单缝夫琅和费衍射
夫琅禾费单缝衍射
中央明纹线宽度
x
xk
中央 O 明纹
k2
k 1
(a , )
其他明纹宽度
a sin k k xk tg k f tg k sin k
f
f xk k a
x k f a
中央亮纹的边缘对应的衍射角1,称为
中央亮纹的半角宽
sin 1
总结: ——中央明纹(中心) a sin 0 a sin k,k 1,2,3„ ——暗纹(中心) (注意k 0)
0.017 0.047
1
I / I0
0.047
0.017
-2( /a) -( /a) 0 /a 2( /a)
sin
中央极大值对应的明条纹称 中央明纹。 中央极大值两侧的其他明条纹称 次极大。
sin Δ x / f
明纹暗纹的图示
中央亮纹的半角宽
1
f
x
(1)明纹宽度
中央明纹:两个一级暗纹间的距离,
b sin ( 2k 1)
——暗纹
2
, ( k 1,2)
——明纹(中心) ——中央明纹中心
b sin 0 0
上述暗纹和中央明纹(中心)的位置是准确的,其余 明纹中心的实际位置较上稍有偏离。
四、衍射图样的特点
衍射图样中各级条纹的相对光强如图所示.
相对光强曲线
惠更斯-菲涅尔积分公式
K ( ) E dE C dS cos(wt ) r
P
Hale Waihona Puke a
为衍射角
f
P点的光强取决于狭缝上各子波源 到此的光程差。光强分布?
为缝边缘两条光线在 p 点的光程差
夫琅禾费单缝衍射和半波带法
与狭缝平行方向分成 一系列宽度相等的窄
A
条,对于衍射角为 的 各条光线,相邻窄条 对应点发出的光线到 达观察屏的光程差为 半个波长,这样等宽
A1 a
A2 C
B
的窄条称为半波带。
• 这种分析方法称为菲涅耳半波带法。
asin
2
1.2 菲涅耳半波带法
• 对应于衍射角为θ 的屏上P 点,缝上下边缘两条光线之间的 光程差为
asin
• 下面分两种情况用菲涅耳 半波带法讨论P 处是明纹 或暗纹。 • (1)BC 的长度恰等于 两个半波长,即
a sin 2 暗条纹
2
1.2 菲涅耳半波带法
• (2)BC 的长度恰为三个半波长,即 a sin 3 明纹
明纹条件:
2
a sin (2k 1) (k 1, 2, ...)
1.2 菲涅耳半波带法
• 例4-1 在单缝夫琅禾费衍射实验中,波长为λ1 的单色光 的第三级明纹与波长为 λ2 = 630 nm 的单色光的第二级明 纹恰好重合,求前一单色光的波长 λ1 。
• 分析:采用比较法来确定波长.对应于同一观察点,两次
衍射的光程差相同,明纹重合时θ 角相同,由于衍射明纹
条件 • 故有
行光,相当于光源位于无限远处。 • 透镜 L的作用是把平行光会聚
到置于焦平面的光屏上, • 相当于观察屏位于无限远处。 • 实验会发现在观察屏上形成
衍射条纹。
1.1 单缝夫琅禾费衍射的装置 以及光强分布
• AB为单缝的截面,其宽度为 a。
• 当单色平行光垂直照射单缝时,根据惠更斯—菲涅耳原理, AB上的各点都是子波源。
2
θ=0 对应中央明纹.
暗纹条件:
a sin k (k 1, 2, ...) k 为衍射级次.
