油气水层测井曲线特征

合集下载

测井曲线与解释示例

测井曲线与解释示例

(北京)
CHINA UNIVERSITY OF PETROLEUM
—测井曲线与解释示例—
图2-2油层测井曲线及解释结果
4753
4754 4755 4756 4757
4758 4781
4782 4783 4784
图2-14 SL-YY2井测井曲线及综合解释成果
2-16正旋回结束期的低阻油层测井曲线及解释结果
图2-17反旋回开始期的低阻油层测井曲线及解释结果
图3-6 TLM-JF地区某井低阻层测井曲线及饱和度评价结果
图3-17 LL-X4井测井曲线及综合处理成果图
图3-18 LL-X1测井曲线及综合处理成果图
3-19 LL-XX井白垩系砂层测井曲线及综合处理成果图
KB-A井J1段高阻油层测井曲线及解释结果
KB-B井J3段岩性油藏低阻油层测井曲线及解释结果
KB-6井J1段低幅度底水油藏油层测井曲线及解释结果
KB-20井J1气层测井曲线及解释结果
KB-20井J
2高阻油层测井曲线及解释结果
3
低阻油层测井曲线及解释结果。

根据测井曲线划分油气水层

根据测井曲线划分油气水层

1、油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。

自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。

微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。

长、短电极视电阻率曲线均为高阻特征。

感应曲线呈明显的低电导(高电阻)。

井径常小于钻头直径。

(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。

(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。

(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。

2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。

在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。

一般油气层的电阻率是水层的3倍以上。

纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。

(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。

在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。

一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。

(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。

测井曲线具体划分

测井曲线具体划分

井下地层是由各类岩石组成,不同的岩石具有不同的物理化学性质,为了研究各类岩石的物理性质及井下地层是否含有石油天然气和其他有用矿产,建立了一门实用性很强的边缘学科---地球物理测井学,简称“测井”,它以地质学、物理学、数学为理论基础,采用计算机信息技术、电子技术及传感器技术,设计出专门的测井仪器,沿着井身进行测量,得出地层的各种物理、化学性质、地层结构及井身几何特性等各种信息,为石油天然气勘探、油气田开发提供重要数据和资料。

测井的井场作业如图所示,由测井地面仪器、绞车和电缆组成,通过电缆把下井仪器放到井底,在提升电缆过程中进行测量。

第一节:概述普通电阻率测井就是把一个电极系放入井内,测量井内岩层电阻率变化,用以研究地质剖面、判断油气水层。

又称视电阻率测井。

内容:梯度电极系、电位电极系、微电极测井主要任务:通过测井岩石电阻率的差别来区分岩性、划分油气水层,进行剖面地层对比等。

岩石电阻率一、岩石电阻率与岩性的关系不同岩性的岩石,电阻率不同。

主要造岩矿物的电阻率很高,石油的电阻率很高,几乎不导电。

沉积岩是靠岩石孔隙中所含地层水中的离子导电的。

二、岩石电阻率与地层水性质的关系岩石骨架:组成沉积岩的造岩矿物的固体颗粒部分。

沉积岩的导电能力主要取决于其孔隙中的地层水的性质—地层水电阻率。

1.地层水电阻率与含盐类化学成分的关系2.地层水Rw与矿化度Cw的关系:反比3.Rw与温度的关系:反比三、含水岩石电阻率与孔隙度的关系地层因素F:完全含水(100%含水)岩石的电阻率Ro与地层水电阻率的比值。

即F=Ro/Rw该比值只与岩石的孔隙度、胶结情况和孔隙结构有关,与Rw无关。

实验证明:F=a/φ(m)其中:a—与岩性有关的系数,0.6-1.5;m—胶结指数,随岩石胶结程度不同而变化,1.5-3;例:某油田第三系一含水砂岩的电阻率为7.2欧姆.米,地层水电阻率为1.2欧姆.米。

试求该层的孔隙度。

(a=0.93,m=1.64)解:F=Ro/Rw=7.2/1.2=6F=a/φ(m)=0.93/φ(1.64)得,φ=32%四、含油岩石电阻率Rt与含油饱和度So的关系电阻增大系数I:含油岩石的电阻率与该岩石完全含水时电阻率的比值。

