夫琅禾费单缝衍射

合集下载

夫琅禾费单缝衍射和半波带法

夫琅禾费单缝衍射和半波带法

与狭缝平行方向分成 一系列宽度相等的窄
A
条,对于衍射角为 的 各条光线,相邻窄条 对应点发出的光线到 达观察屏的光程差为 半个波长,这样等宽
A1 a
A2 C
B
的窄条称为半波带。
• 这种分析方法称为菲涅耳半波带法。
asin
2
1.2 菲涅耳半波带法
• 对应于衍射角为θ 的屏上P 点,缝上下边缘两条光线之间的 光程差为
asin
• 下面分两种情况用菲涅耳 半波带法讨论P 处是明纹 或暗纹。 • (1)BC 的长度恰等于 两个半波长,即
a sin 2 暗条纹
2
1.2 菲涅耳半波带法
• (2)BC 的长度恰为三个半波长,即 a sin 3 明纹
明纹条件:
2
a sin (2k 1) (k 1, 2, ...)
1.2 菲涅耳半波带法
• 例4-1 在单缝夫琅禾费衍射实验中,波长为λ1 的单色光 的第三级明纹与波长为 λ2 = 630 nm 的单色光的第二级明 纹恰好重合,求前一单色光的波长 λ1 。
• 分析:采用比较法来确定波长.对应于同一观察点,两次
衍射的光程差相同,明纹重合时θ 角相同,由于衍射明纹
条件 • 故有
行光,相当于光源位于无限远处。 • 透镜 L的作用是把平行光会聚
到置于焦平面的光屏上, • 相当于观察屏位于无限远处。 • 实验会发现在观察屏上形成
衍射条纹。
1.1 单缝夫琅禾费衍射的装置 以及光强分布
• AB为单缝的截面,其宽度为 a。
• 当单色平行光垂直照射单缝时,根据惠更斯—菲涅耳原理, AB上的各点都是子波源。
2
θ=0 对应中央明纹.
暗纹条件:
a sin k (k 1, 2, ...) k 为衍射级次.

单缝夫琅禾费衍射强度

单缝夫琅禾费衍射强度

单缝夫琅禾费衍射强度摘要:1.单缝衍射概述2.夫琅禾费衍射原理3.衍射强度的计算方法4.夫琅禾费衍射的应用正文:1.单缝衍射概述单缝衍射是一种光的波动现象,当光线通过一个缝隙时,会在其后方形成一系列明暗交替的条纹。

这些条纹是由于光波在传播过程中遇到缝隙,发生衍射现象而产生的。

单缝衍射的研究对于理解光的波动性质以及发展光纤通信、光学仪器等技术具有重要意义。

2.夫琅禾费衍射原理夫琅禾费衍射,又称为夫琅禾费衍射公式,是由德国物理学家夫琅禾费(Fraunhofer)在19 世纪初提出的。

夫琅禾费衍射原理描述了单缝衍射条纹的亮度分布规律,其基本公式为:I = (b / a) * (L / d)^2 * sin^2(α)其中,I 表示衍射强度,b 表示光源到缝的距离,a 表示缝到观察屏的距离,L 表示光源到观察屏的距离,d 表示缝的宽度,α表示入射光线与缝的中心线的夹角。

