高一数学竞赛及试题答案

合集下载

高一数学竞赛试题含答案

高一数学竞赛试题含答案

高一数学竞赛试题高一数学竞赛试题时间:时间:8:30-11:00 8:30-11:00 8:30-11:00 总分:总分:总分:150150分一、填空题(本大题共15小题,每小题5分,共75分)分)1、如图,、如图,P P 为⊙O 外一点,过P 点作⊙O 的两条切线,切点分别为A ,B ,过PA 的中点Q 作割线交⊙O 于C ,D 两点,若QC QC==1,CD CD==3,则PB PB==________________。

2、若函数()()2ln f x x x a x=++为偶函数,则a = 。

3、函数()()2ax bf x x c +=+的图像如图所示,则a 0 0,,b 0 0,,c 0 0。

4、已知()221x f x x=+,则()()()()111123...2015...232015f f f f f f f æöæöæö+++++++=ç÷ç÷ç÷èøèøèø。

5、函数则()()222log 2log 3f x x x =-+的单调递减区间为的单调递减区间为 。

6、若方程2104xxeae -+=有负实数根,则a 的取值范围是的取值范围是。

7、设函数()31,12,1x x x f x x -<ì=í³î,则满足()()()2f af f a =的a 的取值范围是的取值范围是 。

8、设集合}{1,2,3......6A =,则集合A 的所有非空子集元素和的和为的所有非空子集元素和的和为 。

9、设函数()y f x =的图像与2x ay +=的图像关于y x =-对称,且()()241f f -+-=,则a = 。

1010、已知实数、已知实数,x y 满足()()()()3312011*********x x y y ì-+-=-ïí-+-=ïî,则x y += 。

高一数学竞赛试题参考答案

高一数学竞赛试题参考答案

高一数学竞赛试题参考答案一、选择题:(本题共10小题,每题4分,共40分。

在每小题给出的四个选项中,只有一项符合题目要求的。

)1.[答案] B[解析] 当a ≤0时,B =∅,满足B ⊆A ;当a >0时,欲使B ⊆A ,则⎩⎪⎨⎪⎧3-a ≥-43+a ≤4⇒a ≤1.故选B.2.[答案] C[解析] 由已知ax 2+ax -3≠0恒成立, 当a =0时,-3≠0成立; 当a ≠0时,Δ<0,∴a 2+12a <0, ∴-12<a <0,综上所述,a ∈(-12,0].3.C 【解析】 依题意,函数y =x 2-ax +12存在大于0的最小值,则a >1且a 2-2<0,解得a∈(1,2),选择C.4.B 【解析】 ∵2=log 24>log 23>log 22=1,故f (log 23)=f (1+log 23)=f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=124 5.C 【解析】 由f (x -1)=f (x +1)知f (x )是周期为2的偶函数,因为x ∈[0,1]时,f (x )=x 2,故当x ∈[-1,0],-x ∈[0,1]时,f (x )=f (-x )=(-x )2=x 2,由周期为2可以画出图象,结合y =⎝⎛⎭⎫110x的图象可知,方程f (x )=⎝⎛⎭⎫110x在x ∈⎣⎡⎦⎤0,103上有三个根,要注意在x ∈⎝⎛⎦⎤3,103内无解. 6.[答案] D[解析] 由题意,DE ⊥平面AGA ′, ∴A ,B ,C 正确,故选D. 7.[答案] B[解析] 设f (x )=2x -3-x ,因为2x ,-3-x 均为R 上的增函数,所以f (x )=2x -3-x 是R 上的增函数.又由2x -3-x >2-y -3y =2-y -3-(-y ),即f (x )>f (-y ),∴x >-y ,即x +y >0.8.[答案] A[解析] m =x -1-x ,令t =1-x ≥0,则x =1-t 2,∴m =1-t 2-t =-(t +12)2+54≤1,故选A.9.[答案] B[解析] 将f (x )=x 2+(a -4)x +4-2a 看作是a 的一次函数,记为g (a )=(x -2)a +x 2-4x +4. 当a ∈[-1,1]时恒有g (a )>0,只需满足条件⎩⎪⎨⎪⎧ g (1)>0,g (-1)>0,即⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0,解之得x <1或x >3. 10.[答案] B[解析] 由已知得f (x )=⎩⎨⎧x 2-2(-1≤x ≤32),x -x 2(x <-1或x >32),如图,要使y =f (x )-c 与x 轴恰有两个公共点,则-1<c <-34或c ≤-2,应选B.二、填空题(本大题共4小题,每小题4分,共16分。

高一数学竞赛试题及答案

高一数学竞赛试题及答案

高一数学竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = 1D. x = 4答案:B2. 函数f(x) = 2x^3 - 3x^2 + 4x - 5的导数是:A. 6x^2 - 6x + 4B. 6x^2 - 6x + 5C. 6x^2 - 3x + 4D. 6x^2 - 3x + 5答案:A3. 以下哪个数列不是等差数列?A. 2, 5, 8, 11, ...B. 1, 3, 6, 10, ...C. 3, 6, 9, 12, ...D. 5, 10, 15, 20, ...答案:B4. 圆的方程为(x - 2)^2 + (y + 3)^2 = 16,圆心坐标为:A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)答案:A二、填空题(每题5分,共20分)5. 如果一个三角形的三边长分别为3, 4, 5,则该三角形的面积为________。

答案:66. 函数y = 1 / (x - 2)的渐近线方程为________。

答案:x = 27. 等比数列的前三项为2, 6, 18,则该数列的公比为________。

答案:38. 一个圆的直径为10cm,那么它的面积为________平方厘米。

答案:78.54三、解答题(每题15分,共30分)9. 证明:如果一个数列的前n项和为S_n,且S_n = n^2,则该数列是等差数列。

证明:设数列的第n项为a_n,则S_n = a_1 + a_2 + ... + a_n。

由题意知S_n = n^2,因此S_{n-1} = (n-1)^2。

两式相减得a_n = S_n - S_{n-1} = n^2 - (n-1)^2 = 2n - 1。

由此可知,a_n - a_{n-1} = 2,即数列的相邻两项之差为常数2,因此该数列是等差数列。

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 取到最小值8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r .根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x≤−,则2()24f x x x=−,在这一区间上的最小值为(116f−=+;2.若(13x∈−−,则()88f x x=−+,在这一区间上的最小值为(316f=−+…………15分3.若31x∈−,则2()24f x x x=−+,在这一区间上的最小值为((3116f f=−+=−+;4.若13x∈− ,则()88f x x=−,在这一区间上的最小值为(116f−+=−+;5.若3x≥+,则2()24f x x x=−,在这一区间上的最小值为(316f=+.综上所述,所求最小值为((3116f f=−+=−.…………20分。

数学竞赛高一试题及答案

数学竞赛高一试题及答案

数学竞赛高一试题及答案一、选择题(每题5分,共10分)1. 已知函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值。

A. 4B. 6C. 8D. 102. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π二、填空题(每题5分,共10分)3. 已知\( a \)、\( b \)、\( c \)为三角形的三边长,且\( a^2 + b^2 = c^2 \),这个三角形是________。

4. 将\( 1 \)、\( 2 \)、\( 3 \)三个数字排列成三位数,所有可能的组合数是________。

三、解答题(每题15分,共30分)5. 已知数列\( \{a_n\} \)满足\( a_1 = 1 \),\( a_{n+1} = a_n + 2n \),求\( a_5 \)。

6. 一个直角三角形的斜边长为\( 5 \),一条直角边长为\( 3 \),求另一条直角边长。

四、证明题(每题15分,共30分)7. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + ... + n^3 = (1 + 2 + ... + n)^2 \)。

8. 证明:若\( a \)、\( b \)、\( c \)是三角形的三边长,且\( a^2 + b^2 = c^2 \),则这个三角形是直角三角形。

五、综合题(每题15分,共20分)9. 一个工厂计划在一年内生产\( x \)个产品,已知生产每个产品的成本是\( 10 \)元,销售每个产品的价格是\( 20 \)元。

如果工厂希望获得的利润不少于\( 10000 \)元,求\( x \)的最小值。

10. 已知函数\( g(x) = x^3 - 6x^2 + 11x - 6 \),求\( g(x) \)的极值点。

答案:一、选择题1. 答案:B. 6(计算方法:\( f(-1) = 2(-1)^2 - 3(-1) + 1 = 2 + 3 + 1 = 6 \))2. 答案:B. 50π(计算方法:圆面积公式为\( πr^2 \),代入\( r = 5 \))二、填空题3. 答案:直角三角形4. 答案:6(排列组合方法:\( 3 \times 2 \times 1 = 6 \))三、解答题5. 答案:\( a_5 = 1 + 2(1) + 2(2) + 2(3) + 2(4) = 1 + 2 + 4 +6 + 8 = 21 \)6. 答案:根据勾股定理,另一条直角边长为\( 4 \)(计算方法:\( 5^2 - 3^2 = 4^2 \))四、证明题7. 证明:根据等差数列求和公式,\( 1 + 2 + ... + n =\frac{n(n+1)}{2} \),立方后得到\( \left(\frac{n(n+1)}{2}\right)^2 \),展开后即为\( 1^3 + 2^3 + ... + n^3 \)。

