(完整版)弹性与塑性力学第2,3章习题答案
弹性与塑性力学第2,3章习题答案
第二章2.1(曾海斌)物体上某点的应力张量σij 为σij =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1003100031001000000(应力单位) 求出:(a )面积单位上应力矢量的大小,该面元上的法线矢量为n =(1/2,1/2,1/2); (b )应力主轴的方位;(c )主应力的大小; (d )八面体应力的大小; (e )最大剪应力的大小。
解答:(a)利用式(2.26)计算应力矢量的分量nT i ,得n T 1=σ1j n j =σ11n 1+σ12n 2 +σ13n 3 = 0 ;同样 n T 2= j n j =272.47 nT 3=σ3j n j =157.31所以,应力矢量nT 的大小为=nT [(nT 1 )2+(nT 2 )2+(nT 3)2]1/2=314.62(b)(c)特征方程:σ3—I 1σ2 + I 2σ—I 3=0其中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。
从一个三次方程的根的特征性可证明: I 1 =σ1+σ2+σ3 I 2=σ1σ2+σ2σ3+σ3σ1 I 3=σ1σ2σ3其中得,σ1=400、σ2=σ3=0 是特征方程的根。
将σ1、σ2和σ3分别代入(2.43),并使用恒等式n 12+ n 22 + n 32=1 可决定对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i (1)=(0, ±0.866,±0.5) n i (2)=(0, 0.5,±0.866) n i (3)=(±1, 0,0)注意主方向2和3不是唯一的,可以选用与轴1正交的任何两个相互垂直的轴。
(d )由式(2.96),可算σotc =1/3(0+100+300)=133.3τotc =1/3(90000+40000+10000+6*30000) 1/2=188.56(e) 已经求得σ1=400、σ2=σ3=0,则有(2.91)给出的最大剪应力为τmax =2002.2(曾海斌)对于给定的应力张量σij ,求出主应力以及它们相应的主方向。
弹塑性力学习题解答
第一、二章作业一、选择题:1.弹性力学的研究对象是 B 。
A.刚体;B.可变形固体;C.一维构件; D.连续介质;2.弹性力学的研究对象是 C几何尺寸和形状。
A.受到…限制的物体; B.可能受到…限制的物体;C.不受…限制的物体; D.只能是…受限制的任何连续介质;3.判断一个张量的阶数是根据该张量的C确定的。
A.下标的数量; B.哑标的数量; C.自由标的数量; D.字母的数量。
4.展开一个张量时,对于自由下标操作的原则是按其变程C。
A.一一罗列; B.先罗列再求和; C.只罗列不求和; D.一一求和。
5.展开一个张量时,对于哑脚标操作的原则是按其变程B。
A.一一罗列; B.先罗列再求和; C.只罗列不求和; D.一一求和。
6.在弹性力学中,对于固体材料(即研究对象)物性组成的均匀性以及结构上的连续性等问题,提出了基本假设。
这些基本假设中最基本的一条是 A。
A.连续性假设; B.均匀性假设;C.各向同性的假设; D.几何假设——小变形条件;7.从一点应力状态的概念上讲,当我们谈及应力,必须表明的是D。
A.该应力的大小和指向,是正应力还是剪应力;B.该应力是哪一点处的正应力和剪应力,还是全应力;C.该应力是哪一点处的应力D.该应力是哪一点处哪一微截面上的应力,是正应力还是剪应力。
8.表征受力物体内一点处的应力状态一般需要__B_应力分量,其中独立的应力分量有_C__。
A. 18个; B. 9个; C. 6个; D. 2个。
9.一点应力状态的主应力作用截面上,剪应力的大小必定等于___D_________。
A.主应力值; B.极大值; C.极小值; D.零。
10.一点应力状态的最大(最小)剪应力作用截面上的正应力,其大小_____D_______。
A.一般不等于零; B.等于极大值; C.等于极小值; D.必定等于零。
11.平衡微分方程是 C 间的关系。
A .体力分量和面力分量;B .应力分量和面力分量;C .体力分量和应力分量;D .体力分量、面力分量和应力分量;12.静力边界条件是 B 间的关系。
弹性与塑性力学第2,3章习题答案
第二章2.1(曾海斌)物体上某点的应力张量σij 为σij =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1003100031001000000(应力单位) 求出:(a )面积单位上应力矢量的大小,该面元上的法线矢量为n =(1/2,1/2,1/2); (b )应力主轴的方位;(c )主应力的大小; (d )八面体应力的大小; (e )最大剪应力的大小。