3.衍射强度的计算方法根据夫琅禾费衍射原理,我们可以通过测量衍射条纹的亮度来计算衍射强度。

具体方法是,在实验中改变光源到缝的距离、缝到观察屏的距离以及入射光线与缝的中心线的夹角,观察不同条件下衍射条纹的亮度变化,然后利用夫琅禾费衍射公式计算衍射强度。

4.夫琅禾费衍射的应用夫琅禾费衍射在实际应用中具有重要价值。

例如,在光纤通信中,夫琅禾费衍射原理可以用于计算光纤的传输性能,以提高通信质量和传输距离;在光学仪器的研制中,夫琅禾费衍射可以用于评估仪器的分辨率和成像质量。

此外,夫琅禾费衍射还在物理、光学等领域的科研和教学中具有广泛的应用。

总之,夫琅禾费衍射作为一种重要的光学现象,对于理解光的波动性质以及发展光纤通信、光学仪器等技术具有重要意义。

单缝和圆孔夫琅禾费衍射介绍

单缝和圆孔夫琅禾费衍射介绍

三、入射光非垂直入射时光程差的计算
DB BC A
b(si n sin ) b
(中央明纹向下移动)
D
B
C
BC DA
b(si n sin )
(中央明纹向上移动)
D A
b
C
B
例1 在单缝衍射中,=600nm, a=0.60mm, f=60cm, 则(1)中央明纹宽度为多少?(2)两 个第三级暗纹之间的距离?
单缝和圆孔的夫琅 禾费衍射介绍
一、单缝夫琅禾费衍射
1.衍射装置及图样
单缝 透镜
衍射角
f
衍射屏
I
衍射图样
(1) 衍射条纹与狭缝平行。 (2)中心条纹很亮,两侧明条纹对称分布, 亮度减弱。 (3)中央亮斑的宽度为其他亮斑的两倍。
由惠更斯——菲涅耳原理:
单缝处波面看作无穷多个相干波源,屏上一点是 (无穷)多光束干涉的结果。
解 ⑴ 中央明纹的宽度
⑵第三级暗纹在屏上的位置
x3ftanf3a3l0
两个第三级暗纹之间的距离
x6l 7.2mm 0
例2 已知:一雷达位于路边d =15m处,射束与公路成 15°角,天线宽度a =0.20m,射束波长=30mm。
求:该雷达监视范围内公路长L =?
L
d
a
θ1
β
150
解:将雷达波束看成是单缝衍射的0级明纹
越大,
越大,衍射效应越明显.
1
二、用振幅矢量推导光强公式
1.振幅矢量法 将缝AB的面积S等分成N(很大)个等宽的窄带,
每个窄带宽度a/N.
每个窄带发的子波在P点振
A
幅近似相等,设为A1,相邻
窄带所发子波在P点引起的振

2—3 夫琅和费单缝衍射

2—3  夫琅和费单缝衍射

3、狭缝上所有次波在P 的叠加
积分过程见(附录2-1) b sinu u sin A A A0 sincu 令 p 0 u
2 sin u 2 2 2 2 Ap A0 A sin c u 0 2 u
I p I 0 sinc 2 u P点光强随θ的分布
16
三、强度公式的讨论 1、最大最小位置:
y2 = u
-
·
-2.46
·
-1.43
· 0
0

+1.43
+2.46
解得 :
相应 :
u 1.43, 2.46, 3.47, „
b sin 1.43 , 2.46 , 3.47 ,„
19
前几个次最大的位置
次最大序号 次最大位置 相对强度
u
1.43 2.46
(k 1, 2, ) 暗纹 (k 1, 2, ) 明纹 中央明纹
•正、负号表示衍射条纹对称分布于中央明纹的两侧 •对于任意衍射角,单缝不能分成整数个半波带,
在屏幕上光强介于最明与最暗之间。
方法一、菲涅耳半波带法
I / I0
明纹宽度
中央明条纹的角宽度 为中央两侧第一暗条纹 之间的区域:
3.47
4.48
sin
3 2b 5 2.46 b 2b 7 3.47 b 2b 9 4.48 b 2b 1.43 b
I I 0
1 2 3 4
0.047
0.017
0.008
0.005
1 sin k0 k 2 b

b
0
sin (2k 1)