浙江省温州市2023-2024学年高一上学期数学家摇篮竞赛试题含解析

浙江省温州市2023-2024学年高一上学期数学家摇篮竞赛试题含解析

2023年苍南高一数学家摇篮竞赛(答案在最后)满分:120分考试时间:90分钟一、单选题1.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”.那么,函数解析式为2y x =-,值域为{}0,1,9--的同族函数共有()个.A.7 B.8C.9D.10【答案】C 【解析】【详解】1339⨯⨯=.选C.2.“23x <<”是“112x >-”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】由分式不等式的解法,求得不等式112x >-的解集,结合充分条件和必要条件的判定方法,即可求解.【详解】由题意,不等式112x >-可化为131022x x x --=>--,即302x x -<-,解得23x <<,即不等式的解集为{|23}x x <<,所以“23x <<”是“112x >-”的充分必要条件.故选:C.【点睛】本题主要考查了分式不等式的求解,以及充分不必要条件的判定,其中解答中熟记分式不等式的解法,以及充分条件、必要条件的判定方法是解答的关键,着重考查推理与运算能力.3.设x R +∈.则y =+的最大值为().A.3 B.223C.2D.2【答案】D 【解析】【详解】令1 xt=,于是,1yt==≤+=+211122t t⎫=+=-=+⎪⎪++⎭23222≤=.=,即1t=,亦即1x=时成立.所以,y=+的最大值为2.故答案为D4.已知()f x是定义在()()00-∞∞,,+上的偶函数,对任意的()12,0x x∞∈+,满足()()1212f x f xx x->-且24f=(),则不等式()4f x≥的解集为()A.[)[)202,-⋃+∞, B.[)(]2002-⋃,,C.][()22-∞-+∞,, D.(](],20,2-∞-⋃【答案】C【解析】【分析】根据题意判断出()f x在()0+∞,上单调递增,再由函数()f x在()()00-∞∞,,+上为偶函数,得到()4f x≥,将24f=()代入解题即可.【详解】因为对任意的()12,0x x∞∈+,满足()()1212f x f xx x->-,所以()f x在()0+∞,上单调递增,又()f x是定义在()()00-∞∞,,+上的偶函数,且24f=(),所以()()24f x f≥=,所以2xx⎧≥⎨≠⎩,解得2x≤-或2x≥.故选:C5.已知函数()()221,134,1a x a x f x x x ⎧-+<=⎨+≥⎩的值域与函数y x =的定义域相同,则实数a 的取值范围是()A.(),1∞- B.(],2∞--C.[]2,3- D.][(),23,-∞-⋃+∞【答案】B 【解析】【分析】利用分段函数的值域是各段值域的并集,结合一次函数的单调性列不等式求解即可.【详解】因为函数y x =的定义域为R ,所以()f x 的值域是R ,当1x ≥时,2347y x =+≥,故当1x <时,()21y a x a =-+的值域为(),m -∞,所以7m ≥,所以21017a a a ->⎧⎨-+≥⎩,解得2a ≤-,所以实数a 的取值范围是(],2∞--.故选:B.6.已知函数()y f x =()x y N +∈、满足:(1)对任意a 、b N +∈,a b ¹,都有()()()()af a bf b af b bf a +>+;(2)对任意N n +∈,都有()()3f f n n =.则()()512f f +的值是.A.17B.21C.25D.29【答案】D 【解析】【详解】对任意的n N +=,由(1)得()()()()()()1111n f n nf n n f n nf n +++>+++,即()()1f n f n +>.故()f x 在N +上为单调增函数.对任意n N +∈,由(2)得()()()()()33f n f f f n f n ==.显然()11f ≠.否则,()()()311ff f ==.矛盾.若()13f ≥,则()()()()()313213f f f f f =≥>>≥,矛盾.所以,()12f =.故()()3316f f ==,()()()63339f ff ==⨯=.由()()()()634569f f f f =<<<=,得()47f =,()58f =.则()()()743412f ff ==⨯=,()()()1273721f f f ==⨯=.故()()51282129f f +=+=.故答案为D二、多选题7.已知定义在R 上的函数()f x 在(],2-∞上单调递增,且()2f x +为偶函数,则()A.()f x 的对称轴为直线2x =-B.()f x 的对称轴为直线2x =C.()()24f f ->D.不等式()()30f x f +>的解集为()3,1-【答案】BD 【解析】【分析】由偶函数的定义确定对称轴即可判断AB ;根据(4)(0)f f =和函数的单调性即可判断C ;利用函数的奇偶性和单调性解不等式即可判断D.【详解】A :因为(2)f x +为偶函数,其图象关于y 轴对称,所以函数()f x 的对称轴为直线2x =,故A 错误;B :由选项A 可知,B 正确;C :因为函数()f x 的对称轴为直线2x =,所以(4)(0)f f =,又函数()f x 在(,2]-∞上单调递增,所以()()02f f >-,则()()42f f >-,故C 错误;D :因为函数()f x 的对称轴为直线2x =,且()f x 在(,2]-∞上单调递增,所以函数()f x 在[2,)+∞上单调递减,且(2)(2)f x f x +=-,由(3)(0)f x f +>,得3202x +-<-,即12x +<,解得31x -<<,故D 正确.故选:BD.8.下列说法正确的有()A.已知1x ≠,则4211y x x =+--的最小值为1+B.若正数x 、y 满足3x y xy ++=,则xy 的最小值为9C.若正数x 、y 满足23x y xy +=,则2x y +的最小值为3D.设x 、y 为实数,若2291x y xy ++=,则3x y +的最大值为7【答案】BCD 【解析】【分析】利用基本不等式求最值逐项判断即可.【详解】对于A ,因为1x ≠,所以当1x >时,10x ->,()442121114111y x x x x =+-=-++≥=--,当且仅当()4211x x -=-,即1x =当1x <时,10x -<,()10x -->,()4211x x ⎡⎤--+-≥=⎡⎤⎣⎦⎢⎥-⎣⎦当且仅当()4211x x ⎡⎤--=-⎡⎤⎣⎦⎢⎥-⎣⎦,即1x =()4211x x -+≤--,所以()4421211111y x x x x =+-=-++≤---,所以函数的值域为(),11⎡-∞-⋃++∞⎣,故A 错误;对于B ,若正数x 、y 满足3x y xy ++=,可得33xy x y =++≥+,当且仅当3x y ==时等号成立,(),0t t =>,则()223,0t t t ≥+>,即()2230,0t t t --≥>,解得3t ≥,即9xy ≥,所以xy 的最小值为9,故B 正确;对于C ,若正数x 、y 满足23x y xy +=,则2213x y xy x y+==+,则()1122122552333321x y x y x y y x x y ⎛⎛⎫⎛⎫+=+=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝+当且仅当22x y y x=,即1x y ==时等号成立,所以2x y +的最小值为3,故C 正确;对于D ,221239x y xy x y ≥⋅-=⋅+,所以17xy ≤,()()222112395151577x y x y xy xy xy +=+++=+≤+⨯=所以37x y +≤,当且仅当37y x ==时,等号成立,故3x y +的最大值为7,故D 正确.故选:BCD.9.德国著名数学家狄利克雷是解析数学的创始人,以其名字命名的函数称为狄利克雷函数,其解析式为()1,0,x D x x ⎧=⎨⎩为有理数为无理数,则下列关于狄利克雷函数()D x 的说法错误..的是()A.对任意实数x ,()()1D D x =B.()D x 既不是奇函数又不是偶函数C.对于任意的实数x ,y ,()()()D x y D x D y +≤+D.若x ∈R ,则不等式()2430x D x x -+<的解集为{}13x x <<【答案】BCD 【解析】【分析】根据题意结合奇偶性、一元二次不等式的解法逐项分析判断.【详解】若x 是有理数,则()()()11D D x D ==;若x 是无理数,则()()()01D D x D ==,故A 正确;若x 是有理数,则x -也是有理数,此时()()1D x D x =-=;若x 是无理数,则x -也是无理数,此时()()0D x D x =-=;即()D x 为偶函数,故B 错误;若x 是无理数,取y x =-,则y 是无理数,此时()()01D x y D +==,()()0D x D y +-=,即()()()D x y D x D y +>+-,故C 错误;若x 是有理数,则()2243430x D x x x x -+=-+<的解集为{}13x Q x ∈<<;若x 是有理数,()224330x D x x x -+=+<,显然不成立,故D 错误.故选:BCD .10.已知函数()f x 是定义在实数集R 上的奇函数,当0x ≥时,()()1232f x x a x a a =-+--.若()()20f x f x --≤恒成立,则实数a 的取值可能是()A.-1B.12C.13D.1【答案】AC 【解析】【分析】()()20f x f x --≤等价于()()2f x f x ≤+恒成立,当0x ≥时,函数()f x 的解析式进行去绝对值,所以讨论0a ≤和0a >的情况,再根据函数()f x 是奇函数,得到0x <时()f x 的解析式或图像,结合图像得到a 的取值范围.【详解】因为()()20f x f x --≤等价于()()2f x f x ≤+恒成立.当0x ≥时,()()1232f x x a x a a =-+--.若0a ≤,则当0x ≥时,()()1232f x x a x a a x =-+-+=.因为()f x 是奇函数,所以当0x <时,0x ->,则()()f x x f x -=-=-,则()f x x =.综上,()f x x =,此时()f x 为增函数,则()()2f x f x ≤+恒成立.若0a >,当0x a ≤≤时,()()1232f x x a x a a x ⎡⎤=-+---=-⎣⎦;当2a x a <≤时,()()1232f x x a x a a a ⎡⎤=----=-⎣⎦;当2x a >时,()()12332f x x a x a a x a ⎡⎤=-+--=-⎣⎦.即当0x ≥时,函数()f x 的最小值为a -,由于函数()f x 是定义在R 上的奇函数,当0x <时,函数()f x 的最大值为a ,作出函数()f x 的图像如图:故函数()f x 的图像不能在函数()2f x +的图像的上方,结合图像可得323a a -≤-,即13a ≤,求得103a <≤.综上,13a ≤.故选:AC.【点睛】(1)运用函数图像解决问题时,先要正确理解和把握函数图像本身的含义,能够根据函数解析式和性质画出函数图像;(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图像的关系,结合图像研究.三、填空题11.已知不等式20x ax b --<的解集为(2,3),则不等式210bx ax ++>的解集为______【答案】(,)-116【解析】【分析】根据韦达定理求出,a b ,代入解二次不等式即可.【详解】由不等式20x ax b --<的解集为(2,3),则2323ab +=⎧⎨⨯=-⎩,则56a b =⎧⎨=-⎩,则210bx ax ++>,即为x x -++>26510,解得:(,)-116.故答案为:(,)-11612.正实数,x y 满足1423x y +=,且不等式24yx m m +≥-恒成立,则实数m 的取值范围__________.【答案】[2,3]-【解析】【分析】把恒成立问题转化成求最值问题,利用基本不等式求出4yx +的最小值,然后解不等式即可.【详解】因为1423x y +=且x ,y 是正数,所以314343((2(26424242y y y x x x x y x y +=++=++≥+=,当且仅当441423y x x y x y ⎧=⎪⎪⎨⎪+=⎪⎩,即312x y =⎧⎨=⎩时等号成立,因为不等式24yx m m +≥-恒成立,所以26m m -≤,解得23m -≤≤.故答案为:[]2,3-.13.若函数()f x 在区间[],a b 上的值域为11,b a ⎡⎤⎢⎥⎣⎦,则称区间[],a b 为函数()f x 的一个“倒值区间”.已知定义在R 上的奇函数()g x ,当(],0x ∈-∞时,()22g x x x =+.那么当()0,x ∈+∞时,()g x =______;求函数()g x 在()0,∞+上的“倒值区间”为______.【答案】①.22x x-+②.11,2⎡⎤+⎢⎥⎣⎦【解析】【分析】根据函数是奇函数求出0x >时,2()2g x x x =-+,再由二次函数的单调性及“倒值区间”的定义,列出方程求解即可.【详解】设0x >,则0x -<,2()2g x x x ∴-=-,由()g x 为奇函数,可得2()()2g x g x x x =--=-+,故当0x >,2()2g x x x =-+,对称轴方程为1x =,所以0x >时,max ()(1)1g x g ==,设[],a b 是()g x 在()0,∞+上的“倒值区间”,则值域为11,b a ⎡⎤⎢⎥⎣⎦,所以11a≤,即1a ≥,所以2()2g x x x =-+在[],a b 上单调递减,221()21()2g b b b b g a a a a ⎧=-+=⎪⎪⎨⎪=-+=⎪⎩,即22(1)(1)0(1)(1)0a a a b b b ⎧---=⎨---=⎩,解得112a b =⎧⎪⎨=⎪⎩,所以函数()g x 在()0,∞+上的“倒值区间”为511,2⎡⎤+⎢⎥⎣⎦.故答案为:22x x -+;11,2⎡⎤⎢⎥⎣⎦14.设0x >,对函数[][]1()111x xf x x x x x +=⎡⎤⎡⎤⋅+++⎢⎥⎢⎥⎣⎦⎣⎦,其中[]x 表示不超过x 的最大整数,其值域是_______.【答案】155,264⎧⎫⎡⎫⋃⎨⎬⎪⎢⎩⎭⎣⎭【解析】【分析】【详解】由于()f x 的表达式中,x 与1x对称.且0x >,不妨设1x ≥.(1)当1x =时,11x =,有1(1)2f =.(2)当1x >时,设,01,x n a a n N +=+≤<∈,则1[],0x n x ⎡⎤==⎢⎥⎣⎦,故1()1n a n a f x n +++=+.易证函数1()g x x x =+在[)1,x ∞∈+上递增,故11111n a n n n n a n +++<++++≤,则1111(),,(1,2,)11n n n n n f x I n n n ⎡⎫+++⎪⎢+∈==⎪⎢++⎪⎢⎣⎭故()f x 的值域为12n I I I ⋃⋃⋃⋃ .设22211,1(1)n n n a b n n n +==+++,则[),n n n I a b =.又12(1)(2)n n n a a n n n +--=++,当2n >时,2345n a a a a a =<<<<< ,易知n b 单调递减,故[)2223,n a b I I I =⊇⊇⊇⊇ .因为1255101,,,469I I ⎡⎫⎡⎫==⎪⎪⎢⎢⎣⎭⎣⎭,所以12125510551,,,46964n I I I I I ⎡⎫⎡⎫⎡⎫⋃⋃⋃⋃=⋃=⋃=⎪⎪⎢⎢⎢⎣⎭⎣⎭⎣⎭ .综上所述,值域为155[,264⎧⎫⋃⎨⎬⎩⎭.故答案为:155[,264⎧⎫⋃⎨⎬⎩⎭.四、解答题15.已知函数()()()2122R m f x m m x m -=--∈为幂函数,且()f x 在(0,)+∞上单调递增.(1)求m 的值,并写出()f x 的解析式;(2)解关于x 的不等式()()1f x a a x +>+,其中R a ∈.【答案】(1)3,()2f x x=(2)答案见解析【解析】【分析】(1)根据幂函数的定义和性质即可求解;(2)由(1)可得原不等式变形为()()10x x a -->,分类讨论含参一元二次不等式即可求解.【小问1详解】因为()()()2122R m f x m m x m -=--∈为幂函数,且()f x 在(0,)+∞上单调递增,则222110m m m ⎧--=⎨->⎩,解得3m =,所以()2f x x =;【小问2详解】不等式()21x a x a -++>0,即()()10x x a -->当1a =,1x ≠,即不等式解集为{}|1x x ≠,当1a >,1x <或x a >,即不等式解集为()(),1,x a ∈-∞⋃+∞,当1a <,x a <或1x >,即不等式解集为()(),1,x a ∈-∞⋃+∞.所以,当1a =,不等式解集为{}|1x x ≠,当1a >,不等式解集为()(),1,x a ∈-∞⋃+∞,当1a <,不等式解集为()(),1,x a ∈-∞⋃+∞.16.中华人民共和国第14届冬季运动会将于2024年2月17日至2月27日在内蒙古自治区呼伦贝尔市举行,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少0.2万件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元(2)为了抓住此次契机,扩大该商品的影响力,提高年销售量,公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入21(600)6x -万元作为技改费用,投入50万元作为固定宣传费用,投入5x 万元作为浮动宣传费用.试问:当该商品改革后的销售量 a 至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.【答案】(1)40元;(2) a 至少应达到10.2万件,每件定价30元.【解析】【分析】(1)设每件定价为t 元,由题设有[80.2(25)]258t t --≥⨯,解一元二次不等式求t 范围,即可确定最大值;(2)问题化为>25x 时,151506x a x +≥+有解,利用基本不等式求右侧最小值,并确定等号成立条件,即可得到结论.【小问1详解】设每件定价为t 元,依题意得[80.2(25)]258t t --≥⨯,则2651000(25)(40)0t t t t -+=--≤,解得2540t ≤≤,所以要使销售的总收入不低于原收入,每件定价最多为40元【小问2详解】依题意,>25x 时,不等式21(600)6525850ax x x -≥++⨯+有解,等价于>25x 时,151506x a x +≥+有解,因为1501+6x x ≥(当且仅当30x =时等号成立),所以10.2a ≥,此时该商品的每件定价为30元,当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.17.已知函数()212f x x x=+,定义域为[)(]1,00,1- .(1)写出函数()f x 的奇偶性(无需证明),判断并用定义法证明函数()f x 在(]0,1上的单调性;(2)若(]0,1x ∀∈,都有()2f x m >+恒成立,求实数m 的取值范围;(3)解不等式()()1f t f t ->.【答案】(1)()f x 在定义域[)(]1,00,1- 为偶函数;()212f x x x =+在区间(]0,1上单调递减,证明见解析.(2)()1∞-,(3)1,12⎛⎫ ⎪⎝⎭【解析】【分析】(1)由偶函数和单调性的定义可得;(2)先根据函数的单调性求最小值,根据恒成立即可得1m <;(3)根据函数的定义域,单调性,偶函数,结合()()1f t f t ->列出不等式组即可.【小问1详解】()f x 在定义域为[)(]1,00,1- 因()()()221122x x f x f x x x =-+=+=--,所以()f x 为偶函数;.()212f x x x =+在区间(]0,1上单调递减,证明如下设1201x x <<≤,则()()()22211212122222121211222x x f x f x x x x x x x x x --=+--=-+()()12121222221212121122x x x x x x x x x x x x ⎡⎤⎛⎫⎛⎫+=--=--+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦因1201x x <<≤,所以120x x -<,21211x x >,21211x x >,所以()()120f x f x ->,所以()212f x x x=+在区间(]0,1上单调递减.【小问2详解】由(1)可知()f x 在区间(]0,1上单调递减,所以,当1x =时,()f x 取得最小值()13f =,又(]0,1x ∀∈,都有()2f x m >+恒成立,所以只需32m >+成立,即1m <,故实数m 的取值范围为()1∞-,.【小问3详解】由(1)知,()f x 在定义域[)(]1,00,1- 为偶函数且在区间(]0,1上单调递减,故由()()1f t f t ->得111101101t t t t t t -≤-≤⎧⎪-≠⎪⎪-≤≤⎨⎪≠⎪-<⎪⎩,即02111012t t t t t ≤≤⎧⎪≠⎪⎪-≤≤⎨≠⎪⎪⎪>⎩,解得112t <<,所以实数m 的取值范围为1,12⎛⎫ ⎪⎝⎭18.设函数2()f x ax bx c =++(a ≠0)满足(0)2f ≤,|(2)|2f ≤,(2)2f -≤,求当[2,2]x ∈-时|()|y f x =的最大值.【答案】52【解析】【详解】解:由题意知()()()0422422c f a b c f a b c f ⎧=⎪++=⎨⎪-+=-⎩,解得()()()()()()022208224c f f f f a f f b ⎧⎪=⎪+--⎪=⎨⎪⎪--=⎪⎩,从而当[]2,2x ∈-时,()()()()()()()2222022084f f f f f y f x x x f +----==++()()()222224220884x x x x x f f f +--=+-+222224442x x x x x +--≤++..因为[]2,2x ∈-时2222044x x x x +-⋅≤,从而()222222224224442442x x x x x x x x x x f x +--+--≤++=-+222x x =-++.易知当[]0,2x ∈时22522222x x x x -++=-++≤当[]2,0x ∈-时22522222x x x x -++=--+≤得()2225max max 222x x x f x x ≤≤⎛⎫≤-++≤ ⎪⎝⎭.最后取()2122f x x x =-++,则()()()2202f f f =-==.故该函数满足题设条件且在[]2,2-上能取到最大值52.因此()y f x =的最大值为52.。