用测井曲线判别油气水层

用测井曲线判别油气水层
电导率和电阻率成反比。 油层呈现低电导,水层呈现高电导。
五、声波速度测井
它就是测量声波在岩石中的传播速度或传 播时间。
声波在岩石中的传播速度与岩石的性质、 孔隙度以及孔隙中所充填的流体性质有关。 在砂泥岩剖面中,声波在砂岩中的传播时 间比在泥岩中传播时间短。
在油、气、水流体中的传播时间,由长到 短的顺序是:气---油---水。因为它们的密 度决定了它们的传播速度。
一. 自然电位
原理: 由于泥浆和地层水的矿化度不同,在钻开岩层后,在井碧附近两种 不同矿化度的溶液接触产生电化学过程,结果产生电动势造成自 然电场,沿井轴测量记录自然电位变化曲线,用以区别岩性,这种测 井方法叫自然电位测井. 用途: 由于自然电位曲线在渗透层处有明显的异常显示,因此它是划分 和研究储集层的重要方法之一,也是判断水淹层的重要曲线. 高浓度溶液中的离子受渗透压的作用要迁移到低浓度溶液中,叫 离子扩散. 负离子的迁移速度大于正离子的迁移速度. 在砂泥岩剖面中,以泥岩为基线,当地层水矿化度大于泥浆滤液矿 化度时,在自然电位曲线想砂岩层段则出现负异常.反之,砂岩层段 则出现正异常. 判断水淹层,在自然电位曲线上,泥岩基线发生偏移,上部基线偏移 说明顶部水淹,下部基线偏移说明底部水淹,自然电位幅度比正常 的要偏大.
自然伽马------实际测的是地层中泥质含量的多少
三、普通电阻率
电阻率测井:是测岩石的电阻 率和岩石中流体的电阻率高低 的曲线。
用来区分岩性、划分油水层、 进行地层对比。 在砂泥岩剖面中,砂岩电阻比 泥岩电阻高。砂岩中装油呈现 高电阻值,装水呈现低电阻。
四、感应电导率
感应电导率测井也是电阻率,只是 是一种特殊的电阻率测井。它的测 量半径大,对薄层的反应灵敏度比 普通电阻率高。它也是判别油水层 的非常重要的曲线。

测井曲线原理

测井曲线原理

主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。

自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw 的关系一致。

Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。

自然电位测井SP曲线的应用:①划分渗透性地层。

②判断岩性,进行地层对比。

③估计泥质含量。

④确定地层水电阻率。

⑤判断水淹层。

⑥沉积相研究。

自然电位正异常Rmf<Rw时,SP出现正异常。

淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。

自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。

测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。

视电阻率曲线的应用:①划分岩性剖面。

②求岩层的真电阻率。

③求岩层孔隙度。

④深度校正。

⑤地层对比。

电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。

底部梯度电极系分层:顶:低点;底:高值。

三、微电极测井(ML)微电极测井是一种微电阻率测井方法。

其纵向分辨能力强,可直观地判断渗透层。

主要应用:①划分岩性剖面。

②确定岩层界面。

③确定含油砂岩的有效厚度。

④确定大井径井段。

⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。

微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。

四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。

测井曲线图实例介绍

测井曲线图实例介绍

砂 泥 岩 剖 面 测 井 曲 线 实 例
纯泥岩
含生物 灰质砂岩
指状泥岩在感应曲线上的特征
用感应曲线划分油、水层
C/O 比 测 井 实 例
C / O 测 井 实 例
用中子寿命测井确定堵水层位