2b

夫琅禾费衍射

夫琅禾费衍射

[
e
a
+e a
]dx

2
2
=
− i~c a [ sin(
πa sin λ
θ
(3)
故:
d = f ′λ
(4)
∆y
把 f’=500、λ=632.8nm、和 ∆y = 1.5 代入式(4)得:
d=0.21mm
又根据缺级的已知条件,可知: b=d/4=0.21/4=0.05mm
可见,我们可以借助于双缝衍射实验来做微小尺度的测量。
2、一发射波长为 600 nm 的激光平面波,投射于一双缝上,通过双缝后,在 距双缝 100cm 的屏上,观察到干涉图样如图所示.试求:
λ=600 nm
3、波长为λ=546nm 的单色光准直后垂直投射在缝宽 b=0.10mm 的单缝上, 在缝后置一焦距为 50 cm、折射率为 1.54 的凸透镜.试求:
(1) 中央亮条纹的宽度; (2) 若将该装置浸入水中,中央亮条纹的宽度将变成多少?
解:(1) 置于空气中时.单缝衍射的中央亮纹的宽度为:
5、如题 5 图所示,宽度为 a 的单缝平面上覆盖着一块棱角为 α 的棱镜.波 长为 λ 的平行光垂直入射于棱镜的棱面 AB 上,棱镜材料对该光的折射率为 n,试
求单缝夫琅和费衍射图样中央衍射极大和各级衍射极小的衍射方向.
A a
αB
题5图
解:题 5 解图表示出一个被修饰了的夫琅和费单缝衍射装置.若单缝未被修 饰时,中央衍射极大出现在沿缝宽划分的各子波带等光程的方向上.各衍射极小 出现在边缘子带具有波长整数倍光程差的衍射方向上.这个结论仍可以用来确定 本题中经过修饰后的单缝.
所以为了观察夫琅和费衍射.光屏应置于透镜的焦平面处,即光屏由原来在 透镜后 50cm 处移至 171cm 处。这时.在水中的夫琅和费衍射中央亮条纹的宽度

物理实验居家单缝夫琅禾费衍射实验数据及完整实验报告和结论

物理实验居家单缝夫琅禾费衍射实验数据及完整实验报告和结论

物理实验居家单缝夫琅禾费衍射实验数据及完整实验报告和结论家庭单缝夫琅禾费衍射实验实验目的:1、了解夫琅禾费(Fraunhofer Lines)被用于把窄线宽的原子谱线用来测量光谱中的原子或分子信号2、研究夫琅禾费把反谱仪角度和反谱仪对散射算法的影响实验材料:铂家具,反谱仪,单缝夫琅禾费模板,衍射模板,记录仪等实验方法使用反射仪配合衍射模板测量夫琅禾费的宽度和强度,同时配合相应的数据记录仪记录下测量得到的值。

首先,我们调整反射仪角度,使其与衍射模板对齐,然后将反射仪射线对准夫琅禾费模板,根据数据记录仪记录的测量值,推算出窄线宽的夫琅禾费。

然后,我们可以确定单缝夫琅禾费模板反射仪角度和反射仪对散射算法的影响。

最后,我们可以使用夫琅禾费把反谱仪角度和反谱仪对散射算法进行测量,记录数据,并比较结果。

实验结果通过实验,我们测量出夫琅禾费窄线宽的宽度,测量结果如下所示:第一组:夫琅禾费宽度为0.64 nm。

第二组:夫琅禾费宽度为0.62 nm。

第三组:夫琅禾费宽度为0.61 nm。

另外,我们还研究了反谱仪角度和反谱仪对散射算法的影响,研究结果如下:1、随着反谱仪角度的增大,夫琅禾费的宽度也会增大;2、反谱仪对夫琅禾费的散射算法的影响很大,当反谱仪的偏差角度较大时,夫琅禾费的宽度和强度会减小,且变化趋势不断。

结论本次实验通过配合衍射模板测量夫琅禾费的宽度和强度,我们可以推算出窄线宽的夫琅禾费。

另外,我们也研究了反谱仪角度和反谱仪对散射算法的影响,结果表明:随着反谱仪角度的增大,夫琅禾费的宽度也会增大;反谱仪对夫琅禾费的散射算法的影响很大,当反谱仪的偏差角度较大时,夫琅禾费的宽度和强度会减小,且变化趋势不断。

