机械通气波形分析-详细版

合集下载

机械通气波形分析(2014)

机械通气波形分析(2014)

方波
递减波
正弦波 吸气
呼气
在定压型通气 (PCV) 中目前均采 用递减波!
2.3.3 判断指令通气过程中有无自主呼吸
图 7 中 A 为指令通气吸气流速波 , B 为在指令吸气过 程中有一次自主呼吸 , 在吸气流速波出现切迹, C为 人机不同步而使潮气量减少 , 在吸气流速前有微小 呼气流速且在指令吸气近结束时出现自主呼吸 , 而 使呼气流速减少.
3.3.1d
双水平正压通气(BIPAP) 图21
BIPAP 属于 PCV 所衍生的模式 , 即在两个不同压力水平上患者尚 可进行自主呼吸. 图21左侧是PCV吸气峰压呈平台状无自主呼吸 , 而右侧不论在高压或低压水平上均可有自主呼吸 , 在自主呼 吸基础上尚可进行压力支持 . 高压 (Phigh) 相当于 VCV 中的平台 压 , 低压 (Plow) 相当于 PEEP, Thigh 相当于呼吸机的吸气时间 (Ti), Tlow 相 当 于 呼 吸 机 的 呼 气 时 间 (Te), 呼 吸 机 的 频 率 =60/Thigh+Tlow.
右侧图为压力支持流速 波 , 吸气流速突然下降 至 0 是递减波在吸气过 程中吸气流速递减至呼 气灵敏度的阈值
2.3.2 在定容型通气中识别所选择的吸气流速波型 图 6 以 VCV 为基础 的指令通气所选 择的三种波型 ( 正 弦 波 基 本 淘 汰 ). 而呼气波形形状 基本类同. 本图 显示了吸气相的 三种波形.
2.2 呼气流速波形
吸气流速
← 时 间 (sec) 呼气流速
2.3 流速波形(F-T curve)的临床应用
2.3.1 吸气流速曲线分析--鉴别呼吸类型(图5) 左侧为VCV的强制通 气, 吸气流速的波形可 选择为方波,递减波 中图为自主呼吸的正弦 波 , 是由于吸、呼气峰 流速比机械通气的正弦 波均小得多 , 且吸气流 速波形态不完全似正弦 型.

机械通气异常波形解读【57页】

机械通气异常波形解读【57页】

压力“波峰”
Paw(cmH2O)
如果上升时间过短,可见压力波形上见一突起部,称为压力“波峰” ——需要减慢呼吸机送气阀的开放,增加上升时间
如果上升时间过长,压力波形将变得光滑且倾斜,将降低呼吸机气流的输出并且 可能无法满足病人的吸气需求 ——需加快送气阀的开放,降低上升时间
吸气终止切换
• 在压力支持通气时,何时由吸气转变为呼气取决于吸气终止切换 的设置
Paw(cmH2O)
PEEP和自主呼吸触发
病人触发 应用PEEP后整个压力波形的基线将抬高 若为病人自主触发的通气整个波形前将有一个负向波
压力时间曲线的解读
吸气保持
整个曲线下面积代表平 均气道压(Pmean) Pmean=(A+B+C)/Time
吸气开始 呼吸开始
PIP= Peak Inspiratory Pressure Pplateau = Plateau Pressure A= 气道阻力 (Raw) B= 肺泡扩张所需压力
• 气体陷闭 (auto-PEEP) • 气道阻力增加 • 顺应性改变 • 漏气 • 人机不同步
气体陷闭 (auto-PEEP)
• 原因 • 呼气时间不足 • 呼气时小气道的狭窄塌陷导致呼气气流受限
改善气道狭窄,增加吸气流速,减少吸气时间,使用PEEP
气道阻力增加 • 原因 • 支气管痉挛、痰栓形成、流速过大 • 气管插管问题 (口径过细, 导管扭曲、堵塞, 病人咬管) • 呼气阀或过滤器阻力过大或被阻塞
Time (sec)
-120
上图中,呼吸机的设置为:当流速下降至峰流速的30%时吸气终止
流速切换设置不当
A –切换流速的百分比设置过高,切换提早出现 ——导致吸气时间过短(潮气量不足)