解答:(a)利用式(2.26)计算应力矢量的分量nT i ,得n T 1=σ1j n j =σ11n 1+σ12n 2 +σ13n 3 = 0 ;同样 n T 2= j n j =272.47 nT 3=σ3j n j =157.31所以,应力矢量nT 的大小为=nT [(nT 1 )2+(nT 2 )2+(nT 3)2]1/2=314.62(b)(c)特征方程:σ3—I 1σ2 + I 2σ—I 3=0其中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。
从一个三次方程的根的特征性可证明: I 1 =σ1+σ2+σ3 I 2=σ1σ2+σ2σ3+σ3σ1 I 3=σ1σ2σ3其中得,σ1=400、σ2=σ3=0 是特征方程的根。
将σ1、σ2和σ3分别代入(2.43),并使用恒等式n 12+ n 22 + n 32=1 可决定对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i (1)=(0, ±0.866,±0.5) n i (2)=(0, μ0.5,±0.866) n i (3)=(±1, 0,0)注意主方向2和3不是唯一的,可以选用与轴1正交的任何两个相互垂直的轴。
(d )由式(2.96),可算σotc =1/3(0+100+300)=133.3τotc =1/3(90000+40000+10000+6*30000) 1/2=188.56(e) 已经求得σ1=400、σ2=σ3=0,则有(2.91)给出的最大剪应力为τmax =2002.2(曾海斌)对于给定的应力张量σij ,求出主应力以及它们相应的主方向。
弹塑性力学习题及答案
.本教材习题和参考答案及部分习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。
答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。
2.2证明:若ijji a a =,则0ijk jk e a =。
(需证明)2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
弹性力学课后答案
弹性力学课后答案第二章习题的提示与答案2-1 是2-2 是2-3 按习题2-1分析。
2-4 按习题2-2分析。
2-5 在的条件中,将出现2、3阶微量。
当略去3阶微量后,得出的切应力互等定理完全相同。
2-6 同上题。
在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。
其区别只是在3阶微量(即更高阶微量)上,可以略去不计。
2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。
2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。
2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。
2-10 参见本章小结。
2-11 参见本章小结。
2-12 参见本章小结。
2-13 注意按应力求解时,在单连体中应力分量必须满足(1)平衡微分方程,(2)相容方程,(3)应力边界条件(假设 )。
2-14 见教科书。
2-15 2-16 见教科书。
见教科书。
2-17 取它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。
2-18 见教科书。
2-19 提示:求出任一点的位移分量和,及转动量,再令 ,便可得出。
第三章习题的提示与答案3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:(1)校核相容条件是否满足,(2)求应力,(3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。
3-2 用逆解法求解。
由于本题中 l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。
3-3 见3-1例题。
3-4 本题也属于逆解法的问题。
首先校核是否满足相容方程。
再由求出应力后,并求对应的面力。
本题的应力解答如习题3-10所示。
应力对应的面力是:主要边界:所以在边界上无剪切面力作用。
(完整版)弹塑性力学习题题库加答案
