平面向量的数量积练习题含答案
平面向量:数量积难度(含答案)
《平面向量:数量积》(2) 姓名:类型一:【求数量积】1、在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅=________-16【解】由余弦定理222222cos 53253cos AB AM BM AM BM AMB AMB =+-⋅∠=+-⨯⨯∠,222222cos 35253cos AC AM CM AM CM AMC AMC =+-⋅∠=+-⨯⨯∠,0180AMB AMC ∠+∠=,两式子相加为222222222(35)68AC AB AM CM +=+=⨯+=,2222221068100cos 222AB AC BC AB AC BAC AB AC AB AC AB AC +-+--∠===⨯⨯⨯⨯⨯⨯,68100cos 162AB AC AB AC BAC AB AC AB AC-⋅=∠=⋅=-⨯⨯.2、若等边△ABC 的边长为23,平面内一点M 满足CM →=16C B →+23C A →,则M A →·M B →=___________-2.【解】 ∵CM →=16C B →+23C A →,∴M A →=C A →-CM →=13C A →-16C B →,M B →=C B →-CM →=56C B →-23C A →.∴M A →·M B →=-29C A →2-536C B →2+718C A →·C B →=-29×12-536×12+718×12×12=-2.3、如右图,在△OAB 中,∠AOB =120°,OA =2,OB =1,C 、D 分别是线段OB 和AB 的中点,那么OD AC ⋅=_________-324、已知平面上三点A 、B 、C ,满足|AB →|=3,|BC →|=4,|CA →|=5,则AB →·BC →+BC →·CA →+CA →·AB →的值等于____-25____.【解】 由条件知∠ABC =90°,∴原式=0+4×5cos(180°-C )+5×3cos(180°-A )=-20cos C -15cos A =-20×45-15×35=-16-9=-25.5、已知向量OA →=(2,2),OB →=(4,1),在x 轴上求一点P ,使AP →·BP →取最小值,则P 点的坐标是 (3,0)【解】设P (x 0,0),且AP →=(x 0-2,-2),BP →=(x 0-4,-1),∴AP →·BP →=(x 0-2)(x 0-4)+2=x 20-6x 0+10=(x 0-3)2+1,∴x 0=3时,AP →·BP →取最小值. .6、如图,在平行四边形ABCD 中,()()1,2,3,2AC BD ==-, 则AD AC ⋅= .【解】令AB a =,AD b =,则(1,2)(2,0),(1,2)(3,2)a b a b a b ⎧+=⎪⇒==-⎨-+=-⎪⎩ 所以()3AD AC b a b ⋅=⋅+=.7、已知直线ax +by +c =0与圆O :x 2+y 2=4相交于A 、B 两点,且|AB |=23,则OA →·OB →=________.-2【解】∵|AB |=23,|OA |=|OB |=2,∴∠AOB =120°. ∴OA →·OB →=|OA →|·|OB →|·cos120°=-2.8、(2009·天津文)若等边△ABC 的边长为23,平面内一点M 满足CM →=16 CB →+23 CA →,则MA →·MB →=__________.-2【解】∵CM →=16CB →+23CA →,∴MA →=CA →-CM →=13CA →-16CB →,MB →=CB →-CM →=56CB →-23CA →.∴MA →·MB →=-29CA →2-536CB →2+718C A →·CB →=-29×12-536×12+718×12×12=-2.9、已知菱形 ABCD 的边长为a , ∠DAB=60°,2EC DE =,则 .AE DB 的值为 32a -.10、如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则AD BC =·83-.源头学子CBA11、设P 是双曲线1y x=上一点,点P 关于直线y x =的对称点为Q ,点O 为坐标原点,则OP OQ ⋅= 212、如图4,在平行四边形ABCD 中 ,AP ⊥BD ,垂足为P ,3AP =且AP AC = .18【解】设ACBD O =,则2()AC AB BO =+,AP AC = 2()AP AB BO +=22AP AB AP BO +222()2AP AB AP AP PB AP ==+=18=.13、如图,在矩形ABCD 中,22AB BC ==,,点E 为BC 的中点,点F 在边CD 上,若2AB AF =,则AE BF 的值是 2.【解】由2AB AF =,得cos 2ABAF FAB ∠=cos =AF FAB DF ∠。
向量的数量积(练习)(含解析)高一下学期数学(人教A版2019 必修第二册)
6.2.4向量的数量积1.[2022·福建三明高一期末]在边长为2的正方形ABCD 中,E 为BC 中点,则AB → ·AE → =( )A .2B .4C .25D .52.[2022·山东东营高一期末]若向量a ,b 满足||a =||b =2,〈a ,b 〉=120°,则||a -b =( )A .4B .12C .2D .233.[2022·湖北武汉高一期末]已知|a |=2,|b |=3,a 与b 的夹角为135°,则a 在b 方向上的投影向量为________.4.已知|a |=4,|b |=2,且a 与b 的夹角为2π3,求: (1)a ·b ;(2)(a -2b )·(a +b ).5.[2022·河北石家庄高一期末]已知在边长为6的等边三角形ABC 中,BD → =12DC → ,则AD → ·AC → =( )A .24B .6C .18D .-246.[2022·江苏苏州高一期中]已知平面向量a ,b 满足||a =2,||b =1,a ·(a -b )=5,则向量a 与b 的夹角为( )A .π6B .π3C .2π3D .5π67.[2022·福建福州高一期末]设非零向量a ,b ,c 是满足a +b +c =0,a ⊥b ,(2a -b )⊥c ,若||a =2 ,则||b =________.8.[2022·河北邢台高一期末]已知向量a ,b 满足(2a +b )·(a -2b )=2,且|a |=2 ,|b |=2.(1)求a 与b 的夹角θ;(2)求||a +b .9.[2022·广东珠海高一期末]已知||a =2 ,|b |=1,且a 与a -2b 相互垂直.(1)求向量a 与向量b 的夹角θ的大小;(2)求||a +b .10.在△ABC 中,AB → =c ,BC → =a ,CA → =b ,且a ·b =b ·c =c ·a ,试判断△ABC 的形状.11.(多选)[2022·山东滨州高一期末]已知a ,b ,c 是任意的非零向量,则下列结论正确的是( )A .||a +b ≤||a +||bB .a ·b ≤||a ·||bC .若||a =||b ,则a =bD .若||a +b =||a -b ,则a ⊥b12.设两个向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2的夹角为60°,若向量2t e 1+7e 2与e 1+t e 2的夹角θ为钝角,求实数t 的取值范围.答案:1.解析:由题设,AB → ·AE → =|AB → ||AE → |cos ∠BAE =|AB → |2=4.故选B.答案:B 2.解析:由||a =||b =2,〈a ,b 〉=120°,可得a ·b =||a ·||b cos 〈a ,b 〉=2×2×cos 2π3=-2, 所以||a -b =(a -b )2 =a 2+b 2-2a ·b =||a 2+||b 2-2a ·b =4+4-2×(-2)=23 .故选D.答案:D3.解析:因为a 在b 方向上的投影为||a cos 135°=-2 ,与b 同向的单位向量为b ||b =13 b ,所以a 在b 方向上的投影向量为-23b . 答案:-23b 4.解析:(1)由平面向量数量积的定义可得a ·b =|a |·|b |cos 2π3 =4×2×(-12)=-4; (2)(a -2b )·(a +b )=a 2-a ·b -2b 2=|a |2-a ·b -2|b |2=42+4-2×22=12.5.解析:因为BD → =12DC → , 所以BD → =13 BC → =13(AC → -AB → ), 所以AD → =AB → +BD → =AB → +13 (AC → -AB → )=23 AB → +13AC → . 因为等边三角形ABC 的边长为6,所以AC → ·AB → =6×6cos 60°=18,所以AD → ·AC → =(23 AB → +13AC → )·AC → =23 AB → ·AC → +13AC → 2 =23 ×18+13×36=24,故选A. 答案:A6.解析:因为||a =2,||b =1,a ·(a -b )=5,所以a ·(a -b )=a 2-a ·b =||a 2-a ·b =5,所以a ·b =-1,设向量a 与b 的夹角为θ,则cos θ=a ·b ||a ·||b =-11×2=-12 , 因为θ∈[]0,π ,所以θ=2π3.故选C. 答案:C 7.解析:因为a +b +c =0,可得c =-(a +b ),又因为a ⊥b ,(2a -b )⊥c ,且||a =2 ,可得(2a -b )·c =(2a -b )·[]-(a +b ) =-2a 2-a ·b +b 2=-2×(2 )2-0+||b 2=0, 解得||b 2=4,所以||b =2.答案:2 8.解析:(1)由(2a +b )·(a -2b )=2a 2-3a ·b -2b 2=4-3×2 ×2cos θ-8=2, 得cos θ=-22 ,因为θ∈[0,π],所以θ=3π4. (2)由题意得|a +b |=a 2+2a ·b +b 2 =2-42×22+4 =2 . 9.解析:(1)由题意,a ·(a -2b )=a 2-2a ·b =0,所以2-22 cos θ=0,可得cos θ=22,而0≤θ≤π,所以θ=π4. (2)由||a +b 2=a 2+2a ·b +b 2=2+2+1=5, 所以||a +b =5 .10.解析:在△ABC 中,易知AB → +BC → +CA → =0,即a +b +c =0,因此a +c =-b ,a +b =-c ,从而⎩⎪⎨⎪⎧(a +b )2=(-c )2,(a +c )2=(-b )2, 两式相减可得b 2+2a ·b -c 2-2a ·c =c 2-b 2,则2b 2+2(a ·b -a ·c )=2c 2,因为a ·b =c ·a =a ·c ,所以2b 2=2c 2,即|b |=|c |.同理可得|a |=|b |,故|AB → |=|BC → |=|CA → |,即△ABC 是等边三角形.11.解析:对A ,||a +b 2=a 2+b 2+2a ·b =||a 2+||b 2+2||a ·||b ·cos 〈a ,b 〉≤||a 2+||b 2+2||a ·||b =(||a +||b )2,当且仅当a ,b 同向时等号成立,所以||a +b ≤||a +||b ,故A 正确;对B ,因为cos 〈a ,b 〉≤1,所以a ·b =||a ·||b ·cos 〈a ,b 〉≤||a ·||b ,当且仅当a ,b 同向时等号成立,故B 正确;对C ,若||a =||b ,因为a ,b 方向不一定相同,所以a ,b 不一定相等,故C 错误; 对D ,若||a +b =||a -b ,两边平方可得a ·b =0,所以a ⊥b ,故D 正确.故选ABD. 答案:ABD12.解析:由向量2t e 1+7e 2与e 1+t e 2的夹角θ为钝角,得cos θ=(2t e 1+7e 2)·(e 1+t e 2)|2t e 1+7e 2|·|e 1+t e 2|<0, ∴(2t e 1+7e 2)·(e 1+t e 2)<0,化简得2t 2+15t +7<0.解得-7<t <-12. 当向量2t e 1+7e 2与e 1+t e 2的夹角为180°时,也有(2t e 1+7e 2)·(e 1+t e 2)<0,但此时夹角不是钝角.设2t e 1+7e 2=λ(e 1+t e 2),λ<0,则⎩⎪⎨⎪⎧2t =λ,7=λt ,λ<0, 解得⎩⎪⎨⎪⎧λ=-14,t =-142. ∴所求实数t 的取值范围是(-7,-142 )∪(-142 ,-12 ).。
平面向量数量积的坐标运算含答案
平面向量数量积的坐标运算答案一、单选题1.已知(2,1),(1,1)a b =-=-,则(2)(3)a b a b +⋅-等于() A .10 B .-10 C .3 D .-3【答案】B【分析】根据向量坐标表示的线性运算求出2,3a b a b +-,再根据向量数量积的坐标运算即可得解.【详解】因为(2,1),(1,1)a b =-=-, 所以2(4,3),3(1,2)a b a b +=--=-,所以(2)(3)4(1)(3)210a b a b +⋅-=⨯-+-⨯=-. 故选:B.2.已知()()()1,1,2,5,3,a b c x ===,若()830a b c -⋅=,则x 等于() A .6 B .5 C .4 D .3【答案】C【分析】根据向量数量积运算列方程,化简求得x 的值. 【详解】由于()()86,3,830a b a b c -=-⋅=, 所以63330,4x x ⨯+==. 故选:C3.已知向量()2,1a =,10a b ⋅=,52a b +=,则b 等于() A 5B 10C .5 D .25【答案】C【分析】对52a b +=两边同时平方,化简可得22250a a b b +⋅+=,再将25a =,10a b ⋅=代入化简即可得出答案. 【详解】∵()2,1a =,∵25a =,又52a b +=, 所以()()225250a b+==,即22250a a b b +⋅+=, ∵5+2×10+2b =50, 所以2b =25,即b =5. 故选:C.4.已知点()1,1A ,()2,1B -,向量()2,1a =-,()1,1b =,则AB 与a b -的夹角的余弦值为() A.B. CD【分析】由平面向量的坐标运算求得AB ,a b -,结合平面向量的夹角公式即可求得答案.【详解】由题意,得()1,2AB =-,()3,0a b -=-,则AB 与a b -的夹角的余弦值为()()()221312AB a bAB a b⋅-⨯-+=-+-故选:A ..边长为2的正ABC 中,G 为重心,P 为线段上一动点,则AG AP ⋅=()A .1B .2C .()()BG BA BA BP -⋅-D .2()3AB AC AP +⋅为ABC的重心,所以为线段BC 所以23(0,3AG =-,(,AP x =-,则0AG AP x ⋅=⋅故选:B .a 与b 相互垂直,()6,8a =-,5b =,且b 与向量(1则b =() A .()3,4--B .()4,3C .()4,3-D .()4,3--【答案】D【分析】设(),b x y =,则由题意得2268025x y x y -=⎧⎨+=⎩,解出方程,检验即可.【详解】设(),b x y =,则由题意得2205a b x y ⎧⋅=⎪⎨+=⎪⎩,即2268025x y x y -=⎧⎨+=⎩, 解得43x y =⎧⎨=⎩或43x y =-⎧⎨=-⎩,设()1,0c =,当()4,3b =时,此时4cos ,05b c b c b c⋅==>, 又因为向量夹角范围为[]0,π,故此时夹角为锐角,舍去; 当()4,3b =--时,此时4cos ,05b cb c b c⋅==-<,故此时夹角为钝角,故选:D.,则AO AP ⋅的最大值为() A .2 B .4 C .6 D .3【答案】C【分析】由条件可知点P 的方程,三角换元写出P 点坐标,用坐标表示AP ,AO ,坐标运算向量的数量积,根据角的范围即可求出最大值.【详解】解:点P 在以()0,1为圆心的单位圆上,所以点P 的方程为()2211x y +-=,设P[)cos ,0,2π1sin x y θθθ=⎧∈⎨=+⎩,则()cos 2,1sin AP θθ=++,()2,0AO =,所以[]2cos 42,6AO AP θ⋅=+∈,即AO AP ⋅的最大值为6.故选:C8.已知函数()()sin 0,0,2f x A x A ωϕωϕ=+>>< ⎪⎝⎭的图象如图所示,图象与x 轴的交点为5,02M ⎛⎫⎪⎝⎭,与y 轴的交点为N ,最高点()1,P A ,且满足NM NP ⊥,则A =()A B C .D .10由0NM NP ⋅=解得,所以2π6ω=π2,所以π6ϕ=,则NM NP ⋅=5,2⎛ ⎝二、多选题9.已知向量(2,1),(,1)a m b m =-=,则下列结论正确的是() A .若a b ∥,则2m = B .若2m =,则a b ∥ C .若a b ⊥,则13m = D .若13m =,则a b ⊥【分析】根据平面向量平行与垂直的坐标表示公式,可得答案【详解】由a b ∥,得2m -正确;由a b ⊥,得2m +BCD.10.已知向量()()()1,3,2,,a b y a b a ==+⊥,则() A .()2,3b =- B .向量,a b 的夹角为3π4C .172a b +=D .a 在b 方向上的投影向量是1,2【答案】BD【分析】根据向量的加法求出a b +,由两个向量垂直,数量积为零,求出y ,然后逐一判断各选项,a 在b 方向上的投影向量为()2a b bb⋅⋅.【详解】已知()()1,3,2,,a b y ==则()3,3a b y +=+,()a b a +⊥,()31330y ∴⨯+⨯+=,4y =-,()2,4b =-,故A 错误;12342cos ,21020a b a b a b⋅⨯-⨯===-⋅⋅,所以向量,a b 的夹角为3π4,故B 正确;()()()11,31,22,12a b +=+-=,152a b ∴+=,故C 错误;a 在b 方向上的投影向量为()()21,2a b b b⋅⋅=-,故D 正确.故选:BD. 11.已知向量()()()()3,1,cos ,sin 0π,1,0a b c θθθ==≤≤=,则下列命题正确的是()A .a b ⋅的最大值为2B .存在θ,使得a b a b +=-C .向量31,33e ⎛⎫=-- ⎪ ⎪⎝⎭是与a 共线的单位向量 D .a 在c 3c 【答案】ABD【分析】A.根据向量数量积的坐标表示,结合三角函数的恒等变形和性质,即可判断; B.利用数量积公式,可得0a b ⋅=,即可求解θ; C.根据模的公式,计算e ,即可判断; D.根据投影向量公式,即可计算求值.【详解】对于A 选项,π3cos sin 2sin 3a b θθθ⎛⎫⋅=+=+ ⎪⎝⎭,当ππ32θ+=,即π6θ=时取最大值2,故A 正确;对于B 选项,要使a b a b +=-,则0a b ⋅=, 则tan 3θ=-,因为0πθ≤≤,所以2π3θ=,故存在θ,使得a b a b +=-,故B 正确;选项,因为33e ⎛=- ⎝所以向量e 不是单位向量,故选项,因为()1,0c =为单位向量,则a 在c 上的投影向量为3||a cc c c ⋅⋅=,故D 正确ABD .12.已知向量(cos ,sin m αα=,()cos ,sin n ββ=,且()1,1m n +=,则下列说法正确的是() A .221m n += B .()cos 0αβ-=C .()sin 1αβ+=-D .m n -的值为即可判断BC ,由模长公式以及垂直关系即可判断【详解】21m =,21n =,即有222m n +=,故选项β<,如图,设点A 、B 、C 的坐标为在单位圆221x y +=.根据向量加法的平行四边形法则,四边形OACB 可得:()cos 0αβ-=,()sin 1β+=由()1,1m n +=可得:()2222m nm n +=+⋅=,可得:20m n ⋅=,22222m n m n m n -=+-⋅=,则可得:2m n -=,故选项D 成立. 故选:BD三、填空题13.已知向量()()3,1,1,a b λ=-=,若222a b a b -=+,则λ=__________.【答案】3【分析】求出a b -,利用模长公式列出方程,求出3λ=.【详解】因为()2,1a b λ-=--,所以224(1)911λλ++=+++,解得:3λ=. 故答案为:314.已知向量()3,1a =-,(),1b t =,,45a b =,则t =______. 【答案】2【分析】利用向量坐标夹角运用求参数. 【详解】因为,45a b =︒, 所以2312cos ,2101a b t a b a bt ⋅-===⋅+,且13103t t ->⇒>,整理得2123203t t t ⎛⎫--=> ⎪⎝⎭,解得:2t =或12t =-(舍去),故答案为:2.15.已知(1,2a x =-,(),1b x =且//a b ,则||a b +=______. 【答案】32【分析】根据给定条件,利用共线向量的坐标表示求出x ,再利用模的坐标表示计算作答. 【详解】因为()1,2a x =-,(),1b x =且//a b ,则21x x =-,解得=1x -,有(21,3)(3,3)a x b =-=-+,所以22|(3)332|a b -+=+=. 故答案为:3216.已知()1,0a =,()1,1b =,则a 在b 上的投影向量为________. 【答案】11(,)22【分析】由投影向量的定义求结果即可. 【详解】由题意,a 在b 上的投影向量为(1,1)111(,)22||||22b a b b b ⋅⋅=⋅=.故答案为:11(,)22。
高考数学一轮专项复习练习卷-北师大版-平面向量的数量积(含解析)