竞赛数学高中试题及答案

竞赛数学高中试题及答案

竞赛数学高中试题及答案试题一:多项式问题题目:已知多项式 \( P(x) = x^3 - 3x^2 + 2x - 5 \),求 \( P(2) \) 的值。

解答:将 \( x = 2 \) 代入多项式 \( P(x) \) 中,得到:\[ P(2) = 2^3 - 3 \times 2^2 + 2 \times 2 - 5 = 8 - 12 + 4 -5 = -5 \]试题二:几何问题题目:在直角三角形 ABC 中,角 C 是直角,若 \( AB = 10 \) 且\( AC = 6 \),求斜边 BC 的长度。

解答:根据勾股定理,直角三角形的斜边 \( BC \) 可以通过以下公式计算:\[ BC = \sqrt{AB^2 - AC^2} = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8 \]试题三:数列问题题目:给定数列 \( a_n = 2n - 3 \),求数列的前 5 项。

解答:根据数列公式 \( a_n = 2n - 3 \),我们可以计算出前 5 项:\[ a_1 = 2 \times 1 - 3 = -1 \]\[ a_2 = 2 \times 2 - 3 = 1 \]\[ a_3 = 2 \times 3 - 3 = 3 \]\[ a_4 = 2 \times 4 - 3 = 5 \]\[ a_5 = 2 \times 5 - 3 = 7 \]数列的前 5 项为:-1, 1, 3, 5, 7。

试题四:概率问题题目:一个袋子里有 5 个红球和 3 个蓝球,随机抽取 2 个球,求抽到一个红球和一个蓝球的概率。

解答:首先计算总的可能组合数,即从 8 个球中抽取 2 个球的组合数:\[ \text{总组合数} = \binom{8}{2} = \frac{8 \times 7}{2} = 28 \]然后计算抽到一个红球和一个蓝球的组合数:\[ \text{有利组合数} = \binom{5}{1} \times \binom{3}{1} = 5 \times 3 = 15 \]所以,抽到一个红球和一个蓝球的概率为:\[ P = \frac{\text{有利组合数}}{\text{总组合数}} =\frac{15}{28} \]试题五:函数问题题目:若函数 \( f(x) = x^2 - 4x + 4 \),求 \( f(x) \) 的最小值。