单缝夫琅禾费衍射强度
单缝夫琅禾费衍射强度摘要:1.单缝衍射概述2.夫琅禾费衍射原理3.衍射强度的计算方法4.夫琅禾费衍射的应用正文:1.单缝衍射概述单缝衍射是一种光的波动现象,当光线通过一个缝隙时,会在其后方形成一系列明暗交替的条纹。
这些条纹是由于光波在传播过程中遇到缝隙,发生衍射现象而产生的。
单缝衍射的研究对于理解光的波动性质以及发展光纤通信、光学仪器等技术具有重要意义。
2.夫琅禾费衍射原理夫琅禾费衍射,又称为夫琅禾费衍射公式,是由德国物理学家夫琅禾费(Fraunhofer)在19 世纪初提出的。
夫琅禾费衍射原理描述了单缝衍射条纹的亮度分布规律,其基本公式为:I = (b / a) * (L / d)^2 * sin^2(α)其中,I 表示衍射强度,b 表示光源到缝的距离,a 表示缝到观察屏的距离,L 表示光源到观察屏的距离,d 表示缝的宽度,α表示入射光线与缝的中心线的夹角。
3.衍射强度的计算方法根据夫琅禾费衍射原理,我们可以通过测量衍射条纹的亮度来计算衍射强度。
具体方法是,在实验中改变光源到缝的距离、缝到观察屏的距离以及入射光线与缝的中心线的夹角,观察不同条件下衍射条纹的亮度变化,然后利用夫琅禾费衍射公式计算衍射强度。
4.夫琅禾费衍射的应用夫琅禾费衍射在实际应用中具有重要价值。
例如,在光纤通信中,夫琅禾费衍射原理可以用于计算光纤的传输性能,以提高通信质量和传输距离;在光学仪器的研制中,夫琅禾费衍射可以用于评估仪器的分辨率和成像质量。
此外,夫琅禾费衍射还在物理、光学等领域的科研和教学中具有广泛的应用。
总之,夫琅禾费衍射作为一种重要的光学现象,对于理解光的波动性质以及发展光纤通信、光学仪器等技术具有重要意义。
光的衍射夫琅禾费单缝衍射
k
0
1
-1
-2
-3
2
3
f
sin
0.047
0.017
1
I / I0
0
相对光强曲线
0.047
0.017
四. 光强:
中央明纹最亮,其它明纹光强迅速下降。
条纹间距
五、讨论
波长对衍射条纹的影响
缝宽对衍射条纹的影响
单缝位置对衍射条纹的影响
光源位置对衍射条纹的影响
ห้องสมุดไป่ตู้
Single slit Double slit Three slit Seven slit More slit Double hole Square aperture
惠更斯- 菲涅耳原理:波前S上每一个面元dS都可以看成是发射球面子波的新波源,波场中P点的强度由各个子波在该点的相干叠加决定。
菲涅耳在惠更斯子波假说的基础上补充了子波相干叠加的概念。
波在前进过程中引起前方某点的总振动,为面 S 上各面元 dS 所产生子波在 P 点引起分振动的总和,即这些子波在 P 点的相干叠加。
夫琅禾费单缝衍射
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。
01
夫琅禾费 (Joseph von Fraunhofer 1787—1826)
夫琅禾费是德国物理学家。1787年3月6日生于斯特劳宾,父亲是玻璃工匠,夫琅禾费幼年当学徒,后来自学了数学和光学。1806年开始在光学作坊当光学机工,1818年任经理,1823年担任慕尼黑科学院物理陈列馆馆长和慕尼黑大学教授,慕尼黑科学院院士。夫琅禾费自学成才,一生勤奋刻苦,终身未婚,1826年6月7日因肺结核在慕尼黑逝世。
(3)当 时会出现明显的衍射现象。 a <λ时条纹太暗。
单缝的夫琅禾费衍射
缝平面
透镜L2
透镜L1
A
S
*
a
Bδ f
f
观察屏
·p
0
§17-9 单缝的夫琅禾费衍射
一. 装置
O
*
f
A
BC
P·x
0 f
缝宽a:其上每一点均为子波源发出衍射光
衍射角θ:衍射光线与波面法线夹角
P:
0
0
θ=0衍射光线汇集于L2的焦点 δ=0 中央明纹中心
θ≠0衍射光线汇集于L2的焦平面上某点P δ≠0 P处光强可由菲涅耳公式计算
零
三级 暗纹
二级 一级 中央明纹 暗纹 暗纹
一级 明纹
二级 明纹
3
2
a
a
a
0
3 a 2a
sin
5 2a
2
2
2
22
2
暗纹公式中k=0,δ=0,为中央明纹中心,
不是暗纹
明纹公式中可k=0, δ=λ/2,仍在中央明纹区不 是明纹中心
(3暗纹和中央明纹位置精确其他明纹位置只 是 近似
1 I / I0 相对光强曲线
屏幕
讨论:
(1单缝衍射明暗纹条件是否与双缝干涉明暗纹条 件矛盾
双缝干涉 单缝衍射
明纹条件
k
(2k1)
2
暗纹条件 (2k1) k
max
2
条纹级次 k 0 、 1 、 2 、 k1 、 2 、
不矛盾单缝衍射δ不是两两相干光线的光程差而 是衍射角为θ的一束光线的最大光程差
(2单缝衍射明暗纹条件中 k 值为什么不能取
衍射屏 透镜
观测屏 x2
角宽度为:
λ
x1 Δx
夫琅禾费单缝衍射
(A) 2m (B) 1m (C) 0.5m (D) 0.2m (E) 0.1m
[B]
矩形孔的夫琅禾费衍射
两个正交迭置的狭缝(设宽度分别为a、b) 衍射光在x, y方向的衍射角分别为
x, y
衍射光场:两个按正交方向展开的单缝衍射场的乘积
I(P)
I
0
s i n
2
s i n
2
远去的汽车头灯
最小分辨角:
S1
D
*
1
1.22
D
* S2
0 I
表达式中的波长 是指衍射光场在像方空间所处介质
中的波长
眼睛(正常人眼) a=D/2=1mm,n=1,n'=1.336,
0=550nm,f '=2.2cm
角分辨极限: m=0.610/n'a ≈2.511×10-4 rad
线分辨极限:
0m=0.610/na ≈3.355×10-4 rad
分辨本领:
1 R
min
光学系统对被观察对象微小细节的分辨能力
These photographs of an automobile’s headlights were taken at the greater and greater distances from the camera.