一、单项选择题1.(2023·黔西模拟)已知向量a,b满足|a|=1,|b|=3,|a-2b|=3,则a·(a+b)等于() A.-2B.-1C.1D.22.(2022·新高考全国Ⅱ)已知向量a=(3,4),b=(1,0),c=a+t b,若〈a,c〉=〈b,c〉,则t 等于()A.-6B.-5C.5D.63.(2023·大同模拟)平面向量a与b相互垂直,已知a=(6,-8),|b|=5,且b与向量(1,0)的夹角是钝角,则b等于()A.(-3,-4)B.(4,3)C.(-4,3)D.(-4,-3)4.已知向量a=(λ+1,2),b=(1,-λ),若a⊥b,则向量c=(1,2)在向量a+b上的投影数量为()A.102B.-102C.102c D.-102c5.(2023·泰州模拟)已知平面单位向量a,b,c满足〈a,b〉=〈b,c〉=〈c,a〉=2π3,则|3a+2b+c|等于()A.0B.1 C.3 D.66.(2023·佛山模拟)在△ABC中,设|AC→|2-|AB→|2=2AM→·(AC→-AB→),那么动点M的轨迹必通过△ABC的()A.垂心B.内心C.重心D.外心二、多项选择题7.(2024·亳州模拟)已知P是边长为2的正六边形ABCDEF内的一点,则AP→·AB→的可能取值是()A.-2B.2C.4D.88.已知向量a=(2,1),b=(1,-1),c=(m-2,-n),其中m,n均为正数,且(a-b)∥c,则下列说法正确的是()A.a与b的夹角为钝角B.向量a在b上的投影数量为12C.2m+n=4D.mn的最大值为2三、填空题9.已知向量a=(2,3),b=(-3,-2),写出一个与a-b垂直的非零向量c=________. 10.在如图所示的天平中,左、右两个秤盘均被3根细绳均匀地固定在横梁上.在其中一个秤盘中放入重量为60N的物品,在另一个秤盘中放入重量60N的砝码,天平平衡.3根细绳通过秤盘分担对物品的拉力(拉力分别为F1,F2,F3),若3根细绳两两之间的夹角均为π3,不考虑秤盘和细绳本身的重量,则F1的大小为________N.11.(2024·抚州模拟)定义:|a×b|=|a||b|sinθ,其中θ为向量a与b的夹角,若|a|=2,|b|=5,a·b=-8,则|a×b|等于________.12.(2023·西安模拟)已知在△ABC中,AB=4,AC=6,其外接圆的圆心为O,则AO→·BC→=________.四、解答题13.(2023·白银模拟)如图,在等腰梯形ABCD中,AB∥CD,|AB→|=2|DC→|=2,∠BAD=π3,E 是BC边的中点.(1)试用AB→,AD→表示AE→,BC→;(2)求DB→·AE→的值.14.(2023·青岛模拟)如图,正方形ABCD的边长为6,E是AB的中点,F是BC边上靠近点B的三等分点,AF与DE交于点M.(1)求∠EMF的余弦值;(2)设AM→=λAF→,求λ的值及点M的坐标.15.(2024·永州模拟)窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的汉族传统民间艺术之一.图1是一张由卷曲纹和回纹构成的正六边形剪纸窗花,如图2所示其外框是边长为2的正六边形ABCDEF,内部圆的圆心为该正六边形的中心O,圆O的半径为1,点P在圆O →·OE→的最小值为()上运动,则PEA.-1B.-2C.1D.216.(2023·浙江金丽衢十二校联考)在△ABC中,AB=7,BC=8,AC=9,AM和AN分别是BC边上的高和中线,则MN→·BC→等于()A.14B.15C.16D.17§5.3平面向量的数量积1.D2.C3.D4.A5.C6.D 7.BC [如图,取A 为坐标原点,AB 所在直线为x轴建立平面直角坐标系,易知正六边形的每个内角为120°,所以∠CBx =60°,则A (0,0),B (2,0),C (3,3),F (-1,3).设P (x ,y ),则AP →=(x ,y ),AB →=(2,0),且-1<x <3.所以AP →·AB →=(x ,y )·(2,0)=2x ∈(-2,6).]8.CD [对于A ,向量a =(2,1),b =(1,-1),则a ·b =2-1=1>0,又a ,b 不共线,所以a ,b 的夹角为锐角,故A 错误;对于B ,向量a 在b 上的投影数量为a ·b |b |=22,故B 错误;对于C ,a -b =(1,2),若(a -b )∥c ,则-n =2(m -2),变形可得2m +n =4,故C 正确;对于D ,由2m +n =4,且m ,n 均为正数,得mn =12(2m ·n )=2,当且仅当m =1,n =2时,等号成立,即mn 的最大值为2,故D 正确.]9.(1,-1)(答案不唯一)10.10611.612.10解析如图,设BC 的中点为D ,连接OD ,AD ,则AO →·BC →=(AD →+DO →)·(AC →-AB →)=12(AC →+AB →)·(AC →-AB →)+DO →·(AC →-AB →)=12(|AC →|2-|AB →|2)=10.13.解(1)AC →=AD →+DC →=AD →+12AB →,AE →=12(AB →+AC →)+AD →+12=34AB →+12AD →,BC →=AC →-AB →=AD →+12AB →-AB →=AD →-12AB →.(2)由题意可知,|AD →|=12(|AB →|-|DC →|)cos π3=1212=1,DB →=AB →-AD →,所以DB →·AE →=(AB →-AD→+12AD 34|AB →|2-12|AD →|2-14AB →·AD →=34|AB →|2-12|AD →|2-14|AB →||AD →|·cos π3=34×4-12×1-14×2×1×12=94.14.解(1)如图所示,建立以点A 为原点的平面直角坐标系,则D (0,6),E (3,0),A (0,0),F (6,2),∴DE →=(3,-6),AF →=(6,2),由于∠EMF 就是DE →,AF →的夹角,∴cos ∠EMF =cos 〈DE →,AF →〉=18-129+36·36+4=210,∴∠EMF 的余弦值为210.(2)因为AM →=λAF →,则AM →=(6λ,2λ),则M (6λ,2λ),又D ,M ,E 三点共线,则设DM →=tDE →,0<t <1,即(6λ,2λ-6)=t (3,-6),λ=3t ,λ-6=-6t ,解得λ=37,故15.D [如图,以O 为坐标原点,BE 所在直线为x 轴,AF 的垂直平分线所在直线为y 轴,建立平面直角坐标系,设点P (cos θ,sin θ)(0≤θ≤2π),由题意知,E (2,0),O (0,0),则PE →=(2-cos θ,-sin θ),OE →=(2,0),所以PE →·OE →=4-2cos θ,当cos θ=1,即θ=0时,PE →·OE →取最小值2.]16.C [如图,设AB →=a ,AC →=b ,BM →=λBC →,则有AM →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →=(1-λ)a +λb ,由余弦定理得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =72+92-822×7×9=1121,∵AM →⊥BC →,∴AM →·BC →=0,即[(1-λ)a +λb ]·(b -a )=(1-2λ)a ·b -(1-λ)a 2+λb 2=0,其中a ·b =|a ||b |cos ∠BAC =63×1121=33,a 2=49,b 2=81,解得λ=14,BN →=12BC →,∴MN →=BN →-BM →=14BC →,MN →·BC →=14BC →2=16.]。
6.2.2 平面向量的数量积(精练)(解析版)
6.2.2 平面向量的数量积(精练)【题组一 向量的数量积】1.(2020·天水市第一中学高一期末)已知等边ABC 的边长为2,若3BC BE =,AD DC =,则BD AE ⋅等于( ) A .103B .103-C .2D .2-【答案】D【解析】等边△ABC 的边长为2,3BC BE =,AD DC =, ∴()12BD BA BC =+,1313A AB BE AB B E BC A C B =+=+=-, ∴()221111223233BD AE BA BC BC BA BC BA BC BA ⎛⎫⎛⎫+-=--⋅ ⎪ ⎪⎝=⎭⎝⎭, 112144222332⎛⎫=⨯⨯--⨯⨯⨯ ⎪⎝⎭,2=-.故选:D . 2.(2020·陕西渭南市·高一期末)在ABC 中,D 为线段BC 的中点,1AD =,3BC =,则AB AC ⋅( ) A .13- B .54-C .3D .4【答案】B 【解析】在ABC 中,D 为线段BC 的中点()12AD AB AC BC AC AB⎧=+⎪∴⎨⎪=-⎩,可得12AB ADBC ,12AC ADBC , 2211152244AB AC AD BC ADBC AD BC ⎛⎫⎛⎫∴⋅=-⋅+=-=- ⎪ ⎪⎝⎭⎝⎭.故选:B.3.(2020·湖南益阳市·高一期末)在ABC 中,AB =AC =G 为ABC 的重心,则AG BC ⋅=________.【答案】6【解析】如图,点D 是BC 的中点,G 为ABC 的重心,∴()()22113323AG AD AB AC AB AC ==⨯+=+,BC AC AB =-, 所以()()()221133AG BC AB AC AC AB AC AB ⋅=+⋅-=- ()126863=-=故答案为:64.(2020·黑龙江大庆市·大庆一中高一期末)如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点5BA CA ⋅=,2BF CF ⋅=-,则BE CE ⋅的值是________.【答案】58【解析】因为222211436=52244AD BC FD BC BA CA BC AD BC AD ()()--⋅=-⋅--==, 2211114223234FD BCBF CF BC AD BC AD ()()-⋅=-⋅--==-,因此2223,827FD BC ==,222211416.224458ED BC FD BC BE CE BC ED BC ED ()()--⋅=-⋅--===故答案为:58.5.(2020·四川内江市)在等腰Rt ABC 中,斜边BC =AB c =,BC a =,CA b =,那么a b b c c a ⋅+⋅+⋅=_____.【答案】2-【解析】由题可知在等腰Rt ABC 中,斜边BC =1ABAC ,,24AB C,即2a =,1b c ==,()()cos 0cos a b b c c a a b C c a B ππ∴⋅+⋅+⋅=⋅⋅-++⋅⋅-11222⎛⎛⎫=⨯-+-=- ⎪ ⎪⎝⎭⎝⎭.故答案为:2-.6.(2020·北京101中学高一期末)如图,在矩形ABCD 中,AB =2BC =,点E 为BC 的中点,点F 在边CD 上,若2AB AF ⋅=,则AE BF ⋅的值是______.【解析】∵AF AD DF =+,()22AB AF AB AD DF AB AD AB DF AB DF DF ⋅=⋅+=⋅+⋅=⋅==,∴1DF =,21CF =,∴()()AE BF AB BEBC CF AB CF BE BC ⋅=++=⋅+⋅)11222=+⨯=-+=.7.(2020·陕西咸阳市·高一期末)已知两个单位向量a ,b 的夹角为120︒,()1c ta t b =+-.若1a c ⋅=,则实数t =______. 【答案】1 【解析】两个单位向量a ,b 的夹角为120︒,∴11·1122a b ⎛⎫=⨯⨯-=- ⎪⎝⎭,又(1)c ta t b =+-,1a c =,∴21[(1)](1)(1)12a ta tb ta t a b t t +-=+-=--=,解得1t =. 故答案为:1.8.(2020·长沙县实验中学高一期末)已知非零向量m →,n →满足4m →=3n →,cos m →〈,13n →〉=.若n →⊥t m n →→⎛⎫+ ⎪⎝⎭,则实数t 的值为_____________. 【答案】4-【解析】非零向量m →,n →满足4m →=3n →,cos m →〈,13n →〉=,n →⊥t m n →→⎛⎫+ ⎪⎝⎭,n →∴⋅22+||||cos ,||t m n t m n n t m n m n n →→→→→→→→→→⎛⎫+=⋅=<>+ ⎪⎝⎭223||||034t n n →→=⨯+=,解得4t =-,故答案为:4- 【题组二 向量的夹角】1.(2020·山东临沂市·高一期末)已知非零向量a ,b ,若||2||a b =,且(2)a a b ⊥-,则a 与b 的夹角为( ) A .6πB .4π C .3π D .34π 【答案】B【解析】因为(2)a a b ⊥-,所以22(2)22cos ,0a a b a a b a a b a b ⋅-=-⋅=-=,因为||2||a b =,所以22cos ,22aa ab a bb===, []a,b 0,,a,b 4ππ∈∴=.故选:B.2.(2020·镇原中学高一期末)已知a b c ,,为单位向量,且满足370a b c λ++=,a 与b 的夹角为3π,则实数λ=_______________. 【答案】8λ=-或5λ=【解析】由370a b c λ++=,可得7(3)c a b λ=-+,则22224996b b c a a λλ=++⋅. 由a b c ,,为单位向量,得2221a b c ===,则24996cos 3πλλ=++,即23400λλ+-=,解得8λ=-或5λ=.3.(2020·浙江温州市·高一期末)已知平面向,,a b c ,满足2,3,1a b c ===,且()()5a c b c -⋅-=,a b -与a b +夹角余弦值的最小值等于_________.【解析】平面向,,a b c ,满足2,3,1a b c ===,则2222224,3,1a a b bc c ======因为()()5a c b c -⋅-=展开化简可得()25a b c a b c ⋅-++=,因为221c c ==,代入化简可得()4a b c a b ⋅-+= 设c 与a b +的夹角为[],0,θθπ∈ 则由上式可得cos 4a b c a b θ⋅-⋅+⋅= 而()222272a b aba abb a b +=+=+⋅+=+⋅代入上式化简可得cos θ=令m a b =⋅,设a 与b 的夹角为[],0,ααπ∈,则由平面向量数量积定义可得cosa b a b m αα⋅=⋅⋅==,而1cos 1α-≤≤所以m -≤≤由余弦函数的值域可得cos 1θ≤,即4cos 1722a b m a bθ⋅-==≤+⋅将不等式化简可得21090m m -+≤,解不等式可得19m ≤≤ 综上可得1m ≤≤即123a b ⋅≤≤而由平面向量数量积的运算可知,设a b -与a b +夹角为β,则()()22727c 2osa b a b a b a ba b a bβ-⋅+-⋅+-⋅⋅⋅=+==当分母越大时,cos β的值越小;当a b ⋅的值越小时,分母的值越大 所以当1a b ⋅=时,cos β的值最小 代入可得c s o β==所以a b -与a b +夹角余弦值的最小值等于15故答案为4.(2020·延安市第一中学高一月考)已知向量,a b满足2,1,2a b a b a b ==+=-. (1)求a 在b 上的投影; (2)求a 与2a b -夹角的余弦值. 【答案】(1)12-;(2)4. 【解析】(1)2222222(2)()442a b a b a b a b a a b b a a b b +=-⇒+=-⇒+⋅+=-⋅+2163,2a b b a b ∴⋅=-∴⋅=-,设a 和b 的夹角为θ,a 在b 上的投影为:1cos 2a ba bθ⋅==-;(2)设a 与2a b -夹角为α,()2222cos 2244a a ba a ba a ab bα⋅-====⨯⋅-⋅-⋅+.5.(2020·北京顺义区·高一期末)已知平面向量a ,b ,2=a ,1=b ,且a 与b 的夹角为3π. (1)求a b ⋅; (2)求2a b +;(3)若2a b +与()2a b R λλ+∈垂直,求λ的值. 【答案】(1)1;(2)(3)4-. 【解析】(1)1cos2132a b a b π⋅=⋅=⨯=; (2)()2222224444412a b a ba ab b +=+=+⋅+=++=,223a b +∴=;(3)()()22a b a b λ+⊥+,()()220a b a b λ∴+⋅+=,即()()222428421230a a b b λλλλλ++⋅+=+++=+=,解得:4λ=-. 6.(2020·南昌市·江西师大附中高一月考)已知向量,a b 满足||||1a b ==,||3||(0,)ka b a kb k k R +=->∈(1)若//a b ,求实数k 的值; (2)求向量a 与b 夹角的最大值. 【答案】(1)2±;(2)3π. 【解析】(1)因为//a b ,0k >,所以2104k a b k+⋅=>,则a 与b 同向.因为||||1a b ==,所以1a b ⋅=,即2114k k+=,整理得2410k k -+=,解得2k =所以当2k =±//a b . (2)设,a b 的夹角为θ,则221111cos 2444||||k a b k k a k a b b θ⋅⎡⎤+⎛⎫==⋅==+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,=,即1k =时,cos θ取最小值12,又0θπ≤≤,所以3πθ=,即向量a 与b 夹角的最大值为3π. 7.(2020·全国高一专题练习)已知向量12,e e ,且121e e ==,1e 与2e 的夹角为3π.12m e e λ=+,1232n e e =-.(1)求证:()1222e e e -⊥; (2)若m n =,求λ的值; (3)若m n ⊥,求λ的值; (4)若m 与n 的夹角为3π,求λ的值. 【答案】(1)见解析(2)2λ=或3λ=-.(3)14λ=(4)2λ= 【解析】(1)证明:因为121e e ==,1e 与2e 的夹角为3π,所以()2221221221221222cos2111032e e e e e e e e e π-⋅=-=-=⨯⨯⨯-=, 所以()1222e e e-⊥.(2)由m n =得()()22121232e e e e λ+=-,即()2211229(212)30e e e e λλ-++⋅-=.因为121e e ==,12,3e e π=,所以22121e e ==,12111cos 32e e π⋅=⨯⨯=, 所以()2191(212)3102λλ-⨯++⨯-⨯=, 即260λλ+-=.所以2λ=或3λ=-.(3)由m n ⊥知0m n ⋅=,即()()1212320e e e e λ+⋅-=,即2211223(32)20e e e e λλ+-⋅-=. 因为121e e ==,12,3e e π=,所以22121e e ==,12111cos32e e π⋅=⨯⨯=, 所以()1332202λλ+-⨯-=.所以14λ=.(4)由前面解答知22121e e ==,1212e e ⋅=,7n =.而()22222212112221m e e e e e e λλλλλ=+=+⋅+=++,所以2m λ=()()1212211222113(32)23(32)222322e e e m n e e e e e λλλλλλ+-⋅-=+-⨯-⋅=+⋅-==-因为,3m n π=,由cos ,m n m n m n ⋅=得11222λ-=, 化简得23520λλ--=, 所以2λ=或13λ=-.经检验知13λ=-不成立,故2λ=.【题组三 向量的投影】1.(2021·江西上饶市)若向量a 与b 满足()a b a +⊥,且1a =,2b =,则向量a 在b 方向上的投影为()A B .12-C .-1D .3 【答案】B【解析】利用向量垂直的充要条件有:()20a b a a a b +⋅=+⋅=,∴1a b ⋅=-,则向量a 在b 方向上的投影为12a b b⋅=-,故选B.2.(2020·沈阳市第一七〇中学高一期末)已知向量a ,b ,其中1a =,24a b -=,22a b +=,则a 在b 方向上的投影为( ) A .2-B .1C .1-D .2【答案】C【解析】由题意,向量a ,b ,其中1a =,24a b -=,22a b +=, 可得()222224414416a ba b a b b a b -=+-⋅=+-⋅= (1)()2222244144=4a b a b a b b a b +=++⋅=++⋅ (2)联立(1)(2)解得32b =,32a b ⋅=-, 所以a 在b 方向上的投影为1a b b⋅=-.故选:C .3.(2020·长沙市·湖南师大附中高一月考)已知向量a ,b 满足1a=,3b=,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( ) A B C .4D .5【答案】A【解析】设两个向量的夹角为θ,则cos cos a b θθ=,从而cos 0θ=, 因为[]0,θπ∈,故2πθ=,所以2210a b a b -=+=.故选:A .4.(2020·眉山市彭山区第一中学高一期中)已知1a =,2b =,,60a b =︒,则a b +在a 上的投影是( ) A . 1 B C .2 D 【答案】C【解析】因为1a =,2b =,,60a b =︒,所以cos ,12cos601a b a b a b ⋅=<>=⨯⨯︒=()22112a b a ab a +⋅=+⋅=+=所以a b +在a上的投影()2a b a a+⋅=故选:C 5(2020·陕西渭南市·高一期末)已知3a =,3b =,32a b +=,则向量a 在向量b 方向的投影( ) A .1 B .1- C .3D .3-【答案】A【解析】由题意,向量3a =,3b =,32a b +=,可得222239218a b a b a b a b +=++⋅=++⋅=,解得3a b ⋅=, 所以向量a 在向量b 方向的投影313a b b⋅==.故选:A. 6.(2020·四川绵阳市·高一期末)在△ABC 中,ABAC ⋅=0,点P 为BC 的中点,且|PA |=|AB |,则向量BA 在向量BC 上的投影为( ) A BC B .BC C .﹣14BC D .14BC 【答案】D【解析】根据题意,AB AC ⊥,又点P 为BC 中点,故可得PC PB PA AB ===, 如下所示:故三角形PAB 为等边三角形,故可得60B ∠=︒, 不妨设BA a =,故可得2BC a =, 则向量BA 在向量BC 上的投影为21212224a BA BC a BC a BC⨯⋅===. 故选:D .7.(2020·营口市第二高级中学高一期末)已知向量,a b 满足||5,||4,||6b a b a b =+=-=,则向量a 在向量b 上的投影为________.【答案】1-【解析】向量,a b 满足||5,||4,||6b a b a b =+=-=,可得2()16a b +=,2()36a b -=,即为22216a b a b ++=,22236a b a b +-=,两式相减可得5a b =-, 则向量a 在向量b 上的投影为515||a b b -==-.故答案为:1-. 8.(2020·湖北武汉市·高一期末)设向量a ,b 满足2a =,1b =,且()b a b ⊥+,则向量b 在向量2a b +上的投影的数量为_______. 【答案】12【解析】()b a b ⊥+,()20a b b a b b =⋅+∴⋅+=,21a b b ∴=-=-⋅,()2221b a b a b b ∴⋅+=⋅+=,22244442a b a b a b +=++⋅=+=,∴向量b 在向量2a b +上的投影的数量为()2122b a b a b⋅+=+.故答案为:12.9.(2021·河南郑州市)已知平面向量,a b 满足1,2,3a b a b ==+=,则a 在b 方向上的投影等于______. 