1机械通气波形分析

1机械通气波形分析

flow
压力上升时间
• • • • • •
压力上升斜率 流量变速百分比(FAP) 直接调节时间(0-2s) 调节流量加速百分比(1-100%) 时间短或百分比大,起始流量大. 时间长或百分比小,起始流量小..
呼吸力学监测对临床的提示(3)
• 没有自主呼吸的患者使用PCV
time Ti PEEP Pinsp Vt
1
2
0.5
0.5
0.5
0.5
5
5
20
30
15
25
Crs.st下降
呼吸力学监测对临床的提示(2)
• 没有自主呼吸的患者应用VCV
time Vt Ti PEEP Ppeak Pplat
1
2
0.5
0.5
0.5
0.5
5
5
20
40
15
20
Raw 升高
压力控制通气(PCV)
pressure 吸气压力, Pinsp PEEP
呼吸力学的监测
时间常数()
• 任一呼吸系统,其容积变化(Δ V)与压 力变化(Δ P)呈指数函数的关系,其函 数特征可以用时间常数来表示: τ =RC ——即容积变化(Δ V)与压力 变化(Δ P)的相互关系取决于阻力和顺 应性
呼吸力学的监测
时间常数()
• 测定肺组织充盈或排空的速度 • 反映肺组织对压力变化的反应速度
TE Time (sec)
容量时间曲线
吸气潮气量
Volume (ml)
吸气
呼气
TI
Time (sec)
定容通气(VCV)
气道峰压, Ppeak pressure 平台压, Pplat PEEP

机械通气波形及意义——曲彦精选全文完整版

机械通气波形及意义——曲彦精选全文完整版

定容与定压机械通气
定容压力波形
定压压力波形
定容流速波形
定压流速波形
压力-时间曲线在临床上 的应用
判定通气方式
压力的定义为一单位面积所受之力,压力单位是cmH2O (mbar)(纵轴)缩写为Paw或Pcirc,时间单位为秒(横轴) 见图
图.压力-时间曲线(VCV流速恒定—方波)
Pressure versus Time
双水平气道正压通气
气道压力释放通气
•1987年DOWN报道 •预定CPAP水平(10-30cmH2O)自主呼吸, 周期性(1-1.5s)气道压力释放引发呼气
Air Leak
Time (sec)
• 流速容量环在临床上的 应用
Flow-Volume Loop
Inspiration PIFR
FRC
Volume (ml)
VT
PEFR Expiration
Air Trapping
Inspiration
Flow (L/min)
Does not return to baseline
正常人WOB呼吸功为0.3~0.6 J/L,占全身氧耗的1%~2%,在气道 阻力增加,顺应性降低时,呼吸 功可增加50倍,重度ARDS病人呼 吸氧耗可占总氧耗的50%。
WOB<0.75 J/L,脱机多能成功
WOB 0.85~1.15 J/L,呼吸肌运 动负荷增加
WOB >1.25 J/L,导致呼吸肌严 重疲劳
Flow
(L/min)
Normal Abnormal
Time (sec)
• 容量时间曲线在临床上 的应用
Volume vs Time
Volume (ml)