用声波时差曲线划分油、气、水层
砂 泥 岩 剖 面 自 然 伽 马 测 井 图
应 用 自 然 伽 马 和 中 子 伽 马 曲 线 判 别 岩 性
管外窜通,液流向下的井的井温测井曲线 1—地温梯度,2—梯度温度曲线,3—微 差井温曲线
管外窜通,液流向上的井温测井曲 线1—地温梯度,2—梯度温度曲线, 3—微差井温曲线
寻找 吸水 层位 的井 温测 井曲 线实 例
正常注入下的温度曲线为水井动态温度曲线。 特点为在吸水层以上近似为一条直线吸水层以 下,温度朝地温曲线偏移。 关井后测的温度曲线为 静温曲线,吸水层位 为负异常。
测井曲线图实例
的某 两井 层钻 侧井 向液 测浸 井泡 ( 4 盐 6 水天 泥与 浆 8 ) 10 天
-
含轻质油 层在钻井 液浸泡3 天和 20 天的双感 应测井 (淡水泥 浆)
某井钻 开气层 3天和 13天的 深感应 测井曲 线(盐 水泥浆)
某井 测井 图 (高 阻油 层与 低阻 油层)
寻找出气层位的井温测井曲线实例(出气层段 为井温负异常)
地温梯度:地层深度每增加100米,地层温度 的增加量。 梯度温度曲线:用梯度井温仪测量的井内各个 深度处液体的温度。 梯度微差温度曲线:用梯度微差井温仪测量的 井轴上相隔一定间距两点间的温度差值。 径向微差井温曲线:某一深度上,同一水平面 圆周上相差180度两点间的温度差。 油井出气层段在各条梯度井温曲线均有明显 的显示,各条微差井温曲线也都有负异常。负 异常随生产油嘴的加大更加明显。油层微差井 温曲线一般没有负异常显示,只有在大油嘴生 产发生脱气时,才略有负异常。

测井曲线特征及综合应用.(DOC)

测井曲线特征及综合应用.(DOC)

测井曲线特征及综合应用测井曲线特征及综合应用一、介绍测井曲线的用途 (2)二、测井资料的综合运用 (7)1、岩层界面 (7)2、确定地层的电阻率 (7)3、确定地层的孔隙度 (8)4、确定地层传声速度 (9)5、确定地层的含泥量 (9)6、确定地层的含H量 (9)7、确定地层的密度 (10)8、综合判断地层的岩性 (10)9、综合判断油气水层 (13)一、介绍测井曲线的用途二、测井资料的综合运用1、岩层界面2、确定地层的电阻率3、确定地层的孔隙度4、确定地层传声速度5、确定地层的含泥量6、确定地层的含H量7、确定地层的密度8、综合判断地层的岩性1、含钙层:声波时差曲线显示低值,电阻曲线显示高值,微电极显示刺刀状、尖峰状,自然电位相应幅度变小。