【答案】12-【解析】由题意结合平面向量数量积的运算法则有:()22221243,1a b a a b b a b a b +=+⋅+=+⋅+=∴⋅=-,据此可得,a 在b 方向上的投影等于1122a b b⋅-==-. 10.(2020·四川高一期末)已知边长为2的等边ABC 中,则向量AB 在向量CA 方向上的投影为_____. 【答案】1-【解析】因为ABC 是等边三角形, 所以向量AB 与向量CA 的夹角为120, 因为ABC 边长为2,所以向量AB 在向量CA 方向上的投影为1cos120212AB ⎛⎫⋅=⨯-=- ⎪⎝⎭, 故答案为:1-.11.(2020·全国高一课时练习)已知e 为一个单位向量,a 与e 的夹角是120︒.若a 在e 上的投影向量为2e -,则a =_____________. 【答案】4【解析】e 为一个单位向量,a 与e 的夹角是120︒由平面向量数量积定义可得1cos1202a e a ⋅=⨯⨯︒=-, 根据平面向量投影定义可得122a e e ⎛⎫⨯-⋅=- ⎪⎝⎭,∴4a =.故答案为:4 12.(2020·福建省福州第一中学高一期末)已知非零向量a 、b 满足2a =,24a b -=,a 在b 方向上的投影为1,则()2b a b ⋅+=_______. 【答案】18 【解析】2a =,a 在b 方向上的投影为1,212a b ⋅=⨯=,24a b -=,222222216244444242a b a a b b a a b b b =-=-⋅+=-⋅+=⨯-⨯+,可得22b =,因此,()22222818b a b a b b ⋅+=⋅+=+⨯=.故答案为:18. 【题组四 向量的模长】1.(2020·全国高一)已知平面向量a ,b 满足2a =,3b =,若a ,b 的夹角为120°,则3a b -=( )A .B .C .D .3【答案】A【解析】由题意得,2239636a b a a b b -=-⋅+=+=A .2.(2020·全国高一)若向量a 与b 的夹角为60°,且43a b ==,, 则a b +等于( )A .37B .13C D 【答案】C【解析】因为向量a 与b 的夹角为60°,且43a b ==,, 所以22222+2++2cos 60+a b a a b b a a b b +⋅=⋅⋅=2214+243+3372=⨯⨯⨯=所以37a b +=,故选:C .3.(2020·全国高一开学考试)已知向量a ,b 满足0a b ⋅=,1a =,3b =,则a b -=( )A .0B .2C .D【答案】D【解析】因为向量a ,b 满足0a b ⋅=,1a =,3b =则2a b a b -=-222a a b b =-⋅+==:D4.(2020·银川市·宁夏大学附属中学高一期末)已知向量a 、b 满足:3a =,4b =,41a b +=,则a b -=_________. 【答案】3. 【解析】()222222222232441a b a b a a b b a a b b a b +=+=+⋅+=+⋅+=+⋅+=,8a b ∴⋅=,()2222222233a b a b a a b b a a b b ∴-=-=-⋅+=-⋅+=-,因此,3a b -=,故答案为3.5.(2020·全国高一单元测试)若平面向量a ,b 满足2a b +=,6a b -=,则a b ⋅=__________,22a b +=__________.【答案】-1 4 【解析】由2a b +=,得2222a a b b +⋅+=,①由6a b -=,得2226a a b b -⋅+=,②①-②得:44a b ⋅=-,∴1a b ⋅=-.故224a b +=.故答案为:①-1;②4.6.(2020·全国高一)已知6a →=,8b →=,则a b →→+的最大值为______;若6a →=,8b →=,且10a b →→-=,则a b →→+=______. 【答案】14 10【解析】222222()22cos ,a b a b a a b b a a b a b b →→→→→→→→→→→→→→+=+=+⋅+=+<>+3664248cos ,a b →→=++⨯<>10096cos ,a b →→=+<>10096196≤+=,当且仅当,a b →→同向时等号成立,所以14a b →→+≤,即a b →→+的最大值为14,由10a b →→-=两边平方可得:2222()21002100a b a b a a b b a b →→→→→→→→→→-=-=-⋅+=-⋅=,所以0a b →→⋅=,所以2222()2100a b a b a a b b →→→→→→→→+=+=+⋅+=,即10a b →→+=. 故答案为:14;107.(2020·东北育才学校)已知向量a ,b 满足4a =,b 在a 上的投影(正射影的数量)为-2,则2a b -的最小值为 【答案】8【解析】因为b 在a 上的投影(正射影的数量)为2-, 所以||cos ,2b a b <>=-, 即2||cos ,b a b =-<>,而1cos ,0a b -≤<><,所以||2b ≥,因为2222222(2)44||4||||cos ,4||a b a b a a b b a a b a b b -=-=-⋅+=-<>+22=1644(2)4||484||b b -⨯⨯-+=+所以22484464a b-≥+⨯=,即28a b-≥,故选D.9.(2020·四川广元市·高一期末)设非零向量a与b的夹角是23π,且a a b=+,则22a tbb+的最小值为()A.3B C .12D .1【答案】B【解析】对于a,b 和a b+的关系,根据平行四边形法则,如图a BA CD==,b BC=,a b BD+=,23ABCπ∠=,3DCBπ∴∠=,a a b=+,CD BD BC∴==,a b a b∴==+,2222222==222a tba tb a tbb bb+++,a b=,22222222244cos223=224a t ab t ba tba tbb b bπ++++=,22222222244cos4231244a t ab t b a t a a t a t tb aπ++-+==-+当且仅当1t =时,22a tbb+的最小值为2. 故选:B.10.(2020·浙江杭州市·高一期末)已知平面向量a 、b 满足23a a b =+=,则b a b ++的最大值为________. 【答案】【解析】22222443443a b a a b b a b b +=+⋅+=+⋅+=,则2a b b ⋅=-,设a 与b 的夹角为θ,则2cos a b b θ⋅=-,3cos b θ∴=-,0b ≥,0θπ≤≤,可得2θπ≤≤π, 22222233sin a b a a b b b θ+=+⋅+=-=,则3sin a b θ+=,3cos 3b a b πθθθ⎛⎫++=-+=- ⎪⎝⎭,2θπ≤≤π,则2633πππθ≤-≤,所以,当32ππθ-=b a b ++取最大值故答案为:11.(2020·沙坪坝区·重庆南开中学高一期末)已知向量a 与向量b 的夹角为3π,且1a =,()32a a b ⊥-. (1)求b ;(2)若27a mb -=,求m . 【答案】(1)3b =;(2)13m =-或1m =. 【解析】(1)∵()23232320a a b a a b a b ⋅-=-⋅=-⋅=, ∴32a b ⋅=,∴13cos 322a b a b b π⋅=⋅⋅==,∴3b =. (2)∵27a mb -=,∴()222227244469a mba mab m b m m =-=-⋅+=-+,整理得:23210m m --=,解得:13m =-或1m =. 12.(2020·北京朝阳区·人大附中朝阳学校高一月考)已知平面向量,a b 满足:2a =,1b =|.(1)若()()21a b a b +⋅-=,求a b ⋅的值;(2)设向量,a b 的夹角为θ,若存在t R ∈,使得||1a tb +=,求cos θ的取值范围.【答案】(1)1-;(2)1,⎡⎤-⋃⎢⎥⎣⎦⎣⎦.【解析】(1)若()()21a b a b +⋅-=,则2221a a b b +⋅-=, 又因为2a =,1b =|,所以421a b +⋅-=,所以1a b ⋅=-; (2)若||1a tb +=,则22221a ta b t b +⋅+=,又因为2a =,1b =,所以2203ta b t +=+⋅即204cos 3t t θ++=,所以2=16120cos θ∆-≥,解得2cos θ≤-或cos 2θ≥,所以311cos ,,θ⎡⎡⎤∈-⎢⎢⎥⎣⎦⎣⎦. 13.(2020·全国高一单元测试)已知向量OA a =,OB b =,60AOB ∠=,且4a b ==. (1)求a b +,a b -;(2)求a b +与a 的夹角及a b -与a 的夹角.【答案】(1)43a b +=,4a b -=;(2)30,60.【解析】(1)因为向量OA a =,OB b =,60AOB ∠=,且4a b ==, 所以()22222222co 60s a ba ba ab b a a b b +=+=+⋅+=++11624416482=+⨯⨯⨯+=,所以43a b +=, 又()22222222co 60s a ba ba ab b a a b b -=-=-⋅+=-+11624416162=-⨯⨯⨯+=,所以4a b -=;(2)记a b +与a 的夹角为,0,180αα⎡⎤∈⎣⎦,a b -与a 的夹角为0,180,ββ⎡⎤∈⎣⎦,则()211644cos 43a b a a b aα+⨯⨯+⋅====⨯+,所以30α=.()21164412cos 44162a b a a a ba b aβ-⨯⨯-⋅-⋅====⨯-,所以60β=.【题组五 平面向量的综合运用】1.(2020·北京丰台区·高一期末)a ,b 是两个单位向量,则下列四个结论中正确的是( ) A .a b = B .1a b ⋅=C .22a b ≠D .22||||a b =【答案】D【解析】A .,a b 可能方向不同,故错误;B .cos ,cos ,a b a b a b a b ⋅=⋅⋅<>=<>,两向量夹角未知,故错误;C .22221,1a a a a b b b b =⋅===⋅==,所以22a b =,故错误; D .由C 知221a b ==,故正确,故选:D.2.(2020·全国高一单元测试)若a 是非零向量,b 是单位向量,①0a >,②1=b ,③ab a=,④()0a b λλ=≠,⑤0a b ⋅≠,其中正确的有( )A .①②③B .①②⑤C .①②④D .①②【答案】D【解析】∵0a ≠,∴0a >,①正确;b 为单位向量,故1=b ,②正确;aa表示与a 方向相同的单位向量,不一定与b 方向相同,故③错误; a 与b 不一定共线,故()0a b λλ=≠不成立,故④错误,若a 与b 垂直,则有0a b ⋅=,故⑤错误. 故选:D.3.(2021·重庆)设,a b 为向量,则“a b a b ⋅=”是“//a b ” ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【解析】根据向量数量积运算,a b ⋅= a b cos θ 若a b a b ⋅=,即a b cos θ=a b 所以cos θ=± 1,即=0180θ︒︒或 所以//a b若//a b ,则a b 与的夹角为0°或180°,所以“0a b a b cos a b ⋅=︒= 或180a b a b cos a b ⋅=︒=-即a b a b cos θ⋅= 所以“a b a b ⋅=”是“//a b ”的充分必要条件 所以选C4.(2020·全国高一课时练习)若a ,b ,c 均为单位向量,且12a b =-,(,)c xa yb x y R =+∈,则x y +的最大值是( )A .2 BC D .1【答案】A 【解析】a ,b ,c 均为单位向量,且12a b =-,(,)c xa yb x y R =+∈,∴222222()21c xa yb x y xya b x y xy =+=++=+-=,设x y t +=,y t x =-,得:22()()10x t x x t x +----=, 223310x tx t ∴-+-=,方程223310x tx t -+-=有解,∴()2291210t t ∆=--,23120t -+,22t ∴-x y ∴+的最大值为2.故选:A .5.(2020·甘肃兰州市·兰州一中高一期末)已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( )A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定【答案】C【解析】由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()b c a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c .故选:C .6.(2020·浙江湖州市·高一期末)已知空间向量a ,b ,c 和实数λ,则下列说法正确的是( ) A .若0a b ⋅=,则0a =或0b = B .若0a λ=,则0λ=或0a = C .若()()22ab =,则a b =或a b =-D .若a b a c ⋅=⋅,则b c =【答案】B【解析】对于选项A ,若0a b ⋅=,则0a =或0b =或a b ⊥,故A 错误; 对于选项C ,由()()22ab =,得||||a b =,即可得其模相等,但方向不确定,故C 错误;对于选项D ,由a b a c ⋅=⋅,得()0⋅-=a b c ,则0a =或b c =或()a b c ⊥-,故D 错误;对于选项B ,由0a λ=,可得0λ=或0a =,故B 正确, 故选:B .7.(多选)(2021·江苏高一)若a 、b 、c 是空间的非零向量,则下列命题中的假命题是( ) A .()()a b c b c a ⋅⋅=⋅⋅B .若a b a b ⋅=-⋅,则//a bC .若a c b c ⋅=⋅,则//a bD .若a a b b ⋅=⋅,则a b = 【答案】ACD【解析】()a b c ⋅⋅是与c 共线的向量,()b c a ⋅⋅是与a 共线的向量,a 与c 不一定共线,A 错, 若a b a b ⋅=-⋅,则a 与b 方向相反,∴//a b ,B 对,若a c b c ⋅=⋅,则()0a b c -⋅=,即()a b c -⊥,不能推出//a b ,C 错, 若a a b b ⋅=⋅,则||||a b =,a 与b 方向不一定相同,不能推出a b =,D 错, 故选:ACD.8.(多选)(2020·山东临沂市·高一期末)已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤B .若a b c b ⋅=⋅且0b ≠,则a c =C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭【答案】AC【解析】对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确, 对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即22||||a b a b -⋅=,cos 1θ=-,则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53λ>-, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒=所以a 与a b λ+的夹角为锐角时53λ>-且0λ≠,故D 错误; 故选:AC.9.(2020·浙江高一期末)已知2a b a b ==⋅=,()24c a b λλ=-+,则()()c a c b -⋅-的最小值为__________. 【答案】4952- 【解析】()14c a a b λλ-=-+,()()241c b a b λλ-=-+-,()()()()()14241c b c a a b a b λλλλ⎡⎤⎡⎤-⋅-=⋅∴-+-+-⎣⎦⎣⎦ ()()()2222216122871a a b b λλλλλλ=-++-+-⋅+-,代入2a b a b ==⋅=, 原式252386λλ=-+,∴当1952λ=时,原式最小值为4952-. 故答案为:4952-10.(2020·湖北高一开学考试)在ABC 中,已知2AB =,||||CA CB CA CB +=-,2cos 22sin 12B CA ++=,则BA 在BC 方向上的投影为__________.【解析】因为CA CB CA CB +=-,所以()()22CA CB CA CB +=-所以0CA CB =,即2C π=因为2cos 22sin12B C A ++=,所以2cos 22sin 12A A π-+=即2cos 22sin 12AA +=,即cos2cos 0A A +=,所以22cos cos 10A A +-=解得cos 1A =-或1cos 2A =因为0,2A π⎛⎫∈ ⎪⎝⎭,所以1cos 2A =,即3A π=,所以6B π=,因为2AB =,所以2sin BC A ==所以BA 在BC 方向上的投影为3BC =【点睛】本题考查平面向量的几何意义,属于中档题.11.(2020·浙江杭州市·高一期末)已知平面向量,a b ,其中||2,||1a b ==,,a b 的夹角是3π,则2a b -=____________;若t 为任意实数,则a tb +的最小值为____________.【答案】2【解析】由题意,平面向量,a b ,其中||2,||1a b ==,,a b 的夹角是3π, 可得cos 21cos133a b a b ππ⋅=⋅=⨯⨯=,则22224444414a ba b a b -=+-⋅=+-⨯=,所以22a b -=,又由22222()22a ta b t b t t a t a tb b ==+⋅+++=+=,所以当1t =-时,a tb +的最小值为故答案为:212.(2020·天津市滨海新区大港太平村中学高一期末)在ABC 中,2AB =,3AC =,120BAC ∠=︒,D 是BC 中点,E 在边AC 上,AE AC λ=,12AD BE ⋅=,则||=AD ________,λ的值为________.13【解析】因为2AB =,3AC =,120BAC ∠=︒,所以cos1203AB AC AB AC ⋅=⋅=-, 由题意()12AD AB AC =+,BE BA AE AC AB λ=+-=, 所以()()222211224AD AB AC AB AB AC AC ⎡⎤=+=+⋅+⎢⎥⎣⎦()1746944=-+=,所以72AD =; 由12AD BE ⋅=可得()()()2211222211AB AC AB AC AB AC AB AC λλλ+-⋅-=+⋅- ()31122229123λλλ=---=-=, 解得13λ=.;13. 13.(2020·湖北黄冈市·高一期末)已知向量n 与向量m 的夹角为3π,且1n =,3m =,()0n n m λ⋅-=. (1)求λ的值(2)记向量n 与向量3n m -的夹角为θ,求cos2θ. 【答案】(1)23λ=;(2)12-. 【解析】(1)由()2131cos 03n n m n m n πλλλ⋅-=-⋅=-⨯⨯⨯=,所以23λ=. (2)因为()2133333122n n m n m n ⋅-=-⋅=-⨯⨯= ()2223396963n m n m n m n m -=-=-⋅+=-=所以()3312cos 3132n n m n n m θ⋅-===⋅-⨯所以2211cos 22cos 12122θθ⎛⎫=-=⨯-=- ⎪⎝⎭. 14.(2020·山东省五莲县第一中学高一月考)已知2a =,3b =,向量a 与向量b 夹角为45°,求使向量a λb +与a b λ+的夹角是锐角时,λ的取值范围.【答案】1185((,1)(1,)-+-∞+∞ 【解析】∵2a =,3b =,a 与b 夹角为45°,∴cos 453⋅=︒==b a a b ,而()()2222223393113a ab ba a b a b b λλλλλλλλλλ+++=++++=+=+⋅+,要使向量a λb +与a b λ+的夹角是锐角,则()()0a b a b λλ+⋅+>,且向量a λb +与a b λ+不共线,由()()0a b a b λλ+⋅+>得231130λλ++>,得λ<或λ>. 由向量a λb +与a b λ+不共线得211λλ≠∴≠±所以λ的取值范围为:1185((,1)(1,)-+-∞+∞ 15.(2020·全国高一课时练习)在ABC 中,2CA CB ==,记,a CA B CB ==,且||3||(ka b a kb k+=-为正实数),(1)求证:()()a b a b +⊥-;(2)将a 与b 的数量积表示为关于k 的函数()f k ; (3)求函数()f k 的最小值及此时角A 的大小. 【答案】(1)证明见解析;(2)1()f k k k =+;(3)2,3A π=. 【解析】(1)在ABC 中,2CA CB ==,可得2a b ==,所以2222()()440a b a b a b a b +-=-=-=-=,所以()()a b a b +⊥-. (2)由||3||ka b a kb +=-,可得22||3||ka b a kb +=-,即22222223(2)k a ka b b a ka b k b ++=-+,整理得2888ka b k ⋅=+, 所以1()f k a b k k=⋅=+. (3)由(2)知1()f k a b k k=⋅=+,因为k 为正实数,则12k k +≥=,当且仅当1k k 时,即1k =时,等号成立,所以()f k 的最小值为2,即2a b ⋅=, 此时21cos 42||||a b C a b ⋅===⋅,因为(0,)C π∈,可得3C π=,又因为CA CB =,此时ABC 为等边三角形,所以3A π=.16.(2020·全国高一单元测试)在如图所示的平面图形中,已知OA a =,OB b =,点A ,B 分别是线段CE ,ED 的中点.(1)试用a ,b 表示CD ;(2)若1a =,2b =,且a ,b 的夹角2,33ππθ⎡⎤∈⎢⎥⎣⎦,试求CD 的取值范围.【答案】(1)()2CD b a =-;(2)||2CD ⎡∈⎣.【解析】(1)连接AB ,则AB OB OA b a =-=-, ∵A ,B 分别是线段CE ,ED 的中点, ∴12AB CD =,则()2CD b a =-. (2)222222CD b ab a a b =-=+-⋅2222cos b a a b θ=+-⋅,将1a =,2b =代入,则21CD == ∵2,33ππθ⎡⎤∈⎢⎥⎣⎦,∴11cos ,22θ⎡⎤∈-⎢⎥⎣⎦,则[]54cos 3,7θ-∈,故||2CD ⎡∈⎣.。
2022年高考数学核心考点专题训练专题21 平面向量的数量积(含解析)
2OE;③AH在AB向量上的投影向量的模为
2.