本次实验为理解夫琅禾费的原理,及其对光谱中原子或分子信号的测量提供了重要的实验经验。

单缝夫琅禾费衍射明暗纹公式

单缝夫琅禾费衍射明暗纹公式

单缝夫琅禾费衍射明暗纹公式
夫琅禾费衍射是物理学的一个重要分支,用于研究光的衍射现象。

夫琅禾费衍射的基本原理是:当通过一条狭缝或一些微小孔洞的光线照射一个物体时,会发生弯曲和散射。

这种现象被称为衍射。

夫琅禾费衍射明暗纹的公式是:
dsin(θ) = mλ
其中,d是狭缝孔径的宽度,θ是散射光线和中心光线之间的夹角,m是干涉级数,λ是波长。

夫琅禾费衍射明暗纹公式的含义是,照射物体的光线被散射,形成明暗不同的衍射纹。

这些纹理取决于狭缝孔径宽度与照射光线波长之比、衍射角度等因素。

在实际应用中,夫琅禾费衍射广泛用于光学、激光技术、人体健康、科学研究等领域。

例如,科学家们能够通过夫琅禾费衍射技术,在人体细胞和组织中观察到各种有用信息,以帮助研究人类疾病的发病机理和治疗方法。

总之,夫琅禾费衍射明暗纹公式是物理学中重要的公式,用于描述狭缝或孔洞光散射过程中形成的明暗纹的特征。

6.7 夫琅禾费单缝衍射和矩孔衍射

6.7 夫琅禾费单缝衍射和矩孔衍射

这些次波都可认为是球面次波,各自向前传播。
4
A0 dx dE0 cos t b
首先对其中传播方向与原入射方向成角(称为衍 射角)的所有各次波进行研究。 屏幕
dx
S
F1
x
r

r0

x
0
x sin
M点与B点到达P点的光程差为 2 x sin 相位差为:
B
'B
M
2. 衍射光强分布公式:
为了计算衍射场中任一点P 的强度,设平行光束垂直 于缝的平面入射,波面与缝平面重合。 按惠更斯—菲涅耳原理,把缝内的波面分割为许多等 宽的窄条dx,从每一条窄带发出的次波的振幅正比于窄 带的宽度dx,设光波的初相位为0,缝宽为b,A0为整个 狭缝所发出的次波在=0 的方向上的合振幅,狭缝单 位宽度发出次波的振幅为A0 /b。而宽度为dx窄带所发出 的次波的振幅为A0 dx /b,则振动表达式为
y f tan1 50cm 0.03rad 1.5cm
所以中央亮纹中心的宽度为
y 2 y 2 1.5cm=3cm
20
本节结束
物理科学与信息工程学院 21
P
F '2

x sin

物理科学与信息工程学院 5
则M点的次波到达P点的光振动的表达式为:
A0 dx 2 dE cos t x sin b

A0 dx dE e b
2 i x sin t
2
其复振幅为
~ A0 dx dE e b
2
-称为单缝衍 射因子
dI d sin 2 u A0 ( 2 )0 u du du u (1) 主最大(中央亮纹中心)位置:

12-8单缝的夫琅禾费衍射

12-8单缝的夫琅禾费衍射

f
x0
2f
tan 1
2 f 12f来自aaB. 次极大
x
f
a
1 2
x0
前提仍然是很小
上页 下页 返回 退出
缝宽变化对条纹的影响

x
f
a
1 2
x0
知,缝宽越小,条纹宽度越宽
I
0
sin
当 a 时,
当 a 时,0
x ,此时屏幕呈一片明亮;
,x此时0屏幕上只显出单
一的明条纹单缝的几何光学像。
∴几何光学是波动光学在/a0时的极限情形
b
b
b
3 f 2 f f
bbb
f 2 f 3 f x
b
上页
下页b
返回
退b 出
衍射图样 衍射图样中各级条纹的相对光强如图所示.
1 I / I0 相对光强曲线
0.017 0.047
0.047 0.017
-2( /a) -( /a) 0 /a 2( /a) sin
中央极大值对应的明条纹称 中央明纹。 中央极大值两侧的其他明条纹称 次极大。 中央极大值两侧的各极小值称暗纹。
(P处干涉相消形成暗纹)
上页 下页 返回 退出
2.明暗纹条件
由半波带法可得明暗纹条件为:
a sin 2k k 1,2,3,L ——暗纹
2
a sin 2k 1 k 1,2,3,L
2
——明纹(中心)
asin 0
——中央明纹(中心)
上述暗纹和中央明纹(中心)的位置是准确的,其余 明纹中心的实际位置较上稍有偏离。
上页 下页 返回 退出
明纹宽度
A. 中央明纹
当 a 时 , 1 级暗纹对应的衍射角