第二章应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy ,τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x=γ1y ;T y =0 则σx =-γ1y ;τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0得:b=-γ1;a=0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cossinx xy yxy………………………………(a )将己知条件:σx=-γ1y ;τxy =-dx ;σy =cx+dy-γy代入(a )式得:1cossin 0cossin0y dx bdx cxdyy cL L L L L L L L L L L L L L L L L L化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1ctg 3β2—17.己知一点处的应力张量为312606100100Pa试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103σy =10×103 τxy =6×103,且该点的主应力可由下式求得:222231.2333312101210610222217.0831011371011 6.0828104.9172410xyxyxyPa则显然:3312317.08310 4.917100Pa Paσ1 与x 轴正向的夹角为:(按材力公式计算)22612sin 22612102cos2xy xytg 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°δy题图1-3τxyx 30°10n24xO10yTτ30°δ30°xO γyβBA n βγ1y则:θ=+40.2688B 40°16'或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
应用弹塑性力学习题解答
应用弹塑性力学习题解答目录第二章习题答案 ................................................................................ 第三章习题答案 ................................................................................ 第四章习题答案 ................................................................................ 第五章习题答案 ................................................................................ 第六章习题答案 ................................................................................ 第七章习题答案 ................................................................................ 第八章习题答案 ................................................................................ 第九章习题答案 ................................................................................ 第十章习题答案 ................................................................................ 第十一章习题答案.. (1)第二章习题答案2.6设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。
弹塑性力学习题答案
第二章 习题解答2-1解:已知 0,0,===-==y x xy y xf f q τσσ1)⎪⎪⎩⎪⎪⎨⎧+∂∂+∂∂+∂∂+∂∂xy y yxx x y yx τστσ23()()⎩⎨⎧++s xy y s yx x l m m l σστστσ 有:lq t x -=代入(*4理、几何方程得:E x u x ==∂∂ε11E y v y ==∂∂ε0==∂∂+∂∂xy yux v γ ()()⇒=+∴0dyy df dx x dg 类似于教材题2-3,可求出 ()()wx v x g wy u y f +=-=00,001;1v wx qy Ev u wy qx Eu ++--=+---=∴υυ从v u ,表达式可见,位移分量是坐标的单值函数,满足位移单值条件。
综合1)~4),。
q xy y x 为问题的正确解答0,=-==τσσ2-2x =σxy τ注意:y x ,代入均满足。