2023年全国中学生数学奥林匹克暨2023年全国高中数学联合竞赛一试(A卷)试题及参考答案

2023年全国中学生数学奥林匹克暨2023年全国高中数学联合竞赛一试(A卷)试题及参考答案

2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛一试(A 卷)试题(含参考答案)说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 设复数910i z (i 为虚数单位),若正整数n 满足2023n z ,则n 的最大值为 . 答案:2.解:22910181nnnnz z.因21812023z ,而当3n 时,181132023nn n z,故n 的最大值为2.2. 若正实数,a b 满足lg 2b a ,lg lg 5a b a b ,则lg ()ab ab 的值为 . 答案:20.解:因为lg lg lg lg 102a a b b b a ,所以lg lg lg lg lg lg lg ()()()52220ab a b a b b a ab ab a b a b .3. 将一枚均匀的骰子独立投掷三次,所得的点数依次记为,,x y z ,则事件“777C C C x y z”发生的概率为 . 答案:127.解:由于162534777777C C C C C C ,因此当,,{1,2,3,4,5,6}x y z 时,事件“777C C C x y z”发生当且仅当“{1,6},{2,5},{3,4}x y z ”成立,相应的概率为321627. 4. 若平面上非零向量,, 满足 ,2|| ,3|| ,则||的最小值为 .答案:23.解:由 ,不妨设(,0),(0,)a b ,其中,0a b ,并设(,)x y,则由2||得2by a ,由3|| 得3ax b .所以2232||2223b ax y xy a b. 取3,2a b ,此时6x y ,||取到最小值23.5. 方程sin cos2x x 的最小的20个正实数解之和为 . 答案:130 .解:将2cos212sin x x 代入方程,整理得(2sin 1)(sin 1)0x x ,解得532,2,2()662Z x k k k k.上述解亦可写成2()36Z k x k,其中0,1,,19k 对应最小的20个正实数解,它们的和为192219202013036326k k. 6. 设,,a b c 为正数,a b .若,a b 为一元二次方程20ax bx c 的两个根,且,,a b c 是一个三角形的三边长,则a b c 的取值范围是 .答案:7,518. 解:由条件知2222()()()ax bx c a x a x b ax a ab x a b ,比较系数得22,b a ab c a b ,故24,11a a b c a a,从而 24231a a a b c a a a a a .由于201a a b a,故112a .此时显然0b c .因此,,,a b c 是一个三角形的三边长当且仅当a c b ,即4211a a a a a,即2(1)0a a a ,结合112a ,解得15122a .令23()f x x x x ,则()a b c f a .显然当0x 时()f x 连续且严格递增,故a b c 的取值范围是151,22f f,即7,518 . 7. 平面直角坐标系xOy 中,已知圆 与x 轴、y 轴均相切,圆心在椭圆2222:1(0)x y a b a b内,且 与 有唯一的公共点(8,9).则 的焦距为 .答案:10.解:根据条件,可设圆心为(,)P r r ,则有222(8)(9)r r r ,解得5r 或29r .因为P 在 内,故5r .椭圆 在点(8,9)A 处的切线为2289:1x y l a b ,其法向量可取为2289,n a b. 由条件,l 也是圆 的切线,故n 与PA 平行,而(3,4)PA ,所以223227a b.又2264811a b ,解得22160,135a b .从而 的焦距为22210a b .8. 八张标有,,,,,,,A B C D E F G H 的正方形卡片构成下图.现逐一取走这些卡片,要求每次取走一张卡片时,该卡片与剩下的卡片中至多一张有公共边(例如可按,,,,,,,D A B E C F G H 的次序取走卡片,但不可按,,,,,,,D B A E C F G H 的次序取走卡片),则取走这八张卡片的不同次序的数目为 .AB C D EFGH答案:392.解:如左下图重新标记原图中的八张卡片.现将每张卡片视为顶点,有公共边的两张卡片所对应的顶点之间连一条边,得到一个八阶图,该图可视为右下图中的2m n 阶图(,)G m n 在3,3m n 时的特殊情况.231-3-20P-1 G (m , n )Pn...210-1-2-m ...取卡片(顶点)的规则可解释为:(i) 若顶点P 已取走,则以下每步取当前标号最小或最大的顶点,直至取完; (ii) 若顶点P 未取走,则必为某个(,)(,0)G m n m n 的情形,此时若0m ,则将P 视为1 号顶点,归结为(i)的情形;若0,0m n ,则将P 视为1号顶点,归结为(i)的情形;若,1m n ,则当前可取P 或m 号顶点或n 号顶点,分别归结为(i)或(1,)G m n 或(,1)G m n 的情形.设(,)G m n 的符合要求的顶点选取次序数为(,)f m n ,本题所求即为(3,3)f .由(i)、(ii)知1(,0)2(0)m f m m ,1(0,)2(0)n f n n ,且(,)2(1,)(,1)(,1)m n f m n f m n f m n m n .由此可依次计算得(1,1)12f ,(1,2)(2,1)28f f ,(1,3)(3,1)60f f ,(2,2)72f ,(2,3)(3,2)164f f ,(3,3)392f ,即所求数目为392.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分)平面直角坐标系xOy 中,抛物线2:4y x ,F 为 的焦点,,A B 为 上的两个不重合的动点,使得线段AB 的一个三等分点P 位于线段OF 上(含端点),记Q 为线段AB 的另一个三等分点.求点Q 的轨迹方程.解:设1122(,),(,)A x y B x y .不妨设AP PQ QB ,则121222,33x x y y P. 易知(1,0)F .由于点P 位于线段OF 上,故122[0,1]3x x ,12203y y . ……………4分可设12,2y t y t ,则2212,4t x x t .此时有2122[0,1]32x x t ,且由,A B 不重合知0t ,所以2(0,2]t . ……………8分设(,)Q Q Q x y ,则21212232,343Q Q x x y y x t y t,有243Q Q y x . 注意到2330,42Q x t ,故点Q 的轨迹方程为243(0)32y x x .……………16分10.(本题满分20分)已知三棱柱111:ABC A B C 的9条棱长均相等.记底面ABC 所在平面为 .若 的另外四个面(即面111111111,,,A B C ABB A ACC A BCC B )在 上投影的面积从小到大重排后依次为23,33,43,53,求 的体积.解:设点111,,A B C 在平面 上的投影分别为,,D E F ,则面11111,,A B C ABB A 1111,ACC A BCC B 在 上的投影面积分别为,,,DEF ABED ACFD BCFE S S S S .由已知及三棱柱的性质,DEF 为正三角形,且,,ABED ACFD BCFE 均为平行四边形.由对称性,仅需考虑点D 位于BAC 内的情形(如图所示). 显然此时有ABED ACFD BCFE S S S . ……………5分XFEB DCA由于,,,23,33,43,53DEF ABED ACFD BCFE S S S S ,故,ABED ACFD S S 必为23,33的排列,53BCFE S ,进而43DEF S ,得DEF 的边长为4,即正三棱柱 的各棱长均为4. ……………10分不妨设23,33ABED ACFD S S ,则333,2ABD ACD S S .取射线AD 与线段BC 的交点X ,则23ABD ACD BX S CX S ,故85BX .因此2242cos60195AX AB BX AB BX , 而58ABD ACD ABC AD S S AX S ,故192AD. ……………15分 于是 的高221352h AA AD. 又43ABC S ,故 的体积615ABC V S h . ……………20分11.(本题满分20分)求出所有满足下面要求的不小于1的实数t :对任意,[1,]a b t ,总存在,[1,]c d t ,使得()()1a c b d .解:记[1,]t I t ,()()S a c b d .假如2t ,则当a b t 时,对任意,t c d I ,均有2(1)1S t ,不满足要求.假如312t,则当1,2a b t 时,对任意,t c d I ,均有 21a c t ,12t b d .若,a c b d 同正或同负,则2(1)1S t ,其余情况下总有01S ,不满足要求. ……………5分以下考虑322t 的情形.为便于讨论,先指出如下引理.引理:若1,2u v ,且52u v ,则1uv .事实上,当32u v 时,22225312244u v u v uv . 当32u v 时,1131222uv .引理得证. 下证对任意,t a b I ,可取11,t c d I ,使得111()()1S a c b d .① 若12a b ,则取111c d ,此时1(1)(1)(1)(1)S a b a b ,其中31311,12222a b b a ,且5(1)(1)2()2a b a b ,故由引理知11S .若12a b ,则取1132t c d I ,此时13322S a b, 其中331,222a b ,且3353222a b a b ,故由引理知11S . ……………15分 注意到,当,t a b I 时,可取2t c I ,使得21a c (例如,当[1,1]a 时取20c ,当(1,]a t 时取21c ),同理,可取2t d I ,使得21b d .此时22222()()1S a c b d a c b d .②根据①、②,存在一个介于12,c c 之间的实数c ,及一个介于12,d d 之间的实数d ,使得()()1a c b d ,满足要求.综上,实数t 满足要求当且仅当322t . ……………20分。

高一数学竞赛试题及答案

高一数学竞赛试题及答案

高一数学竞赛试题及答案一、选择题(每题5分,共30分)1. 若a,b,c是三角形的三边长,且满足a² + b² = c²,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定2. 函数f(x) = 2x³ - 3x² + 1在区间[-1,2]上的最大值是:A. 1B. 7C. 9D. 无法确定3. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B的元素个数:A. 3B. 4C. 5D. 64. 等差数列的首项a₁ = 3,公差d = 2,第10项a₁₀的值是:A. 23B. 25C. 27D. 295. 圆的方程为(x - 2)² + (y - 3)² = 9,圆心到直线x + 2y - 7= 0的距离是:A. 2B. 3C. 4D. 56. 已知函数y = |x| + 1的图像与直线y = kx平行,那么k的值是:A. 1B. -1C. 0D. 无法确定二、填空题(每题4分,共20分)7. 若二次函数y = ax² + bx + c的顶点坐标为(-1, -4),则a =_______。