机械通气模式与波形

机械通气模式与波形

机械通气模式与波形机械通气是临床治疗中常用的辅助呼吸方法,通过不同的通气模式和波形,可以满足患者不同的呼吸需求。

本文将介绍机械通气模式与波形的基本概念和常见类型。

一、定容通气模式定容通气模式是指在机械通气过程中,通过设定一定的潮气量(VT)来控制患者的呼吸。

以下是几种常见的定容通气模式:1. 容量控制通气(VCV):通过设定一定的VT和呼吸频率(RR),来控制患者的呼吸。

VCV适用于大多数需要机械通气的患者。

2. 容量辅助/控制通气(V A V/VCV):在VCV的基础上,给予一定的辅助通气,以增加患者的自主呼吸能力。

V A V适用于具有一定自主呼吸能力的患者。

3. 压力控制通气(PCV):通过设定一定的吸气峰压(PIP)来控制患者的呼吸。

PCV适用于肺顺应性较差的患者。

4. 压力辅助/控制通气(PACV/PCV):在PCV的基础上,给予一定的辅助通气,以增加患者的自主呼吸能力。

PACV适用于具有一定自主呼吸能力的患者。

二、定压通气模式定压通气模式是指在机械通气过程中,通过设定一定的气道压力来控制患者的呼吸。

以下是几种常见的定压通气模式:1. 压力控制持续气道正压通气(CPAP):通过设定一定的气道压力,来保持患者的呼吸道通畅。

CPAP适用于治疗睡眠呼吸暂停等疾病。

2. 自主呼吸试验(SBT):通过逐渐降低气道压力,来评估患者的自主呼吸能力。

SBT适用于准备撤离机械通气的患者。

3. 压力支持通气(PSV):通过设定一定的气道压力,来辅助患者的自主呼吸。

PSV适用于具有一定自主呼吸能力的患者。

4. 部分通气支持(PVS):在PSV的基础上,给予一定的限制性通气,以增加患者的自主呼吸能力。

PVS适用于具有一定自主呼吸能力的患者。

三、特殊模式1. 双水平气道正压通气(BiPAP):通过设定两个不同的气道压力水平,来辅助患者的呼吸。

BiPAP适用于治疗慢性阻塞性肺疾病等疾病。

2. 高频通气(HFV):通过高频振荡产生气流,来维持患者的呼吸道通畅。

常见机械通气波形解读

常见机械通气波形解读

常见机械通气波形解读机械通气是一种重要的治疗方式,用于支持患者的呼吸,改善气体交换和氧合情况。

机械通气波形是监测患者通气状态的指标之一,对于理解患者病情和调整机械通气参数具有重要意义。

本文将介绍几种常见的机械通气波形及其解读。

吸气相和呼气相机械通气波形常常包括吸气相和呼气相两个部分。

吸气相指吸气时气体从呼吸机进入患者呼吸道的过程,呼气相指气体从患者呼吸道经过呼吸机回到大气中的过程。

吸气相和呼气相的形态和参数反映了机械通气的支持效果和患者自主呼吸功能的状态。

压力波形压力波形反映了气体在患者呼吸道内施加的压力变化,也是机械通气最常见的波形之一。

压力波形通常分为控制通气和辅助通气两种模式。

控制通气模式控制通气模式下,呼吸机会向患者施加一定的压力,直到设定值时停止吸气,并开始呼气。

控制通气模式下的压力波形通常呈周期性上升和下降之间的锐角形态。

在周期末端呼气末段可以看到波形呈平坦状态,表示呼气压力已经回到了基线。

辅助通气模式辅助通气模式下,呼吸机在患者自主呼吸的基础上提供支持,当患者做出呼吸动作时,呼吸机向其施加一定的压力。

辅助通气模式下的压力波形通常呈现为被动呼吸加强的状态,压力峰值较控制通气模式下的波形低一些。

流量波形流量波形通常与吸气相和呼气相同时出现,它反映了气流速度的变化。

在控制通气模式下,流量波形呈现为快速上升和下降的状态,中间部分呈平直。

在辅助通气模式下,流量波形呈现为患者主导的呼吸和呼气增加快速流量的状态。

容量波形容量波形反映了肺泡内气体的容量变化,也是机械通气的主要监测指标之一。