大学物理学-单缝夫琅禾费衍射

大学物理学-单缝夫琅禾费衍射

说明:
(1)P点的振动为无限多个振动源相干叠加的结果,所以变成了一
个无限多光束的干涉问题。
(2)原则上,菲涅尔公式可以讨论一般衍射问题。但只对某些简单 情况才能精确求解。
(3)由于直接积分很复杂,所以常常利用“半波带法”(代数加 法)和“振幅矢量加法”(图解法)。
大学物理学
章目录 节目录 上一页 下一页
一、装置和现象
光源 透镜
单缝
D
f
D f


中央 明纹
夫朗禾费单缝衍射图样是一组与狭缝平行的明暗相间的条纹,其中 中央条纹最亮最宽,其它各级明纹随级数升高,亮度逐渐变暗。
大学物理学
章目录 节目录 上一页 下一页
13.1 单缝夫琅禾费衍射
夫朗禾费单缝衍射:平行衍射光的干涉
衍射光
1 1 1
会是明纹么? 可以确定是明纹
13.1 单缝夫琅禾费衍射
三、菲涅耳衍射和夫琅禾费衍射
衍射系统一般由光源、衍射屏、接收屏组成,通常按三者的相对位置 将衍射分为两大类:
菲涅耳衍射
夫琅禾费衍射

源 衍射屏 接收屏
光 源
衍射屏
接收屏
衍射屏、光源和接收屏之间(或二者 衍射屏与光源和接收屏三者之
之一)均为有限远。
间均为无限远。
大学物理学
章目录 节目录 上一页 下一页
奇数个半波带
相长干涉:亮纹
不为半波长的整数倍
亮度:暗纹和亮纹之间
思考:若BC刚好截成4.7个半波带或者3.7个半波带,这时P点哪个更亮一些?
大学物理学
章目录 节目录 上一页 下一页
13.1 单缝夫琅禾费衍射
4) 衍射图样中明、暗纹公式

2_6夫琅禾费单缝衍射

2_6夫琅禾费单缝衍射

屏幕 屏幕
S
*
3
2.6.2 强度的计算 x
屏幕
dx
r
θ
r0
P
B
S
F1
x
λ
Δ = x sin θ
M N 0 D B′
P0
θ
宽度dx窄带所发次波振幅
将波前 BB′分割成许多等宽窄带dx, 初位相 ϕ0 = 0
A0 dx A0 整个狭缝所发次波振幅; b A0 dx cos ωt M点所发次波的振动 dE0 = b
πb sin θ λ
λ
次最大光强的角位 置近似为:
sin θ k 0
2
2k + 1 λ ≈± 2 b
⎛ sin u ⎞ 代入单缝衍射因子 I = ⎜ ⎟ I 0 各次最大的光强为: ⎝ u ⎠
I10 = 0.0472 I 0
I 20 = 0.0165 I 0
I 30 = 0.0083I 0
10
可见,衍射级次越高,光强就越小。次最大的光 强最大不到中央最大值的1/20,并且随着级数的增 加而很快减小。 光强曲线
1.0
I I0
− 3π
− 2π
−π
0
π

u
11
2.6.4 单缝衍射图案的特点
(1)、各级最大值的光强不相等,随着级数k的增 大而减小。中央最大值的光强最大(主最大), 次最大值远小于中央最大值 I10< 0.05I0 (2)、角宽度 规定以相邻暗纹的角距离作为其间条纹的角宽度。 在近轴条件下, θ很小, sinθ ≈θ , 由暗纹的角位置公式 sin θ k ≈ θ = k
~ A0 dx 其复振幅为 dE = e b
i

大学物理:17-9 单缝的夫琅禾费衍射

大学物理:17-9 单缝的夫琅禾费衍射

θ = 0,δ = 0
—— 中央明纹(中心)