2、水淹层:油层水淹后,梯度曲线明显上抬,三侧向电阻降低,自然电位基线偏移,自然电流出现偏大,声波时差增大。

3、高压层的识别:声波读值大,微电极曲线基值大,自然电位电流读值小,井径读值大。

9、综合判断油气水层1、⑴渗透层。

⑵油气层都是高阻层,其电阻率相当于标准水层2-3倍,油层3.2-4.8Ωm。

⑶标准水层其电阻率接近于同井段的泥岩。

在所研究井段没有砂岩,可近似地以泥岩电阻率来替代标准水层的电阻率。

2、⑴油层:高阻渗透层,电阻曲线幅度高,特别是在4m曲线必须有鼓包,4m幅度越高,油层越好,自然电位异常通常小于水层,声波为中值。

⑵气层:高阻渗透层,电阻曲线幅度高,4m曲线有鼓包。

声波时差大,甚至比泥岩还要大,而且有周波跳跃的现象,中子伽马通常幅度高。

⑶水层:低阻渗透层(淡水层例外为高阻层),当地层矿化度比较高时,中子伽马幅度比较高,通常情况较低,自然电位通常比较大(与油层作比较)。

十、油气水界面的化分1、油水界面的划分:⑴电阻曲线上有明显幅度变化,含油部分幅度高,含水部分幅度低。

⑵感应曲线上在油水界面上幅度变化特别明显。

⑶自然电位曲线在油水界面上有一个不很明显的台阶,含油部分异常小,含水部分异常大。

油气层在测井曲线中的反应讲解

油气层在测井曲线中的反应讲解

油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。

自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。

微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。

长、短电极视电阻率曲线均为高阻特征。

感应曲线呈明显的低电导(高电阻)。

井径常小于钻头直径。

(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。

(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。

(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。

2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。

在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。

一般油气层的电阻率是水层的3倍以上。

纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。

(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。

在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。

一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。

(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。

油、气、水层划分

油、气、水层划分
(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。这种对比要注意储集层的岩性、物性和地层水矿化度等在横向上的变化,如下图所示。
(4)最小出油电阻率法:对某一构造或断块的某一层组来说,地层矿化度一般比较稳定,纯水层的电阻率高低主要与岩性、物性有关,所以若地层的岩性物性相近,则水层的电阻率相同,当地层含油饱和度增加,地层电阻率也随之升高。比较测井解释的真电阻率与试油结果,就要以确定一个电性标准(最小出油电阻率),高于电性标准是油层,低于电性标准的是水层。从而利用地层真电阻率(感应曲线所求的电阻率)和其它资料,可划分出油(气)、水层。但是应用这种方法时,必须考虑到不同断块、不同层系的电性标准不同,当岩性、物性、水性变化,则最小出油电阻也随之变化。
(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。
(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。一般油气层的电阻率是水层的3倍以上。纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测阻率小于浅探测电阻率的现象,但没有水层差别那样大。

常规储层油气水层的识别方法

常规储层油气水层的识别方法
在实际生产中采用 0.5 米电阻率(RE)求SH,在没有 RE 曲线的情况下用 RT 求 SH。在求泥质含量的过程中,各种方法均统一于下面的经验公式:
S = SHLG GMAX
− GMIN − GMIN
SH
=
2 GCUR 2 GCUR
*S − 1 −1
(1 )
(2 )
SHLG-----解释层段内 RE 曲线的测井值; GMIN-----RE 曲线在纯砂岩处(即纯水层)的测井值; GMAX----RE 曲线在纯泥岩处的测井值; S -------是 RE 曲线测井相对值; GCUR----地区经验系数,辽河地区GCUR取值为 5;
TSH1------孔隙度进行泥质校正时所用的中间变量;
TSH -------解释层段内泥质声波时差值;
TM ------砂岩声波骨架值;
PORR = AAC − TM * 100 − SH * TSH 1 − TM * 100
(6)
TF − TM
TF − TM
其中
PORR-----有效孔隙度;
TF ------孔隙流体的声波时差值(us/m)。
POR = PORR + SH * TSH 1 − TM * 100
(7)
TF − TM
3).求总孔隙度
c、计算地层含水饱和度(SW)
本地区有四种方法求地层含水饱和度,但在实际数字处理过程中只采用阿尔
奇公式求 SW。即
SW
=

B* POR
A * RW M * RT
其中:
1
N
(8 )
B------与岩性有关的系数;
(3)
其中 DEP------深度;
CP -------地层压实校正系数,当大于 1 时,令 CP 为 1。

测井曲线划分油水层知识讲解

测井曲线划分油水层知识讲解

测井曲线划分油水层石油知识:测井曲线划分油、气、水层(多学点,没坏处)油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。

自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。

微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。

长、短电极视电阻率曲线均为高阻特征。

感应曲线呈明显的低电导(高电阻)。

井径常小于钻头直径。

(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。

(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。

(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。

2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。

在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。

一般油气层的电阻率是水层的3倍以上。

纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。

(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。

在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。

一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。

常用测井曲线特征

常用测井曲线特征

一、介绍测井曲线的用途- 二、测井资料的综合运用一、划分岩层界面二、确定地层的电阻率三、确定地层的孔隙度四、确定地层传声速度五、确定地层的含泥量六、确定地层的含H量七、确定地层的密度八、综合判断地层的岩性九、综合判断油气水层1、⑴渗透层。