容量波形通常与流量波形一起呈现,是一条平滑的曲线,随着吸气-呼气周期逐渐上升和下降。

呼气末正压(PEEP)波形呼气末正压(PEEP)波形反映了呼气末时肺泡内残余气体的压力变化。

呼气末正压的设定对于吸气末的气体留存与肺泡内气体的支撑状态都有重要影响。

呼气末正压波形正常情况下为一直线,上升表示设定值的增加,下降表示设定值的降低。

机械通气基本模式及波形分析

机械通气基本模式及波形分析

压力与流速时间波形
Expiratory Sensitivity
(ESens)
Peak Inspiratory Flow
40% 20%
5%
T
35% (Leak Rate) 20% (Set)
40% (Set)
time
PSV
病人触发
吸气压力固定 根据病人情况 设定
流速: 减速 病人决定f、峰流速 Ti和Vt
机械通气 基本模式及波形分析
内容简介
机械通气基本原理
控制通气模式 o VCV(容量控制通气) o PCV(压力控制通气) o PRVCV(压力调节容量保证通气)
辅助通气模式 o SIMV(同步间歇指令通气) o BIPAP(双水平气道正压通气) o PSV(压力支持通气) o CPAP(持续气道内正压通气)
流速、最低压力输送潮气量,压力变化幅度小于 3 mbar 2. 自主呼吸叠加于任何时相 3. Pplate受报警限Paw限制,最高值低于Paw 5mbar,不
能达到所设VT时,VT不恒定报警 4. 有Vt警报上限设置,防止容量伤,自动切换至PEEP
IPPV+autoflow
打开 AutoFlow
顺应性 改变
气源故障(压缩泵或氧气);调整Fio2不当
对因处理
呼吸暂停
自主呼吸停止或触发敏感度调节不当
对因处理
Thank you for your attention!
自主呼吸的作用
dorsal
Mandatory ventilation
L/min
dorsal
Spontaneous breathing
L/min
镇静对呼吸的影响
Diaphragm

常见机械通气波形解读PPT课件

常见机械通气波形解读PPT课件
持续气道正压通气波形显示气道压力随时间的变化,通常包括吸气峰压、 呼气末压和吸气时间等参数。
持续气道正压通气适用于治疗各种原因引起的呼吸衰竭,如慢性阻塞性 肺疾病、急性呼吸窘迫综合征等。
03
机械通气波形与临床应 用
波形与患者病情的关系
正常波形
正常波形通常呈现规则的周期性 波动,表明患者呼吸状态稳定, 与病情好转或稳定有关。
波形在临床诊断中的应用
判断通气效果
通过观察机械通气波形可以判断通气效果,了解患者呼吸状态和通气质量。
诊断呼吸道疾病
机械通气波形可以反映呼吸道阻力和顺应性的变化,有助于诊断呼吸道疾病, 如哮喘、慢性阻塞性肺病等。
波形在呼吸机撤离中的应用
评估撤离时机
通过观察机械通气波形可以评估撤离时机,了解患者是否具备自主呼吸能力和适 应能力。
展望
新技术应用
个性化治疗
随着科技的发展,新的机械通气波形解读 技术和方法将不断涌现,提高波形解读的 准确性和效率。
基于患者个体差异的机械通气波形解读, 将有助于实现更个性化的治疗策略。
跨学科合作
临床与科研结合
加强呼吸治疗、护理和工程等跨学科合作 ,共同推进机械通气波形解读的研究和应 用。
加强临床实践与科学研究的结合,推动机 械通气波形解读技术的持续改进和创新。
THANKS FOR WATCHING
感谢您的观看
压力控制通气适用于治疗各种原 因引起的呼吸衰竭,如慢性阻塞 性肺疾病、急性呼吸窘迫综合征
等。
容量控制通气波形解读
容量控制通气是通过设置目标 潮气量来控制患者的呼吸。
容量控制通气波形显示潮气量 随时间的变化,通常包括吸气 峰流速、呼气末流速和吸气时 间等参数。