2)验证相容方程:0)(2=+∇y x σσ 亦满足。
3)验证应力边界条件: i) 主要边界:()0,2=±=h y yx yτσ满足ii) 次要边界:()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰-=-=-=222222320)1(0h h lx xy h h l x x h h l x x Pdy ydy dy τσσ (1)、(2)满足,(3)式左=⎰-===⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-223332212*41*618218hh P h I P h h I P dy y h I P 右 结论:所列xy y x τσσ,,满足平衡方程、相容方程;在主要边界上严格满足应力边界条件,次要边界近似满足应力边界条件,又为单连体,故在圣维南原理的前提下为问题的正确解。
2-3、证明:1)由,,yVf xV fy x∂∂-=∂∂-=则平衡微分方程为: ()()⎪⎪⎩⎪⎪⎨⎧=∂τ∂+∂-σ∂=∂τ∂+∂-σ∂⇒⎪⎪⎩⎪⎪⎨⎧=∂∂-∂τ∂+∂σ∂=∂∂-∂τ∂+∂σ∂0x y V 0yx V 0y V x y 0x V y x yx y xyx yx y xy x (*) 类似于题2-10的推证过程,(*)式的通解为:y x x V yV 2xy 22y 22x ∂∂ϕ∂-=τ∂ϕ∂=-σ∂ϕ∂=-σ;;即: yx V xV y2xy 22y 22x ∂∂ϕ∂-=τ+∂ϕ∂=σ+∂ϕ∂=σ;;2) 对于平面应力问题,相容方程为:()()⎪⎪⎭⎫⎝⎛∂∂+∂∂+-=+∇y f x f y x y xυσσ12即:2222 2-4、x, y n l σσ2==2l 应力主向成∴l σn3-3、解: 1由x=0得: 2由 得: Fx Ex Cx Bx Ax y ++++=∴注:公式中已略去ϕ中与应力分量无关的一次项和常数项。
弹塑性力学课程作业 参考答案
弹塑性力学课程作业1 参考答案一.问答题1. 答:请参见教材第一章。
2. 答:弹塑性力学的研究对象比材料力学的研究对象更为广泛,是几何尺寸和形态都不受任何 限制的物体。
导致这一结果的主要原因是两者研究问题的基本方法的不同。
3. 答:弹塑性力学与材料力学、结构力学是否同属固体力学的范畴,它们各自求解的主要问题都是变形问题,求解主要问题的基本思路也是相同的。
这一基本思路的主线是:(1)静 力平衡的受力分析;(2)几何变形协调条件的分析;(3)受力与变形间的物理关系分析; 4. 答:“假设固体材料是连续介质”是固体力学的一条最基本假设,提出这一基本假设得意义是为利用数学中的单值连续函数描述力学量(应力、应变和位移)提供理论依据。
5. 答:请参见本章教材。
6. 答:略(参见本章教材)7. 答:因为物体内一点某微截面上的正应力分量 σ 和剪应力分量τ 同材料的强度分析 问题直接相关,该点微截面上的全应力则不然。
8. 答:参照坐标系围绕一点截取单元体表明一点的应力状态,对单元体的几何形状并不做 特定的限制。
根据单元体所受力系的平衡的原理研究一点的应力状态。
研究它的目的是: 首先是了解一点的应力状态任意斜截面上的应力,进一步了解该点的主应力、主方向、 最大(最小)剪应力及其作用截面的方位,最终目的是为了分析解决材料的强度问题。
9.答:略(请参见教材和本章重难点剖析。
) 10. 答:略(请参见教材和本章重难点剖析。
)11. 答:略(请参见教材和本章重难点剖析。
) 这样分解的力学意义是更有利于研究材料的塑性变形行为。
12. 答:略(请参见教材和本章重难点剖析。
)纳唯叶 (Navier) 平衡微分方程的力学意义是:只有满足该方程的应力解和体力才是客观上可能存在的。
13. 答:弹塑性力学关于应力分量和体力分量、面力分量的符号规则是不一样的。
它们的区别请参见教材。
14、答:弹塑性力学的应力解在物体内部应满足平衡微分方程和相容方程(关于相容方程详见第3、5、6章),在物体的边界上应满足应力边界条件。
(完整版)弹塑性力学习题题库加答案
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
弹塑性力学习题集_很全有答案_
题 2—41 图
题 2—42 图
第三章 弹性变形·塑性变形·本构方程