远去的汽车头灯
两个按正交方向展开的单缝衍射场的乘积衍射光在xy方向的衍射角分别为其中矩形远场衍射振幅三维图矩形孔的夫琅禾费衍射图样矩形远场衍射强度三维图24设圆孔的直径为d与p点对应的衍射角为衍射屏观察屏中央亮斑爱里斑变小第一暗圈所包围的中央亮斑叫做爱里斑airydisk线半径
2.3 夫琅禾费单缝衍射
bsin j
12-8单缝的夫琅禾费衍射
f
x0
2f
tan 1
2 f 12f来自aaB. 次极大
x
f
a
1 2
x0
前提仍然是很小
上页 下页 返回 退出
缝宽变化对条纹的影响
由
x
f
a
1 2
x0
知,缝宽越小,条纹宽度越宽
I
0
sin
当 a 时,
当 a 时,0
x ,此时屏幕呈一片明亮;
,x此时0屏幕上只显出单
一的明条纹单缝的几何光学像。
∴几何光学是波动光学在/a0时的极限情形
b
b
b
3 f 2 f f
bbb
f 2 f 3 f x
b
上页
下页b
返回
退b 出
衍射图样 衍射图样中各级条纹的相对光强如图所示.
1 I / I0 相对光强曲线
0.017 0.047
0.047 0.017
-2( /a) -( /a) 0 /a 2( /a) sin
中央极大值对应的明条纹称 中央明纹。 中央极大值两侧的其他明条纹称 次极大。 中央极大值两侧的各极小值称暗纹。
(P处干涉相消形成暗纹)
上页 下页 返回 退出
2.明暗纹条件
由半波带法可得明暗纹条件为:
a sin 2k k 1,2,3,L ——暗纹
2
a sin 2k 1 k 1,2,3,L
2
——明纹(中心)
asin 0
——中央明纹(中心)
上述暗纹和中央明纹(中心)的位置是准确的,其余 明纹中心的实际位置较上稍有偏离。
上页 下页 返回 退出
明纹宽度
A. 中央明纹
当 a 时 , 1 级暗纹对应的衍射角
《夫琅禾费单缝衍射》课件
。
引入新技术与新方法
随着科技的发展,可以引入新的技术 和方法来研究衍射现象,例如计算机
模拟和人工智能等。
THANKS 感谢观看
05 结论与展望
本课程的主要结论
衍射现象的描述
详细解释了夫琅禾费单缝衍射的物理现象,包括 衍射波的分布、衍射角与波长的关系等。
数学模型的建立
介绍了如何通过波动光学理论建立夫琅禾费单缝 衍射的数学模型,并进行了数值模拟。
实验验证
通过实验手段验证了数学模型的准确性,并分析 了实验误差。
对未来研究的建议
分析了缝宽变化对衍射图样和光强分布的影响,得出了缝宽 增大时,衍射现象越明显的结论。
理论预测与实验结果的比较
将实验结果与理论预测进行了比较,验证了理论模型的正确 性。
结果与理论的比较
理论模型介绍
介绍了衍射的理论模型,包括波动理论和光的衍射公式等。
实验结果与理论预测的符合程度
详细分析了实验结果与理论预测的符合程度,证明了实验结果的可靠性和准确性 。
深入研究多缝衍射
可以进一步研究多缝衍射的现象,探索其与单缝衍射的异同点。
引入非线性效应
考虑在衍射过程中引入非线性效应,研究其对衍射结果的影响。
提高实验精度
通过改进实验设备和方法,提高衍射实验的精度和可靠性。
课程展望
拓展应用领域
探讨夫琅禾费单缝衍射在光学、信息 处理和其他相关领域的应用前景。
加强理论与实践结合
根据实验数据,分析夫琅禾费单 缝衍射的规律和特点,并与理论 值进行比较。
04 结果与讨论
实验结果展示
实验数据记录
详细记录了实验过程中测量的数据,包括不同缝宽下的衍射图样和对应的测量 结果。
大学物理课件:夫琅禾费单缝衍射
解: 分析 由中央明纹宽度关系式可解:
x0
2 f b
2546109 0.4 1.0103 m 0.437 103
第一级明条纹的宽度:
x f 546109 0.4 0.5103 m
b 0.437103
2 f
x0 2x1 b
其他明纹宽度或任意相邻暗纹距离:
x =
xk + 1
- xk
f
tan k1
f
tan k
f
sin k1
f
b sin 2k k
b sin
(2k
2
1)
2
干涉相消(暗纹) 干涉加强(明纹)
I
3 2
bb
b
o 2 3 sin
b
b
b
单缝衍射在工程技术中的应用:
夫琅和费单缝衍射 11.5.1 夫琅和费单缝衍射的实验装置
夫琅和费单缝衍射:衍射现象中最简单的典型 实例,但包含衍射现象的诸多特征;
1.装置:光源S经透镜 L1成平行光射向狭缝K 产生衍射,再经透镜 L2汇聚屏幕P上形成衍射 花样:单狭缝夫琅和费衍射条纹。
K
S
L1
L2
P
I
3 2
b
b
b
o
2
3 sin
K
A
L
P
b
o
B
b. 其它条纹:光束(2)与入射方向成 角,经透镜汇
聚 Q 点, (2)中各子波到达 Q 点的光程不等,在
Q 点的相位有三种可能 :相同、相反、其它;
K
L fP
A
2
Q
b
o
B bsin
(衍射角 :向上为正,向下为负 .)