机械通气波形分析

机械通气波形分析

机械通气波形分析简介机械通气是指通过人工呼吸机向患者输送氧气和调节呼吸频率、潮气量等参数的治疗手段。

在机械通气过程中,呼吸机会生成一系列的波形,这些波形对于评估患者的呼吸状态和调整机械通气参数非常重要。

本文将对机械通气波形进行分析,并讨论其临床意义。

机械通气波形在机械通气过程中,常见的波形有压力波形、气流波形和容积波形。

压力波形压力波形是呼吸机输出的气道压力随时间变化的曲线。

通常以时间为横坐标,压力值为纵坐标。

压力波形呈现出的形态和特征可以提供有关气道阻力和顺应性的信息。

常见的压力波形包括:•呼气末正压(PEEP)波形:呼气末正压是机械通气中常用的一种参数,通过维持呼气末正压可以避免肺泡塌陷和改善氧合。

PEEP波形呈现出稳定的平台形状,在呼气末期保持一定的正压。

•峰压(Peak Pressure)波形:峰压是每次呼吸周期中最高的压力值,反映气道阻力和气道峰压的大小。

峰压波形通常呈现出尖峰状。

•平台压(Plateau Pressure)波形:平台压是在呼气末正压持续一段时间后,关闭气道压力释放阀,测量到的气道压力。

平台压波形呈现出一个稳定的平台形状,反映了肺的顺应性。

•呼气末压力(End-Expiratory Pressure)波形:呼气末压力是每个呼吸周期结束时测量到的气道压力。

呼气末压力波形通常在气道压力变化为零时出现。

气流波形是呼吸机输出的气流随时间变化的曲线。

通常以时间为横坐标,气流值为纵坐标。

气流波形能够反映患者的呼气流速和呼气时间。

常见的气流波形包括:•呼气流速(Expiratory Flow)波形:呼气流速波形呈现出一个由峰值到基线逐渐降低的典型形状。

呼气流速的减小可能与气道阻力增加、支气管痉挛等因素有关。

•吸气流速(Inspiratory Flow)波形:吸气流速波形通常呈现出一个由基线到峰值逐渐增加的形状,然后迅速回落到基线。

吸气流速的变化可以反映患者的吸气力量和呼吸功。

容积波形是呼吸机输出的潮气量随时间变化的曲线。

机械通气波形分析-详细版

机械通气波形分析-详细版

Volume (mL)
Paw (cm H2O)
Preset PIP
评估支气管扩张剂效果
Before After Flow (L/min)
Time (sec)
PEFR
Long TE Shorter TE
Higher PEFR
监测肺动态过度充气
With little or no change in VT
Vt Ppeak PEEP
Vt Pplat PEEP
静态顺应性
设置好参数
– – – – 切换到容控模式 设定标准潮气量 设定标准流速 波形选择为方波
点击”吸气暂停”键即可获得
注意病人自主呼吸的干扰
顺应性正常值
新生儿 3-5 ml/cmH2O
婴儿
儿童 成人
10-20
20-40 70-100
40
60
评估是否有漏气
或气体陷闭
容 量 900 600
300
-60
-40
-20
0
20 PEEP
40
60
压力
测量高、低拐点
容 量 900 600
肺过度膨胀 高位拐点 低位拐点
300
-60
-40
-20
0
20
40
60
压力
流速-容量环
F-V环
流速-容量环
流 速
80
40
900 600 300 0 40 80 120 300 600 900
容量/顺应性 +
基础压力(PEEP)
P总=气道阻力×气体流速+潮气量/顺应性+PEEP
25
运动方程 P总=R× Flow + VT/C+PEEP