8. 已知等比数列的首项为2,公比为3,第5项的值为 _______。

9. 一个正六边形的内角和为 _______。

10. 若直线y = 2x + b与曲线y = x² - 3x相切,则b = _______。

11. 圆的方程为x² + y² = 25,圆上一点P(4,3)到圆心的距离是_______。

三、解答题(每题25分,共50分)12. 已知直线l₁:2x - 3y + 6 = 0与直线l₂:x + y - 2 = 0相交于点M,求点M的坐标。

13. 已知函数f(x) = x³ - 3x + 2,求证:对于任意的x > 0,都有f(x) > x。

高一数学《函数与方程》竞赛试题与答案

高一数学《函数与方程》竞赛试题与答案

高一数学《函数与方程》竞赛试题第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·福建·厦门一中高一竞赛)若函数y =f (x )图象上存在不同的两点A ,B 关于y 轴对称,则称点对[A ,B ]是函数y =f (x )的一对“黄金点对”(注:点对[A ,B ]与[B ,A ]可看作同一对“黄金点对”)已知函数2229,0()4,041232,4x x f x x x x x x x +<⎧⎪=-+≤≤⎨⎪-+>⎩,则此函数的“黄金点对”有()A .0对B .1对C .2对D .3对2.(2021·黑龙江·鸡西实验中学高一竞赛)已知函数()lg ,010=11,10x x f x x x ⎧<≤⎨-+>⎩,若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是()A .()1,10B .()111,C .()1011,D .()10+∞,3.(2022安徽·高一竞赛)已知单调函数()f x 的定义域为(0,)+∞,对于定义域内任意x ,[]2()log 3f f x x -=,则函数()()9g x f x x =+-的零点所在的区间为A .(1,2)B .(2,3)C .(3,4)D .(4,5)4.(2022浙江温州·高一竞赛)已知函数32log ,0()41,0x x f x x x x ⎧>=⎨++≤⎩,函数()()F x f x b =-有四个不同的零点1x ,2x ,3x ,4x ,且满足:1234x x x x <<<,则1234x x x x +的值是().A .-4B .-3C .-2D .-15.(2022广东潮州·高一竞赛)已知()()20f x ax bx c a =++>,分析该函数图像的特征,若方程()0f x =一根大于3,另一根小于2,则下列推理不一定成立的是()A .232ba<-<B .240ac b -≤C .()20f <D .()30f <6.(2022湖南·衡阳市八中高一竞赛)设()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()()22f x f x -=+,且当[]2,0x ∈-时,()122xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x 的方程()()log 20(01)a f x x a -+=<<恰有三个不同的实数根,则实数a 的取值范围是()A.1,42⎛⎫⎪ ⎪⎝⎭B.4⎛ ⎝⎭C .10,2⎛⎫⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭7.(2022陕西渭南·高二竞赛)已知定义在R 上的函数()f x 满足:(](]222,1,0()2,0,1x x f x x x ⎧--∈-⎪=⎨-∈⎪⎩且(2)()f x f x +=,52()2xg x x -=-,则方程()()f x g x =在区间[]37-,上的所有实根之和为()A .14B .12C .11D .78.(2022河南·高三竞赛(理))已知函数lg ,0,()2,0,x x x f x x ⎧>⎪=⎨≤⎪⎩若关于x 的方程2()()10f x af x -+=有且只有3个不同的根,则实数a 的值为A .2-B .1C .2D .3二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.(2021·福建·厦门一中高一竞赛)已知定义在R 上的偶函数f (x ),满足f (x +2)=-f (x )+f (1),且在区间[0,2]上是增函数,下列命题中正确的是()A .函数()f x 的一个周期为4B .直线4x =-是函数()f x 图象的一条对称轴C .函数()f x 在[6,5)--上单调递增,在[5,4)--上单调递减D .方程()0f x =在[0,2021]内有1010个根10.(2022·湖南衡阳·高二竞赛)已知函数()22,0log ,0x x f x x x +≤⎧=⎨>⎩,若()f x a =有三个不等实根123,,x x x ,且123x x x <<,则()A .()f x 的单调递减区间为()0,1B .a 的取值范围是()0,2C .123x x x 的取值范围是(]2,0-D .函数()()()g x f f x =有4个零点11.(2022·山东德州·高二竞赛)对x ∀∈R ,[]x 表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数.人们更习惯称之为“取整函数”,例如:[]3.54-=-,[]2.12=,则下列命题中的真命题是()A .[1,0]x ∀∈-,[]1x =-B .x ∀∈R ,[]1x x <+C .函数[]y x x =-的值域为[0,1)D .方程22022[]20230x x --=有两个实数根12.(2022·辽宁高二竞赛)已知函数()221,0log ,0xx f x x x ⎧+≤⎪=⎨>⎪⎩,()()()222g x f x mf x =-+,下列说法正确的是()A .()y f x =只有一个零点()1,0B .若()y f x a =-有两个零点,则2a >C .若()y f x a =-有两个零点1x ,()212x x x ≠,则121=x x D .若()g x 有四个零点,则32m >第II 卷(非选择题)三、填空题:本题共4个小题,每小题5分,共20分.13.(2021·浙江省杭州学军中学高一竞赛)已知函数()11||f x x x x +=-++,则方程()()21f x f x -=所有根的和是___________.14.(2022浙江高三竞赛)已知()f x 是偶函数,0x ≤时,()[]f x x x =-(符号[]x 表示不超过x 的最大整数),若关于x 的方程()() 0f x kx k k =+>恰有三个不相等的实根,则实数k 的取值范围为__________.15.(2021·浙江省杭州学军中学高一竞赛)已知函数222101,()2 1,x mx x f x mx x ⎧+-≤≤=⎨+>⎩,,,若()f x 在区间[)0,+∞上有且只有2个零点,则实数m 的取值范围是_________.16.(2021·浙江省杭州学军中学高一竞赛)已知函数22log (2),20()21,0x x f x x x x +-<≤⎧=⎨-+>⎩,若函数[]2()(())(1)(())()g x f f x a f f x R a a =-++∈恰有8个不同零点,则实数a 的取值范围是____________.四、解答题:本大题共5小题,17题共10分,其余各题每题12分,共70分.解答应写出文字说明、证明过程或演算步骤.17.(2022湖南·高三竞赛)已知二次函数2()163f x x x p =-++.(1)若函数在区间[1,1]-上存在零点,求实数p 的取值范围;(2)问是否存在常数(0)q q ≥,使得当[,10]x q ∈时,()f x 的值域为区间D ,且D 的长度为12q -.(注:区间[,]a b ()a b <的长度为b a -).18.(2022浙江高二竞赛)已知函数()2,,f x x ax b a b =++∈R ,(1)0f =.(1)若函数()y f x =在[0,1]上是减函数,求实数a 的取值范围;(2)设()()()21212x xF x f a =-+--,若函数()F x 有三个不同的零点,求实数a 的取值范围;19.(2022四川高一竞赛))已知函数()21log f x x =+,()2xg x =.(1)若()()()()()F x f g x g f x =⋅,求函数()F x 在[]1,4x ∈的值域;(2)若()H x 求证()()11H x H x +-=.求12320212022202220222022H H H H ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值;(3)令()()1h x f x =-,则()()()()24G x h x k f x =+-,已知函数()G x 在区间[]1,4有零点,求实数k 的取值范围.20.(2022广东高一竞赛)已知函数21()log 4(1)22x xf x k k k ⎡⎤=⋅--++⎢⎣⎦.(1)当2k =时,求函数()f x 在[0,)+∞的值域;(2)已知01k <<,若存在两个不同的正数a ,b ,当函数()f x 的定义域为[],a b 时,()f x 的值域为[1,1]a b ++,求实数k 的取值范围.21.(2022·山西运城高二竞赛)已知函数()()44log 41log 2x x f x =+-,()142log 23x g x a a -⎛⎫=⋅- ⎪⎝⎭.(1)若1x ∀∈R ,对[]21,1x ∃∈-,使得()221420x xf x m +≥-成立,求实数m 的取值范围;(2)若函数()f x 与()g x 的图象有且只有一个公共点,求实数a 的取值范围.22.(2022江苏盐城高一竞赛)若定义域为(0,)+∞的函数()f x 满足()0a f x f x ⎛⎫+= ⎪⎝⎭,则称()f x 为“a 型”弱对称函数.(1)若函数sin ()ln 1x mf x x x +=-+为“1型”弱对称函数,求m 的值;(2)已知函数()f x 为“2型”弱对称函数,且函数()f x 恰有101个零点(1,2,...,101)i x i =,若1011i i x =∑>λ对任意满足条件函数()f x 的恒成立,求λ的最大值.高一数学《函数与方程》竞赛试题答案一、单选题:本题共8小题,每小题5分,共40分。

全国高中数学竞赛试题及答案

全国高中数学竞赛试题及答案

全国高中数学竞赛试题及答案试题一:函数与方程1. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(x) \)的极值点。

2. 求解方程\( x^2 - 4x + 3 = 0 \)的所有实根。

3. 判断函数\( g(x) = \frac{1}{x} \)在区间\( (0, +\infty) \)上的单调性。

试题二:解析几何1. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a > b > 0 \),求椭圆的焦点坐标。

2. 求圆\( (x - h)^2 + (y - k)^2 = r^2 \)的切线方程,已知切点坐标为\( (m, n) \)。

3. 证明点\( P(x_1, y_1) \)和点\( Q(x_2, y_2) \)的连线\( PQ \)的中点坐标为\( \left(\frac{x_1 + x_2}{2}, \frac{y_1 +y_2}{2}\right) \)。

试题三:数列与级数1. 已知等差数列的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)。

2. 求等比数列\( b_1, b_2, b_3, \ldots \)的前\( n \)项和,其中\( b_1 = 1 \),公比\( r = 3 \)。

3. 判断数列\( c_n = \frac{1}{n(n + 1)} \)的收敛性。

试题四:概率与统计1. 从5个红球和3个蓝球中随机抽取3个球,求至少有2个红球的概率。

2. 抛掷一枚均匀硬币4次,求正面朝上的次数为2的概率。

3. 某工厂生产的产品中有2%是次品,求从一批产品中随机抽取10个产品,至少有1个是次品的概率。

试题五:组合与逻辑1. 有5个不同的球和3个不同的盒子,将球分配到盒子中,每个盒子至少有一个球,求不同的分配方法总数。

2. 证明:对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \)。

数学竞赛试题及答案高中

数学竞赛试题及答案高中

数学竞赛试题及答案高中一、选择题(每题4分,共40分)1. 若函数f(x) = 3x^2 - 6x + 5,下列哪个选项是f(x)的对称轴?A. x = 1B. x = -1C. x = 2D. x = -2答案:A2. 已知数列{an}的通项公式为an = 2^n,求数列{an}的前n项和Sn。

A. Sn = 2^(n+1) - 2B. Sn = 2^(n+1) - 1C. Sn = 2^(n+1) - 2^nD. Sn = 2^(n+1) - 2^(n-1)答案:B3. 已知向量a = (3, -2),向量b = (1, 2),求向量a与向量b的数量积。