试证明在弹性变形时,关于一点的应力状态,下式成立。 1 (1) γ 8 = τ 8 ; (2) σ = kε (设ν = 0.5 ) G 3—2* 试以等值拉压应力状态与纯剪切应力状态的关系, 由应变能公式证明 G、 E、 ν之 间的关系为: 1 G= 2(1 + ν ) 1 1 3—3* 证明:如泊松比ν = ,则 G = E , λ → ∞ , k → ∞ , e = 0 ,并说明此时上述 2 3 各弹性常数的物理意义。 3—4* 如设材料屈服的原因是形状改变比能(畸形能)达到某一极值时发生,试根据 单向拉伸应力状态和纯剪切应力状态确定屈服极限 σ s 与 τ s 的关系。 3—5 试依据物体单向拉伸侧向不会膨胀,三向受拉体积不会缩小的体积应变规律来 1 证明泊松比ν 的上下限为: 0 < ν < 。 2 2 3—6* 试由物体三向等值压缩的应力状态来推证:K = λ + G 的关系, 并验证是否与 3 E K= 符合。 3(1 − 2v) 3—7 已知钢材弹性常数 E1 = 210Gpa,v1 = 0.3, 橡皮的弹性常数 E 2 =5MPa,v 2 = 0.47, 试比较它们的体积弹性常数(设 K1 为钢材,K2 为橡皮的体积弹性模量) 。 3—8 有一处于二向拉伸应力状态下的微分体( σ 1 ≠ 0, σ 2 ≠ 0, σ 3 = 0 ) ,其主应变
2—39* 若位移分量 u i 和 u i′ 所对应的应变相同,试说明这两组位移有何差别? 2—40* 试导出平面问题的平面应变状态( ε x = γ zx = γ zy = 0 )的应变分量的不变量及
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为: γz νγz εz = , εx =εy = − ; γ xy = γ yz = γ zx = 0; E E 试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
应用弹塑性力学习题解答
张 宏 编写
西北工业大学出版社
目录
第二章 习题答案 ..............................................................................1 第三章 习题答案 ..............................................................................5 第四章 习题答案 ..............................................................................9 第五章 习题答案 ............................................................................25 第六章 习题答案 ............................................................................36 第七章 习题答案 ............................................................................48 第八章 习题答案 ............................................................................53 第九章 习题答案 ............................................................................56 第十章 习题答案 ............................................................................58 第十一章 习题答案 ........................................................................61
应用弹塑性力学习题解答
应用弹塑性力学习题解答张宏编写西北工业大学出版社目录第二章习题答案 ..... 错误!未定义书签。
第三章习题答案 ..... 错误!未定义书签。
第四章习题答案 ..... 错误!未定义书签。
第五章习题答案 ..... 错误!未定义书签。
第六章习题答案 ..... 错误!未定义书签。
第七章习题答案 ..... 错误!未定义书签。
第八章习题答案 ..... 错误!未定义书签。
第九章习题答案 ..... 错误!未定义书签。
第十章习题答案 ..... 错误!未定义书签。
第十一章习题答案 ... 错误!未定义书签。
第二章 习题答案设某点应力张量ijσ的分量值已知,求作用在过此点平面ax by cz d ++=上的应力矢量(,,)n nx ny nz p p p p ,并求该应力矢量的法向分量n σ。