单缝的夫琅禾费衍射
a
பைடு நூலகம்
可将缝分成四个“半波带”,
形成暗纹。
Bθ
A λ/ 2
7
§4.2 单缝的夫琅禾费衍射
一般情况:
a sin k,k 1,2,3…
——暗纹
a sin (2k 1) , k 1,2,3…
2 ——明纹(中心)
a sin 0
——中央明纹(中心)
上述暗纹和中央明纹(中心)位置是准确的,
Died: 17 Oct 1887 in Berlin, Germany 3
§4.2 单缝的夫琅禾费衍射
装置和光路
缝平面 透镜L
S
*
透镜L
a
B
Aδ
f
观察屏
·p S:单色线光源
AB a(缝宽)
0
: 衍射角
f
观察屏上任一点P的振动,可用积分法、半波带法和矢量 图法求得
4
§4.2 单缝的夫琅禾费衍射
§4.1 惠更斯-菲涅尔原理
衍射问题变成了一个无限多光束的干涉问题。
处理问题的关键:计算波源到各面元之间及各面元到
场点之间的光程差。
dE( p) F ( ) E(Q) eikr dS r
倾斜因子
E( p) C F( )E(Q) eikr dS
r
n
dS ·
r
Q
S(波前)
dE(p)
p·
菲涅尔衍射公式
设初相为零
1
§4.1 惠更斯-菲涅尔原理
1882年以后,基尔霍夫(Kirchhoff)解电磁波动方程,
也得到了E(p)的表示式,这使得惠更斯─菲涅耳原理有
2_6夫琅禾费单缝衍射
屏幕 屏幕
S
*
3
2.6.2 强度的计算 x
屏幕
dx
r
θ
r0
P
B
S
F1
x
λ
Δ = x sin θ
M N 0 D B′
P0
θ
宽度dx窄带所发次波振幅
将波前 BB′分割成许多等宽窄带dx, 初位相 ϕ0 = 0
A0 dx A0 整个狭缝所发次波振幅; b A0 dx cos ωt M点所发次波的振动 dE0 = b
πb sin θ λ
λ
次最大光强的角位 置近似为:
sin θ k 0
2
2k + 1 λ ≈± 2 b
⎛ sin u ⎞ 代入单缝衍射因子 I = ⎜ ⎟ I 0 各次最大的光强为: ⎝ u ⎠
I10 = 0.0472 I 0
I 20 = 0.0165 I 0
I 30 = 0.0083I 0
10
可见,衍射级次越高,光强就越小。次最大的光 强最大不到中央最大值的1/20,并且随着级数的增 加而很快减小。 光强曲线
1.0
I I0
− 3π
− 2π
−π
0
π
2π
u
11
2.6.4 单缝衍射图案的特点
(1)、各级最大值的光强不相等,随着级数k的增 大而减小。中央最大值的光强最大(主最大), 次最大值远小于中央最大值 I10< 0.05I0 (2)、角宽度 规定以相邻暗纹的角距离作为其间条纹的角宽度。 在近轴条件下, θ很小, sinθ ≈θ , 由暗纹的角位置公式 sin θ k ≈ θ = k
~ A0 dx 其复振幅为 dE = e b
i
2π
夫琅禾费单缝衍射公式
夫琅禾费单缝衍射公式1. 什么是夫琅禾费单缝衍射?好家伙,今天咱们聊聊一个神奇的现象——单缝衍射。
别看名字听起来复杂,实际上这就是光的一种神奇行为。
想象一下,你在阳光下打着一个小小的洞,光透过这个缝隙后,就像水流过一个狭窄的地方一样,开始波动。
这种波动就叫“衍射”,而夫琅禾费则是这项技术的老前辈之一,给它起了个名字,听起来特别牛逼!在科学的世界里,夫琅禾费就是个大佬,他发现了光在通过狭缝的时候,会像一个大明星一样,开始发散、变形,最后形成一些特别有趣的图案。
简单点说,就是光并不总是直线走,它也喜欢在缝隙中“逛逛”,变得有些“顽皮”。
这可不是光的任性,而是它的本性。