⑵油气层都是高阻层,其电阻率相当于标准水层2-3倍,油层3.2-4.8Ωm。

⑶标准水层其电阻率接近于同井段的泥岩。

在所研究井段没有砂岩,可近似地以泥岩电阻率来替代标准水层的电阻率。

2、⑴油层:高阻渗透层,电阻曲线幅度高,特别是在4m曲线必须有鼓包,4m幅度越高,油层越好,自然电位异常通常小于水层,声波为中值。

⑵气层:高阻渗透层,电阻曲线幅度高,4m曲线有鼓包。

声波时差大,甚至比泥岩还要大,而且有周波跳跃的现象,中子伽马通常幅度高。

⑶水层:低阻渗透层(淡水层例外为高阻层),当地层矿化度比较高时,中子伽马幅度比较高,通常情况较低,自然电位通常比较大(与油层作比较)。

十、油气水界面的化分1、油水界面的划分:⑴电阻曲线上有明显幅度变化,含油部分幅度高,含水部分幅度低。

⑵感应曲线上在油水界面上幅度变化特别明显。

⑶自然电位曲线在油水界面上有一个不很明显的台阶,含油部分异常小,含水部分异常大。

⑷密度曲线在油水界面上有微弱的台阶,含油部分密度小,含水部分密度较大。

⑸声波在油水界面含油部分时差大,含水部分时差小,油层在4m曲线上一定有鼓包。

2、油气界面的划分:⑴声波时差在油气界面有明显的幅度变化,气层时差大,油层时差小,气层周波跳跃,在油气界面有不太明显的幅度变化。

⑵中子伽马在油气界面上有不太明显的变化,长源距气层的幅度高,油层的幅度小。

3、气水界面的划分:⑴声波时差在气水界面上明显的幅变化,含水部分时差小,含气部分时差大,含气部分有周波跳跃。

⑵密度曲线在气水界面上有明显的幅度变化,气层部分密度小,含水部分密度大。

⑶中子伽马曲线在气水界面上有不明显的变化,短源距气层部分幅度高,水层部分幅度低,(但有例外,当水层矿化度比较高,曲线幅度变化不明显)。

油气水层判断测井曲线

油气水层判断测井曲线

测井资料是‎评价地层、详细划分地‎层,正确划分、判断油、气、水层依据;从渗透层中‎区分出油、气、水层,并对油气层‎的物性及含‎油性进行评‎价是测井工‎作的重要任‎务,要做好解释‎工作,必须深入实‎际,掌握油气层‎的地质特点‎和四性关系‎(岩性、物性、含油性、电性),掌握油、气、水层在各种‎测井曲线上‎显示不同的‎特征。

1、油、气、水层在测井‎曲线上显示‎不同的特征‎:如下图所示‎(1)、油层:微电极曲线‎幅度中等,具有明显的‎正幅度差,并随渗透性‎变差幅度差‎减小。

自然电位曲‎线显示正异‎常或负异常‎,随泥质含量‎的增加异常‎幅度变小。

长、短电极视电‎阻率曲线均‎为高阻特征‎。

感应曲线呈‎明显的低电‎导(高电阻)。

声波时差值‎中等,曲线平缓呈‎平台状。

井径常小于‎钻头直径。

(2)、气层:在微电极、自然电位、井径、视电阻率曲‎线及感应电‎导曲线上气‎层特征与油‎层相同,所不同的是‎在声波时差‎曲线上明显‎的数值增大‎或周波跳跃‎现象,中子伽玛曲‎线幅度比油‎层高。

(3)、油水同层:在微电极、声波时差、井径曲线上‎,油水同层与‎油层相同,不同的是自‎然电位曲线‎比油层大一‎点,而视电阻率‎曲线比油层‎小一点,感应电导率‎比油层大一‎点。

(4)、水层:微电极曲线‎幅度中等,有明显的正‎幅度差,但与油层相‎比幅度相对‎降低;自然电位曲‎线显示正异‎常或负异常‎,且异常幅度‎值比油层大‎;短电极视电‎阻率曲线幅‎度较高而长‎电极视电阻‎率曲线幅度‎较低,感应曲线显‎示高电导值‎,声波时差数‎值中等,呈平台状,井径常小于‎钻头直径。

2、定性判断油‎、气、水层油气水层的‎定性解释主‎要是采用比‎较(对比)的方法来区‎别它们。

在定性解释‎过程中,主要采用以‎下几种比较‎方法:(1) 纵向电阻比‎较法:在水性相同‎的井段内,把各渗透层‎的电阻率与‎纯水层比较‎,在岩性、物性相近的‎条件下,油气层的电‎阻率较高。