S
*
a
Aδ f′
·p
θ 0
f
3. 衍射图样的讨论
3.1 菲涅耳半波带法(半定量方法)
在波阵面上截取一个条状带,使它上下两边缘发
的光在屏上p处的光程差为 λ/2 ,此带称为半波带。
y 当 a sinθ = λ 时,可将缝分为两个“半波带”
θ1
B
半波带 a 半波带
b
例2 如图,一雷达位于路边 15m 处,它的射束与
公路成15o角. 假如发射天线的输出口宽度 b = 0.10m,
发射的微波波长是18mm ,则在它监视范围内的公路长 度大约是多少?
解 将雷达天线输出口看成是发出衍射波的单缝,衍 射波能量主要集中在中央明纹范围内.
d = 15m
15o b = 0.10m
a
其余明纹
Δθ = λ
a
a ↓ Δθ ↑ 衍射显著,a ↓↓ 光强太弱
λ一定 a ↑ Δθ ↓ 衍射不明显,a ↑↑ 直线传播
λ ↑ Δθ ↑ Δx = f λ
a 白光照射,中央白色,其余明纹形
a一定 成内紫外红光谱,高级次重叠
λ ↓ Δθ ↓
浸入液体中、条纹变密
单缝宽度变化,中央明纹宽度如何变化?
§17-9 单缝的夫琅禾费衍射
1. 单缝夫琅禾费衍射的光路图
缝平面 透镜L2
透镜L1 B θ
S
*
a
θ
Aδ f′
f
观察屏
·p
0
S: 单色线光源 AB = a:缝宽 θ : 衍射角
2. 单缝夫琅禾费衍射的光程差计算
单缝的两条边缘光束 A→P 和B→P 的光程差,

第二章光的衍射夫琅禾费单缝衍射

第二章光的衍射夫琅禾费单缝衍射



b
0
e ikx sin dx A0
b sin 2 i( r ') e
sin(
b sin ) b sin
P点处的光强:
I P E P E P * A0 2
sin 2 (
b sin ) b sin 2 ( )
2

b sin u
,极大(零级)
3 得 u1 1 .43 2 5 u 2 2.46 2
7 u 3 3.47 2
A12 0.0472 A02 A22 0.0165 A02
A32 0.0083A02
b sin 1 u uk k , k 1,2,3 2 即次明纹(中心) :
I o A0
I P I0
sin 2 u u2
4、光强分布
2 dI d sin u 2 2 2 sin u (u cos u sin u ) A0 ( 2 ) A0 0 3 du du u u
极值: sin u
0
u tan u
(1) 主极大(中央明纹中心)位置:

sin u 0
b sin ( 2 k 1) , k 1,2 ,3… 2
( k 0)
(4)各级亮纹强度分布是不均匀的 以中央明纹的强度为1,则 第一级明纹为4.7% 第二级明纹为1.7% 第三级明纹为0.83%
1
相对光强曲线
0.017 0.047 0.047 0.017
-2( /b) -( /b) 0 /b 2( /b)
由暗纹条件: sin k

b 1 sin1 b

夫琅禾费单缝衍射公式

夫琅禾费单缝衍射公式

夫琅禾费单缝衍射公式1. 什么是夫琅禾费单缝衍射?好家伙,今天咱们聊聊一个神奇的现象——单缝衍射。

别看名字听起来复杂,实际上这就是光的一种神奇行为。

想象一下,你在阳光下打着一个小小的洞,光透过这个缝隙后,就像水流过一个狭窄的地方一样,开始波动。

这种波动就叫“衍射”,而夫琅禾费则是这项技术的老前辈之一,给它起了个名字,听起来特别牛逼!在科学的世界里,夫琅禾费就是个大佬,他发现了光在通过狭缝的时候,会像一个大明星一样,开始发散、变形,最后形成一些特别有趣的图案。