常见机械通气波形解读3

常见机械通气波形解读3

常见机械通气波形解读3引言在机械通气治疗中,波形是评估患者通气状态和机械通气模式效果的重要指标。

本文将继续介绍一些常见的机械通气波形,并对其进行解读,以帮助临床医生更准确地评估患者的通气情况。

正文1. 双相气道压力通气〔BiPAP〕波形双相气道压力通气是一种非侵入性的通气模式,其波形图展示了吸气相和呼气相的压力变化情况。

在BiPAP波形中,可以观察到两个明显的峰值,分别对应呼气相和吸气相的压力峰值。

呼气相的峰值较高,吸气相的峰值较低。

这种波形说明患者呼气相的压力水平明显高于吸气相的压力水平,反映了双相气道压力通气模式的特点。

2. 持续气道正压〔CPAP〕波形持续气道正压通气是一种常用的非侵入性通气模式,适用于治疗患者的呼吸功能不全和降低肺泡塌陷风险。

持续气道正压通气波形图通常只有一个平稳的水平线,代表固定的正压水平。

这种波形说明患者在整个呼吸周期内保持相同的正压水平,有助于减少呼吸功,并促进氧合改善。

3. 压力支持通气〔PSV〕波形压力支持通气是一种常用的机械通气模式,其波形显示了患者的吸气流速和吸气压力变化情况。

在PSV波形中,吸气流速通常呈现出一种快速上升,逐渐平缓下降的曲线。

吸气压力保持相对恒定,直到患者吸气流速接近峰值时开始下降。

这种波形说明,患者从呼气到吸气的切换速度较快,吸气压力适应患者的需求变化。

4. 高频振荡通气〔HFOV〕波形高频振荡通气是一种特殊的机械通气模式,常用于重症呼吸衰竭患者的治疗。

在HFOV波形中,可以看到一个高频的方波,代表高频振荡发生的压力变化。

方波的频率通常在3-15 Hz,振幅那么表征患者的通气量。

在高频振荡通气中,方波的振幅通常较低,说明通气量较小,但频率较高。

5. 机械通气切换波形机械通气切换波形表示患者从一种通气模式切换到另一种通气模式的过程。

在切换波形中,可以观察到吸气相和呼气相的压力和流速的变化。

切换波形通常具有较短的切换时间和平滑的过渡,反映了机械通气系统的可靠性和适应性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三线
流速—时间波形 Flow-Time Curve 压力—时间波形 Pressure-Time Curve
容量—时间波形 Volume-Time Curve
两环
压力—容量环 Pressure-Volume Loops 流量—容量环 Flow-Volume Loops
通气模式/方式与波形
呼吸力学监测 与通气波形分析
北海市人民医院急诊科 王琴
主要内容
呼吸力学回顾 机械通气的三要素
常见机械通气波形分析
呼吸力学回顾
病人+机械通气的运动方程
Pmus + Paw = PR + PE
人+机的总压力
阻力压
弹性压
呼吸力学回顾
弹性阻力:肺和胸廓
的弹性阻力,占2/3
肺通气的阻力
非弹性阻力:粘性阻 力和惯性阻力,占1/3, 以气道阻力为主
漏气
Flow (L/min)
Inspiration
Volume (ml) Air Leak in mL
Normal Abnormal
Expiration
气道阻力变化
Normal
PIP PIP
High Raw
PPlat
Paw (cm H2O)
PPlat
}
Normal
Increased PIP Increased PTA (increased Airway Resistance) Normal PPlat (Normal Compliance)
• 肺容量减少
– 气胸, 膈肌抬高
肺的顺应性
导致顺应性下降的原因
• 肥胖、胸廓畸形、胸膜增厚和腹内占位病变
气胸、胸腔积液、肺不张时,胸廓和肺的变化 程度不同步,顺应性不同
非弹性阻力
非弹性阻力–气道阻力
气道阻力:气体在气道中流动时所产生的摩擦 阻力
气道阻力
同样流速的湍流,阻力显著增大
新生儿 婴儿 儿童 成人 30-50 20-30 20 2-4 cmH2O/L/sec cmH2O/L/sec cmH2O/L/sec cmH2O/L/sec
气道阻力
导致气道阻力增加的原因
• 分泌物过多 — 分泌物潴留
• 粘膜水肿(哮喘, 气管炎, 肺水肿)
• 肺气肿(气道压迫)
• 异物
• 肿瘤所致狭窄
时间常数
时间常数的定义(体现病人个体差异):
• 时间常数(τ)=阻力(R) X 顺应性(C)
理论上呼气时间为 5个TC,气体方能 排出,临床实践中 呼气时间为3-5个时 间常数即可
时间常数
机械通气的三要素
机械通气的三要素
容量V (流速V)
压力P
时间T
呼吸力学的基本特性
气道阻力×流速
容量-时间曲线分析
评估有无漏气或气体陷闭
容 量
0
时间
压力-容量环 P-V环
容 量
控制呼吸
900
600
300
-60
-40
-20
0
20
40
60
压力
PEEP
容 量
辅助呼吸
900
600
300
-60
-40
-20
0
20
40
60
压力
PEEP
容 量
自主呼吸
900
600
300
-60
-40
-20
0
Normal Abnormal
Volume (ml) Pressure (cm H2O)
Paw rises
PPlat
PIP
Increased PPlat (Decreased Compliance) Normal PPlat (Normal Compliance)
Normal
Time (sec)
监测肺顺应性变化
Increased Normal Decreased
VT levels
COMPLIANCE
Pressure Targeted Ventilation
Volume (mL)
Paw (cm H2O)
Preset PIP
评估支气管扩张剂效果
Before After Flow (L/min)
Time (sec)
PEFR
Long TE Shorter TE
Higher PEFR
监测肺动态过度充气
With little or no change in VT
0
PEEP 时间
压力(P)=
容量(V) 顺应性(C)
+阻力(R) ×流速(V) +PEEP
容控VCV
评估吸气流速是否合适
压 力 0 时间
压控PCV
评估压力上升梯度是否合适
PLOT SETUP PCIRC 40
cmH2O 30 20 10 0 10 -20 0 2 4 6 8 10 12s
弹性阻力
弹性阻力
弹性阻力–肺的顺应性
用顺应性(C)来度量弹性阻力(E),E=1/C 肺容积变化(△V) 肺压力变化(△P)
肺顺应性(CL)=
C=△V/△P(mL/cmH2O)
弹性阻力–肺的顺应性
高顺应性/低弹性阻力
单位压力
低顺应性/高弹性阻力
肺的顺应性
动态顺应性 Crs, dyn = 静态顺应性 Crs, st =
cmH 2O
8 6 4 2 0 0% 40% 50% 60% 70% 80% 90% 100%
PEEPi,st PEEPe
PEEPe(PEEPi,st的%)
图1-3
PEEPe对PEEPi,st的影响
呼气流速分析
评估是否有无效触发
流 速
0
时间
压力-时间曲线
容控VCV
气道峰压Ppeak
压 力
平均气道压Pplat
• 评估支气管扩张剂的疗效
• ……
流速-时间曲线
吸气流速分析
容控VCV时流速形态
流 速 正弦波
方波
递减波
0 时间
吸气流速分析
压控PCV时评估吸气时间
流 速 吸气时间合适 吸气时间过短
吸气时间过长
0 时间
Hale Waihona Puke 吸气流速分析压力支持PSV时评估是否有漏气
流 速 呼气灵敏度25% 0 时间 漏气出现
Ppeak = Pplat =
VT C VT C
+R× V+PEEP +PEEP
容控VCV
压 力 0
△P=R ×V VT △P C =