2. 单缝衍射的公式好吧,话不多说,进入正题。
单缝衍射的公式其实也不难理解。
公式的样子是这样的:a sin theta = n lambda 。
这里的“a” 是缝的宽度,“θ” 是衍射角,“n” 是一个整数,代表衍射的级数,“λ” 则是光的波长。
听起来有点复杂,但别担心,咱们慢慢来,像吃麻辣火锅一样,细嚼慢咽!首先,缝的宽度“a”就像是一个小小的门,越窄,光透过后就越疯狂。
如果你把门打开得大一点,光就乖乖的直走,没什么好玩的。
如果门太小,光一进去就开始“逛”,形成了一个个花花绿绿的光斑,像是在开派对,特别热闹!然后是“θ”,就是光散开的方向。
光是个调皮捣蛋的家伙,喜欢向不同的方向乱跑,而“θ”就是记录这些方向的好帮手。
每当你看到那些漂亮的条纹图案,实际上就是光在争先恐后想要找到出口的结果。
3. 衍射现象的应用说到这里,很多朋友可能会问:“这个衍射有什么用啊?”嘿嘿,别着急,应用可多了去了!首先,单缝衍射在科学实验中可是个老帮手,尤其是在光学仪器中。
比如,显微镜和望远镜就常常用到这招,帮我们看清那些微小的细节。
再者,衍射现象也应用在音乐里。
听过古典音乐的朋友可能会发现,音色的变化和光的衍射有异曲同工之妙。
音乐的和声就像光的干涉,让不同的音波交织在一起,产生出美妙的旋律。
《夫琅禾费单缝衍射》课件
阐述夫琅禾费单缝衍射的实验装置和操作步骤
介绍夫琅禾费单缝衍射的基本概念和原理
物理学专业学生
物理教师
科研人员
对光学和衍射感兴趣的公众
PART THREE
夫琅禾费单缝衍射是衍射的一种形式
衍射现象:光通过单缝后,在屏幕上形成明暗相间的条纹
衍射条纹:随着缝宽的增加,明暗相间的条纹逐渐变得模糊不清
定义:在远场条件下,将点光源发出的光通过单缝,经过远处的屏幕进行衍射
在光学信号处理和图像处理中的应用
在光学通信和光电子技术中的应用
在光学测量和检测技术中的应用
光学干涉测量
光学信息处理
光学精密测量
光学通信
光学仪器设计:夫琅禾费单缝衍射用于设计各种光学仪器,如望远镜、显微镜等,提高仪器的分辨率和成像质量。
激光技术:在激光技术中,夫琅禾费单缝衍射可用于控制激光束的形状和大小,提高激光加工的精度和效率。
PART FOUR
夫琅禾费单缝衍射装置
实验操作步骤:包括光路调整、测量数据和结果分析等
单缝衍射装置:包括单缝、屏幕和测量尺
光源:激光或单色光源
记录数据:在不同缝宽下,记录衍射条纹的位置和宽度
分析数据:根据记录的数据,分析缝宽与衍射条纹之间的关系
得出结论:总结实验结果,得出夫琅禾费单缝衍射的规律
光学通信:在光纤通信中,夫琅禾费单缝衍射可用于调制光信号,提高通信系统的传输速率和稳定性。
生物医学:在生物医学领域,夫琅禾费单缝衍射可用于研究生物分子结构和功能,为疾病诊断和治疗提供有力支持。
PART SIX
在未来,夫琅禾费单缝衍射的研究前景将更加广阔
夫琅禾费单缝衍射在光学领域的应用越来越广泛
汇报人:
,
大学物理学课件-单缝夫琅禾费衍射
-3级 -2级 -1级 0级
大学物理学
1级 2级 3级
章目录 节目录 上一页 下一页
13.1 单缝夫琅禾费衍射
2、条纹明暗程度(光强)的讨论
若角越大,则BC越长,因而半波带数目越多,而缝宽AB=a为常数,
因而每个半波带的面积要减少(即每个半波带上携带的光能量减少), 于是级数越高,明纹亮度越低,最后成模糊一片。
光源 S 单缝
a b 屏幕
缝的宽度远大于光的波长,衍 射不明显,直线传播的几何光 学可以解释。
大学物理学
a
光源 S
单缝
b 屏幕
缝的宽度接近光的波长,衍射 现象显著,几何光学无法解释。
如何解释呢?