简单点说,就是光并不总是直线走,它也喜欢在缝隙中“逛逛”,变得有些“顽皮”。

这可不是光的任性,而是它的本性。

2. 单缝衍射的公式好吧,话不多说,进入正题。

单缝衍射的公式其实也不难理解。

公式的样子是这样的:a sin theta = n lambda 。

这里的“a” 是缝的宽度,“θ” 是衍射角,“n” 是一个整数,代表衍射的级数,“λ” 则是光的波长。

听起来有点复杂,但别担心,咱们慢慢来,像吃麻辣火锅一样,细嚼慢咽!首先,缝的宽度“a”就像是一个小小的门,越窄,光透过后就越疯狂。

如果你把门打开得大一点,光就乖乖的直走,没什么好玩的。

如果门太小,光一进去就开始“逛”,形成了一个个花花绿绿的光斑,像是在开派对,特别热闹!然后是“θ”,就是光散开的方向。

光是个调皮捣蛋的家伙,喜欢向不同的方向乱跑,而“θ”就是记录这些方向的好帮手。

每当你看到那些漂亮的条纹图案,实际上就是光在争先恐后想要找到出口的结果。

3. 衍射现象的应用说到这里,很多朋友可能会问:“这个衍射有什么用啊?”嘿嘿,别着急,应用可多了去了!首先,单缝衍射在科学实验中可是个老帮手,尤其是在光学仪器中。

比如,显微镜和望远镜就常常用到这招,帮我们看清那些微小的细节。

再者,衍射现象也应用在音乐里。

听过古典音乐的朋友可能会发现,音色的变化和光的衍射有异曲同工之妙。

音乐的和声就像光的干涉,让不同的音波交织在一起,产生出美妙的旋律。

大学物理Ⅰ13.7单缝夫琅禾费衍射衍射

大学物理Ⅰ13.7单缝夫琅禾费衍射衍射

x
f
tan
f
sin
(2k
1)
f
2a
k 1, 2...
暗纹中心: x f tan f sin k f k 1,2...
a
3)其他明纹的线宽度:相邻暗纹中心间的距离
即中央明纹宽度为其他明纹宽度的两倍。
4)单缝衍射的光强分布
x
f
O
k级亮纹对应(2k+1)个半波带;k级暗纹对应2k 个半波带.k越大,AB上波阵面分成的波带数就越多, 所以,每个半波带的面积就越小,在P点引起的光强 就越弱。因此,各级明纹随着级次的增加而亮度减弱。
2
则,必定有一个“半波带”发的光过透镜后会聚在 P
点不能被抵消,形成明纹。
若 不满足明暗条纹条件,则AB 不能被分成整数
个半波带,则或多或少总有一部分的振动不能被抵消, 此时,会聚在屏上的亮度处于明暗纹之间。
综上所述,可得单缝衍射明、暗条纹条件
1)若 BC asin 2 将缝分为两个半波带
由波动光学 :一个点光源经过透镜后所成的像是 以爱里斑为中心的一组衍射条纹。
如果两个物点相距太近,它们的爱里斑重叠过多, 这两个物点的像就无法分辨。
两物点相距多远时恰好能分辨呢?
瑞利判据:对于两个光强相等的非相干物点,如 果其一个像斑的中心恰好落在另一像斑的第一暗 纹处,则此两物点被认为是刚好可以分辨。
不是整数, km取整数部分)
为整数,则取km-1)
观察:单缝宽度变化,中央明纹宽度如何变化? a减小,1增大,衍射效应越明显.
4)在单缝衍射中,若使单缝和单缝后透镜分 别稍向上移,则衍射条纹将如何变化?
单缝上移衍射光束向上平移经透镜聚焦后, 位置不变条纹不变

2.3 夫琅禾费单缝衍射解析

2.3 夫琅禾费单缝衍射解析

平行衍射光
平行衍射光 光线系1,光线系2,光线系 3…构成无穷多束平行衍射光。
A
3 3 3
2

1

O
K
2 θ 1 O/ 3 2 1 L 3 2 1
B
光学
§ 2.3 夫琅禾费单缝衍射
平行衍射光的方向
衍射角 每一束平行光与单缝 法线方向之间的夹角 θ 称为衍射角,变化 范围 0→±π /2 (向 上为正,向下为负)。
(3)波长 越大,条纹越宽。 白光:中央特亮,其余呈彩色分布。
如何解释这些实验规律?
光学
§ 2.3 夫琅禾费单缝衍射
三、惠更斯-菲涅耳原理分析衍射过程
平行衍射光
衍射光 如图中A点的1,2,3…光线 都是衍射光线。
A
3 3 3
2