2
其中正确结论的个数为( )
A. 3
B. 2
C. 1
D. 0
10. 设向量 a,b,c,满足 a = b = 2,a ⋅ b = 2, a − c ⋅ b − c = 0,则 c 的最小值为
A. 3+1 2
B. 3−1 2
C. 3 − 1
11. 在给出的下列命题中,不正确的是( )
−5 10
=−
10,所以
2
B
错误:
因为a
−
b
=
(5,0),所以
cos
<
a,a
−
b
>=
a⋅(a−b) |a|×|a−b|
=
10 5×5
=
2 5,所以
5
C
正确;
因为c
=
(
5 5
,
25 5
),所以a
⋅
c
=2×
5 5
+
1
×
25 5
=
45 5
≠
0,所以a与c不垂直,所以 D
错误.
故选 C.
20.
已知向量m =
⋅
OB
=
OA
⋅
OC,AO
=
λ(
AB |AB|
+
AC |AC|
)则ΔABC
为等腰三角形
D. 已知平面向量OA,OB,OC满足 OA = OB = OC = r(r > 0),且OA + OB + OC = 0,则△ ABC
是等边三角形
12. 已知不共线向量OA,OB夹角为α, OA = 1, OB = 2,OP = 1 − t OA,OQ = tOB 0 ≤ t ≤ 1), PQ 在 t = t0
2020-2021高中人教A版必修4《平面向量的数量积》同步练习(B)含答案
r2 r2 r r a b 2a b 3
uuur
设 AO
ar ,
uuur AB
r
b ,建立平面直角坐标系,如图所示:
则 A 1,0 , B 0, 3
∴ ar
1,0 ,
r b
1, 3
∴
rr
r
r a
tb a tb
2
2
1t
2
3t
2
1 t
2
2
2
2
1
3
3t 2( t
0
4
4
2
1 t
8
2
3 0
8
它表示点 P t,0 与点 M 1 , 3 、 N 1, 3 的距离之和的 2 倍
( 1)求
r a
r b
与
r a
r b
的夹角;
( 2)若
r a
r a
r b
,求实数
的值.
【答案】( 1) 3 ;(2) 1.
4
【解析】
r
r
rr
( 1)因为 a 1,2 , b 3,4 ,所以 a b
rr
2,6 , a b 4, 2
所以
cos
r a
r rr r a b,a b
r
( 2)当 a
rr r b,a b
uuur CP
uuur AB
uuur PA
uuur PB
,求实数
的取值范围.
【答案】( 1) 2 7 ;( 2) 2 2 1 .
2
【解析】
( I )当
1 时,
uuur AP
1
uuur AB
,
3
3
高中数学必修二 6 3 2 平面向量数量积的坐标表示(精练)(含答案)
6.3.2 平面向量数量积的坐标表示(精练)【题组一 数量积的坐标运算】1.(2021·深圳市龙岗区)已知向量()1,3a =-,()5,4b =-,则⋅=a b ( ) A .15 B .16C .17D .18【答案】C【解析】因为向量()1,3a =-,()5,4b =-,所以()()153417a b ⋅=-⨯-+⨯=,故选:C 2.(2020·广东高一期末)若(1,2),(2,3)=-=a b 则(2b)b a -⋅=( ) A .-5 B .5C .-6D .6【答案】A【解析】因为(1,2),(2,3)=-=a b ,所以(2b)b a -⋅=(4,1)(2,3)42135-⋅=-⨯+⨯=-.故选:A.3.(2020·湖北高一期末)已知向量()4,5a =,()22,11a b -=-,则向量a 在向量b 方向上的投影为( )A .1B .2-C .2D .-1【答案】B【解析】由题意,()4,5a =,()22,11a b -=-,可得()26,6b -=-,则()3,3b =-,所以43353a b ⋅=⨯-⨯=-,()233b =+-=所以向量a 在向量b 方向上的投影为3232a b b⋅-==-.故选:B.4.(2020·湖北武汉市·高一期末)已知()1,2A -,()4,1B-,()3,2C ,则cos BAC ∠=( )A .10-B .10C .2-D .2【答案】D【解析】由已知得()3,1AB =,()2,4AC =,∴cos cos ,23AB AC BAC AB AC AB AC⋅∠====.故选:D. 5.(2020·安徽合肥市·高一期末)已知点()1,1A -,()1,2B ,()2,1C --,()3,4D ,则向量CD →在BA→方向上的投影是( ) A.- B.2-C.D.2【答案】A【解析】由题可知,(1,1)A -,(1,2)B ,(2,1)C --,(3,4)D ,所以(2,1)BA →=--,(5,5)CD →=, 则向量CD →在BA →方向上的投影是||BA CD BA →→→⋅==-故选:A.6.(2020·四川内江市)已知向量(1,2)a =,(,4)b x =,(2,)c y =,若//a b ,a c ⊥,则()b a c ⋅-=( ) A .14 B .-14C .10D .6【答案】C【解析】向量(1,2)a =,(,4)b x =,(2,)c y =,//a b ,可得142x ⨯=,解得2x =,(2,4)b =,a c ⊥,可得1220y ⨯+=,解得1y =-,(1,3)a c -=-,则()21210b a c -=-+=.故选:C .7.(2020·山东聊城市·高一期末)向量(1,3)a =,(3,1)b =,则向量a b +与a b -的夹角为( ) A .12πB .6πC .3π D .2π 【答案】D【解析】设θ为a b +与a b -的夹角,(1,3)a =,(3,1)b =,则1+31+a b +=(,,131a b -=(-,)||=6a b ++||6a b -=-又()()0cos 04a b a b a b a bθ+⋅-===+-,0,2πθπθ≤≤∴=. 故选:D .8.(2020·尤溪县第五中学高一期末)已知向量(1,2)a =,(,4)a b m +=,若a b ⊥ ,则m =( ) A .3- B .2-C .2D .3【答案】A【解析】()()(,4)1,2(1,2)b a b a m m =+-=-=-,因为a b ⊥,所以()112230a b m m ⋅=-⨯+⨯=+=,解得:3m =-,故选:A9.(2020·全国高一课时练习)设(3,4)a =,a b ⊥且b 在x 轴上的投影为2,则b =( ) A .8(2,)3B .3(2,)2-C .8(2,)3-D .3(2,)2-【答案】B【解析】由题意,向量b 在x 轴上的投影为2,可设(2,)b y =, 因为a b ⊥,可得2340a b y ⋅=⨯+=,解得32y =-,所以3(2,)2b =-.故选:B. 10.(2021·江苏高一)已知平面向量(1,)a m =,()0,2b =,若(3)b a mb ⊥-,则实数m =( ) A .1- B .0C .1D .2【答案】B【解析】因为(3)b a mb ⊥-,所以(3)0b a mb ⋅-=,即23a b mb ⋅=,又(1,)a m =,()0,2b =,故324m m ⨯=,解得0m =.故选:B.11.(2020·全国高一)已知向量()()126,,3,2e e λ==-,若12,e e 为钝角,则λ的范围是( ) A .(,9)-∞ B .(9,)+∞C .(,4)(4,9)-∞⋃D .(,4)(4,9)-∞-⋃-【答案】D【解析】12,e e 为钝角,∴12·0e e <且12,e e 不共线,∴18201230λλ-+<⎧⎨+≠⎩,解得9λ<且4λ≠-, λ∴的范围是(-∞,4)(4-⋃-,9).故选:D.12.(多选)(2021·江苏高一)已知向量(),3a m =,()2,4b =-,若()a b a +⊥,则( ) A .1m =或3m =- B .1m =-或3m = C .2a b +=或10a b += D .2a b +=或26a b +=【答案】AC【解析】因为向量(),3a m =,()2,4b =-,所以()2,1b m a +=+-,若()a b a +⊥,则()()2130m m +⨯+-⨯=,即2230m m +-=,解得1m =或3m =-, 故A 正确,B 错;当3m =-时,(b m a +=+=当1m =时,(a b m +=+=故C 正确,D 错.故选:AC.13.(多选)(2020·全国高一)设向量()2,0a =,()1,1b =,则( ) A .a b = B .()//a b b - C .()a b b -⊥ D .a 与b 的夹角为π4【答案】CD【解析】因为()2,0a =,()1,1b =, 所以2,2a b ==,所以a b ≠,故A 错误; 因为()2,0a =,()1,1b =,所以()()=1,1a b --,又()1,1b =, 则1111⨯≠-⨯,所以()a b -与b 不平行,故B 错误; 又()110a b b -⋅=-=,故C 正确;又2cos ,222a b a b a b⋅<>===⋅, 又a 与b 的夹角范围是[]0,π, 所以a 与b 的夹角为π4,故D 正确. 故选:CD.14.(2020·全国高一)已知向量()1,2a =-,()4,3b =,22c =.若a 与()b c -垂直,则向量a 与c 的夹角的余弦值是______.【答案】10-【解析】由已知14(2)32a b ⋅=⨯+-⨯=-,5a =,∵a 与()b c -垂直,∴()0a b c a b a c ⋅-=⋅-⋅=,∴2a c a b ⋅=⋅=-,∴2cos 105a c a c a c⋅-<⋅>===-⨯.15.(2020·绵阳市·四川省绵阳江油中学)已知向量()1,2a =,与向量(),1b x = (1)当x 为何值时,a b ⊥;(2)当3x =为何值时,求向量a 与向量b 的夹角; (3)求2b a -的最小值以及取得最小值时向量b 的坐标. 【答案】(1)2x =-;(2)4π;(3)最小值3,(2,1)=b . 【解析】(1)20a b x ⋅=+=,2x =-,所以2x =-时,a b ⊥;(2)由题意(3,1)b =,3cos ,25a b a b a b⋅+<>===⨯,4a b π<>=;(3)由已知2(2,3)b a x -=--, 所以2(2)b a x -=-2x =时,2b a -取得最小值3,此时(2,1)=b .【题组二 巧建坐标解数量积】1.(2020·安徽省亳州市第十八中学高一期中)如图,在矩形ABCD 中,4AB =,3AD =,点P 为CD 的中点,点Q 在BC 上,且2BQ =.(1)求AP AQ ⋅;(2)若AC AP AQ λμ=+(λ,μ∈R ),求λμ的值.【答案】(1)14;(2)23λμ=. 【解析】如图,分别以边AB ,AD 所在的直线为x 轴,y 轴, 点A 为坐标原点,建立平面直角坐标系,则()0,0A ,()2,3P ,()4,0B ,()4,3C ,()4,2Q .(1)∵()2,3AP =,()4,2AQ =,∴243214AP AQ ⋅=⨯+⨯=. (2)∵()4,3AC =,()2,3AP =,()4,2AQ =,由AC AP AQ λμ=+,得()()4,324,32λμλμ=++,∴244,323,λμλμ+=⎧⎨+=⎩解得1,23,4λμ⎧=⎪⎪⎨⎪=⎪⎩∴23λμ=.2.(2020·江西高一期末)如图,在ABC 中,已知2AB =,4AC =,60BAC ∠=︒,D 为线段BC 中点,E 为线段AD 中点.(1)求AD BC ⋅的值;(2)求EB ,EC 夹角的余弦值.【答案】(1)6;(2. 【解析】(1)依题意可知ABC为直角三角形,BC =则(0,0)B ,(0,2)A,C , 因为D 为BC的中点,故D ,∴()3,2AD =-,()2BC =,∴36AD BC ⋅=⨯=.(2)由E 为线段AD 中点可知2E ⎛⎫ ⎪⎪⎝⎭,∴12EB ⎛⎫=-- ⎪ ⎪⎝⎭,312EC ⎛⎫=- ⎪ ⎪⎝⎭,∴cos ,||||EB ECEB EC EB EC ⋅<>=11-⨯+⨯==3.(2020·河北邢台市·高一期中)如图,扇形OAB的圆心角为90︒,2OA =,点M 为线段OA 的中点,点N 为弧AB 上任意一点.(1)若30BON ∠=︒,试用向量OA ,OB 表示向量ON ; (2)求MB ON ⋅的取值范围. 【答案】(1)1322ON OA OB =+;(2)[]2,4-. 【解析】(1)如图,以O 为坐标原点,建立直角坐标系xOy , 则()0,0O ,()0,2A ,()2,0B ,)N,所以()0,2OA =,()2,0OB =,()3,1ON =.设ON xOA yOB=+,则212x y =⎧⎪⎨=⎪⎩12x y ⎧=⎪⎪⎨⎪=⎪⎩所以1322ON OA OB =+. (2)设()0θ90BON θ∠=︒≤≤︒,则()2cos ,2sin N θθ,()0,1M , 则()2,1MB =-,()2cos ,2sin ON θθ=, 所以()4cos 2sin MB ON θθθϕ⋅=-=+, 其中cos 5ϕ=,sin 5ϕ=(ϕ为锐角). 因为090θ︒≤≤︒,所以90ϕθϕϕ≤+=+︒, 则()maxcos cos 5θϕϕ+==,()()mincos cos 90sin 5θϕϕϕ+=︒+=-=-,所以MBON ⋅的取值范围为[]2,4-.【题组三 数量积与三角函数综合运用】1.(2020·河南安阳市·林州一中高一月考)已知向量(4sin ,1cos ),(1,2)a b αα=-=-,若2a b ⋅=-,则22sin cos 2sin cos αααα=-( ) A .1 B .1-C .27-D .12-【答案】A【解析】由2a b ⋅=-,得4sin 2(1cos )2αα--=-,整理得1tan 2α=-,所以2221sin cos tan 2112sin cos 2tan 112αααααα-===---,故选:A . 2.(2020·辽宁高一期末)已知向量()1,cos2a x =,(sin 2b x =,将函数()f x a b =⋅的图象沿x 轴向左平移ϕ()0ϕ>个单位后,得到的图象关于原点对称,则ϕ的最小值为( )A .12πB .6πC .512π D .3π 【答案】D【解析】()sin 222sin 23f x a b x x x π=⋅⎛⎫==+⎪⎝⎭, 将函数()f x 的图象向左平移ϕ个单位,得到()2sin 22sin 2233y x x ππϕϕ⎡⎤⎛⎫=++=++ ⎪⎢⎥⎣⎦⎝⎭, 该函数的图象关于原点对称,∴该函数是奇函数,23k πϕπ∴+=,k Z ∈,62k ππϕ∴=-+,k Z ∈,又0ϕ>,min 3πϕ∴=.故选:D .3.(2020·陕西宝鸡市·高一期末)已知α是锐角,3(,sin )2a α=,1(,2cos )3b α=-,且a b ⊥,则α为( ) A .15° B .45°C .75°D .15°或75°【答案】D【解析】a b ⊥,3(,sin )2a α=,1(,2cos )3b α=-,112sin cos 0sin 222a b ααα∴⋅=-=⇒=,又()0,90α∈,则20,180α,230α∴=或150,解得α=15°或75°.故选:D4.(2020·辽宁大连市·)已知向量1,tan 3a α⎛⎫= ⎪⎝⎭,()1,cos b α=,若a b ⊥,则3cos 2πα⎛⎫+= ⎪⎝⎭( )A .13- B .13C .D 【答案】A【解析】若a b ⊥,则1tan cos 03a b αα⋅=+⋅=,即1sin 3α=-, 所以31cos sin 23παα⎛⎫+==- ⎪⎝⎭.故选:A 5.(2020·陕西宝鸡市·高一期末)已知向量(sin 70,cos 70)a =,(cos80,sin 80)b =,则a b +的值为( )A .1 BC .2D .4【答案】B 【解析】(sin 70,cos 70)a =,(cos80,sin 80)b =(sin 701a ∴==,(cos801b ==,1sin 70cos80cos70sin80sin1502a b , ()22223a b a b a a b b ∴+=+=+⋅+=.故选:B.6.(2020·泰兴市第二高级中学高一期末)已知(cos ,sin )a αα=,(cos ,sin )b ββ=,其中0αβπ<<<. (1)求向量a b +与a b -所成的夹角; (2)若k a b +与a k b -的模相等,求2αβ-的值(k 为非零的常数).【答案】(1)90;(2)4π-. 【解析】(1)由已知得:1a b ==,则:()()22·0a b a b a b +-=-=,因此:()()a b a b +⊥-,因此,向量a b +与a b -所成的夹角为90;(2)由(cos ,sin )a αα=,(cos ,sin )b ββ=,可得()cos cos ,sin sin k a b k k αβαβ+=++,()cos cos ,sin sin a k b k k αβαβ-=--,(cos ka b k +=,(cos a kb α-=∴=整理可得:()()222cos 112cos k k k k βαβα+-+=--+,即:()4cos 0k βα-=,0k ≠ , ()cos 0βα∴-=,即()cos 0αβ-=,00αβππαβ<<<∴-<-<,因此:2παβ-=-,即:24αβπ-=-.7.(2020·株洲市南方中学高一期末)已知向量()2sin ,1a α=,()1,cos b α=. (1)若角α的终边过点()3,4,求a b ⋅的值; (2)//a b ,且角α为锐角,求角α的大小; 【答案】(1)115;(2)4π.【解析】(1)角α的终边过点()3,4,点(3,4)到原点距离为5r ==,∴4sin 5α,3cos 5α=, ∴43112sin cos 2555a b αα⋅=+=⨯+=; (2)∵//a b ,∴2sin cos 10αα-=,sin21α=,又α为锐角,∴22πα=,∴4πα=.8.(2020·林芝市第二高级中学高一期末)在平面直角坐标系xoy中,已知向量2(,22m =-,(sin ,cos )n x x =,(0,)2x π∈.(1)若m n ⊥,求tan x 的值; (2)若m 与n 的夹角为3π,求x 的值. 【答案】(1)tan 1x =(2)512π. 【解析】(1)∵m n ⊥,∴0mn ⋅=0x x -=,∴tan 1x =. (2)∵m 与n 的夹角为3π,∴2cos 122cos ,112x x m n m n m n -⋅<>===⨯||||,故1sin()42x π-=, 又(0,)2x π∈,∴(,)444πππ-∈-x ,46x ππ∴-=,即512x π=.故x 的值为512π. 9.(2020·广西桂林市·高一期末)已知向量(sin ,1)m x =-,向量13cos ,2n x ⎛⎫= ⎪⎭,函数()()f x m n m =+⋅.(1)求()f x 的最小正周期T 及其图象的对称轴的方程; (2)若方程()0f x t -=在,42ππ⎡⎤⎢⎥⎣⎦上有解,求实数t 的取值范围.【答案】(1)π,23k x ππ=+,k z ∈;(2)3,22⎡⎤⎢⎥⎣⎦. 【解析】(1)∵(sin ,1)m x =-,13cos ,2n x ⎛⎫= ⎪⎭,∴1sin ,2m n x x ⎛⎫+=+- ⎪⎝⎭,可得1()()sin (sin )2f x m n m x x x =+⋅=+21sin cos 2x x x =+∵21sin (1cos 2)2x x =-,1sin cos sin 22x x x =∴11()(1cos 2)2sin 212226f x x x x π⎛⎫=-++=-+ ⎪⎝⎭ 因此,()f x 的最小正周期22T ππ==. ∵262x k πππ-=+,k z ∈,∴对称轴方程为23k x ππ=+,k z ∈. (2)∵,42x ππ⎡⎤∈⎢⎥⎣⎦,可得52,636x πππ⎡⎤-∈⎢⎥⎣⎦,∴1sin 2,162x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,得()sin 216f x x π⎛⎫=-+ ⎪⎝⎭的值域为3,22⎡⎤⎢⎥⎣⎦. ∵方程()0f x t -=在,42x ππ⎡⎤∈⎢⎥⎣⎦上有解, ∴()f x t =在,42x ππ⎡⎤∈⎢⎥⎣⎦上有解,即得实数t 的取值范围为3,22⎡⎤⎢⎥⎣⎦. 10.(2020·甘肃白银市·高一期末)设向量()3cos ,2sin a θθ=-. (1)当43θπ=时,求a 的值: (2)若()3,1b =-,且//a b,求22cos 124θπθ-⎛⎫+ ⎪⎝⎭的值.【答案】(1;(2)23.【解析】(1)43θπ=,所以4433cos ,2sin ,332a ππ⎛⎫⎛=-= ⎪ ⎝⎭⎝,所以2322a ⎛⎫==⎪; (2)//a b ,则3cos 32sin 0θθ-+⨯=,所以1tan 2θ=,故22cos 1cos 122sin cos tan 134θθπθθθθ-===++⎛⎫+ ⎪⎝⎭.11.(2020·湖北荆门外语学校高一期中)已知向量()2sin ,cos a m x x =,()sin cos ,4sin b x x m x =+-,,02x π⎛⎫∈- ⎪⎝⎭.(1)若//a b ,tan 2x =-,求实数m 的值;(2)记()f x a b =⋅,若()1f x ≤恒成立,求实数m 的取值范围.【答案】(1)±(2)(,1]-∞. 【解析】(1)∵//a b ,∴ 228sin cos (sin cos )m x x x x -=+,整理得:228tan tan 1m x x =-- ∵tan 2x =-,2321m =,解得:m = (2)∵()f x a b =⋅,()2sin ,cos a m x x =,()sin cos ,4sin b x x m x =+-, ∴()2sin (sin cos )4sin cos f x m x x x x x =+-22sin 2sin cos m x m x x =- (1cos 2)sin 2m x m x =-- (sin 2cos2)m m x x =-+sin(2)4m x π=+∵(,0)2x π∈-,∴32444x πππ-<+<,∴1sin(2)42x π-≤+<,∴01)14x π<+≤若()sin(2)14f x m x π=+≤恒成立,则11)4m x π≤+恒成立,又∵111)4x π≥=+,∴1m ≤,故实数m的取值范围为(,1]-∞.12.