骤基因克隆是将目标基因从宿主生物体中剪切出来,并将其克隆到载体分子中的过程。
基因克隆的原理和步骤如下:1. 分离目标基因:从生物体中提取DNA,并使用限制性内切酶切割目标基因的DNA序列。
限制性内切酶是一类能够在特定的核酸序列上切割DNA的酶。
通过选择适当的限制性内切酶,可以剪切出目标基因的特定DNA片段。
2. 构建载体分子:选择一个适当的载体分子,如质粒,将其进行限制性内切酶切割。
切割后的载体分子将产生两个或多个裂开的末端。
3. 连接目标基因和载体:将目标基因的DNA片段与裂开的载体分子末端进行连接。
这个过程需要使用DNA连接酶,如T4 DNA连接酶。
DNA连接酶能够将两个DNA片段连接在一起,形成一个完整的DNA分子。
4. 转化宿主细胞:将连接好的目标基因和载体分子转化到宿主细胞中。
通常使用大肠杆菌作为宿主细胞,转化过程中使用适当的选择性培养基,如含有抗生素的培养基。
只有带有目标基因和载体的细胞才能在选择性培养基上生长。
5. 筛选和鉴定:经过转化和培养后,筛选出含有目标基因的克隆细胞。
常用的鉴定方法包括PCR分析,限制性内切酶切割和DNA测序等。
这些方法可以验证克隆细胞是否含有目标基因,并确认其序列是否正确。
二、cDNA克隆的原理和步骤cDNA克隆是将mRNA转录为DNA并将其插入细菌质粒中的过程,用于研究基因的表达和功能。
cDNA克隆的原理和步骤如下:1. 分离mRNA:从细胞中分离出总RNA,然后使用反转录酶将mRNA转录为cDNA。
反转录酶是一种与RNA相关的DNA聚合酶,它能够使用RNA作为模板合成cDNA的第一链。
基因克隆操作方法有哪些
基因克隆操作方法有哪些
基因克隆是指通过人工手段将一个个体的基因复制到另一个个体中。
下面是常见的基因克隆操作方法:
1. DNA提取:从源个体的细胞中提取DNA,如血液样本或培养细胞。
2. 制备载体:将目标基因插入位于载体DNA中的特定区域,通常使用质粒或病毒作为载体。
3. DNA剪切:使用限制性内切酶切割源DNA和载体DNA,以便在适当的位置形成可互相配对的黏末端。
4. DNA连接:将目标基因与载体DNA连接起来,使用DNA连接酶催化这一反应。
5. 转化:将连接好的重组DNA导入到宿主细胞中,使其重组DNA在宿主细胞内复制和表达。
6. 选择和筛选:使用筛选方法来确定哪些宿主细胞成功地转化了重组DNA,例如通过特定基因的表达产物或对特定抗性标记的抗性。
7. 扩增:将转化成功的细胞进行培养和扩增,以获取足够数量的克隆。
8. 验证:通过PCR、测序等方法验证克隆的正确认。
9. 表达和纯化:对成功克隆的基因进行表达,并纯化所需的表达蛋白。
这些步骤可以根据具体实验目的进行调整和优化,通常需要借助一些特定的实验室设备和试剂来完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 Differential display PCR(DD-PCR) PCR(DDDD-PCR是在AP-PCR基础上发明的一种RTDD-PCR是在AP-PCR基础上发明的一种RTPCR方法,主要用于2 PCR方法,主要用于2种或多种类似生物个体在基因 表达上的差异分析。其基本原理是: 表达上的差异分析。其基本原理是:所有真核生物 的成熟mRNA都含有不同长度的poly+(A)尾部序列, 的成熟mRNA都含有不同长度的poly+(A)尾部序列, 根据poly+(A)内部的2个核苷酸排列的不同, 根据poly+(A)内部的2个核苷酸排列的不同,可以将 所有的mRNA分子分为12类 见图3)。 所有的mRNA分子分为12类(见图3)。
PCR反应模式图: 反应模式图: 反应模式图
Nested PCR反应模式图 反应模式图
根据蛋白质序列也可或cDNA 序列。如蛋白质序列是自己测定的,那么需要设计至少1 序列。如蛋白质序列是自己测定的,那么需要设计至少1对简并引 物(degen做序列测定才能鉴别所扩增产物的特异性。
另外,在基因克隆之后,如还要进一步做表达研究, 另外,在基因克隆之后,如还要进一步做表达研究,所使用的 PCR酶最好不用Taq DNA聚合酶,而采用其他有自我检测(reading PCR酶最好不用Taq DNA聚合酶,而采用其他有自我检测(reading proof)功能的酶, pfu。这样可以避免由于扩增过程中出现的点 proof)功能的酶,如pfu。这样可以避免由于扩增过程中出现的点 突变或终止密码子而导致整个研究结论的错误。