解 该平面的法线方向的方向余弦为l a d m b d n c d d ====,,,而应力矢量的三个分量满足关系nx x xy xz ny xy y yz nz xz yz z p l m n p l m n p l m nστττστττσ⎧=++⎪=++⎨⎪=++⎩ 而法向分量n σ满足关系n nx ny nx p l p m p n σ=++最后结果为()()()()22222222222nx x xy xz ny xy y yz nx xz yz z n x y z xy yz zx p a b c d p a b c a p a b c da b c ab bc ca d d a b c στττστττσσσσστττ=++=++=++=+++++=++利用上题结果求应力分量为0,2,1,1,2,0x y z xy xz yz σσστττ======时,过平面31x y z ++=处的应力矢量n p ,及该矢量的法向分量n σ及切向分量n τ。
解求出l m n ===,,nx ny nz p p p 及n σ,再利用关系222222n nx ny nz n np p p p στ=++=+可求得n τ。
弹塑性力学课后习题答案
(I-4) (I-5)
★ 关于求和标号,即哑标有:
◆ 求和标号可任意变换字母表示。
◆ 求和约定只适用于字母标号,不适用于数字标号。 ◆ 在运算中,括号内的求和标号应在进行其它运算前
优先求和。例:
aii2a121a222a323
(I-12)
(ai) i2(a 1 1a22 a3)3 2 (I-13)
aibjk cijk
(I-21)
◆ 张量乘法不服从交换律,但张量乘法服从分配
律和结合律。例如:
( a i j b i) c j k a i c k j b i c k j; 或 ( a i b k j ) c m a i( b j k c m )
(I-22)
C、张量函数的求导:
◆ 一个张量是坐标函数,则该张量的每个分量都
◆ 绝对标量只需一个量就可确定,而绝对矢量则需
三个分量来确定。
◆ 若我们以r表示维度,以n表示幂次,则关于三维
空间,描述一切物理恒量的分量数目可统一地表 示成:
Mrn (Ⅰ—1)
◆ 现令n为这些物理量的阶次,并统一称这些物
理量为张量。
当n=0时,零阶张量,M=1,标量; 当n=1时,一阶张量,M=3,矢量;
(I-25 )
4.张量的分解
张量一般是非对称的。若张量 aij的分量满足
aij a ji
(I-27)
则 aij 称为对称张量。 如果 的分aij量满足
aij aji
(I-28)
则称为反对称张量。显然反对称张量中标号重复的
分量(也即主对角元素)为零,即 a11a22。a330
第二章 应力理论
七应变莫尔圆41弹性变形与塑性变形的特点塑性力学的附加假设42常用简化力学模型43弹性本构方程弹性应变能函数44屈服函数主应力空间常用屈服条件47塑性本构方程简介静不定问题的解答1静力平衡分析平衡微分方程2几何变形分析几何方程3物理关系分析物理方程表明固体材料产生弹性变形或塑性变形时应力与应变以及应力率与应变率之间关系的物性方程称为本构方程关系
弹塑性力学习题集(有图)
~弹塑性力学习题集[殷绥域李同林编!)~中国地质大学·力学教研室二○○三年九月》目录弹塑性力学习题 (1)第二章应力理论.应变理论 (1);第三章弹性变形.塑性变形.本构方程 (6)第四章弹塑性力学基础理论的建立及基本解法 (8)第五章平面问题的直角坐标解答 (9)第六章平面问题的极坐标解答 (11)第七章柱体的扭转 (13)]第八章弹性力学问题一般解.空间轴对称问题 (14)第九章* 加载曲面.材料稳定性假设.塑性势能理论 (15)第十章弹性力学变分法及近似解法 (16)第十一章* 塑性力学极限分析定理与塑性分析 (18)第十二章* 平面应变问题的滑移线场理论解 (19)`附录一张量概念及其基本运算.下标记号法.求和约定 (21)习题参考答案及解题提示 (22)>前言弹塑性力学是一门理论性较强的技术基础课程,它与许多工程技术问题都有着十分密切地联系。
应用这门课程的知识,能较真实地反映出物体受载时其内部的应力和应变的分布规律,能为工程结构和构件的设计提供可靠的理论依据,因而受到工程类各专业的重视。
·《弹塑性力学习题集》是专为《弹塑性力学》(中国地质大学李同林、殷绥域编,研究生教学用书。
)教材的教学使用而编写的配套教材。
本习题集紧扣教材内容,选编了170余道习题。
作者期望通过不同类型习题的训练能有助于读者理解和掌握弹塑性力学的基本概念、基础理论和基本技能,并培养和提高其分析问题和解决问题的能力。
鉴于弹塑性力学课程理论性强、内容抽象、解题困难等特点,本书对所编习题均给出了参考答案,并对难度较大的习题给出了解题提示或解答。
本习题集的编写基本取材于殷绥域老师编写的弹塑性力学习题集,由李同林老师重新修编,进一步充实而成。
书中大部分内容都经过了多届教学使用。
为保证教学基本内容的学习,习题中带“*”号的题目可酌情选做。
由于编者水平所限,错误和不妥之处仍在所难免,敬请读者指正。