(2020·山西朔州市·应县一中高一期中(理))已知()sin ,cos a x x ωω=,()sin ,2sin cos b x x x ωωω=-,()0,4ω∈,若()2f x a b =⋅其图像关于点,08M π⎛⎫⎪⎝⎭对称(1)求()f x 的解析式; (2)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间; (3)当a b ⊥时,求x 的值. 【答案】(1)()24f x x π⎛⎫=- ⎪⎝⎭;(2)()f x 在0,2π⎡⎤⎢⎥⎣⎦上的增区间是30,8π⎡⎤⎢⎥⎣⎦,减区间是3,82ππ⎡⎤⎢⎥⎣⎦;(3)28k x ππ=+,k Z ∈. 【解析】(1)()sin ,cos a x x ωω=,()sin ,2sin cos b x x x ωωω=- ∴()2222sin4sin cos 2cos f x a b x x x x ωωωω=⋅=+-2sin22cos2x x ωω=-24x πω⎛⎫=-⎪⎝⎭∵()f x 的图象关于点,08M π⎛⎫⎪⎝⎭对称 ∴284k ππωπ⋅-=,k Z ∈即41k ω=+,k Z ∈∵()0,4ω∈ ∴1ω=∴()24f x x π⎛⎫=-⎪⎝⎭.(2)()24f x x π⎛⎫=-⎪⎝⎭的单调递增区间为: ()()322224288k x k k Z k x k k Z πππππππππ-≤-≤+∈⇒-≤≤+∈; 单调递减区间为:()()33722224288k x k k Z k x k k Z πππππππππ+≤-≤+∈⇒+≤≤+∈; 所以()f x 在0,2π⎡⎤⎢⎥⎣⎦上的增区间是30,8π⎡⎤⎢⎥⎣⎦,减区间是3,82ππ⎡⎤⎢⎥⎣⎦; (3)∵a b ⊥∴()222sin 204f x a b x π⎛⎫=⋅=-= ⎪⎝⎭即24x k ππ-=,k Z ∈ 解得28k x ππ=+,k Z ∈13.(2020·广东高一期末)已知向量(1,2cos ),3sin ,0,23π⎛⎫⎛⎫⎛⎫==∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎭a x b x x . (1)若//a b ,求tan2x 的值;(2)若f (x )=a •b ,则函数f (x )的值域.【答案】(1(2)【解析】(1)因为//a b ,所以cos 0x x -=,所以1sin 22x =,因为03x π<<,所以2023x π<<,所以26x π=,所以tan 2tan63x π==.(2)()f x a b =⋅=2cos 2x x x x+⨯=+)4x π=+, 因为03x π<<,所以74412x πππ<+<,所以sin(),1]42x π+∈,所以()f x ∈.14.(2021·广东湛江)已知向量33cossin 22x x a ⎛⎫= ⎪⎝⎭,,cos sin()22x x b ⎛⎫=- ⎪⎝⎭,,且0.2x π⎡⎤∈⎢⎥⎣⎦,(1)求a b 及a b +的值;(2)若()·2f x a b a b λ=-+的最小值是32-,求实数λ的值. 【答案】(1)·cos 2a b x =,2cos a b x +=,(2)12λ= 【解析】(1)因为向量33cossin 22x x a ⎛⎫= ⎪⎝⎭,,cos sin()22x x b ⎛⎫=- ⎪⎝⎭,,所以33·cos cos sin sin cos 22222x x x xa b x =-=, 33cos cos ,sin sin 2222x x x x a b ⎛⎫+=+- ⎪⎝⎭,所以(cosa b +===因为02x π⎡⎤∈⎢⎥⎣⎦,,所以cos 0x >, 所以2cos a b x +=,(2)由(1)可得()2·2cos 24cos 2cos 4cos 1f x a b a b x x x x λλλ=-+=-=--, 令cos t x =,则[0,1]t ∈,令2()241g t t t λ=--,其图像的对称轴为直线44t λλ-=-=, 则问题转化为当λ为何值时,函数2()241g t t t λ=--在[0,1]t ∈上有最小值32-, ①当0λ≤时,则函数()g t 在[0,1]上递增,最小值为3(0)12g =-≠-,不合题意,舍去, ②01λ<<时,则函数()g t 在[0,]λ上递减,在[,1]λ上递增,则最小值为23()212g λλ=--=-,解得12λ=或12λ=-(舍去), ③当1λ≥时,则函数()g t 在[0,1]上递减,最小值为3(1)142g λ=-=-,解得58λ=,不合题意,舍去,综上,12λ=【题组四 数量积与几何综合运用】1.(2020·全国高一课时练习)一个平行四边形的三个顶点坐标分别是()5,7、()3,5-、()3,4,则第四个顶点的坐标不可能是( ) A .()1,8- B .()5,2-C .()11,6D .()5,2【答案】D【解析】设点()5,7A 、()3,5B -、()3,4C ,设第四个顶点为(),D x y ,分以下三种情况讨论: ①若四边形ABDC 为平行四边形,则AC BD =,即()()2,33,5x y --=+-,即3253x y +=-⎧⎨-=-⎩,解得52x y =-⎧⎨=⎩,此时,点D 的坐标为()5,2-;②若四边形ABCD 是平行四边形,则AD BC =,则()()5,76,1x y --=-, 即5671x y -=⎧⎨-=-⎩,解得116x y =⎧⎨=⎩,此时,点D 的坐标为()11,6;③若四边形ACBD 为平行四边形,则AD CB =,即()()5,76,1x y --=-,即5671x y -=-⎧⎨-=⎩,解得18x y =-⎧⎨=⎩,此时,点D 的坐标为()1,8-.综上所述,第四个顶点的坐标为()11,6或()5,2-或()1,8-,所以不可能是()5,2,故选:D. 2.(2020·辽宁)已知向量.(1)若ΔABC 为直角三角形,且∠B 为直角,求实数λ的值. (2)若点A 、B 、C 能构成三角形,求实数λ应满足的条件 . 【答案】(1)λ=2;(2)λ≠−2. 【解析】∵即:−7(6−λ)+7(3λ−2)=0,∴λ=2(2)∵若点A 、B 、C 能构成三角形,则A 、B 、C 不共线 ∴−7(3λ−2)≠7(6−λ) ∴实数λ应满足的条件 是λ≠−23.(2021·重庆市)已知向量(3,4),(6,3),(5,3)OA OB OC x y =-=-=---,(4,1)OD =. (1)若四边形ABCD 是平行四边形,求,x y 的值;(2)若ABC ∆为等腰直角三角形,且B ∠为直角,求,x y 的值. 【答案】(1)2,5x y =-=-;(2)0{3x y ==-或2{3x y =-=.【解析】(1)(1,5)AD =,(1,)BC x y =---,由AD BC =得x=-2,y=-5. (2)(3,1),AB =(1,)BC x y =---,若B ∠为直角,则AB BC ⊥, ∴3(1)0x y ---=,又AB BC =,∴22(1)10x y ++=,再由3(1)y x =--,解得0{3x y ==-或2{3x y =-=.4.(2020·浙江温州市·高一期末)已知平面上三点,,A B C ,()2,3BC k =-,()2,4AC =. (1)若BC AC =,求实数k 的值.(2)若ABC ∆是以BC 为斜边的直角三角形,求实数k 的值.【答案】(1)2k =(2)2k =-【解析】(1)由于BC AC =,则=解得2k =.(2)(),1AB AC BC k =-= 由题意得A 为直角,则•0AB AC =. 即240k +=,故2k =-.5.(2020·山西朔州市·应县一中高一期中(文))已知向量OA =()3,4-,OB =()6,3-,OC =()5,3m m ---,O 为坐标原点.(1)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值; (2)若点A 、B 、C 能构成三角形,求实数m 应满足的条件. 【答案】(1)74m =;(2)12m ≠ 【解析】(1)因为OA =()3,4-,OB =()6,3-,OC =()5,3m m ---, 所以(3,1)AB OB OA =-=,(2,1)AC OC OA m m =-=--, 若△ABC 为直角三角形,且∠A 为直角,则AB AC ⊥, ∴3(2﹣m )+(1﹣m )=0,解得74m =. (2)若点A ,B ,C 能构成三角形,则这三点不共线,即AB 与AC 不共线, 得3(1﹣m )≠2﹣m ,∴实数12m ≠时,满足条件. 6.(2020·广东云浮市·高一期末)(1)已知向量a ,b 满足5a =,()1,2b =,且//a b ,求a 的坐标. (2)已知()1,4A --、()5,2B 、()3,4C ,判断并证明以A ,B ,C 为顶点的三角形是否为直角三角形,若是,请指出哪个角是直角.【答案】(1)()1,2a =或()1,2a =--;(2)ABC 为直角三角形,B 为直角,证明见解析. 【解析】(1)设(),a x y =,则225x y +=,又//a b ,所以20x y -=,联立2252x y y x ⎧+=⎪⎨=⎪⎩,解得12x y =⎧⎨=⎩或12x y =-⎧⎨=-⎩. 于是()1,2a =或()1,2a =--.(2)ABC 是直角三角形,B 为直角.证明如下:∵()()()1,45,26,6BA =---=--,()()()3,45,22,2BC =-=-,∴()()62620BA BC ⋅=-⨯-+-⨯=,∴BA BC ⊥,即ABC 为直角三角形,B 为直角.7.(2020·湖北襄阳市·襄阳五中高一月考)已知向量(3,4)OA =-,(6,3)OB =-,(5,3)OC x y =-+,(4,1)OD =--.(Ⅰ)若四边形ABCD 是平行四边形,求x ,y 的值;(Ⅱ)若ABC ∆为等腰直角三角形,且B 为直角,求x ,y 的值.【答案】(Ⅰ)2,5--;(Ⅱ)03x y =⎧⎨=-⎩或23x y =-⎧⎨=⎩. 【解析】(Ⅰ)(3,4)OA =-,(6,3)OB =-,(5,3)OC x y =-+,∴(1,5)AD =--,(1,)BC x y =+,由AD BC =,2x =-,5y =-; (Ⅱ)(3,1)AB =--,(1,)BC x y =+,B ∠为直角,则AB BC ⊥,3(1)0x y ∴-+-=,又||||AB BC =,22(1)10x y ∴++=,再由3(1)y x =-+,解得:03x y =⎧⎨=-⎩或23x y =-⎧⎨=⎩.。
5-3平面向量的数量积单元测试题(含答案)
5-3平面向量的数量积单元测试题A 级 基础达标演练(时间:40分钟 满分:60分)一、选择题(每小题5分,共25分)1.(★)设向量a =(1,0),b =⎝ ⎛⎭⎪⎫12,12,则下列结论中正确的是( ). A .|a |=|b |B .a ·b =22C .a ∥bD .a -b 与b 垂直解析 (筛选法)A 项,∵|a |=1,|b |= ⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=22,∴|a |≠|b |; B 项,a ·b =1×12+0×12=12;C 项,∵1×12-0×12≠0,∴a 不平行于b ;D 项,∵a -b =⎝ ⎛⎭⎪⎫12,-12,(a -b )·b =⎝ ⎛⎭⎪⎫12,-12· ⎝ ⎛⎭⎪⎫12,12=0,∴(a -b )⊥b . 答案 D【点评】 本题采用了筛选法.数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论. 2.(2011·武汉模拟)在△ABC 中,AB =3,AC =2,BC =10,则AB →·AC →=( ).A .-32B .-23 C.23 D.32解析 由于AB →·AC →=|AB →||AC →|cos ∠BAC =12(|AB →|2+|AC →|2-|BC →|2)=12×(9+4-10)=32.答案 D3.(2011·湖北)若向量a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角等于( ).A .-π4 B.π6 C.π4 D.3π4解析 2a +b =2(1,2)+(1,-1)=(3,3),a -b =(1,2)-(1,-1)=(0,3).在平面直角坐标系中,根据图形得2a +b 与a -b 的夹角为π4.答案 C4.(2011·东北三校联考(二))已知|a |=6,|b |=3,a ·b =-12,则向量a 在向量b 方向上的投影是( ).A .-4B .4C .-2D .2解析 设a 与b 的夹角为θ,∵a ·b 为向量b 的模与向量a 在向量b 方向上的投影的乘积,而cos θ=a ·b |a ||b |=-23,∴|a |cos θ=6×⎝ ⎛⎭⎪⎫-23=-4. 答案 A5.(2011·辽宁)若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( ). A.2-1 B .1 C. 2 D .2解析 由已知条件,向量a ,b ,c 都是单位向量可以求出,a 2=1,b 2=1,c 2=1,由a ·b =0,及(a -c )(b -c )≤0,可以知道,(a +b )·c ≥c 2=1,因为|a +b -c |2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c ,所以有|a +b -c |2=3-2(a ·c +b ·c )≤1, 故|a +b -c |≤1.答案 B二、填空题(每小题4分,共12分)6.(2011·重庆)已知单位向量e 1,e 2的夹角为60°,则|2e 1-e 2|=________.解析 依题意得(2e 1-e 2)2=4e 21+e 22-4e 1·e 2=4+1-4×12×cos 60°=3,故|2e 1-e 2|= 3.答案 37.(2011·安徽)已知向量a ,b 满足(a +2b )·(a -b )=-6,且|a |=1,|b |=2,则a 与b 的夹角为________.解析 由(a +2b )·(a -b )=-6,得a 2-2b 2+a ·b =-6,又|a |=1,|b |=2,所以a ·b =1,设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=11×2=12,而0≤θ≤π,所以θ=π3. 答案 π38.(2011·全国新课标)已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量k a -b 垂直,则k =________.解析 设a 与b 夹角为θ,由题意知|a |=1,|b |=1,θ≠0且θ≠π.由a +b 与向量k a -b 垂直,得(a +b )·(k a -b )=0,即k |a |2+(k -1)|a ||b |cos θ-|b |2=0,(k -1)(1+cos θ)=0. 又1+cos θ≠0,∴k -1=0,k =1.答案 1三、解答题(共23分)9.(11分)设向量a ,b 满足|a |=|b |=1及|3a -2b |=7.(1)求a ,b 夹角的大小;(2)求|3a +b |的值.解 (1)设a 与b 夹角为θ,(3a -2b )2=7,9|a |2+4|b |2-12a ·b =7,而|a |=|b |=1,∴a ·b =12,∴|a ||b |cos θ=12,即cos θ=12又θ∈[0,π],∴a ,b 所成的角为π3.(2)(3a +b )2=9|a |2+6a ·b +|b |2=9+3+1=13,∴|3a +b |=13.10.(12分)如图所示,AB →=(6,1),BC →=(x ,y ),CD →=(-2,-3).(1)若BC →∥DA →,求x 与y 之间的关系式;(2)在(1)条件下,若AC →⊥BD →,求x ,y 的值及四边形ABCD 的面积.解 (1)∵AD →=AB →+BC →+CD →=(x +4,y -2),DA →=-AD →=(-x -4,2-y ). 又BC →∥DA →且BC →=(x ,y ),∴x (2-y )-y (-x -4)=0,即x +2y =0.①(2)由于AC →=AB →+BC →=(x +6,y +1),BD →=BC →+CD →=(x -2,y -3),又AC →⊥BD →,∴AC →·BD →=0.即(x +6)(x -2)+(y +1)(y -3)=0,②联立①②化简,得y 2-2y -3=0,∴y =3或y =-1.故当y =3时,x =-6,此时AC →=(0,4),BD →=(-8,0),∴S ABCD =12|AC →|·|BD →|=16;当y =-1时,x =2,此时AC →=(8,0),BD →=(0,-4),∴S ABCD =12|AC →|·|BD →|=16.B 级 综合创新备选(时间:30分钟 满分:40分)一、选择题(每小题5分,共10分)1.(2012·杭州模拟)已知非零向量a 、b 满足|a |=3|b |,若函数f (x )=13x 3+|a |x 2+2a·b x +1在x ∈R 上有极值,则〈a ,b 〉的取值范围是( ).A.⎣⎢⎡⎦⎥⎤0,π6 B.⎝ ⎛⎦⎥⎤0,π3 C.⎝ ⎛⎦⎥⎤π6,π2 D.⎝ ⎛⎦⎥⎤π6,π解析 ∵f (x )=13x 3+|a |x 2+2a·b x +1在x ∈R 上有极值,∴f ′(x )=0有两不相等的实根,∵f ′(x )=x 2+2|a |x +2a·b ,∴x 2+2|a |x +2a·b =0有两个不相等的实根,∴Δ=4|a |2-8a·b >0,即a·b <12|a |2,∵cos 〈a ,b 〉=a·b |a ||b |,|a |=3|b |,∴cos 〈a ,b 〉<12|a |2|a ||b |=32,∵0≤〈a ,b 〉≤π,∴π6<〈a ,b 〉≤π.答案 D2.(2011·北京东城4月抽检)如图,已知正六边形P 1P 2P 3P 4P 5P 6,下列向量的数量积中最大的是( ).A.P 1P 2→·P 1P 3→B.P 1P 2→·P 1P 4→C.P 1P 2→·P 1P 5→D.P 1P 2→·P 1P 6→解析 由于P 1P 2→⊥P 1P 5→,故其数量积是0,可排除C ;P 1P 2→与P 1P 6→的夹角是2π3,故其数量积小于零,可排除D ;设正六边形的边长是a ,则P 1P 2→·P 1P 3→=|P 1P 2→||P 1P 3→|cos 30°=32a 2,P 1P 2→·P 1P 4→=|P 1P 2→||P 1P 4→|cos 60°=a 2.答案 A二、填空题(每小题4分,共8分)3.(2011·江苏)已知e 1,e 2是夹角为2π3的两个单位向量,a =e 1-2e 2,b =k e 1+e 2.若a ·b =0,则实数k 的值为________.解析 由题意知:a ·b =(e 1-2e 2)·(k e 1+e 2)=0,即k e 21+e 1e 2-2k e 1e 2-2e 22=0,即k +cos 2π3-2k cos 2π3-2=0, 化简可求得k =54.答案 544.(2011·浙江)若平面向量a ,b 满足|a |=1,|b |≤1,且以向量a ,b 为邻边的平行四边形的面积为12,则a 和b 的夹角θ的取值范围是________.解析 依题意有|a ||b |sin θ=12,即sin θ=12|b |,由|b |≤1,得sin θ≥12,又0≤θ≤π,故有π6≤θ≤5π6.答案 ⎣⎢⎡⎦⎥⎤π6,5π6 三、解答题(共22分)5.(10分)已知平面上三点A ,B ,C 满足|AB →|=3,|BC →|=4,|CA →|=5,求AB →·BC →+BC →·CA →+CA →·AB →的值.解 由题意知△ABC 为直角三角形,AB →⊥BC →,∴AB →·BC →=0,cos ∠BAC =35,cos ∠BCA =45,∴BC →和CA →夹角的余弦值为-45,CA →和AB →夹角的余弦值为-35,∴AB →·BC →+BC →·CA →+CA →·AB →=20×⎝ ⎛⎭⎪⎫-45+15×⎝ ⎛⎭⎪⎫-35=-25. 6.(★)(12分)设两向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.思路分析 转化为(2t e 1+7e 2)·(e 1+t e 2)<0且2t e 1+7e 2≠λ(e 1+t e 2)(λ<0).解 由已知得e 21=4,e 22=1,e 1·e 2=2×1×cos 60°=1. ∴(2t e 1+7e 2)·(e 1+t e 2)=2t e 21+(2t 2+7)e 1·e 2+7t e 22=2t 2+15t +7.欲使夹角为钝角,需2t 2+15t +7<0.得-7<t <-12.设2t e 1+7e 2=λ(e 1+t e 2)(λ<0).∴⎩⎨⎧ 2t =λ,7=tλ.∴2t 2=7. ∴t =-142,此时λ=-14.即t =-142时,向量2t e 1+7e 2与e 1+t e 2的夹角为π.∴夹角为钝角时,t 的取值范围是⎝⎛⎭⎪⎫-7,-142∪⎝ ⎛⎭⎪⎫-142,-12 【点评】 本题较好地体现了转化与化归思想.转化与化归思想在高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归,如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、不同数学问题之间的互相转化、实际问题向数学问题转化等.各种变换、具体解题方法都是转化的手段,转化的思想方法渗透到所有的数学教学内容和解题过程中.。