一般油气层‎的电阻率是‎水层的3倍‎以上。

测井曲线划分油、气、水层

测井曲线划分油、气、水层
(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。ﻫ2、定性判断油、气、水层
油气水层的定性解释主要是采用比较的方法来区别它们。在定性解释过程中,主要采用以下几种比较方法:ﻫ(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。一般油气层的电阻率是水层的3倍以上。纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
长、短电极视电阻率曲线均为高阻特征。ﻫ感应曲线呈明显的低电导(高电阻)。ﻫ井径常小于钻头直径。ﻫ(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。ﻫ(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
电阻增大系数I:含油岩石的电阻率与该岩石完全含水时电阻率的比值。即
概述 分类 主要方法 应用" alt="地球物理测井 概述 分类 主要方法 应用" src="" width=1 height=1 real_src="" eventslistuid="e4">
第一节:概述
普通电阻率测井就是把一个电极系放入井内,测量井内岩层电阻率变化,用以研究地质剖面、判断油气水层。又称视电阻率测井。
沉积岩的导电能力主要取决于其孔隙中的地层水的性质—地层水电阻率。

测井道理总结sp曲线[指南]

测井道理总结sp曲线[指南]

1:SP测井曲线的特征及影响因素(2)曲线特征a.曲线对地层中点对称,地层中点处异常值最大;b.厚地层(h>4d)的自然电位曲线幅度ΔUsp近似等于SSP,曲线的半幅值点深度正对应着地层界面,因此可用半幅点法确定地层界面;c.随地层厚度的变小,自然电位曲线幅度ΔUsp下降,,曲线顶部变尖,底部变宽,ΔUsp 小于SSP,而且界面位置离开.半幅值点向曲线峰值移动。

.2使用自然电位测井曲线时应注意的几个问题:⑴自然电位测井曲线没有绝对零点,而是以泥岩井段的自然电位幅度作基线,曲线上方标有带极性符号的横向比例尺,它与曲线的相对位置,不影响自然电位幅度的读数。

⑵自然电位幅度ΔUsp的读数是基线到曲线极大值之间的宽度所代表的毫伏数。

⑶在砂泥岩剖面井中,一般为淡水泥浆钻进(Cw>Cmf),在砂岩渗透层井段自然电位曲线出现明显的负异常;在盐水泥浆井中(Cw<Cmf),则渗透层井段出现正异常,这是识别渗透层的重要特征。

3、影响因素Es 的大小取决于岩性、地层温度、地层水和泥浆中所含离子成分以及泥浆滤液电阻率与地层水电阻率之比。

自然电流I 的分布则决定于流经路径中介质的电阻率及地层厚度和井径的大小。

A 、地层温度的影响式中Kd|t=18℃为温度为18℃时的扩散电动势系数;t 为地层温度。

Ka 的温度换算公式与Kd 的形式相同。

B 、地层水和泥浆滤液中含盐浓度比值的影响ΔUsp 主要取决于自然电场的总电动势SSP 。

显然,ΔUsp 与SSP 成正比,而SSP 的大小取决于岩性和Cw /Cmf 。

因此,在一定的范围内,Cw 和Cmf 差别大,造成自然电场的电动势高,曲线变化明显。

C 、地层水和泥浆滤液中含盐性质的影响地层水和泥浆滤液内所含盐类不同,则溶液中所含离子不同,离子价也不同。

由于不同离子的离子价和迁移率均有差异,直接影响Kd 和K a 的大小,因而也就影响了E s 的数值D 、井的影响(包括井径和泥浆电阻率)如上所述,自然电位异常幅度实际是自然电流在其所经过的泥浆柱上的最大电位降落。

测井曲线参数

测井曲线参数

砂泥岩剖面测井曲线特征:储集层—砂岩,自然电位负异常(Rw<Rmf),正异常(Rw>Rmf);自然伽马值低,井径测井体现为缩径,深中浅测井电阻率表现为高阻,声波测井曲线数值大多<300us/m.非储集层—泥岩,自然伽马值较高,井径测井体现为扩径,深中浅测井电阻率表现为低阻,声波测井曲线数值大>300us/m.碳酸盐岩剖面电阻率一般较高,自然电位效果不好。

为区分岩性和划分储层,一般使用自然伽马测井曲线识别,储集层相对于致密的围岩具有低阻、低自然伽马以及孔隙度测井反映孔隙度较大的特点。

孔隙度:φ=(△t-△tma)/(△tf-△tma)含水饱和度:Sw=(a * Rw/φ²* Rt) ½,m=2上式中△t为当前层的声波时差,△tf为地层水的声波时差,623us/m,△tma为砂岩骨架的声波时差,对于砂岩骨架,主要矿物为石英,其声波时差为182 us/m。