<编者2003年9月@弹塑性力学习题"第二章 应力理论·应变理论2—1 试用材料力学公式计算:直径为1cm 的圆杆,在轴向拉力P = 10KN 的作用下杆横截面上的正应力σ及与横截面夹角︒=30α的斜截面上的总应力αP 、正应力ασ和剪应力ατ,并按弹塑性力学应力符号规则说明其不同点。
应用弹塑性力学课后习题答案
附录Ⅱ习题解答提示与参考答案第二章应力理论2-1 ζn=ζ1l2+ζ2m2,;式中l、m、n为斜截面外法线的方向余弦。
2-2 p=111.5A;ζn=26A;ηn=108.5A2-3 提示:平面Ax+By+C z+D=0的外法线的方向余弦为:(式中i=1,2,3或A,B,C)答案:2-4 略2-5 (a)ζ1=738.5;ζ2=600;ζ3=-338.5;ηmax=538.5;应力单位为MPa。
(b)ζ1=700;ζ2=600;ζ3=-600;ηmax=650;应力单位为MPa。
2-6 ζ1=3.732η0;ζ2=-0.268η0;α=15º。
2-7 (材料力学解) 应力单位为MPa。
(弹塑性力学解) 应力单位为MPa。
2-8 ζ1=107.3a;ζ2=44.1a;ζ3=-91.4a;ζ1主方向:(±0.314,0.900,0.305);ζ2主方向:(±0.948,±0.282,±0.146);ζ3主方向:(0.048,±0.337,0.940)。
2-9;ζ2=0;ζ3=-ζ1。
2-10、2-11 略2-12 (1)略;(2)ζ8=ζm=5.333MPa;η8=8.654MPa。
2-13 p8=59.5;ζ8=25.0a;η8=54.1a。
2-14上式中S为静矩。
材料力学解不满足平衡微分方程和边界条件。
2-15,Q为梁横截面上的剪力。
提示:利用平衡微分方程求解。
2-16 ζ1=17.083×103Pa;ζ2=4.917×103Pa;ζ3=0,∂=40º16′。
2-17 略2-18 2。
2-19 提示:将三个主方向的三组方向余弦分别两两一组代人式(2-12)证之。
2-20 。
2-21 在AA′上:ζx=-γy,ηxy=0;在AB上:ηxy=0,ζy=-γh;在BB′上:l1=cosα,l2=-sinα,l3=0;则应力分量满足关系式:2-22 。
弹塑性力学习题集_很全有答案_
σ y = cx + dy − γy , τ xy = − dx − ay ,其它应力分量为零。试根据
直边及斜边上的边界条件,确定常数 a、b、c、d。 2—16* 已知矩形截面高为 h, 宽为 b 的梁受弯曲时的正 My 12 M 应力 σ z = = y, 试求当非纯弯时横截面上的剪应力公 J bh 3 式。 (利用弹塑性力学平衡微分方程)
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
3—1
为 ε 1 = 1.7 × 10 −4 , ε 2 = 0.4 × 10 −4 。已知ν = 0.3,试求主应变 ε 3 。
3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。 设钢块不变形,试求:在压力 P = 6KN 的作用下铝块内一点应力状态的三个主应力及主应 变,铝的弹性常数 E=70Gpa,ν = 0.33。 3—10* 直径 D = 40mm 的铝圆柱体, 无间隙地放入厚度为 δ = 2mm 的钢套中, 圆柱受
v = b0 + b1 x + b2 y + b3 z w = c 0 + c1 x + c 2 y + c3 z
式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y
(完整版)弹塑性力学习题题库加答案.docx
第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
弹塑性力学习题解
第二章 习题解
5.
为什么在推导相容方程时,使用了平衡方 程。在应力求解时的三个方程中,用两个 平衡方程和一个相容方程,这是否矛盾?
答:不矛盾。这是因为在推导相容方程时,为了简化方 程,对平衡方程求导,消去相容方程中的剪应力分量。 通过能满足相容方程的正应力分量,再求解出的剪应力 分量,不一定能满足平衡方程。因为对偏微分方程积分, 相差一任意函数。
2
第三章 习题解
2.
试证明,如果体力虽然不是常量,但却是有势的力,即
X
其中V是势函数,则应力分量亦可用应力函数φ表示成 为 2 2 2
x
V x
Y
V , y
试导出相应的相容方程。 证明:
y
2
V, y
x
2
V , xy
xy
因体力不等于零的情况下的平衡方程的解,可分解为齐次方程 解和特解。而: 2 2 2
b2 1 2 r r2 qa b 1 2 a
b2 1 2 r 2 qa b 1 2 a
因为方程中不包含材料常数,在平面应变情况下,它们 不变。平面应变情况下的轴向应力分量为:
第四章 习题解
b 1 2 a 由于问题的轴对称性, 剪应力分量为零。
z r
第二章 习题解
1.