平面向量的数量积(经典导学案及练习答案详解)
§5.3 平面向量的数量积学习目标1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与投影向量的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量的方法解决某些简单的平面几何问题.知识梳理 1.向量的夹角已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角. 2.平面向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cos θ叫做向量a 与b 的数量积,记作a ·b .3.平面向量数量积的几何意义设a ,b 是两个非零向量,它们的夹角是θ,e 与b 是方向相同的单位向量,AB →=a ,CD →=b ,过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1—→,我们称上述变换为向量a 向向量b 投影,A 1B 1—→叫做向量a 在向量b 上的投影向量.记为|a |cos θ e . 4.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c .5.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.几何表示坐标表示数量积 a·b =|a ||b |cos θ a·b =x 1x 2+y 1y 2模 |a |=a ·a |a |=x 21+y 21夹角 cos θ=a ·b|a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22a ⊥b 的充要条件 a ·b =0 x 1x 2+y 1y 2=0 a ∥b 的充要条件 a =λb (λ∈R ) x 1y 2-x 2y 1=0|a ·b |与|a ||b |的关系 |a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)|x 1x 2+y 1y 2|≤(x 21+y 21)(x 22+y 22)常用结论1.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2; (2)(a ±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论 已知向量a ,b .(1)若a 与b 的夹角为锐角,则a·b >0;若a·b >0,则a 与b 的夹角为锐角或0. (2)若a 与b 的夹角为钝角,则a·b <0;若a·b <0,则a 与b 的夹角为钝角或π. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( × ) (2)若a ·b >0,则a 和b 的夹角为锐角.( × )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的结果是向量.( √ ) (4)(a ·b )·c =a ·(b ·c ).( × ) 教材改编题1.(多选)(2022·海南省临高二中模拟)设a ,b ,c 是任意的非零向量,则下列结论正确的是( ) A .0·a =0B .a ·b =b ·c ,则a =cC .a ·b =0⇒a ⊥bD .(a +b )·(a -b )=|a |2-|b |2 答案 CD2.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 33.已知向量a ,b 满足3|a |=2|b |=6,且(a -2b )⊥(2a +b ),则a ,b 夹角的余弦值为________.答案 -59解析 设a ,b 的夹角为θ, 依题意,(a -2b )·(2a +b )=0, 则2a 2-3a ·b -2b 2=0,故2×4-3×2×3·cos θ-2×32=0, 则cos θ=-59.题型一 平面向量数量积的基本运算例1 (1)(2021·北京)a =(2,1),b =(2,-1),c =(0,1),则(a +b )·c =_________;a ·b =________. 答案 0 3解析 ∵a =(2,1),b =(2,-1),c =(0,1), ∴a +b =(4,0),∴(a +b )·c =4×0+0×1=0, a ·b =2×2+1×(-1)=3.(2)(2022·广州模拟)在平面四边形ABCD 中,已知AB →=DC →,P 为CD 上一点,CP →=3PD →,|AB →| =4,|AD →|=3,AB →与AD →的夹角为θ,且cos θ=23,则AP →·PB →=________.答案 -2 解析 如图所示,∵AB →=DC →,∴四边形ABCD 为平行四边形, ∵CP →=3PD →,∴AP →=AD →+DP →=14AB →+AD →,PB →=AB →-AP →=34AB →-AD →,又∵|AB →|=4,|AD →|=3, cos θ=23,则AB →·AD →=4×3×23=8,∴AP →·PB →=⎝⎛⎭⎫AD →+14AB →·⎝⎛⎭⎫34AB →-AD → =12AB →·AD →-AD →2+316AB →2 =12×8-9+316×42=-2. 教师备选1.(2019·全国Ⅱ)已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →等于( ) A .-3 B .-2 C .2 D .3 答案 C解析 因为BC →=AC →-AB →=(1,t -3), 所以|BC →|=12+(t -3)2=1, 解得t =3, 所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2.2.在边长为2的正三角形ABC 中,M 是BC 的中点,D 是线段AM 的中点.①若BD →=xBA →+yBC →,则x +y =________;②BD →·BM →=________. 答案 341解析 ①∵M 是BC 的中点, ∴BM →=12BC →,∵D 是AM 的中点,∴BD →=12BA →+12BM →=12BA →+14BC →,∴x =12,y =14,∴x +y =34.②∵△ABC 是边长为2的正三角形,M 是BC 的中点, ∴AM ⊥BC ,且BM =1,∴BD →·BM →=|BD →||BM →|cos ∠DBM =|BM →|2=1. 思维升华 计算平面向量数量积的主要方法 (1)利用定义:a·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. (3)灵活运用平面向量数量积的几何意义.跟踪训练1 (1)(2021·新高考全国Ⅱ)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a=________. 答案 -92解析 由已知可得(a +b +c )2 =a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =9+2(a ·b +b ·c +c ·a )=0, 因此a ·b +b ·c +c ·a =-92.(2)(2020·北京)已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →·PD →=________. 答案5 -1解析 建立如图所示的平面直角坐标系,∵AP →=12(AB →+AC →),∴P 为BC 的中点.∴点P 的坐标为(2,1),点D 的坐标为(0,2),点B 的坐标为(2,0), ∴|PD →|=5,PB →=(0,-1),PD →=(-2,1), ∴PB →·PD →=-1.题型二 平面向量数量积的应用 命题点1 向量的模例2 已知向量a ,b 满足|a |=6,|b |=4,且a 与b 的夹角为60°,则|a +b |=____________,|a -3b |=________. 答案 219 6 3解析 因为|a |=6,|b |=4,a 与b 的夹角为60°, 所以a ·b =|a ||b |cos 〈a ,b 〉=6×4×12=12,(a +b )2=a 2+2a ·b +b 2=36+24+16=76, (a -3b )2=a 2-6a·b +9b 2=36-72+144 =108,所以|a +b |=219,|a -3b |=6 3. 命题点2 向量的夹角例3 (2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( ) A .-3135 B .-1935 C.1735 D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2 =25-12+36=49, ∴|a +b |=7,∴cos 〈a ,a +b 〉=a ·(a +b )|a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. 命题点3 向量的垂直例4 (2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 答案 35解析 方法一 a -λb =(1-3λ,3-4λ), ∵(a -λb )⊥b ,∴(a -λb )·b =0, 即(1-3λ,3-4λ)·(3,4)=0, ∴3-9λ+12-16λ=0,解得λ=35.方法二 由(a -λb )⊥b 可知,(a -λb )·b =0,即a ·b -λb 2=0, 从而λ=a ·b b 2=(1,3)·(3,4)32+42=1525=35.教师备选1.已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 B解析 设a 与b 的夹角为α, ∵(a -b )⊥b , ∴(a -b )·b =0, ∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |, ∴cos α=12,∵α∈[0,π],∴α=π3.2.已知e1,e2是两个单位向量,且|e1+e2|=3,则|e1-e2|=________.答案 1解析由|e1+e2|=3,两边平方,得e21+2e1·e2+e22=3.又e1,e2是单位向量,所以2e1·e2=1,所以|e1-e2|2=e21-2e1·e2+e22=1,所以|e1-e2|=1.思维升华(1)求平面向量的模的方法①公式法:利用|a|=a·a及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;②几何法:利用向量的几何意义,即利用向量线性运算的平行四边形法则或三角形法则作出所求向量,再利用余弦定理等方法求解.(2)求平面向量的夹角的方法①定义法:cos θ=a·b|a||b|,求解时应求出a·b,|a|,|b|的值或找出这三个量之间的关系;②坐标法.(3)两个向量垂直的充要条件a⊥b⇔a·b=0⇔|a-b|=|a+b|(其中a≠0,b≠0).跟踪训练2(1)已知单位向量a,b满足a·b=0,若向量c=7a+2b,则sin〈a,c〉等于()A.73 B.23 C.79 D.29答案 B解析方法一设a=(1,0),b=(0,1),则c=(7,2),∴cos〈a,c〉=a·c|a||c|=73,∴sin〈a,c〉=2 3.方法二a·c=a·(7a+2b)=7a2+2a·b=7,|c|=(7a+2b)2=7a2+2b2+214a·b=7+2=3,∴cos〈a,c〉=a·c|a||c|=71×3=73,∴sin〈a,c〉=2 3.(2)(多选)(2021·新高考全国Ⅰ)已知O为坐标原点,点P1(cos α,sin α),P2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则( ) A .|OP 1—→|=|OP 2—→| B .|AP 1—→|=|AP 2—→| C.OA →·OP 3—→=OP 1—→·OP 2—→ D.OA →·OP 1—→=OP 2—→·OP 3—→ 答案 AC解析 由题意可知, |OP 1—→|=cos 2α+sin 2α=1, |OP 2—→|=cos 2β+(-sin β)2=1, 所以|OP 1—→|=|OP 2—→|,故A 正确; 取α=π4,则P 1⎝⎛⎭⎫22,22,取β=5π4,则P 2⎝⎛⎭⎫-22,22, 则|AP 1—→|≠|AP 2—→|,故B 错误; 因为OA →·OP 3—→=cos(α+β),OP 1—→·OP 2—→=cos αcos β-sin αsin β=cos(α+β), 所以OA →·OP 3—→=OP 1—→·OP 2—→,故C 正确; 因为OA →·OP 1—→=cos α,OP 2—→·OP 3—→=cos βcos(α+β)-sin βsin(α+β) =cos(α+2β), 取α=π4,β=π4,则OA —→·OP 1—→=22,OP 2—→·OP 3—→=cos 3π4=-22,所以OA →·OP 1—→≠OP 2—→·OP 3—→,故D 错误. 题型三 平面向量的实际应用例5 (多选)(2022·东莞模拟)在日常生活中,我们会看到两个人共提一个行李包的情况(如图所示).假设行李包所受的重力为G ,所受的两个拉力分别为F 1,F 2,若|F 1|=|F 2|,且F 1与F 2的夹角为θ,则以下结论正确的是( )A .|F 1|的最小值为12|G |B .θ的范围为[0,π]C .当θ=π2时,|F 1|=22|G |D .当θ=2π3时,|F 1|=|G |答案 ACD解析 由题意知,F 1+F 2+G =0, 可得F 1+F 2=-G ,两边同时平方得 |G |2=|F 1|2+|F 2|2+2|F 1||F 2|cos θ =2|F 1|2+2|F 1|2cos θ, 所以|F 1|2=|G |22(1+cos θ).当θ=0时,|F 1|min =12|G |;当θ=π2时,|F 1|=22|G |;当θ=2π3时,|F 1|=|G |,故A ,C ,D 正确;当θ=π时,竖直方向上没有分力与重力平衡,不成立,所以θ∈[0,π),故B 错误. 教师备选若平面上的三个力F 1,F 2,F 3作用于一点,且处于平衡状态,已知|F 1|=1 N ,|F 2|=6+22N ,F 1与F 2的夹角为45°,求: (1)F 3的大小;(2)F 3与F 1夹角的大小. 解 (1)∵三个力平衡, ∴F 1+F 2+F 3=0,∴|F 3|=|F 1+F 2|=|F 1|2+2F 1·F 2+|F 2|2 =12+2×1×6+22cos 45°+⎝ ⎛⎭⎪⎫6+222=4+23=1+ 3.(2)方法一 设F 3与F 1的夹角为θ,则|F 2|=|F 1|2+|F 3|2+2|F 1||F 3|cos θ, 即6+22=12+(1+3)2+2×1×(1+3)cos θ, 解得cos θ=-32, ∵θ∈[0,π], ∴θ=5π6.方法二 设F 3与F 1的夹角为θ, 由余弦定理得cos(π-θ)=12+(1+3)2-⎝ ⎛⎭⎪⎫6+2222×1×(1+3)=32,∵θ∈[0,π],∴θ=5π6.思维升华 用向量方法解决实际问题的步骤跟踪训练3 (2022·沈阳二中模拟)渭河某处南北两岸平行,如图所示,某艘游船从南岸码头A 出发航行到北岸,假设游船在静水中航行速度的大小为|ν1|=10 km/h ,水流速度的大小为|ν2|=6 km/h.设ν1与ν2的夹角为120°,北岸的点A ′在码头A 的正北方向,那么该游船航行到北岸的位置应( )A .在A ′东侧B .在A ′西侧C .恰好与A ′重合D .无法确定答案 A解析 建立如图所示的平面直角坐标系,由题意可得ν1=(-5,53),ν2=(6,0), 所以ν1+ν2=(1,53),说明游船有x 轴正方向的速度,即向东的速度,所以该游船航行到北岸的位置应在A ′东侧.极化恒等式:设a ,b 为两个平面向量,则有恒等式a ·b =14[](a +b )2-(a -b )2.如图所示.(1)在平行四边形ABDC 中,AB →=a ,AC →=b ,则a·b =14(|AD →|2-|BC →|2).(2)在△ABC 中,AB →=a ,AC →=b ,AM 为中线,则a·b =|AM →|2-14|BC →|2.例1 在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 答案 -16解析 如图所示,由极化恒等式,易得AB →·AC →=AM →2-MB →2=32-52=-16.例2 已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A →·PB →的最小值是________. 答案 1解析 如图所示,由极化恒等式易知,当OP 垂直于直线x -y +2=0时,P A →·PB →有最小值,即P A →·PB →=PO →2-OB →2=(2)2-12=1.例3 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A .1 B .2 C. 2 D.22答案 C解析 如图所示,设OA →⊥OB →,记OA →=a ,OB →=b ,OC →=c , M 为AB 的中点, 由极化恒等式有 (a -c )·(b -c )=CA →·CB →=|CM →|2-|AB →|24=0,∴|CM →|2=|AB →|24=12,可知MC →是有固定起点,固定模长的动向量.点C 的轨迹是以AB 为直径的圆,且点O 也在此圆上, 所以|c |的最大值为圆的直径长,即为 2.课时精练1.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .a +2b B .2a +b C .a -2b D .2a -b 答案 D解析 由题意得|a |=|b |=1, 设a ,b 的夹角为θ=60°, 故a ·b =|a ||b |cos θ=12.对A 项,(a +2b )·b =a ·b +2b 2 =12+2=52≠0; 对B 项,(2a +b )·b =2a ·b +b 2 =2×12+1=2≠0;对C 项,(a -2b )·b =a ·b -2b 2 =12-2=-32≠0; 对D 项,(2a -b )·b =2a ·b -b 2=2×12-1=0.2.(2022·石家庄模拟)已知向量a =(2,-2),b =(2,1),b ∥c ,a ·c =4,则|c |等于( ) A .2 5 B .4 C .5 2 D .4 2答案 A解析 因为b ∥c ,所以c =λb =(2λ,λ)(λ∈R ), 又a ·c =4λ-2λ=2λ=4,所以λ=2,c =(4,2),|c |=42+22=2 5.3.(2022·沈阳模拟)若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则a -b 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 D解析 |a +b |=|a -b |=2|a |,等号左右同时平方,得|a +b |2=|a -b |2=4|a |2,即|a |2+|b |2+2a ·b =|a |2+|b |2-2a ·b =4|a |2, 所以a ·b =0且|b |2=3|a |2,所以|a -b |=|a -b |2 =|a |2+|b |2-2a ·b =233|b |,所以cos 〈a -b ,b 〉=(a -b )·b|a -b ||b |=-|b |2233|b |·|b |=-32,因为〈a -b ,b 〉∈[0,π],所以〈a -b ,b 〉=5π6.4.已知a =(-2,1),b =(k ,-3),c =(1,2),若(a -2b )⊥c ,则与b 共线的单位向量为( ) A.⎝⎛⎭⎫255,-55或⎝⎛⎭⎫-255,55 B.⎝⎛⎭⎫-255,-55或⎝⎛⎭⎫255,55 C.⎝⎛⎭⎫255,55 D.⎝⎛⎭⎫-255,55 答案 A解析 由题意得a -2b =(-2-2k ,7), ∵(a -2b )⊥c , ∴(a -2b )·c =0,即(-2-2k ,7)·(1,2)=0,-2-2k +14=0, 解得k =6, ∴b =(6,-3), ∴e =±b 62+(-3)2=±⎝⎛⎭⎫255,-55. 5.(多选)(2022·盐城模拟)下列关于向量a ,b ,c 的运算,一定成立的有( ) A .(a +b )·c =a ·c +b ·c B .(a ·b )·c =a ·(b ·c ) C .a ·b ≤|a |·|b | D .|a -b |≤|a |+|b | 答案 ACD解析 根据数量积的分配律可知A 正确;选项B 中,左边为c 的共线向量,右边为a 的共线向量,故B 不正确; 根据数量积的定义,可知a ·b =|a ||b |cos 〈a ,b 〉≤|a |·|b |,故C 正确;|a -b |2=|a |2+|b |2-2a ·b =|a |2+|b |2-2|a ||b |·cos 〈a ,b 〉≤|a |2+|b |2+2|a ||b |=(|a |+|b |)2, 故|a -b |≤|a |+|b |,故D 正确.6.(多选)已知向量a =(2,1),b =(1,-1),c =(m -2,-n ),其中m ,n 均为正数,且(a -b )∥c ,则下列说法正确的是( ) A .a 与b 的夹角为钝角 B .