A. 2B. -2C. 4D. -4答案:B4. 已知函数f(x) = x^3 - 3x^2 + 2x,求f'(x)。

A. 3x^2 - 6x + 2B. x^2 - 3x + 2C. 3x^2 - 6xD. x^2 - 3x答案:A5. 已知双曲线的方程为x^2/a^2 - y^2/b^2 = 1,其中a > 0,b > 0,求双曲线的离心率e。

A. e = √(1 + b^2/a^2)B. e = √(1 - b^2/a^2)C. e = √(a^2 + b^2)D. e = √(a^2 - b^2)答案:A6. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。

A. √2B. 1C. 0D. -1答案:A7. 已知等差数列{an}的首项a1 = 1,公差d = 2,求数列{an}的第10项a10。

B. 20C. 21D. 22答案:A8. 已知函数f(x) = x^2 - 4x + 4,求f(x)的最小值。

A. 0B. 1C. 2D. 3答案:A9. 已知向量a = (2, 3),向量b = (-1, 1),求向量a与向量b的夹角θ。

A. π/3B. π/4D. 2π/3答案:D10. 已知函数f(x) = e^x - e^(-x),求f'(x)。

必修一数学竞赛试题及答案

必修一数学竞赛试题及答案

必修一数学竞赛试题及答案奥赛班数学能力评估一试题卷MATHEMATICS]本卷满分:150分考试时间:120分钟)一、单项选择题(本大题分10小题,每题5分,共50分)1.已知函数$f(x)(x\in R)$是以4为周期的奇函数。

当$x\in(,2)$时,$f(x)=\ln(x^2-x+b)$.若函数$f(x)$在区间$[-2,2]$上有5个零点,则实数$b$的取值范围是(。

)A.$-1<b\leq1$B.$b\leq-1$或$b>1$C.$-1<b<1$或$b=1$D.$b< -1$或$b\geq1$2.设$M=\alpha\alpha=x^2-y^2$,$x,y\in Z$,则对任意的整数$n$,形如$4n,4n+1,4n+2,4n+3$的数中。

不是$M$中的元素的数为(。

)A.$4n$B.$4n+1$XXXD.$4n+3$3.若集合$A=\{(m,n)(m+1)+(m+2)+\cdots+(m+n)=\}$,$m\in Z$,$n\in N^*$,则集合$A$中的元素个数为(。

) A.$4030$B.$4032$C.$$D.$$4.不定方程$(n-1)!=nk-1$正整数解的个数为(。

)A.$3$B.$4$C.$5$D.$6$5.设$a,b,c$为实数,$f(x)=(x+a)\frac{x^2+bx+c}{x^2+1}$,$g(x)=(ax+1)\frac{ax^2+bx+1}{x^2+1}$.记集合S=\{x|f(x)=0\}$,$T=\{x|g(x)=0\}$,$S,T$分别为集合$S,T$的元素个数。

则下列结论不可能的是(。

)A.$S=1$且$T=0$B.$S=1$且$T=1$C.$S=2$且$T=2$D.$S=2$且$T=3$6.设集合$M=\{(x,y)-xy=45,x,y\in N\}$,则集合$M$中的元素个数为(。

)A.$1$B.$2$C.$3$D.$4$7.已知函数$f(x)$是定义在$R$上的奇函数。

数学竞赛高一试题及答案

数学竞赛高一试题及答案

数学竞赛高一试题及答案一、选择题(每题5分,共30分)1. 若函数f(x) = x^2 - 4x + 3,则f(0)的值为:A. 3B. 1C. -1D. 0答案:A2. 已知等差数列{an}的首项a1=1,公差d=2,则a5的值为:A. 9B. 10C. 11D. 12答案:A3. 对于不等式x^2 - 6x + 8 < 0,其解集为:A. (2, 4)B. (-∞, 2) ∪ (4, +∞)C. (-∞, 4) ∪ (2, +∞)D. (-∞, 2) ∪ (4, +∞)答案:A4. 已知集合A={x|x^2 - 5x + 6 = 0},B={x|x^2 - 3x + 2 = 0},则A∩B为:A. {1, 2}B. {2, 3}C. {1, 3}D. {2}答案:D5. 若函数f(x) = sin(x) + cos(x),则f(π/4)的值为:A. √2B. 1C. 2D. 0答案:A6. 已知向量a=(3, -1),b=(2, 4),则向量a与向量b的数量积为:A. 8B. 10C. 6D. 2答案:C二、填空题(每题5分,共20分)7. 已知函数f(x) = 2x - 1,求f(2)的值为______。

答案:38. 已知等比数列{bn}的首项b1=2,公比q=3,则b3的值为______。

答案:189. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)的导数表达式为______。

答案:3x^2 - 6x10. 已知复数z=1+i,求|z|的模长为______。

答案:√2三、解答题(每题20分,共50分)11. 解方程:x^2 - 5x + 6 = 0。

解:首先对方程进行因式分解,得到(x-2)(x-3)=0,所以解为x=2或x=3。

12. 已知函数f(x) = x^2 - 4x + 3,求函数的最小值。

解:将函数f(x)进行配方,得到f(x) = (x-2)^2 - 1。

高一数学竞赛试题及答案

高一数学竞赛试题及答案

高一数学竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是无理数?A. 3.1415926B. πC. √2D. 0.33333(无限循环小数)答案:B2. 已知函数f(x) = 2x^2 + 3x - 5,求f(-2)的值。

A. -15B. -7C. -3D. 1答案:B3. 一个圆的半径为r,圆心到直线的距离为d,如果d < r,那么该直线与圆的位置关系是:A. 相切B. 相交C. 相离D. 内含答案:B4. 如果一个等差数列的前三项和为9,第四项为5,求该数列的首项a1。

A. 1B. 2C. 3D. 4答案:B二、填空题(每题4分,共12分)5. 一个长方体的长、宽、高分别是a、b、c,其体积的公式是______。

答案:abc6. 若sinθ = 1/3,且θ在第一象限,求cosθ的值。

答案:2√2/37. 已知等比数列的前n项和公式为S_n = a1(1 - r^n) / (1 - r),其中a1是首项,r是公比。

如果S_5 = 31,a1 = 1,求r的值。

答案:2三、解答题(每题18分,共54分)8. 证明:对于任意正整数n,n^5 - n 能被30整除。

证明:由题意,我们需要证明n^5 - n 能被30整除。

首先,我们知道任何正整数n都能被1、2、3、5中的至少一个整除。

设n = 2a + b,其中a和b是整数,且b属于{0, 1, 2, 3, 4}。

则n^5 - n = (2a + b)^5 - (2a + b) = 32a^5 + 20a^4b + 5a^3b^2 + a^2b^3 + 2ab^4 - 2a - b。

可以看到,除了最后两项,其他项都能被2整除。

对于最后两项,我们有2a - b = 2(a - b/2),当b为偶数时,2a - b能被2整除;当b为奇数时,a - b/2为整数,所以2a - b也能被2整除。

同理,b - 1能被3整除,因为b属于{0, 1, 2, 3, 4}。

高一数学竞赛试题及答案

高一数学竞赛试题及答案

高一数学竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是无理数?A. √3B. 0.33333(无限循环)C. πD. 1/32. 已知函数 f(x) = 2x^2 - 3x + 1,求 f(-1) 的值。

A. 4B. 6C. 8D. 103. 一个圆的半径为 5,求其面积。

A. 25πB. 50πC. 75πD. 100π4. 若 a + b + c = 6,且 a^2 + b^2 + c^2 = 14,求 ab + bc + ca 的值。

A. 2B. 4C. 6D. 8二、填空题(每题5分,共20分)5. 已知等差数列的首项为 2,公差为 3,求第 10 项的值是__________。

6. 已知等比数列的首项为 4,公比为 2,求前 5 项的和是__________。

7. 若函数 g(x) = x^3 - 2x^2 + 3x - 4 的导数是 g'(x),则 g'(1) 的值是 __________。

8. 一个长方体的长、宽、高分别是 3、4、5,求其对角线的长度(保留根号)是 __________。

三、解答题(每题15分,共60分)9. 证明:对于任意正整数 n,都有 1^2 + 1/2^2 + 1/3^2 + ... +1/n^2 < 2。

10. 解不等式:|x - 1| + |x - 3| ≥ 5。

11. 已知函数 h(x) = x^3 - 6x^2 + 11x - 6,求其极值点。

12. 已知一个三角形的三个顶点分别为 A(1, 2),B(-1, -1),C(3, 4),求其面积。

答案一、选择题1. 正确答案:C(π 是无理数)2. 正确答案:A(f(-1) = 2(-1)^2 - 3(-1) + 1 = 4)3. 正确答案:B(面积= πr^2 = 25π)4. 正确答案:B(根据柯西-施瓦茨不等式)二、填空题5. 第 10 项的值是 2 + 9*(10-1) = 296. 前 5 项的和是 4 + 8 + 16 + 32 + 64 = 1267. g'(x) = 3x^2 - 4x + 3,g'(1) = 3 - 4 + 3 = 28. 对角线的长度是√(3^2 + 4^2 + 5^2) = √50三、解答题9. 证明:根据调和级数的性质,我们知道 1/n^2 随着 n 的增大而减小,且 1/n^2 < 1/(n-1)^2,因此可以构造不等式 1^2 + 1/2^2 +1/3^2 + ... + 1/n^2 < 1 + 1/(1*2) + 1/(2*3) + ... + 1/((n-1)*n) = 1 + 1 - 1/n < 2。

【竞赛题】高一趣味数学题筛选及答案

【竞赛题】高一趣味数学题筛选及答案

高一数学趣味竞赛题1、兄弟共有45元钱,如果老大增加2元钱,老二减少2元钱,老三增加到原来的2倍,老四减少到原来的1/2,这时候四人的钱同样多,原来各有多少钱?答案:老大8,老二12,老三5,老四202、桌子上原来有12支点燃的蜡烛,先被风吹灭了3根,不久又一阵风吹灭了2根,最后桌子上还剩几根蜡烛呢答案:5根3、一根绳子两个头,三根半绳子有几个头?答案:8个头,(半根绳子也是两个头)4、一栋住宅楼,爷爷从一楼走到三楼要6分钟,现在要到6楼,要走多少分钟?答案:15分钟5、24个人排成6列,要求5个人为一列,你知道应该怎样来排列吗?答案:一个六边形6、有一家里兄妹四个,他们4个人的年龄乘起来正好是14,你知道他们分别是多少岁吗?(当然在这里岁数都是整数。

)答案:(14只能分解为2和7,因此四个人的年纪分别为1,1,2,7,其中有一对为双胞胎)7. 1根绳子对折,再对折,再第三次对折,然后从中间剪断,共剪成多少段?答案;9段8、五条直线相交,最多能有多少个交点呢?答案:109、如果有5只猫,同时吃5条鱼,需要5分钟时间才吃完。