Rt为当前地层的电阻率,m为胶结指数为2。

故上式可简化成φ=(△t-182)/441; :Sw=(0.5/φ²* Rt) ½.。

确定泥质含量Vsh,采用了老地层GCUR=2.0,新地层GCUR=3.7。

需强调的是,在同一解释井段,如果油气层与水层岩性、地层结构和孔隙度基本相同,则油气层是纯水层的电阻率的3-5倍。

水层自然电位异常最大,油气层异常偏小,油水同层介于他们之间,并且厚度较大的油水同层,自上而下电阻率明显的减小。

分层后,要从有关的主要测井曲线将代表该储层的测井曲线读数,以便计算孔隙度、饱和度等地质参数。

几种主要测井曲线的取值区域的最小厚度如下:各种孔隙度测井≥0.6m,侧向测井≥0.6m,感应测井,低阻测井≥0.6m,高阻层≥1.5m。

石油知识:测井曲线划分油、气、水层

石油知识:测井曲线划分油、气、水层

油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。

自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。

微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。

长、短电极视电阻率曲线均为高阻特征。

感应曲线呈明显的低电导(高电阻)。

井径常小于钻头直径。

(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。

(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。

(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。

2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。

在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。

一般油气层的电阻率是水层的3倍以上。

纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。

(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。

在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。

一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。

(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。

测井曲线划分油水层

测井曲线划分油水层
成对电极
不成对电极(单电极)
1.梯度电极系:
在电极系的三个电极中,成对电极间距离最小的电极系。
分为:
顶部梯度电极系—成对电极在不成对电极之上的梯度电极系。
底部梯度电极系—之下
理想梯度电极系:
成对电极之间距离无限小时的梯度电极系。
记录点O:
在成对电极的中点上。即AB或MN的中点。
电极距L:
记录点到单电极之间的距离。L=OA或OM
第一节:
概述
普通电阻率测井就是把一个电极系放入井内,测量井内岩层电阻率变化,用以研究地质剖面、判断油气水层。又称视电阻率测井。
内容:
梯度电极系、电位电极系、微电极测井
主要任务:
通过测井岩石电阻率的差别来区分岩性、划分油气水层,进行剖面地层对比等。
岩石电阻率
一、岩石电阻率与岩性的关系
不同岩性的岩石,电阻率不同。
3、求地层真电阻率。
第三节:
非电法测井
一:
声速测井
声速测井是测量地层声波传播速度,主要用来判断岩性、求孔隙度和判断气层。
1、声波时差测井曲线的特点:
(1)、对于岩性均匀的厚地层(砂岩或石灰岩)曲线上下对称,在岩层中部曲线显示平行于井轴的直线,并且曲线的半幅点与岩层界面相对应。
(2)、(致密砂岩、渗透性砂岩、泥质砂岩、粉砂岩)、泥岩等不同岩饱和度
由孔隙度测井(Δt、ρ中子)→F →Ro=FRw Rt →So
球物理测井的分类:
分为电法测井和非电法测井两种。
1、电法测井:
a:
视电阻率、b:
微电极、c:
自然电位、d:
微球型聚焦、e:
感应测井、f:
侧向测井、g:
电磁波传播测井。
2、非电法测井:

测井曲线特征及识别岩性

测井曲线特征及识别岩性

1.1测井曲线特征1.1.1电阻率曲线曲线特点双侧向是探测不同径向深度电阻率的测井方法。

通常情况下,裂缝的存在使双侧向出现差异,模拟实验表明,低角度裂缝的双侧向值呈负差异,而高角度裂缝的双侧向值呈正差异,双侧向幅度差不仅与裂缝的产状有关,而且与裂缝的张开度有关,因此在一些裂缝段也可能无差异。

1.1.2声波曲线曲线特点裂缝在声波曲线上的反映与井筒周围裂缝的产状及发育程度有关。

声波曲线对高角度裂缝没有反映,对低角度裂缝或网状裂缝,声波测井值将相应增大;当遇到大的水平裂缝或网状裂缝时,声波能量急剧衰减而产生“周波跳跃”现象。

因此利用声波时差可以识别水平裂缝或网状裂缝,但不能用于识别垂直裂缝。

声波曲线对裂缝的显示主要取决于裂缝的张开度、发育程度、充填物和流体的性质。

声波变密度测井对裂缝的探测是基于含流体裂缝面使声波波列发生畸变,出现波列的能量衰减、干扰和波列转换,形成声波幅度、相位和频率明显变化,出现“人”形或“V”形、扰动的锯齿形,以及条带变浅等。