向量a 在b 上的投影向量为22b C .2m +n =4 D .mn 的最大值为2 答案 CD解析 对于A ,向量a =(2,1),b =(1,-1), 则a·b =2-1=1>0, 又a ,b 不共线,所以a ,b 的夹角为锐角,故A 错误; 对于B ,向量a 在b 上的投影向量为 a·b |b |·b |b |=12b ,B 错误; 对于C ,a -b =(1,2),若(a -b )∥c ,则-n =2(m -2),变形可得2m +n =4,C 正确; 对于D ,由2m +n =4,且m ,n 均为正数,得mn =12(2m ·n )≤12⎝⎛⎭⎫2m +n 22=2,当且仅当m =1,n =2时,等号成立,即mn 的最大值为2,D 正确.7.(2021·全国甲卷)已知向量a =(3,1),b =(1,0),c =a +k b .若a ⊥c ,则k =________. 答案 -103解析 c =(3,1)+(k ,0)=(3+k ,1),a ·c =3(3+k )+1×1=10+3k =0,得k =-103.8.(2020·全国Ⅰ)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 将|a +b |=1两边平方,得a 2+2a ·b +b 2=1. ∵a 2=b 2=1,∴1+2a ·b +1=1,即2a ·b =-1. ∴|a -b |=(a -b )2=a 2-2a ·b +b 2 =1-(-1)+1= 3.9.(2022·长沙模拟)在△ABC 中,BC 的中点为D ,设向量AB →=a ,AC →=b . (1)用a ,b 表示向量AD →;(2)若向量a ,b 满足|a |=3,|b |=2,〈a ,b 〉=60°,求AB →·AD →的值. 解 (1)AD →=12(AB →+AC →)=12a +12b , 所以AD →=12a +12b .(2)AB →·AD →=a ·⎝⎛⎭⎫12a +12b =12a 2+12a·b =12×32+12×3×2×cos 60°=6, 所以AB →·AD →=6.10.(2022·湛江模拟)已知向量m =(3sin x ,cos x -1),n =(cos x ,cos x +1),若f (x )=m·n . (1)求函数f (x )的单调递增区间;(2)在Rt △ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若∠A =90°,f (C )=0,c =3,CD 为∠BCA 的角平分线,E 为CD 的中点,求BE 的长. 解 (1)f (x )=m·n =3sin x ·cos x +cos 2x -1 =32sin 2x +12cos 2x -12=sin ⎝⎛⎭⎫2x +π6-12. 令2x +π6∈⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ), 则x ∈⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). 所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). (2)f (C )=sin ⎝⎛⎭⎫2C +π6-12=0, sin ⎝⎛⎭⎫2C +π6=12,又C ∈⎝⎛⎭⎫0,π2, 所以C =π3.在△ACD 中,CD =233,在△BCE 中, BE =22+⎝⎛⎭⎫332-2×2×33×32=213.11.(2022·黄冈质检)圆内接四边形ABCD 中,AD =2,CD =4,BD 是圆的直径,则AC →·BD →等于( ) A .12 B .-12 C .20 D .-20答案 B解析 如图所示,由题知∠BAD =∠BCD =90°,AD =2,CD =4,∴AC →·BD →=(AD →+DC →)·BD → =AD →·BD →+DC →·BD →=|AD →||BD →|cos ∠BDA -|DC →||BD →|cos ∠BDC =|AD →|2-|DC →|2=4-16=-12.12.在△ABC 中,已知⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形 B .直角三角形 C .等腰三角形D .三边均不相等的三角形 答案 A解析 AB →|AB →|,AC →|AC →|分别为与AB →,AC →方向相同的单位向量,由平行四边形法则可知向量AB →|AB →|+AC →|AC →|所在的直线为∠BAC 的平分线. 因为⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,所以∠BAC 的平分线垂直于BC , 所以AB =AC .又AB →|AB →|·AC →|AC →|=⎪⎪⎪⎪⎪⎪AB →|AB →|⎪⎪⎪⎪⎪⎪AC →|AC →|·cos ∠BAC=12, 所以cos ∠BAC =12,∠BAC =60°.所以△ABC 为等边三角形.13.(2022·潍坊模拟)如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1,F 2,且F 1,F 2与水平夹角均为45°,|F 1|=|F 2|=10 2 N ,则物体的重力大小为________ N.答案 20解析 如图所示,∵|F 1|=|F 2|=10 2 N , ∴|F 1+F 2|=102×2=20 N , ∴物体的重力大小为20 N.14.(2021·天津)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE ⊥AB 且交AB 于点E ,DF ∥AB 且交AC 于点F ,则|2BE →+DF →|的值为________;(DE →+DF →)·DA →的最小值为________. 答案 11120解析 设BE =x ,x ∈⎝⎛⎭⎫0,12, ∵△ABC 为边长为1的等边三角形,DE ⊥AB , ∴∠BDE =30°,BD =2x ,DE =3x , DC =1-2x ,∵DF ∥AB ,∴△DFC 为边长为1-2x 的等边三角形,DE ⊥DF ,∴(2BE →+DF →)2=4BE →2+4BE →·DF →+DF →2=4x 2+4x (1-2x )×cos 0°+(1-2x )2=1,∴|2BE →+DF →|=1,∵(DE →+DF →)·DA →=(DE →+DF →)·(DE →+EA →)=DE →2+DF →·EA →=(3x )2+(1-2x )×(1-x )=5x 2-3x +1=5⎝⎛⎭⎫x -3102+1120, ∴当x =310时,(DE →+DF →)·DA →的最小值为1120.15.(多选)定义一种向量运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ·b ,当a ,b 不共线时,|a -b |,当a ,b 共线时(a ,b 是任意的两个向量).对于同一平面内的向量a ,b ,c ,e ,给出下列结论,正确的是( ) A .a ⊗b =b ⊗aB .λ(a ⊗b )=(λa )⊗b (λ∈R )C .(a +b )⊗c =a ⊗c +b ⊗cD .若e 是单位向量,则|a ⊗e |≤|a |+1 答案 AD解析 当a ,b 共线时,a ⊗b =|a -b |=|b -a |=b ⊗a ,当a ,b 不共线时,a ⊗b =a ·b =b ·a =b ⊗a ,故A 正确;当λ=0,b ≠0时,λ(a ⊗b )=0,(λa )⊗b =|0-b |≠0,故B 错误;当a +b 与c 共线时,则存在a ,b 与c 不共线,(a +b )⊗c =|a +b -c |,a ⊗c +b ⊗c =a ·c +b ·c ,显然|a +b -c |≠a ·c +b ·c ,故C 错误;当e 与a 不共线时,|a ⊗e |=|a ·e |<|a |·|e |<|a |+1,当e 与a 共线时,设a =u e ,u ∈R ,|a ⊗e |=|a -e |=|u e -e |=|u -1|≤|u |+1,故D 正确.16.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n = (cos B ,cos A ),m ·n =sin 2C . (1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c . 解 (1)m ·n =sin A cos B +sin B cos A =sin(A +B ),在△ABC 中,A +B =π-C ,0<C <π, 所以sin(A +B )=sin C ,所以m·n =sin C , 又m·n =sin 2C ,所以sin 2C =sin C ,cos C =12,又因为C ∈(0,π),故C =π3.(2)由sin A ,sin C ,sin B 成等差数列, 可得2sin C =sin A +sin B , 由正弦定理得2c =a +b . 因为CA →·(AB →-AC →)=18, 所以CA →·CB →=18, 即ab cos C =18,ab =36. 由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , 所以c 2=4c 2-3×36,c 2=36, 所以c =6.。
向量的数量积经典例题(含详细答案)
向量的数量积经典例题(含详细答案)1.已知 a 3,b 4,a r ,b r的夹角为120o.r r r r r r求( 1) r agb r, a 2b 2a b ;(2) 2a 3br r 2 r r 2.已知向量a、b的夹角为3 ,|a r | 1,|b| 2.3(1)求a r·r b的值(2)若2a r b r和ta r b r垂直,求实数t的值.3.已知平面向量a 1,2 ,b 2,m(1)若r a b r,求 a 2b ;(2)若m 0,求r a b r与a r b r夹角的余弦值.4.已知向量r a (2, 1),b r (3, 2),c r (3,4) ,( 1)求a r (b r r c) ;(2)若(r a b r )∥r c ,求实数的值.5.已知| a r | 2,|b r| 3,且(2r a 3b r)(a r b r) 2.(1)求 a b 的值;(2)求a r与r b所成角的大小.6.已知 a 1,2 ,b 3,4(1)若ka b与a 2b 共线,求k;(2)若b r与 a 2b垂直,求k.ka rr r r r r r r r r r 7.已知 a 2,b 3,a与b r的夹角为60 ,c 5a 3b r ,d r3a kb r,(1)当c v Pd v时,求实数k的值;(2)当c r d ur时,求实数k的值.参考答案1.(1)6,32;(2)6 3.【解析】【分析】(1)根据向量数量积的定义进行求解;r r r r 2 (2)根据2a 3b 2a 3b 2先求数量积,再求模长.【详解】r rr r 解:(1)∵ a 3,b 4,a r,b r的夹角为120o,r r r r 1 ∴ agb a b cos120 3 4 () 6 ,2r r r r r 2r2r ra 2b 2a b 2a r 22b r23a r g r b 2 9 2 16 3 (6)32;r r r r 2r2r2r r(2)2a 3b2a 3b = 4a r 29b r212a r gb r49 9 16 12 ( 6)6 3.【点睛】本题主要考查平面向量的数量积的定义及平面向量的模长,考查计算能力,属于基础题.2.(1)1;(2)2.【解析】【分析】(1)利用数量积的定义直接计算即可.r r r r (2)利用2a b gta b0可求实数t 的值.【详解】rr 1) a b r r2 1a b cos 12 13 22)因为2a rr 2 r r r2 整理得到:2ta 2 tagb b 0即2t 2 t 1 2 14 0 ,2解得t 2 .【点睛】本题考查数量积的计算以及向量的垂直,注意两个非零向量a v,b v垂直的等价条件是a v b v0,ra t g本题属于基础题.3.(1) a r 2b r 5(2) 6565解析】 分析】解得 m1r r所以r aa r2b 2b1,2 4,23,432 4252) 若m 0,则 b r2,0a b 1 65 r r r r a b a-b 5 13 65本题主要考查的向量的模以及数量积,属于简单题。
平面向量数量积测试题(含答案)
一、选择题1. 设a 、b 、c 是单位向量,且a ·b =0,则()()ac b c -∙-的最小值为A.2-B.2C.1-D.12. 已知向量()2,1,10,||a a b a b =⋅=+=||b =A.B. C.5 D. 253. 平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b +=A.B. C. 4 D.24.已知|p |=22,|q |=3, p 与q 的夹角为4π,则以a =5p +2q ,b =p -3q 为邻边的平行四边形的一条对角线长为A.15B.15C. 16D.14 5. 设e 1,e 2是夹角为450的两个单位向量,且a =e 1+2e 2,b =2e 1+e 2,,则|a +b |的值 A.23 B.9 C.2918+ D.223+6. 若|a |=1,|b a -b )⊥a ,则a 与b 的夹角为A.300B.450C.600D.7507. 设向量与的夹角为θ,)1,2(=a ,)54(2,=+b a ,则θcos 等于 A.1010 B.10103 C.53 D.548. 已知向量a ,b 的夹角为3π,且||2a = ,||1b = ,则向量a 与向量2a b +的夹角等于A .56π B .2π C .3π D .6π9. 已知||OA = , ||OB =,∙=0,30AOC ∠=,设(,)OC mOA nOB m n R =+∈ ,则m n =A.3B. 3C.33D. 1310. 已知a =(2,3), b =(-4,7),则a 在b 方向上的投影为 A .13 B .513 C .565 D .6511. 已知a =(4,3),向量b 是垂直a 的单位向量,则b等于A .)54,53(或)53,54(B .)54,53(或)54,53(-- C .)54,53(-或)53,54(- D .)54,53(-或)54,53(-12. 已知a 、b 都是非零向量,且a + 3b 与7a - 5b 垂直,a - 4b 与7a - 2b垂直,则a 与b 的夹角为A .30°B .45°C .60°D .120°二、填空题13. 若向量a ,b 满足12a b == ,且a 与b 的夹角为3π,则a b += .14. ABC ∆中,︒=∠90A ,k AB (=,1),2(=AC ,3),则k 的值是________.15. 已知平面向量(2,4)a = ,(1,2)b =- .若()c a a b b =-⋅,则||c = _____________.16.在ABC ∆中,AC =2,BC =6,已知点O 是ABC ∆内一点,且满足34OA OB OC ++=0,则 (2)O C B A B C ⋅+ =________. 三、计算题17. 已知a 4,|b|3,(2a 3b)(2a b)61==⋅+= ||-,求:(1)求a b ⋅ 的值; (2)求a b 与的夹角θ; (3)求a b + ||的值; 18. 已知向量(sin ,cos 2sin ),(1,2).a b θθθ=-=(1)若//a b ,求tan θ的值; (2)若||||,0,a b θπ=<<求θ的值。
(完整版)平面向量的数量积练习题(含答案)
平面向量的数量积A 组 专项根底训练一、选择题(每题5分,共20分)1. (2021·辽宁)向量a =(1,-1),b =(2,x ),假设a ·b =1,那么x 等于( )A .-1B .-12 C.12 D .1 2. (2021·重庆)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,那么|a+b |等于( ) A. 5 B.10 C .2 5 D .103. 向量a =(1,2),b =(2,-3).假设向量c 满足(c +a )∥b ,c ⊥(a +b ),那么c 等于( )A.⎝ ⎛⎭⎪⎫79,73B.⎝ ⎛⎭⎪⎫-73,-79C.⎝ ⎛⎭⎪⎫73,79D.⎝ ⎛⎭⎪⎫-79,-73 4. 在△ABC 中,AB =3,AC =2,BC =10,那么AB →·AC→等于 ( ) A .-32 B .-23 C.23 D.32二、填空题(每题5分,共15分)5.向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,那么|b |=________.6.在△ABC 中,M 是BC 的中点,AM =3,BC =10,那么AB →·AC→=________. 7. a =(2,-1),b =(λ,3),假设a 与b 的夹角为钝角,那么λ的取值范围是__________.三、解答题(共22分)8. (10分)a =(1,2),b =(-2,n ) (n >1),a 与b 的夹角是45°.(1)求b ;(2)假设c 与b 同向,且a 与c -a 垂直,求c .9. (12分)设两个向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,假设向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.B 组 专项能力提升一、选择题(每题5分,共15分)1.在△ABC 中,AB =2,AC =3,AB →·BC→=1,那么BC 等于 ( ) A. 3 B.7 C .2 2 D.23 2. |a |=6,|b |=3,a·b =-12,那么向量a 在向量b 方向上的投影是( )A .-4B .4C .-2D .23.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,那么|P A |2+|PB |2|PC |2等于( )A .2B .4C .5D .10二、填空题(每题5分,共15分)4.设向量a =(1,2m ),b =(m +1,1),c =(2,m ).假设(a +c )⊥b ,那么|a |=________.5.如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,假设AB →·AF →=2,那么AE →·BF→的值是________.6.在矩形ABCD 中,边AB 、AD 的长分别为2、1,假设M 、N 分别是边BC 、CD 上的点,且满足|BM →||BC →|=|CN →||CD →|,那么AM →·AN →的取值范围是________. 三、解答题7. (13分)设平面上有两个向量a =(cos α,sin α) (0°≤α<360°),b =⎝ ⎛⎭⎪⎫-12,32.(1)求证:向量a +b 与a -b 垂直;(2)当向量3a +b 与a -3b 的模相等时,求α的大小.平面向量的数量积参考答案A 组 专项根底训练1.答案 D 解析 a ·b =(1,-1)·(2,x )=2-x =1⇒x =1.2. 答案 B解析 ∵a =(x,1),b =(1,y ),c =(2,-4),由a ⊥c 得a ·c =0,即2x -4=0,∴x =2.由b ∥c ,得1×(-4)-2y =0,∴y =-2.∴a =(2,1),b =(1,-2).∴a +b =(3,-1),∴|a +b |=32+(-1)2=10. 3.答案 D解析 设c =(x ,y ),那么c +a =(x +1,y +2),又(c +a )∥b ,∴2(y +2)+3(x +1)=0.①又c ⊥(a +b ),∴(x ,y )·(3,-1)=3x -y =0.②联立①②解得x =-79,y =-73.4.答案 D解析 由于AB →·AC →=|AB →|·|AC →|·cos ∠BAC =12(|AB →|2+|AC →|2-|BC →|2)=12×(9+4-10)=32.二、填空题(每题5分,共15分)5.答案 32解析 ∵a ,b 的夹角为45°,|a |=1,∴a ·b =|a |·|b |cos 45°=22|b |,|2a -b |2=4-4×22|b |+|b |2=10,∴|b |=3 2.6. 答案 -16解析 如下图,AB→=AM →+MB →, AC →=AM →+MC →=AM →-MB →,∴AB →·AC →=(AM →+MB →)·(AM→-MB →) =AM→2-MB →2=|AM →|2-|MB →|2=9-25=-16. 7. 答案 (-∞,-6)∪⎝ ⎛⎭⎪⎫-6,32解析 由a·b <0,即2λ-3<0,解得λ<32,由a ∥b 得: 6=-λ,即λλ<32,且λ≠-6.三、解答题(共22分)8.解 (1)a·b =2n -2,|a |=5,|b |=n 2+4, ∴cos 45°=2n -25·n 2+4=22,∴3n 2-16n -12=0,∴n =6或n =-23(舍),∴b =(-2,6). (2)由(1)知,a·b =10,|a |2c 与b 同向,故可设c =λb (λ>0),(c -a )·a =0,∴λb·a -|a |2=0,∴λ=|a |2b·a =510=12,∴c =12b =(-1,3). 9.解 ∵e 1·e 2=|e 1|·|e 2|·cos 60°=2×1×12=1,∴(2t e 1+7e 2)·(e 1+t e 2)=2t e 21+7t e 22+(2t 2+7)e 1·e 2=8t +7t +2t 2+7=2t 2+15t +7. 由得2t 2+15t +7<0,解得-7<t <-12.当向量2t e 1+7e 2与向量e 1+t e 2反向时,设2t e 1+7e 2=λ(e 1+t e 2),λ<0,那么⎩⎪⎨⎪⎧2t =λ,λt =7⇒2t 2=7⇒t =-142或t =142(舍). 故t 的取值范围为(-7,-142)∪(-142,-12).B 组 专项能力提升一、选择题(每题5分,共15分)1.答案 A解析 ∵AB →·BC→=1,且AB =2,∴1=|AB →||BC →|cos(π-B ),∴|AB →||BC →|cos B =-1. 