图3真核生物12种mRNA的序列特点
根据这12种mRNA序列可合成12种相应的反转录引物,即 根据这12种mRNA序列可合成12种相应的反转录引物,即 M’N’TTTTTTTT……,用其分别进行反转录,即可将所有mRNA分类合成 M’N’TTTTTTTT……,用其分别进行反转录,即可将所有mRNA分类合成 12种cDNA(于12个试管内),然后再用随机引物,以这12种cDNA分别做 12种cDNA(于12个试管内),然后再用随机引物,以这12种cDNA分别做 模板进行PCR扩增(见图1和图4),那么与表型相关的mRNA就很容易被 模板进行PCR扩增(见图1和图4),那么与表型相关的mRNA就很容易被 发现并克隆出来。但不论AP-PCR还是DD-PCR,都适用于2 发现并克隆出来。但不论AP-PCR还是DD-PCR,都适用于2种种源近似生 物或不同发育阶段的同一个体之间的比较。因而, PCR的模板必须是 物或不同发育阶段的同一个体之间的比较。因而,其PCR的模板必须是 来自2个生物或同一生物的不同发育阶段的mRNA。DD-PCR的优点是快 来自2个生物或同一生物的不同发育阶段的mRNA。DD-PCR的优点是快 速、方便,可以检测表达量极低的mRNA,但其技术条件要求较高,所 速、方便,可以检测表达量极低的mRNA,但其技术条件要求较高,所 扩增的mRNA的质量不能有差异, mRNA不应降解。目前这一方法已广 扩增的mRNA的质量不能有差异,即mRNA不应降解。目前这一方法已广 泛应用于生物表型相关基因的克隆及比较研究。
图1 应用AP-PCR法进行2种或多种表型特征类似的个体间指纹图谱分析或表型相关基因克隆 箭头所指扩增带为特异于个体(Ⅱ)的扩增产物
AP-PCR的操作一般采用两步法,即前10个循环多以较低的退火温度 AP-PCR的操作一般采用两步法,即前10个循环多以较低的退火温度 (annealing temperature)进行扩增,后20个循环则采用较高的退火温度扩增。APtemperature)进行扩增, 20个循环则采用较高的退火温度扩增。APPCR产物多较短,一般需高浓度的琼脂糖凝胶检测, PCR产物多较短,一般需高浓度的琼脂糖凝胶检测,也可用聚丙烯酰胺凝胶检测。 如扩增的模板为mRNA,通过比较扩增产物的强度,可以得知该基因在2 如扩增的模板为mRNA,通过比较扩增产物的强度,可以得知该基因在2种生物 或同一生物不同发育阶段的表达强度。另外, AP-PCR检测到与某一表型相关 或同一生物不同发育阶段的表达强度。另外,在AP-PCR检测到与某一表型相关 的基因或基因产物(mRNA)以后,下一步工作就是克隆出整个基因或mRNA。主 的基因或基因产物(mRNA)以后,下一步工作就是克隆出整个基因或mRNA。主 要操作程序为:(1)AP-PCR产物的提取、克隆及序列测定。首先将AP-PCR检测 要操作程序为:(1)AP-PCR产物的提取、克隆及序列测定。首先将AP-PCR检测 到的特定片段从凝胶中切下,提取DNA克隆到适宜的载体内( TA载体),再测定 到的特定片段从凝胶中切下,提取DNA克隆到适宜的载体内(如TA载体),再测定 其核苷酸组成。根据其核苷酸组成设计2个方向相反的引物(P-1,P-2,见图2)。引 其核苷酸组成。根据其核苷酸组成设计2个方向相反的引物(P-1,P-2,见图2)。引 物长度多在20 nt以上;退火温度在60℃以上;(2)将基因组DNA做适当酶切, 物长度多在20 nt以上;退火温度在60℃以上;(2)将基因组DNA做适当酶切,然 后在其两端连接上相同的接头(见图2,这种接头可从生物制品公司购买) 后在其两端连接上相同的接头(见图2,这种接头可从生物制品公司购买)。
3 未知序列的基因打靶
根据已知序列进行基因克隆, 根据已知序列进行基因克隆,多数是重复 别人的工作, 别人的工作,或者是在别人工作的基础上继 续自己的工作, 续自己的工作,因而不存在新基因的克隆过 程。对未知序列的基因克隆才是真正的创 造性研究。
3.1 随机引物法克隆未知序列基因