章目录 节目录 上一页 下一页
13.1 单缝夫琅禾费衍射
二、惠更斯-菲涅耳原理
子波假设:波阵面上的每一点都可看成是发射子波的新波源,任意 时刻子波的包迹即为新的波阵面。 ------------惠更斯1690年
a
y O
L
C
f x
答:选(C)。
大学物理学
章目录 节目录 上一页 下一页
13.1 单缝夫琅禾费衍射
四、夫琅和费圆孔衍射
1、装置与现象
I
r
艾里斑:夫琅和费圆孔衍射中,中央为亮圆斑,即第一暗环所包围的中 央圆斑。 艾里斑光强:其占总入射光强的80%以上。
大学物理学
章目录 节目录 上一页 下一页
13.1 单缝夫琅禾费衍射
l 1.22 S D
5 10 3
1.34m
大学物理学
章目录 节目录 上一页 下一页
振幅
反比于距离:dE0
1 r
随角的增大而单调减小d:E0 K ( )
第二节 单缝夫琅禾费衍射
(3)若AC不为半波长的整数倍,则P点的亮度介于次级 明纹和暗纹之间。
条纹坐标
·p
B
x
o
f
A
暗纹坐标 明纹坐标
a sin a tan a xk k
f
xk
kf
a
(k 1,2,)
a sin a t an a xk (2k 1)
f
2
xk
(2k
1) f
2a
(k 1,2,)
单缝衍射明纹角宽度和线宽度 角宽度 相邻两暗纹中心对应的衍射角之差
(3) 做了光谱分辨率的实验,第一个定量地研究了衍射光栅, 用其测量了光的波长,以后又给出了光栅方程;
(4)设计和制造了消色差透镜,大型折射望远镜。
一、装置和现象
E
L1
L2
S
a A
f
D
L1、L2 透镜 A:单缝
E:屏幕
缝宽a
缝屏距D( L2的焦距 f )
中央 明纹
二、菲涅尔半波带法
o *
B
f
AC
单缝的夫琅禾费衍射
夫琅禾费简介
德国物理学家 ,为光学和光谱学 做出了重要贡献:
(1) 1814年发现并研究了太阳光谱中的暗线, 利用衍射原理测出了它们的波长;
J.V Fraunhofer (1787—1826)
(2) 首创用牛顿环方法检查光学表面加工精度及透镜形状, 对应用光学的发展起了重要的影响;
x
P·x
0
f
菲涅耳根据通过单缝的光波的对称性,提出了半波带理论, 用代数加法或矢量图解代替积分,可简单解释衍射现象。
A, B P 的光程差 AC asin
( a 为缝 AB的宽度 )
大学物理Ⅰ13.7单缝夫琅禾费衍射衍射
x
f
tan
f
sin
(2k
1)
f
2a
k 1, 2...
暗纹中心: x f tan f sin k f k 1,2...
a
3)其他明纹的线宽度:相邻暗纹中心间的距离
即中央明纹宽度为其他明纹宽度的两倍。
4)单缝衍射的光强分布
x
f
O
k级亮纹对应(2k+1)个半波带;k级暗纹对应2k 个半波带.k越大,AB上波阵面分成的波带数就越多, 所以,每个半波带的面积就越小,在P点引起的光强 就越弱。因此,各级明纹随着级次的增加而亮度减弱。
2
则,必定有一个“半波带”发的光过透镜后会聚在 P
点不能被抵消,形成明纹。
若 不满足明暗条纹条件,则AB 不能被分成整数
个半波带,则或多或少总有一部分的振动不能被抵消, 此时,会聚在屏上的亮度处于明暗纹之间。
综上所述,可得单缝衍射明、暗条纹条件
1)若 BC asin 2 将缝分为两个半波带
由波动光学 :一个点光源经过透镜后所成的像是 以爱里斑为中心的一组衍射条纹。
如果两个物点相距太近,它们的爱里斑重叠过多, 这两个物点的像就无法分辨。
两物点相距多远时恰好能分辨呢?
瑞利判据:对于两个光强相等的非相干物点,如 果其一个像斑的中心恰好落在另一像斑的第一暗 纹处,则此两物点被认为是刚好可以分辨。
不是整数, km取整数部分)
为整数,则取km-1)
观察:单缝宽度变化,中央明纹宽度如何变化? a减小,1增大,衍射效应越明显.
4)在单缝衍射中,若使单缝和单缝后透镜分 别稍向上移,则衍射条纹将如何变化?
单缝上移衍射光束向上平移经透镜聚焦后, 位置不变条纹不变
11-7夫琅禾费单缝衍射
a
f
o
x
B
L
P
a sin
k
( k 1,2)
减弱
(2k 1) ( k 1,2) 加强 2
• 例1:
• (1)对第三级、第五级明纹,单缝分成 多少个半波带?
• (2)对第五级、第七级暗纹,单缝又分 成多少个半波带?