按同样的速度,100只猫同时吃掉100条鱼,需要()分钟时间。

答案:5分钟10、假设有一个池塘,里面有无穷多的水.现有2个空水壶,容积分别为5升和6升.问题是如何只用这2个水壶从池塘里取得3升的水. 答案:先用5升壶装满后倒进6升壶里在再将5升壶装满向6升壶里到,使6升壶装满为止,此时5升壶里还剩4升水将6升壶里的水全部倒掉,将5升壶里剩下的4升水倒进6升壶里,此时6升壶里只有4升水再将5升壶装满,向6升壶里到,使6升壶里装满为止,此时5升壶里就只剩下3升水了11、一个农夫带着三只兔到集市上去卖,每只兔大概三四千克,但农夫的秤只能称五千克以上,问他该如何称量.答案:先称3只,再拿下一只,称量后算差.12、有只猴子在树林采了100根香蕉堆成一堆,猴子家离香蕉堆50米,猴子打算把香蕉背回家,每次最多能背50根,可是猴子嘴馋,每走一米要吃一根香蕉,问猴子最多能背回家几根香?答案:25根,先背50根到25米处,这时,吃了25根,还有25根,放下.回头再背剩下的50根,走到25米处时,又吃了25根,还有25根.再拿起地上的25根,一共50根,继续往家走,一共25米,要吃25根,还剩25根到家.13、花甲重开,外加三七岁月;古稀双庆,内多一个春秋.用数学式子分别列出上下联(提示:根据年龄)答案:这副对联是由清代乾隆皇帝出的上联,暗指一位老人的年龄,要纪晓岚对下联,联中也隐含这个数.即上述下联.上联的算式:2×60+3×7=141,下联的算式:2×70+1=141.14、一二五六七(打一成语)答案:丢三落四15、八分之七(打一成语)答案:七上八下16、8+7=5(打一成语)答案:缺衣少食17、 3,4,7, 16, 43()答案12417、 1.16 8.25 27.36 64.49 ( )答案125.6418、一种叫水浮莲的水草生长很快,每天增加1倍,10天刚好长满池塘,到几天刚好长满池塘面积的一半()答案:9天19、一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。

高一数学竞赛试题及答案详解

高一数学竞赛试题及答案详解

高一数学竞赛试题一、选择题(每小题5分, 共40分, 每题仅有一个正确答案)1.已知函数f (x )满足f (||2x x +)=log 2||x x , 则f (x )的解析式是( ) A.2-x B.log 2 x C. -log 2 x D.x -22.已知f (x )=1-21x -(-1≤x ≤0), 函数y =f (x +1)与y =f (3-x )的图象关于直线l 对称,则直线l 的方程为( )A.x =2B.x =1C.x =21 D.x =0 3.设f (x )是R 上的奇函数, 且在(0, +∞)上递增, 若f (21)=0, f (log 4x )>0, 那么x 的取值范围是( )A.x >2或21<x <1B.x >2C.21<x <1D.21<x <24.已知定义域为R 的函数y =f (x )在(0, 4)上是减函数, 又y =f (x +4)是偶函数, 则( )A. f (5)<f (2)<f (7)B. f (2)<f (5)<f (7)C. f (7)<f (2)<f (5)D. f (7)<f (5)<f (2)5.若不等式2x 2+ax +2≥0对一切x ∈(0,21]成立, 则a 的最小值为( )A.0B. -4C.-5D. -66.已知定义域为R 的函数f (x )满足f (-x )= -f (x +2), 且当x >1时, f (x )单调递增.如果x 1+x 2<2, 且(x 1-1)(x 2-1)<0, 则f (x 1)+f (x 2)的值( )A.恒大于0B.恒小于0C.可能为0D.可正可负7.若函数f (x )=25-|x +5| -4×5-|x +5| +m 的图象与x 轴有交点, 则实数m 的取值范围是( )A.m >0B.m ≤4C.0<m ≤4D.0<m ≤38.对定义在区间[a , b ]上的函数f (x ), 若存在常数c , 对于任意的x 1∈[a , b ]有唯一的x 2∈[a , b ], 使得221)()(x f x f +=c 成立, 则称函数f (x )在区间[a , b ]上的“均值”为c . 那么,函数f (x )=lg x 在[10, 100]上的“均值”为( )A.101B.10C.43D.23二、填空题(每小题5分, 共30分)9.已知集合A={x | 4-2k <x <2k -8}, B={x | -k <x <k },若A ⊂ ≠B, 则实数k 的取值范围是____________________ 10.若函数y =log a (2x 2+ax +2)没有最小值, 则a 的所有值的集合是_________________11.集合P ={x |x =2n -2k , 其中n , k ∈N , 且n >k }, Q ={x |1912≤x ≤2006, 且x ∈N },那么, 集合P ∩Q 中所有元素的和等于_________12.已知方程组⎩⎨⎧=-=+164log 81log 4log log 6481y xy x 的解为⎩⎨⎧==11y y x x 和⎩⎨⎧==22y y x x , 则log 18(x 1 x 2 y 1 y 2)=________13.若关于x 的方程4x +2x m +5=0至少有一个实根在区间[1, 2]内, 则实数m 的取值范围是_________________14.设card(P)表示有限集合P 的元素的个数. 设a =card(A), b =card(B), c =card(A ∩B),且满足a ≠b , (a +1)(b +1)=2006, 2a +2b =2a +b -c +2c , 则max{a , b }的最小值是______三、解答题(每题10分, 共30分)15.设函数f (x )=|x +1|+|ax +1|.(1)当a =2时, 求f (x )的最小值;(2)若f (-1)=f (1), f (-a 1)=f (a1)(a ∈R, 且a ≠1), 求a 的值 16.设函数f (x )的定义域是(0, +∞), 且对任意的正实数x , y 都有f (xy )=f (x )+f (y )恒成立.已知f (2)=1, 且x >1时, f (x )>0.(1)求f (21)的值; (2)判断y =f (x )在(0, +∞)上的单调性, 并给出你的证明;(3)解不等式f (x 2)>f (8x -6) -1.17.已知函数f (x )=log a (ax 2-x +21)在[1, 2]上恒为正数, 求实数a 的取值范围.。

高一数学竞赛试题及答案

高一数学竞赛试题及答案

高一数学竞赛试题及答案一、选择题(每题4分,共20分)1. 若一个等差数列的首项为3,公差为5,那么它的第n项可以表示为:A. 3 + 5(n-1)B. 3 + 5nC. 5 + 3(n-1)D. 5 + 3n2. 下列哪个分数可以化简为1/2?A. 3/6B. 5/10C. 7/14D. 9/183. 已知函数f(x) = x^2 - 6x + 9,求f(x)的最小值。

A. -36B. -9C. 0D. 94. 若a, b, c是等比数列,且a + b + c = 0,那么b^2的值是:A. a^2 + c^2B. -a^2 - c^2C. acD. -ac5. 一个圆的半径是5cm,求这个圆的面积(圆周率取3.14)。

A. 78.5平方厘米B. 157平方厘米C. 200平方厘米D. 314平方厘米二、填空题(每题5分,共20分)6. 一个等比数列的前三项分别是2, 6, 18,那么它的第四项是_______。

7. 函数g(x) = |2x - 3| + |x + 1|的最小值是_______。

8. 已知一个直角三角形的两条直角边长分别为3cm和4cm,那么它的斜边长(根据勾股定理)是_______。

9. 一个圆的周长是12π,那么这个圆的直径是_______。

三、解答题(每题10分,共60分)10. 已知等差数列的前n项和为S_n = n^2 + 2n,求这个等差数列的前三项。

11. 求解方程:\(\frac{1}{x-1} + \frac{2}{x-2} = 3\)。

12. 一个圆与直线y = 2x + 3相交于点P,圆心坐标为(1, 0),且半径为2。

求点P的坐标。

13. 证明:若a, b, c, d是正整数,且满足a^2 + b^2 = c^2 + d^2,则a + b = c + d。

14. 一个等差数列的前10项和为110,且第10项是第2项的3倍,求这个等差数列的公差和首项。

高一数学竞赛答案一、选择题答案1. A2. D3. D4. B5. B二、填空题答案6. 547. 28. 59. 6三、解答题答案10. 首项为2,公差为4,前三项为2,6,10。

高一奥数竞赛试题及答案

高一奥数竞赛试题及答案

高一奥数竞赛试题及答案一、选择题(每题5分,共20分)1. 若实数a、b满足a^2 + b^2 = 1,则下列不等式中恒成立的是()。

A. a + b ≤ √2B. a + b ≥ √2C. a + b ≤ 1D. a + b ≥ 1答案:A解析:根据柯西-施瓦茨不等式(Cauchy-Schwarz Inequality),对于任意实数a和b,有(a^2 + b^2)(1^2 + 1^2) ≥ (a + b)^2。

因为a^2 + b^2 = 1,所以1 × 2 ≥ (a + b)^2,即a + b ≤ √2。

2. 已知函数f(x) = x^3 - 3x + 1,求f(-1)的值()。

A. 3B. -3C. -1D. 1答案:A解析:将x = -1代入函数f(x) = x^3 - 3x + 1,得到f(-1) = (-1)^3 - 3(-1) + 1 = -1 + 3 + 1 = 3。

3. 已知数列{an}满足a1 = 1,an+1 = 2an + 1,求a5的值()。

A. 15B. 31C. 63D. 127答案:B解析:根据递推关系an+1 = 2an + 1,可以逐步计算得到:a2 = 2a1 + 1 = 2 × 1 + 1 = 3a3 = 2a2 + 1 = 2 × 3 + 1 = 7a4 = 2a3 + 1 = 2 × 7 + 1 = 15a5 = 2a4 + 1 = 2 × 15 + 1 = 314. 已知三角形ABC的三边长分别为a、b、c,且a^2 + b^2 = c^2,求角C的大小()。