横波和斯通利波衰减的突出,可指示斜交的裂缝。

纵波幅度的衰减多见于高角度直裂缝;而横波幅度的衰减则多出现在低角度或水平裂缝。

裂缝在声波时差曲线上的反映与井筒周围裂缝的产状及发育程度。

1.1.3自然电位曲线曲线特点a.当地层、泥浆是均匀的,上下围岩岩性相同,自然电位曲线对地层中心对称;b.在地层顶底界面处,自然电位变化最大,当地层较厚(大于四倍井径)时,可用曲线半幅点确定地层界面;c.测量的自然电位幅度为自然电流在井内产生的电压降,它永远小于自然电流回路总的电动势;d.渗透性砂岩的自然电位,对泥岩基线而言,当地层水矿化度大于泥浆滤液矿化度时,自然电位显示为负异常,当地层水矿化度小于泥浆滤液矿化度时,显示为正异常,如果泥浆滤液的矿化度与地层水矿化度大致相等时,自然电位偏转幅度很小,曲线无显示异常。

影响因素:a.地层厚度、半径的影响:当h>4d时,自然电位异常幅度近似等于静自然电位,当h<4d时,自然电位异常幅度小于静自然电位,厚度越小,差别越大,异常顶部变窄,底部变宽,不能用半幅点确定地层界面;b.地层电阻率、泥浆电阻率以及围岩电阻率的影响,Rt / Rm 比值增大(Rt增大或Rm减小),自然电位幅度值降低,Rs增大,其幅值也减小;c.泥浆侵入带的影响:泥浆侵入带的纯在,相当于井径扩大,自然电位异常幅度值降低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

油、气、水层在测井曲线上
显示不同的特征
(1)油层:
声波时差值中等,曲线平缓呈平台状。

自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。

微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。

长、短电极视电阻率曲线均为高阻特征。

感应曲线呈明显的低电导(高电阻)。

井径常小于钻头直径。

(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。

(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。

(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声
波时差数值中等,呈平台状,井径常小于钻头直径。

2、定性判断油、气、水层
油气水层的定性解释主要是采用比较的方法来区别它们。

在定性解释过程中,主要采用以下几种比较方法:
(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。

一般油气层的电阻率是水层的3倍以上。

纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。

(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。

在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。

一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。

(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。

这种对比要注意储集层的岩性、物性和地层水矿化度等在横向上的变化,如下图所示。

(4)最小出油电阻率法:对某一构造或断块的某一层组来说,地层矿化度一般比较稳定,纯水层的电阻率高低主要与岩性、物性有关,所以若地层的岩性物性相近,则水层的电阻
率相同,当地层含油饱和度增加,地层电阻率也随之升高。

比较测井解释的真电阻率与试油结果,就要以确定一个电性标准(最小出油电阻率),高于电性标准是油层,低于电性标准的是水层。

从而利用地层真电阻率(感应曲线所求的电阻率)和其它资料,可划分出油(气)、水层。

但是应用这种方法时,必须考虑到不同断块、不同层系的电性标准不同,当岩性、物性、水性变化,则最小出油电阻也随之变化。

(5)判断气层的方法:气层与油层在许多方面相似,利用一般的测井方法划分不开,只能利用气层的“三高”特点进行区分。

所谓“三高”即高时差值(或出现周波跳跃);高中子伽马值;高气测值(甲烷高,重烃低)。

根据油、气、水层的这些曲线特征和划分油、气、水层的方法,就可以把一般岩性、简单明显的油、气、水层划分出来。

注解:
周波跳跃现象:
声波测井在含气裂缝性地层处的典型响应特征;
裂缝和气显示强烈,声波会周波跳跃;
当遇到气层时候,声波时差会引起周波跳跃。

挖掘效应:
挖掘效应是气层段中子与密度曲线交叉,分开明显的曲线特征。

相关文档
最新文档