2k 2 a sin
结论:除中央明纹以外,衍射条纹平行等距。 •条纹间距 x
f
o
f
a
且K 条纹亮度变化
A C
a
3 2 1
x
B
L
P
1 2 3
l0
I
§7.夫琅禾费单缝衍射 / 三、明纹暗纹位置
•条纹间距 x
f
a
四、分析讨论各种因素对条纹的影响 、f 、a 1. x
衍射现象明显。
2. 明纹位置
3f x1 两条,对称分布屏幕中央两侧。 2a 其它各级明纹也两条,对称分布。
A C
a
x (2k 1 ) , k 1,2 2a
f
f
B L
o x
3 2 1
2 1 1 2
I
P
1 2 3
§7.夫琅禾费单缝衍射 / 三、明纹暗纹位置
当 θ 0时 各 衍 射 光 经 透 镜 会 聚于焦点O 它们光程差为零. 由 于 所 有 的 子 波 在 O点 叠加都是干涉加强 该 处 的 光 强 最 大 最 , 亮 中 央 明 纹 .
A
f
( k 1,2)
f
C
a
B
夫琅禾费单缝衍射
§16.2 单缝和圆孔的夫琅禾费衍射§16.2.1 单缝的夫琅禾费衍射( 1 ) 单缝衍射的实验装置和现象夫琅禾费衍射是平行光的衍射,在实验中可借助于两个透镜来实现。
位于物方焦面上的点光源经透镜L1后成为一束平行光,照射在开有一条狭缝的衍射屏上。
衍射屏开口处的波前向各方向发出子波或衍射光线,方向相同的衍射光线经透镜L2后会聚在象方焦面上的同一点,各个方向的衍射光线在屏幕上形成了衍射图样,它在与狭缝垂直的方向上扩展开来。
衍射图样的中心是一个很亮的亮斑,两侧对称地分布着一系列强度较弱的亮斑,中央亮斑的宽度为其他亮斑的两倍,且它们都随狭缝宽度的减小而加宽。
如果用与狭缝平行的线光源代替点光源,则在接收屏幕上将会看到一组平行于狭缝的衍射条纹。
图16 - 4 单缝的夫琅禾费衍射( 2 ) 单缝衍射的光强分布公式考虑点光源照明时的单缝夫琅禾费衍射。
取z轴沿光轴,y轴沿狭缝的走向,x轴与狭缝垂直。
因为入射光仅在x方向受到限制,衍射只发生在x- z平面内,因此具体分析可在该平面图中进行。
按惠更斯菲涅耳原理,我们可以把单缝内的波前AB分割为许多等宽的窄条,它们是振幅相等的相干子波源,朝各个方向发出子波。
由于接收屏幕位于透镜L2的象方焦面上,因此角度相同的衍射光线将会聚于屏幕上同一点进行相干叠加。
图16 - 5 衍射矢量图设入射光与光轴Oz平行,则在波面AB上无相位差。
为求单缝上、下边缘A和B到点的衍射光线间的光程差L和相位差,自A点引这组平行的衍射光线的垂线AN,于是就是所要求的光程差。
设缝宽为b,则有(16.4)(16.5)矢量图解法:用小矢量代表波前每一窄条对点处振动的贡献,由A点作一系列等长的小矢量,首尾相接,逐个转过相同的小角度,最后到达B点,总共转过的角度就是单缝上、下边缘到点的衍射光线间的相位差. 若取波前每一窄条的面积,则由这些小矢量连成的折线将化为圆弧,其圆心角2= . 由于整个缝宽AB内的波前在点处产生的合振幅等于弦长,而在的点处的合振幅A0等于弧长,故有,即,(16.6)其中.(16.7)单缝夫琅禾费衍射的光强分布公式:利用,而表示中央亮斑中心O 处的光强,由式(16.6)可得, .(16.8)( 3 ) 单缝衍射光强分布的特点单缝的夫琅禾费衍射图样的中心有一个主极强(零级衍射斑),两侧都有一系列次极强和暗斑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
6. 以波长为 = 500 nm (1 nm = 10-9 m)的单色平行光斜入射在光栅常数为 d = 2.10 mm、缝宽为a = 0.700 mm的光栅上,入射角为i = 30.0°,求能看 到哪几级光谱线.
光栅
解:(1) 斜入射时的光栅方程
G
透镜
L2
C
屏
d sin d sin i k
5 3 2a 2a
I
A
3 2a
5 2a
a
3λ 2 a a a
a
2 a
3λ a
sin
a sin (2k 1)
B
λ λ λ 2 2 2
a sin 2k
λ (k 1,2,3...), 暗纹, 2
λ (k 1,2,3...), 明纹。 2
计算缺级的基本公式。
4. 设天空中两颗星对于一望远镜的张角为4.84×10-6 rad,它们都发出波 长为550 nm的光,为了分辨出这两颗星,望远镜物镜的口径至少要等于 _____________ cm.(1 nm = 10-9 m) 参考解答:根据光学仪器的最小分辨角公式 0 令
0 4.8410
大学物理
教师:郑采星
课程指导课七
第7章 光的衍射
7.1 光的衍射现象、惠更斯-菲涅耳原理
7.2 夫琅和费单缝衍射
7.3 光栅衍射 7.4 光学仪器分辨率 7.5 X射线的衍射
1
第7章 光的衍射
基本要求 理解惠更斯――菲涅耳原理。掌握确定单缝衍射条纹位置和宽度的计 算。理解光栅、光栅衍射与光栅方程。理解光学仪器的分辩率。了解 伦琴射线的衍射,布喇格公式。 教学基本内容、基本公式 1. 单缝夫琅和费衍射、半波带法、
取整数 kmax1 = 2. 取整数 kmax1 = 6.