A. 30°B. 45°C. 60°D. 90°答案:D解析:根据勾股定理,若a^2 + b^2 = c^2,则三角形ABC为直角三角形,且角C为直角,即C = 90°。

二、填空题(每题5分,共20分)5. 已知函数f(x) = x^2 - 4x + 3,求f(x)的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学竞赛试题及答案时间: 2016/3/18注意:本试卷均为解答题. 解答应写出文字说明、证明过程或演算步骤.总分150分,考试时间120分钟.1.(本小题满分15分)设集合{}()(){}222320,2150,A x x x B x x a x a a R =-+==+++-=∈,(1)若{}2A B =I 求a 的值;(2)若A B A =U ,求a 的取值范围;(3)若(),U U R A C B A ==I ,求a 的取值范围.2.(本小题满分15分)设},)]([|{},)(|{x x f f x N x x f x M ====(1)求证:;N M ⊆(2))(x f 为单调函数时,是否有N M =?请说明理由.3.(本小题满分15分)已知函数444)cos (sin )cos (sin 2)(x x m x x x f +++=在]2,0[π∈x 有最大值5,求实数m 的值.4.(本小题满分15分)已知函数f(x)在R上满足f(2-x)=f(2+x),f(7-x)=f(7+x)且在闭区间[0,7]上,只有f(1)=f(3)=0,(1)试判断函数y=f(x)的奇偶性;(2)试求方程f(x)=0在闭区间[-2 011,2 011]上根的个数,并证明你的结论.5.(本小题满分15分)已知二次函数)0,,(1)(2>∈++=a R b a bx ax x f ,设方程x x f =)(的两个实数根为1x 和2x .(1)如果4221<<<x x ,设函数)(x f 的对称轴为0x x =,求证:10->x ;(2)如果21<x ,212=-x x ,求b 的取值范围.6.(本小题满分15分)如图,直三棱柱111C B A ABC -中,121AA BC AC ==,D 是棱1AA 的中点,BD DC ⊥1。

(1) 证明:BC DC ⊥1; (2) 求二面角11C BD A --的大小。

ABC D1A 1B 1C7.(本小题满分15分)在平面直角坐标系xOy中,设二次函数f(x)=x2+2x+b(x ∈R)的图象与两坐标轴有三个交点.经过三点的圆记为C.(1)求实数b的取值范围;(2)求圆C的方程;(3)问圆C是否经过定点(其坐标与b无关)?请证明你的结论.8.(本小题满分20分) 设f (x )是定义在R 上的偶函数,其图象关于直线x=1对称,对任意x 1,x 2∈[0,21]都有).()()(2121x f x f x x f ⋅=+且f (1)=a >0. (Ⅰ));41(),21(f f 求 (Ⅱ)证明)(x f 是周期函数;(Ⅲ)记),212(nn f a n +=求).(ln lim n n a ∞→9.(本小题满分20分)设)(x f 是R 上的奇函数,且当0>x 时,)10lg()(2+-=ax x x f ,R a ∈.(1)若5lg )1(=f ,求)(x f 的解析式;(2)若0=a ,不等式0)14()2(>+++⋅k f k f xx 恒成立,求实数k 的取值范围; (3)若)(x f 的值域为R ,求a 的取值范围.高一数学竞赛试题参考答案1、解:{}2,1=A (1)∵{}2A B =I ∴B ∈2即,0)5(2)12222=-+⋅+⋅+a a (,解得13-=-=a a 或 ① 当3-=a 时, {}{}2044|2==+-=x x x B ② 当1-=a 时, {}{}2,204|2-==-=x x B 综上{}3,1--∈a(2)∵A B A =U∴A B ⊆① 当φ=B 时,则该一元二次方程无解,即△<0,∴()[]0)5(41222<-⋅-+a a ,即3-<a ② 当φ≠B 时,则该一元二次方程有解,即△≥0,即3-≥a1. 当3-=a 时,{}2=B2. 当3->a 时,该一元二次方程有两个不同实数根1和2 ∴ )1(221+-=+a ,即25-=a 5212-=⋅a ,即7±=a (舍) ,∴综上(]3,-∞-∈a(3)∵(),U U R A C B A ==I ∴φ=B A I① 当△<0时,即3-<a ,φ=B ,满足要求② 当△=0时,即3-=a ,{}2=B ,φ≠B A I ,舍③ 当△>0时,即3->a ,所以只需B B ∉∉21且将1代入方程中得31±-=a ;将2代入方程中得13-=-=a a 或 所以3113±-≠-≠-≠a a a 和、综上,a 的取值范围为()()()()()+∞+-+---------∞-,3131,11,3131,33Y Y Y Y ,2、证明:(1)若M φ=,显然有;M N ⊆ 若M φ≠,则存在0x M ∈,满足()00f x x =,所以()()000f f x f x x ==⎡⎤⎣⎦,故0xN ∈,所以;M N ⊆ (2).M N =用反证法证明假设M N ≠,由于M N ⊆,必存在1,x N ∈但1x M ∉,因此()11f x x ≠, ① 若()11f x x >,由于()f x 为单调增函数,所以()()11f f x f x >⎡⎤⎣⎦,即()11x f x >,矛盾;3、解:422222)cos (sin cos sin 4)cos (sin 2)(x x m x x x x x f ++-+=42)cos (sin )cos sin 2(2x x m x x ++-= 令]2,1[)4sin(2cos sin ∈+=+=πx x x t ,则1cos sin 22-=t x x ,从而12)1()1(2)(24422++-=+--=t t m mt t x f令]2,1[2∈=t u ,由题意知12)1()(2++-=u u m u g 在]2,1[∈u 有最大值5. 当01=-m 时,12)(+=u u g 在2=u 时有最大值5,故1=m 符合条件; 当01>-m 时,5122)2()(max =+⨯>≥g u g ,矛盾!当01<-m 时,512)(≤+<u u g ,矛盾!综上所述,所求的实数1=m .4、解 (1)若y =f (x )为偶函数,则f (-x )=f (2-(x +2))=f (2+(x +2))=f (4+x )=f (x ),∴f (7)=f (3)=0,这与f (x )在闭区间[0,7]上,只有f (1)=f (3)=0矛盾;因此f (x )不是偶函数.若y =f (x )为奇函数,则f (0)=f (-0)=-f (0),②若()11f x x <,由于()f x 为单调增函数, 所以()()11f f x f x <⎡⎤⎣⎦,即()11x f x <,矛盾。

综合①、②可知()11f x x =,因此1,x M ∈与假设矛盾, 所以假设不能成立,即.M N =∴f (0)=0,这些f (x )在闭区间[0,7]上,只有f (1)=f (3)=0矛盾;因此f (x )不是奇函数.综上可知:函数f (x )既不是奇函数也不是偶函数.(2)∵f (x )=f [2+(x -2)]=f [2-(x -2)]=f (4-x ),f (x )=f [7+(x -7)]=f (7-(x -7))=f (14-x ),∴f (14-x )=f (4-x ),即f [10+(x -4)]=f (4-x )∴f (x +10)=f (x ),即函数f (x )的周期为10.又∵f (1)=f (3)=0,∴f (1)=f (1+10n )=0(n ∈Z),f (3)=f (3+10n )=0(n ∈Z),即x =1+10n 和x =3+10n (n ∈Z)均是方程f (x )=0的根.由-2 011≤1+10n ≤2 011及n ∈Z 可得n =0,±1,±2,±3,…,±201,共403个;由-2 011≤3+10n ≤2 011及n ∈Z 可得n =0,±1,±2,±3,…,±200,-201,共402个;所以方程f (x )=0在闭区间[-2 011,2 011]上的根共有805个.5、解:设1)1()()(2+-+=-=x b ax x x f x g ,则0)(=x g 的二根为1x 和2x . (1)由0>a 及4221<<<x x ,可得 ⎩⎨⎧><0)4(0)2(g g ,即⎩⎨⎧>-+<-+034160124b a b a ,即 ⎪⎪⎩⎪⎪⎨⎧<+⋅--<-⋅+,043224,043233a a b a a b 两式相加得12<ab ,所以,10->x ; (2)由aa b x x 4)1()(2221--=-, 可得 1)1(122+-=+b a . 又0121>=a x x ,所以21,x x 同号.∴ 21<x ,212=-x x 等价于⎪⎩⎪⎨⎧+-=+<<<1)1(1220221b a x x 或⎪⎩⎪⎨⎧+-=+<<-<1)1(1202212b a x x , 即 ⎪⎪⎩⎪⎪⎨⎧+-=+>>1)1(120)0(0)2(2b a g g 或⎪⎪⎩⎪⎪⎨⎧+-=+>>-1)1(120)0(0)2(2b a g g解之得 41<b 或47>b . 6、【解析】(1)在Rt DAC ∆中,AD AC =得:45ADC ︒∠=同理:1114590A DC CDC ︒︒∠=⇒∠=得:111,DC DC DC BD DC ⊥⊥⇒⊥面1BCD DC BC ⇒⊥(2)11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC A BC AC ⇒⊥取11A B 的中点O ,过点O 作OH BD ⊥于点H ,连接11,C O C H 1111111AC B C C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A BD 1OH BD C H BD ⊥⇒⊥ 得:点H 与点D 重合且1C DO ∠是二面角11C BD A --的平面角设AC a =,则12C O =,111230C D C O C DO ︒==⇒∠= 既二面角11C BD A --的大小为30︒7、【解答】 (1)令x =0,得抛物线与y 轴交点是(0,b );令f (x )=x 2+2x +b =0,由题意b ≠0且Δ>0,解得b <1且b ≠0.(2)设所求圆的一般方程为x 2+y 2+Dx +Ey +F =0.令y =0得x 2+Dx +F =0,这与x 2+2x +b =0是同一个方程, 故D =2,F =b .令x =0得y 2+Ey +b =0,此方程有一个根为b ,代入得出E =―b ―1.所以圆C 的方程为x 2+y 2+2x -(b +1)y +b =0.(3)圆C 必过定点,证明如下:假设圆C 过定点(x 0,y 0)(x 0,y 0不依赖于b ),将该点的坐标代入圆C 的方程, 并变形为x 20+y 20+2x 0-y 0+b (1-y 0)=0.(*)为使(*)式对所有满足b <1(b ≠0)的b 都成立,必须有1-y 0=0,结合(*)式得x 20+y 20+2x 0-y 0=0,解得⎩⎪⎨⎪⎧ x0=0,y0=1或⎩⎪⎨⎪⎧x0=-2,y0=1, 经检验知,点(0,1),(-2,1)均在圆C 上,因此,圆C 过定点.9、解:(1)6,5lg )11lg()(,5lg )1(==-==a a x f f 所以则因为 所以 故又时,当,0)0(),106lg()()(02=++-=--=<f x x x f x f x ⎪⎩⎪⎨⎧<++-=>+-=0),106lg(0,00),106lg()(22x x x x x x x x f(2)0)14()2()(0>+++•=k f k f R x f a x x 上单调递增,故在,则若等价于 恒成立,在于是,另),0(01),0(201422+∞>+++>=>+++k kt t t t k k x x x 1)(2+++=k kt t t g 设(1)0<∆时,解得:222222+<<+-k ;(2)时0≥∆,⎪⎩⎪⎨⎧><-0)0(02g k ,解的0>k综上,222+->k(3)设10)(2+-=ax x x h , 由题意知,若函数)(x f 的值域为R ,只需1026,1)(00min <≤≤<>a x h x 解得:时,。

相关文档
最新文档