时间
Ppeak-Pplat = R ×V
VT Pplat -PEEP = C

容控VCV
P
Ppeak 用以克服气道阻力
Pplat
△P=R×Flow
A/C_ VCV
通气模式/方式与波形
A/C_ PCV
通气模式/方式与波形
SPONT_ PSV
呼气灵敏度25%
通气模式/方式与波形
SPONT_CPAP
通气模式/方式与波形
SIMV
常见机械通气波形分析
常见机械通气波形分析
机械通气波形用途广泛:
• 显示肺力学特性
• 反映人机协调性 • 监测有无气道阻塞 • 监测呼吸回路有无漏气 • 评估机械通气效果
ml/cmH2O
ml/cmH2O ml/cmH2O
无肺部疾病的气管插管患者 50-70 ml/cmH2O
预测脱机:>33 ml/cmH2O,脱机成功率较高
肺的顺应性
导致顺应性下降的原因 • 肺实质改变
– ARDS, (支气管)肺炎, 肺水肿, 纤维化
• 表面活性物质功能障碍
– ARDS, 肺泡肺水肿, 肺不张, 误吸
吸气流速分析
吸气过程中有无主动吸气
流 速
0 时间
呼气流速分析
评估有无气流受限
流 速
0 时间
呼气流速分析
评估支气管扩张药物的效果
流 速 使用前 使用后
0
时间
呼气时间
呼气时间
呼气流速分析
评估有无气体陷闭(autoPEEP)
流 速
0 时间
PEEPe对PEEPi的影响
14 12 10
UNFREEZE
INSP
80 60 40 20 0 20 40 60 -80
. V
L min
EXP
1%
50%
100%
监测PEEPi:设置PEEP为0,按呼气暂停键
压 力
0
PEEPi
时间
容量-时间曲线
容量-时间曲线分析
反映送气与呼气容积随时间变化而变化
呼气时间 容 量
0
时间 吸气时间
气体陷闭
Inspiration
Flow (L/min)
Does not return to baseline Volume (ml)
Normal Abnormal
Expiration
漏气
Volume (ml)
Air Leak
Time (sec)
漏气
Volume (ml)
Air Leak
Pressure (cm H2O)
用以克服弹性阻力
△P=VT/C
PEEP
• 流速或气道阻力对 气道峰压产生影响, 但对平台压无影响
t F
反应肺内压
t
吸气相 呼气相
• 顺应性的变化对气 道峰压和平台压都 产生相同影响
监测PEEPi:设置PEEP为0,按呼气暂停键
压 力
0
PEEPi
时间
常见机械通气波形
相关文档
最新文档