(3) 对应于i = 30°,设 = 90°, k = kmax2,则有
d sin(90) d sin 30 k max 2
k max 2 (d / )[sin(90) d sin 30]
(4) 但因 d / a = 3,所以,第 -6,-3,… 级谱线缺级. (5) 综上所述,能看到以下各级光谱线:
-5,-4,-2,-1,0,1,2,共7条光谱.
两侧主极大最高级次不再对称!
9
7. 用每毫米300条刻痕的衍射光栅来检验仅含有属于红和蓝的两种单色成 分的光谱.已知红谱线波长R在 0.63─0.76 mm范围内,蓝谱线波长B在 0.43─0.49 mm范围内.当光垂直入射到光栅时,发现在衍射角为24.46° 处,红蓝两谱线同时出现. (1) 在什么角度下红蓝两谱线还会同时出现? (2) 在什么角度下只有红谱线出现? 1 解: a b mm 3.33 μm 300 (1) (a + b) siny =k, ∴ k= (a + b) sin24.46°= 1.38 mm ∵ R=0.63─0.76 mm; B=0.43─0.49 mm
参考解答:根据半波带法讨论,单缝处波阵面可分成的半波带数目取决 于asin 的大小,本题中
a 4, 300.
比较单缝衍射明暗条纹的公式:
a sin 2 4 , 2
a sin 2k
a sin (2k 1)
2
, (k 1,2...)
2
, (k 1,2...)
2
2. 衍射光栅
光栅明纹公式: (a b) sin k , k= 0, 1, 2...
缺级公式:
光栅暗纹公式
ab k k a
ቤተ መጻሕፍቲ ባይዱ
(k 1, 2, 3, ...;k取整数)
(m Nk , k 0)
d sin
R
m N
光栅的分辨本领
kN
3
3. 光学仪器分辨率
最小分辨角。
0.610
1
R
分辨率
4
1. 单缝夫琅禾费衍射实验中,波长为的单色光垂直入射在宽度为 a=4的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分 成的半波带数目为 (A) 2 个.
答案:(B)
(B) 4 个.
(C) 6 个.
(D) 8 个.
显然在对应于衍射角为30°的方向,屏上出现第2极暗条纹,单缝处波阵 面可分成4个半波带。
5
2. 设光栅平面、透镜均与屏幕平行.则当入射的平行单色光从垂直于 光栅平面入射变为斜入射时,能观察到的光谱线的最高级数k (A) 变小; (B) 变大; (C) 不变; (D) 的改变无法确定。 答案:(B) 参考解答: 平行单色光从垂直于光栅平面入射时
(a b) sin k (1).
斜入射时,如图所示有两种情况需要考虑,
显然,按公式(2)解出的 最高级次k大于按公式(1) 解出的最高级次k.
( AC AD) (a b)(sin sin ) k (2),
( AC BD) (a b)(sin sin ) k (3).
6
3. 一束平行单色光垂直入射在光栅上,当光栅常数(a+b)为下列哪种情况 时(a代表每条缝的宽度), k=3,6,9等极次的主极大均不出现? (A) a+b=2a . (C) a+b=4a . (B) a+b=3a . (D) a+b=6a .
[ B ]
k
ab k (k 1, 2, 3, ...;k只能取整数 ) a
6
1.22 D
D
1.22
0
1.22 550109 1.39101 (m) 13.9(cm) 6 4.8610
7
5. 如图所示,设波长为的平面波沿与单缝平面法线成角的方向入射, 单缝AB的宽度为a,观察夫琅禾费衍射.试求出各极小值(即各暗条纹)的 衍射角. 解:1、2两光线的光程差,在如图情况下为
k = 0,±1,±2,… 分析在900 < < 900 之间,可呈现的主极大: (2) 对应于i = 30°,设 = 90°,
d sin i
n
i
第k 级谱线
n
k = kmax1,则有
d sin
d sin 90 d sin 30 k max1
kmax1 (d / )(sin90 d sin 30) 2.10
A
CA BD a sin a sin
由单缝衍射极小值条件
B
a(sin -sin ) = k k = 1,2,……
得 = sin—1( k / a+sin ) k = 1,2,……(k 0)
A
1
E
C
B D
1
2
1、2两光线的光程差,
2
CA AE a sin a sin