随机引物PCR(arbitrarily 随机引物PCR(arbitrarily primed PCR,AP-PCR)首先被用于基因组DNA或 PCR,AP-PCR)首先被用于基因组DNA或 RNA的指纹图谱(finger print)分析, RNA的指纹图谱(finger print)分析,后来也有人将这种方法用于克隆与表型相 关的基因或mRNA。该方法的理论依据是:表型受基因支配, 关的基因或mRNA。该方法的理论依据是:表型受基因支配,在一个生物体发 生了表型变化后,其基因组DNA很可能发生变化或出现不同基因的激活或关 生了表型变化后,其基因组DNA很可能发生变化或出现不同基因的激活或关 闭等;另一方面,如在寄生虫的发育过程中, 闭等;另一方面,如在寄生虫的发育过程中,不同发育阶段的虫体所表达的基因 很可能不同,如将不同发育阶段的虫体mRNA提取出来,用单一引物(随机引物, 很可能不同,如将不同发育阶段的虫体mRNA提取出来,用单一引物(随机引物, 其长度不超过16 nt)对不同时期的虫体mRNA进行扩增比较, 其长度不超过16 nt)对不同时期的虫体mRNA进行扩增比较,即可找出导致表 型变异的遗传学依据。这种方法是一种比较PCR,它要求至少有2 型变异的遗传学依据。这种方法是一种比较PCR,它要求至少有2种来自不同 表型但又很类似的基因组DNA或mRNA。AP-PCR扩增后的产物必须99%是一 表型但又很类似的基因组DNA或mRNA。AP-PCR扩增后的产物必须99%是一 致的, 致的,只有个别特异的产物出现在特异的表型个体中。该方法对表型或种源关 系相差甚远的生物个体之间没有比较意义(见图1)。 系相差甚远的生物个体之间没有比较意义(见图1)。
基因克隆的几种常用法
根据已知序列克隆基因 未知序列的基因打靶 根据已知探针克隆基因 用特异抗体克隆基因 特异基因的功能克隆
1、根据已知序列克隆基因
对已知序列的基因克隆是基因克隆方法中最为简便的一种。获取基因 序列多从文献中查取, 序列多从文献中查取,即将别人报道的基因序列直接作为自己克隆的依据。 目前,世界上主要的基因库有: 目前,世界上主要的基因库有: (1)EMBL 为设在欧洲分子生物学实验室的基因库, (1)EMBL,为设在欧洲分子生物学实验室的基因库, EMBL, 其网上地址为:/ebi-home.html; 其网上地址为:/ebi-home.html; (2)Genbank 为设在美国国家卫生研究院(NIH)的基因库, (2)Genbank,为设在美国国家卫生研究院(NIH)的基因库, Genbank, 其网上地址为:/web/search/index.html; 其网上地址为:/web/search/index.html; (3)Swissport TREMBL,Swissport是一蛋白质序列库, (3)Swissport和TREMBL,Swissport是一蛋白质序列库,其所含序列的准确 Swissport和 度比较高, 度比较高,而 TREMBL只含有从EMBL TREMBL只含有从EMBL库中翻译过来的序列。 EMBL库中翻译过来的序列。
2
根据已知探针克隆基因
这也是基因克隆的一种较直接的方法。首先将探针作放 射性或非放射性标记, 射性或非放射性标记,再将其与用不同内切酶处理的基因组 DNA杂交, DNA杂交,最后将所识别的片段从胶中切下来,克隆到特定 的载体(质粒、噬菌体或病毒) 的载体(质粒、噬菌体或病毒)中作序列测定或功能分析。这 种方法不但可以将基因克隆出来, 种方法不但可以将基因克隆出来,还能同时观察该基因在基 因组中的拷贝数。但在探针杂交后,要注意高强度(high 因组中的拷贝数。但在探针杂交后,要注意高强度(high stringent)漂洗,以避免干扰信号,即保证克隆的特异性, stringent)漂洗,以避免干扰信号,即保证克隆的特异性,同时节 省时间。
图4DD-PCR示意图 箭头所示为特异扩增产物
3.3 Representative difference (RDAanalysis PCR (RDA-PCR)
这是一种差减杂交 (subtractive hybridization) 与PCR相结合的技术,其整个操作程序完全不同于AP-PCR PCR相结合的技术,其整个操作程序完全不同于AP和DD-PCR。前2种方法是将两模板DNA或cDNA分别进行PCR DD-PCR。前2种方法是将两模板DNA或cDNA分别进行PCR 扩增,最后通过扩增产物的差异,分离和克隆特异扩增带, 扩增,最后通过扩增产物的差异,分离和克隆特异扩增带, 其缺点是需要将特异扩增产物从胶中切下来,提取DNA,再 其缺点是需要将特异扩增产物从胶中切下来,提取DNA,再 扩增后才能克隆。RDA-PCR只扩增区别于某一表型的特异 扩增后才能克隆。RDA-PCR只扩增区别于某一表型的特异 基因,因而更便于扩增产物的克隆与分析(见图5)。 基因,因而更便于扩增产物的克隆与分析(见图5)。