说明弹性力学两个平面问题的异同。
答:相同点:两者均是数学上的二维问题,两者的独立应 力分量都是xy坐标面内的应力分量,所受边界力均平行于 xy坐标面。所得到的弹性力学方程除弹性常数不同外,形 式上相同。 不同点:平面应力问题的结构为一很薄的平板,边界 z xz yz 0。 力对称分布于平分板厚的中面,应力分量 平面应变问题的结构是一很长的直线柱体,边界力垂直于 柱体轴线并沿轴线长度不变化,由于柱体很长可以认为轴 向位移为零,从而轴向应变为零,弹性力学变量有下列关 系: w 0, z 0, z 0, xz yz 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章
2.1(曾海斌)物体上某点的应力张量σij 为σij =⎥⎥
⎥⎦
⎤⎢⎢⎢⎣⎡1003100031001000000
(应力单位) 求出:
(a )面积单位上应力矢量的大小,该面元上的法线矢量为n =(1/2,1/2,1/2); (b )应力主轴的方位;
(c )主应力的大小; (d )八面体应力的大小; (e )最大剪应力的大小。
解答:
(a)利用式(2.26)计算应力矢量的分量n
T i ,得
n T 1=σ1j n j =σ11n 1+σ12n 2 +σ13n 3 = 0 ;同样 n T 2= j n j =272.47 n
T 3=σ3j n j =157.31
所以,应力矢量n
T 的大小为
=n
T [(n
T 1 )2
+(n
T 2 )2
+(n
T 3)2]1/2=314.62
(b)(c)特征方程:σ3—I 1σ2 + I 2σ—I 3=0
其中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。
从一个三次方程的根的特征性可证明: I 1 =σ1+σ2+σ3 I 2=σ1σ2+σ2σ3+σ3σ1 I 3=σ1σ2σ3
其中得,σ1=400、σ2=σ3=0 是特征方程的根。
将σ1、σ2和σ3分别代入(2.43),并使用恒等式n 12+ n 22 + n 32=1 可决定对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i (1)=(0, ±0.866,±0.5) n i (2)=(0, μ0.5,±0.866) n i (3)=(±1, 0,0)
注意主方向2和3不是唯一的,可以选用与轴1正交的任何两个相互垂直的轴。
(d )由式(2.96),可算
σotc =1/3(0+100+300)=133.3
τotc =1/3(90000+40000+10000+6*30000) 1/2=188.56
(e) 已经求得σ1=400、σ2=σ3=0,则有(2.91)给出的最大剪应力为τmax =200
2.2(曾海斌)对于给定的应力张量σij ,求出主应力以及它们相应的主方向。
σij =⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡------4/114/5)22/(14/54/11)22/(1)22/(1)22/(12/3(应力单位)
(a )从给定的σij 和从主应力值σ1,σ2和σ3中确定应力不变量I 1,I 2和I 3; (b )求出偏应力张量S ij ;
(c )确定偏应力不变量J 1,J 2和J 3; (d )求出八面体正应力与剪应力。
解答:同上题2.1(a )(b )(c )方法得到σ1=4、σ2= 2 、σ3=1 对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i
(1)
=(0, μ
21,±2
1
) n i (2)=(±
2
1
, μ0.5,μ0.5) n i (3)=(±
2
1
, ±0.5,±0.5) (a )特征方程:σ3—I 1σ2 + I 2σ—I 3=0
中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。
代入数据的:I 1 =7;I 2 =14;I 3 =8
(b )偏应力张量由式子(2.119)得出S ij =σ12-p δij ,其中p=7/3
S ij =⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-------12/54/5)22/(14/512/5)22/(1)22/(1)22/(16/5-
(c)J 1= S ii =0,J 2=1/6[4+1+9]=2.333, J 3=1/27(2*49+9*7*14+27*8)=0.741
(d) σotc =1/3*7=2.333 τotc = 2/3(I 12-3 I 2) 1/2=1.247
2.3(李云雷)(a )解释:如果吗?能得出0S ,3321=>>S S S (b )解释:2J 可以为负值吗? (c )解释:3J 可以为正值吗? 解:
(a )不能,因为,0321=++S S S 所以3S 不能等于0.
(b )因为])()()[(61
2132322212σσσσσσ-+-+-=J ,所以2J 不可能为负值。
(c )可以,当321,,S S S 中有一个正数,两个负数时3J 为正值。
2.7 (金晶)证明以下关系
(a )2
212
13J I I =-
证明:
1123
2121332
22221123123312222123121332
2
22212123121332121332
22
212312133221()()2()22211(222)3
311()()
3
31[(6
I I I I I J σσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσ=++=++=++=++++=+++++-=+++++-++=++-++=-Q 2
22222213321231213322212
11)()()]()()
331
3
J I I σσσσσσσσσσσσσσ+-+-=++-++∴=-
(b )
3
33121
12327J I I I I =-+
证明:。