在△ABC 中,|AC |2=|AB |2+|BC |2-2|AB ||BC |cos B ,即9=4+|BC |2-2×(-1). ∴|BC |= 3.2.答案 A解析 a·b 为向量b 的模与向量a 在向量b 方向上的投影的乘积,得a·b =|b ||a |·cos 〈a ,b 〉,即-12=3|a |·cos 〈a ,b 〉,∴|a |·cos 〈a ,b 〉=-4.3. 答案 D解析 ∵P A →=CA →-CP →,∴|P A →|2=CA →2-2CP →·CA→+CP →2. ∵PB →=CB →-CP →,∴|PB →|2=CB →2-2CP →·CB →+CP →2.∴|P A →|2+|PB→|2 =(CA →2+CB →2)-2CP →·(CA →+CB →)+2CP →2=AB →2-2CP →·2CD→+2CP →2. 又AB→2=16CP →2,CD →=2CP →, 代入上式整理得|P A →|2+|PB→|2=10|CP →|2,故所求值为10. 二、填空题(每题5分,共15分)4.答案 2解析 利用向量数量积的坐标运算求解. a +c =(1,2m )+(2,m )=(3,3m ).∵(a +c )⊥b ,∴(a +c )·b =(3,3m )·(m +1,1)=6m +3=0,∴m =-12.∴a =(1,-1),∴|a |= 2.5.答案 2解析 方法一 坐标法. 以A 为坐标原点,AB ,AD 所在直线为x 轴,y 轴建立平面直角坐标系,那么A (0,0),B (2,0),E (2,1),F (x,2).故AB→=(2,0),AF →=(x,2),AE →=(2,1),BF →=(x -2,2), ∴AB →·AF →=(2,0)·(x,2)=2x .又AB →·AF→=2,∴x =1.∴BF →=(1-2,2). ∴AE →·BF →=(2,1)·(1-2,2)=2-2+2= 2.方法二 用AB→,BC →表示AE →,BF →是关键. 设DF →=xAB →,那么CF →=(x -1)AB →.AB →·AF →=AB →·(AD →+DF →)=AB →·(AD →+xAB →)=xAB →2=2x ,又∵AB →·AF→=2,∴2x =2, ∴x =22.∴BF →=BC →+CF →=BC →+⎝ ⎛⎭⎪⎫22-1AB →.∴AE →·BF →=(AB →+BE →)·⎣⎢⎡⎦⎥⎤BC →+⎝ ⎛⎭⎪⎫22-1AB → =⎝ ⎛⎭⎪⎫AB →+12BC →⎣⎢⎡⎦⎥⎤BC →+⎝ ⎛⎭⎪⎫22-1AB → =⎝ ⎛⎭⎪⎫22-1AB →2+12BC →2=⎝ ⎛⎭⎪⎫22-1×2+12×4= 2. 6.答案 [1,4]解析 利用基向量法,把AM→,AN →都用AB →,AD →表示,再求数量积. 如下图,设|BM →||BC →|=|CN →||CD →|=λ(0≤λ≤1),那么BM→=λBC →, CN→=λCD →,DN →=CN →-CD →=(λ-1)CD →, ∴AM →·AN →=(AB →+BM →)·(AD →+DN →)=(AB →+λBC →)·[AD →+(λ-1)CD →]=(λ-1)AB →·CD →+λBC →·AD→ =4(1-λ)+λ=4-3λ,∴当λ=0时,AM →·AN →取得最大值4;当λ=1时,AM →·AN→取得最小值1.∴AM →·AN→∈[1,4]. 三、解答题7.(1)证明 ∵(a +b )·(a -b )=a 2-b 2=|a |2-|b |2=(cos 2α+sin 2α)-⎝ ⎛⎭⎪⎫14+34=0, 故向量a +b 与a -b 垂直.(2)解 由|3a +b |=|a -3b |,两边平方得3|a |2+23a·b +|b |2=|a |2-23a·b +3|b |2,所以2(|a |2-|b |2)+43a·b =0,而|a |=|b |,所以a·b =0,即⎝ ⎛⎭⎪⎫-12·cos α+32·sin α=0, 即cos(α+60°)=0,∴α+60°=k ·180°+90°, k ∈Z , 即α=k ·180°+30°,k ∈Z ,又0°≤α<360°,那么α=30°或α=210°.。
向量数量积(经典难题)参考答案
1.在边长为1的正三角形ABC 中,设2BC BD →→=,3CA CE →→=,AD BE →→⋅=____14-______2.如图在ABC ∆中,,3AD AB BC BD →→⊥=,1AD →=,则AC AD →→⋅=_____3______3.如图,O 、A 、B 是平面上三点,向量b OB a OA ==,,在平面AOB 上,P 是线段AB 的垂直平分线上任意向量p OP =,且2,3==b a ,则()p a b ⋅-= 254.如图,在矩形ABCD 中,22AB BC ==,,点E 为BC 的中点,点F 在边CD 上,若2AB AF =,则AE BF 的值是 ▲ .5.设P 为线段AB 的垂直平分线上任意一点,若平面PAB 内一点O 满足4OA →=,2OB →=,OP AB →→⋅=_____-6_____6.在Rt AOB ∆中,2AOB π∠=,OA=2,OB=3,若13OC OA →→=,12OD OB →→=,AD 与BC 交与M ,则OM AB →→⋅=__145________7.已知半径为2的圆O 与长度为3的线段PQ 相切,若切点恰好为PQ 的一个三等分点,则=⋅OQ OP 28.圆O 半径为2,A 是圆O 上一定点,BC 是圆O 上动弦,且弦长等于3,= 129.在边长为1的正三角形ABC 中,DC BD 21=,则=⋅CD AD 91O 为ABC ∆的外心,AB=4,AC=2, BAC ∠为钝角,M 是边BC 的中点,则AM AO →→⋅=_____5__10.ABC ∆内接于以O 为圆心,1为半径的圆,且3450OA OB OC →→→→++=,则______OC AB →→⋅=15-11.在ABC ∆中,AC=2,BC=6,已知点O 是ABC ∆内一点,且满足340OA OB OC →→→→++=,则240______OC BA BC →→→⎛⎫⋅+= ⎪⎝⎭12.ABC ∆外接圆的半径为1,圆心为O ,且20OA AB AC →→→→++=,OA AB →→=,则CA CB →→⋅=______3___13.设点O 是ABC ∆的重心,D 是BC 的中点,15AB AC →→==,,则BC OD →→⋅=____4___14.已知向量,,a b c →→→满足:1,2a b →→==,c a b →→→=+,且c a →→⊥,则a →与b →的夹角大小是_120︒_________15.对任意两个非零的平面向量,αβ,定义αβαβββ⋅︒=⋅,若平面向量,a b →→满足0a b →→≥>,,a b →→的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且a b ︒和b a ︒都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b ︒= ______32_____16.设1AB →=,若2CA CB →→=,则CA CB →→⋅的最大值为_____2___17.如图,线段AB 的长度为2,点A,B 分别在x 非负半轴和 y 非负半轴上滑动,以线段AB 为一边,在第一象限内作矩形ABCD ,BC=1,O 为坐标原点,则OC OD →→⋅的取值范围是___[]1,3________18.如图,扇形AOB 的弧的中点为M ,动点C,D 分别在线段120AOB ︒∠=,则MC MD →→⋅的取值范围是____31,82⎡⎤⎢⎥⎣⎦_______19.在平行四边形ABCD 中,3A π∠=,边AB,AD 的长分别为2,1,若M,N 分别是BC,CD 上的点,且满足D CB ABM CN BCCD→→→→=,则AM AN →→⋅的取值范围是___[]2,5_______20.线段AB 的长度为2,点A,B 分别在x 非负半轴和y 非负半轴上滑动,以线段AB 为一边,在第一象限内作矩形ABCD ,BC=1,O 为坐标原点,则OC OD →→⋅的取值范围是___[]1,3________21.如图,在OAB ∆中,点P 是线段OB 及AB,AO 的延长线所围成的阴影区域内(含边界)的任意一点,且OP xOA y OB →→→=+,则在直角坐标平面上,实数对(),x y 所表示的区域在直线3y x -=的右下侧部分的面积是 ____72______22.在平行四边形ABCD 中,3π=∠A ,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD ||||CD BC =⋅的取值范围是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量的数量积练习题一、选择题1.已知|b|=3,a在b方向上的投影是23,则a·b为 ( )C.3 D.2解析:由数量积的几何意义知所以a·b=23×3=2.答案:D2.设向量a,b满足|a+b|=10,|a-b|=6,则a·b=( )A.1 B.2 C.3 D.5解析:因为|a+b|2=(a+b)2=a2+b2+2a·b=10,|a-b|2=(a-b)2=a2+b2-2a·b=6,两式相减得:4a·b=4,所以a·b=1.答案:A3.已知向量a,b满足|a|=2,|b|=1,a·b=1,则向量a与a-b的夹角为( )解析:|a-b|=(a-b)2=a2+b2-2a·b=3,设向量a与a-b的夹角为θ,则cos θ=a·(a-b)|a||a-b|=22-12×3=32,又θ∈[0,π],所以θ=π6.答案:A4.(2015·陕西卷)对任意向量a,b,下列关系式中不恒成立的是( ) A.|a·b|≤|a||b| B.|a-b|≤||a|-|b||C.(a+b)2=|a+b|2 D.(a+b)·(a-b)=a2-b2解析:根据a·b=|a||b|cos θ,又cos θ≤1,知|a·b|≤|a||b|,A恒成立.当向量a和b方向不相同时,|a-b|>||a|-|b||,B不恒成立.根据|a+b|2=a2+2a·b +b2=(a+b)2,C恒成立.根据向量的运算性质得(a+b)·(a-b)=a2-b2,D恒成立.答案:B5.若向量a与b的夹角为60°,|b|=4,且(a+2b)·(a-3b)=-72,则a的模为( ) A.2 B.4 C.6 D.12解析:因为(a+2b)·(a-3b)=a2-a·b=6b2=|a|2-|a|·|b|cos 60°-6|b|2=|a|2-2|a|-96=-72,所以|a |2-2|a |-24=0,所以|a |=6.答案:C6.已知向量a =(1,-2),b =(x ,4),且a ∥b ,则|a -b |=( )A .5 3B .3 5C .25D .22解析:因为a ∥b ,所以4+2x =0,所以x =-2,a -b =(1,-2)-(-2,4)=(3,-6),所以|a -b |=3 5.答案:B7.(2015·杭州模拟)如图,在圆O 中,若弦AB =3,弦AC =5,则AO →·BC →的值是( )A .-8B .-1C .1D .8[答案] D[解析] 取BC 的中点D ,连接AD 、OD ,则有OD ⊥BC ,AD →=12(AB →+AC →),BC →=AC →-AB →,AO →·BC →=(AD →+DO →)·BC →=AD →·BC →+DO →·BC →=AD →·BC →=12(AB →+AC →)·(AC →-AB →)=12(AC →2-AB →2)=12×(52-32)=8,选D . 8.(2015·福建卷)设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( )A .-32B .-53解析:c =a +k b =(1+k ,2+k ),又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得k =-32. 答案:A9.已知A 、B 、C 是坐标平面上的三点,其坐标分别为A (1,2)、B (4,1)、C (0,-1),则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均不正确解析:AC →=(-1,-3),AB →=(3,-1). 因为AC →·AB →=-3+3=0,所以AC ⊥AB .又因为|AC →|=10,|AB →|=10,所以AC =AB .所以△ABC 为等腰直角三角形.答案:C10.点O 是△ABC 所在平面上一点,且满足OA OB OB OC OA OC ⋅=⋅=⋅,则点O 是△ABC 的( )A .重心B .垂心C .内心D .外心解析:因为OA →·OB →=OB →·OC →, 所以OB →·(OA →-OC →)=0,即OB →·CA →=0, 则OB →⊥CA →.同理OA →⊥BC →,OC →⊥AB →.所以O 是△ABC 的垂心.答案:B11.在△ABC 所在的平面内有一点P ,满足PA PB PC ++=AB ,则△PBC 与△ABC 的面积之比是( )解析:由PA →+PB →+PC →=AB →,得PA →+PB →+BA →+PC →=0,即PC →=2AP →,所以点P 是CA 边上的三等分点,如图所示.故S △PBCS △ABC =PC AC =23.答案:C12.O 是平面ABC 内的一定点,P 是平面ABC 内的一动点,若()()()()PB PC OB OC PC PA OA OC -⋅+=-⋅+=0,则O 为△ABC 的( )A .内心B .外心C .重心D .垂心解析:因为(PB →-PC →)·(OB →+OC →)=0,则(OB →-OC →)·(OB →+OC →)=0,所以OB →2-OC →2=0,所以|OB →|=|OC →|.同理可得|OA →|=|OC →|,即|OA →|=|OB →|=|OC →|.所以O 为△ABC 的外心.答案:B二、填空题13.如图所示,△ABC 中∠C =90°且AC =BC =4,点M 满足3BM MA =,则CM CB ⋅=________.解析:CM →·CB →=⎝⎛⎭⎪⎫CA →+14AB →·CB →=14AB →·CB →=14(CB →-CA →)·CB →=14CB 2→=4. 答案:414.如图所示,已知点A (1,1),单位圆上半部分上的点B 满足OA OB ⋅=0,则向量OB 的坐标为________.解析:设B (x ,y ),y >0,⎩⎨⎧x 2+y 2=1,x +y =0,⎩⎨⎧x =-22,y =22,所以OB →=⎝ ⎛⎭⎪⎫-22,22. 答案:⎝⎛⎭⎪⎫-22,22 15.在△ABC 中, BC =a , CA =b ,AB =c ,且满足:|a |=1,|b |=2,|c |=3,则a ·b +b ·c +c ·a 的值为________.解析:在△ABC 中,因为|a |=1,|b |=2,|c |=3,所以△ABC 为直角三角形,且BC ⊥BA ,以BA ,BC 为x ,y 轴建立坐标系,则B (0,0),A (3,0),C (0,1),所以a =BC →=(0,1),b =CA →=(3,-1),c =AB →=(-3,0). 所以a·b +b·c +a·c =-1-3+0=-4.答案:-416.在△ABC 中,已知|AB |=|AC |=4,且 AB AC ⋅=8,则这个三角形的形状是________.解析:因为AB →·AC →=4×4·cos A =8, 所以cos A =12,所以∠A =π3,所以△ABC是正三角形.答案:正三角形三、解答题17.已知向量a=(2,0),b=(1,4).(1)求|a+b|的值;(2)若向量k a+b与a+2b 平行,求k的值;(3)若向量k a+b与a+2b的夹角为锐角,求k的取值范围.解:(1)因为a=(2,0),b=(1,4),所以a+b=(3,4),则|a+b|=5.(2)因为a=(2,0),b=(1,4),所以k a+b=(2k+1,4),a+2b=(4,8);因为向量k a+b与a+2b平行,所以8(2k+1)=16,则k=1 2 .(3)因为a=(2,0),b=(1,4),所以k a+b=(2k+1,4),a+2b=(4,8);因为向量k a +b 与a +2b 的夹角为锐角,所以⎩⎨⎧4(2k +1)+32>0,k ≠12,解得k >-92或k ≠12. 18.如图所示,ABCD 是正方形,M 是BC 的中点,将正方形折起使点A 与M 重合,设折痕为EF ,若正方形面积为64,求△AEM 的面积.解:如图所示,建立直角坐标系,显然EF 是AM 的中垂线,设AM 与EF 交于点N ,则N 是AM 的中点,又正方形边长为8,所以M (8,4),N (4,2).设点E (e ,0),则AM →=(8,4),AN →=(4,2),AE →=(e ,0),EN →=(4-e ,2),由AM →⊥EN →得AM →·EN →=0,即(8,4)·(4-e ,2)=0,解得e =5,即|AE →|=5.所以S △AEM =12|AE →||BM →|=12×5×4=10.19.设向量a ,b 满足|a |=|b |=1,|3a -b |= 5.(1)求|a +3b |的值;(2)求3a -b 与a +3b 夹角的正弦值.解:(1)由|3a -b |=5,得(3a -b )2=5,所以9a 2-6a·b +b 2=5.因为a 2=|a |2=1,b 2=|b 2|=1,所以9-6a·b +1=5.所以a·b =56. 所以(a +3b )2=a 2+6a·b +9b 2=1+6×56+9×1=15. 所以|a +3b |=15.(2)设3a -b 与a +3b 的夹角为θ.因为(3a -b )·(a +3b )=3a 2+8a·b -3b 2=3×1+8×56-3×1=203. 所以cos θ=(3a -b )·(a +3b )|3a -b ||a +3b |=2035×15=439. 因为0°≤θ ≤180°,所以sin θ= 1-cos 2θ= 1-⎝ ⎛⎭⎪⎫4392=339. 所以3a -b 与a +3b 夹角的正弦值为339.20.在四边形ABCD 中,已知AB =9,BC =6,CP →=2PD →.(1)若四边形ABCD 是矩形,求AP →·BP→的值;(2)若四边形ABCD 是平行四边形,且AP →·BP →=6,求AB →与AD →夹角的余弦值. 解:(1)因为四边形ABCD 是矩形,所以AD →·DC →=0. 由CP →=2PD →,得DP →=13DC →,CP →=23CD →=-23DC →. 所以AP →·BP →=(AD →+DP →)·(BC →+CP →)=⎝⎛⎭⎪⎫AD →+13DC →·⎝ ⎛⎭⎪⎫AD →-23DC →= AD →2-13AD →·DC →-29DC 2→=36-29×81=18. (2)由题意,AP →=AD →+DP →=AD →+13DC →=AD →+13AB →, BP →=BC →+CP →=BC →+23CD →=AD →-23AB →, 所以AP →·BP →=⎝⎛⎭⎪⎫AD →+13AB →·⎝ ⎛⎭⎪⎫AD →-23AB →= AD 2→-13AB →·AD →-29AB →2=36-13AB →·AD →-18=18-13AB →·AD →.又AP →·BP →=6,所以18-13AB →·AD →=6, 所以AB →·AD →=36.又AB →·AD →=|AB →|·|AD →|cos θ=9×6×cos θ=54cos θ,所以54cos θ=36,即cos θ=23. 所以AB →与AD →夹角的余弦值为23. 21. (2015·济宁模拟)已知向量a =(cos θ,sin θ),θ∈[0,π],向量b =(3,-1).(1)若a ⊥b ,求θ的值;(2)若|2a -b |<m 恒成立,求实数m 的取值范围.[解析] (1)∵a ⊥b ,∴3cos θ-sin θ=0,得tan θ=3,又θ∈[0,π],∴θ=π3. (2)∵2a -b =(2cos θ-3,2sin θ+1),∴|2a -b |2=(2cos θ-3)2+(2sin θ+1)2=8+8(12sin θ-32cos θ)=8+8sin(θ-π3), 又θ∈[0,π],∴θ-π3∈[-π3,23π],∴sin(θ-π3)∈[-32,1],∴|2a-b|2的最大值为16.∴|2a-b|的最大值为4.又|2a-b|<m恒成立.∴m>4.22.(本题满分12分)(2015·厦门模拟)已知向量a=(cosα,sinα),b=(cos x,sin x),c=(sin x+2sinα,cos x+2cosα),其中0<α<x<π.(1)若α=π4,求函数f(x)=b·c的最小值及相应的x的值;(2)若a与b的夹角为π3,且a⊥c,求tan2α的值.[解析]∵b=(cos x,sin x),c=(sin x+2sinα,cos x+2cosα),α=π4.∴f(x)=b·c=cos x sin x+2cos x sinα+sin x cos x+2sin x cosα=2sin x cos x+2(sin x+cos x).令t=sin x+cos x(π4<x<π),则t∈(-1,2),且2sin x cos x=t2-1.∴y=t2+2t-1=(t+22)2-32,t∈(-1,2).当t=-22时,y min=-32,此时sin x+cos x=-22.即2sin(x+π4)=-22,sin(x+π4)=-12,∵π4<x<π,∴π2<x+π4<5π4.∴x+π4=7π6,即x=1112π.所以函数f(x)的最小值为-32,相应的x的值为1112π.(2)∵a与b的夹角为π3,cos π3=a·b|a||b|=cosαcos x+sinαsin x=cos(x-α),∵0<α<x<π,∴0<x-α<π.∴x-α=π3,∵a⊥c,∴cosα(sin x+2sinα)+sinα(cos x+2cosα)=0,化简得sin(x+α)+2sin2α=0.代入x-α=π3得sin(2α+π3)+2sin2α=52sin2α+32cos2α=0,∴tan2α=-3 5 .。