1

O
K
2 θ 1 O/ 3 2 1 L 3 2 1
B
光学
§ 2.3 夫琅禾费单缝衍射


x P
复振幅:
B
f
A0 dx ik dE e (xsin r' ) b
光学
§ 2.3 夫琅禾费单缝衍射
A dx (xsin r' ) 0 复振幅: dE eik b
P点处的合振幅:
P点处的光强:
bsin sin( ) bsin 2 i ( r ' ) b A0 ikr' ikxsin EP dE e e dx A0e 0 bsin b ( )
光学
§ 2.3 夫琅禾费单缝衍射
六、条纹宽度
中央明纹角宽度:中央亮纹对透镜中心的张角。 由暗纹条件: b sin k 当θ很小,有 k k 中央明纹角宽度:2 0 2

夫琅禾费单缝衍射

夫琅禾费单缝衍射

2.4 夫琅禾费圆孔衍射
设圆孔的直径为D,与P点
对应的衍射角为
IP
(
)
I0
J1 (2u ) u
2
,
u D sin , 2
I0
D2 4
2
衍射屏
L 观察屏
1
中央亮斑
(爱里斑)
圆孔孔径为D f
第一暗圈所包围的中央亮斑 叫做 爱里斑 (Airy disk)
爱里斑的角半径:
1
sin1
1.22
人眼:2.5mm
分辨率:0.024m
鹰眼:6.2mm 分辨率:0.0096m
The technique of using tiny dots of color to construct his images.
What the person sees when the film is developed.
x 波长越长,条纹宽度越宽
4. 缝宽变化对条纹的影响
x
1 2
x0
f
b
缝宽越小,条纹宽度越宽
当 b 时,0
I
屏幕是一片亮
0
sin
当 0 时,
b
x 0
只显出单一的明条纹 单缝的几何光学像
∴几何光学是波动光学在 /b 0时的极限情形
例1.在夫琅和费单缝衍射中,对于给定的 入射光,当缝宽度变小时,除中央亮纹的
0.27cm
例4.波长 500 nm 的单色光垂直照射到
宽度 b = 0.25 mm 的单缝上,单缝后面放置 一凸透镜, 在凸透镜的焦平面上放置一屏 幕,用以观测衍射条纹,今测得屏幕上中 央明条纹一侧第三个暗条纹和另一侧第三 个暗条纹之间的距离 d =12 mm,则透镜的

夫琅禾费单缝衍射

夫琅禾费单缝衍射

§16.2 单缝和圆孔的夫琅禾费衍射§16.2.1 单缝的夫琅禾费衍射( 1 ) 单缝衍射的实验装置和现象夫琅禾费衍射是平行光的衍射,在实验中可借助于两个透镜来实现。

位于物方焦面上的点光源经透镜L1后成为一束平行光,照射在开有一条狭缝的衍射屏上。

衍射屏开口处的波前向各方向发出子波或衍射光线,方向相同的衍射光线经透镜L2后会聚在象方焦面上的同一点,各个方向的衍射光线在屏幕上形成了衍射图样,它在与狭缝垂直的方向上扩展开来。

衍射图样的中心是一个很亮的亮斑,两侧对称地分布着一系列强度较弱的亮斑,中央亮斑的宽度为其他亮斑的两倍,且它们都随狭缝宽度的减小而加宽。

如果用与狭缝平行的线光源代替点光源,则在接收屏幕上将会看到一组平行于狭缝的衍射条纹。

图16 - 4 单缝的夫琅禾费衍射( 2 ) 单缝衍射的光强分布公式考虑点光源照明时的单缝夫琅禾费衍射。

取z轴沿光轴,y轴沿狭缝的走向,x轴与狭缝垂直。

因为入射光仅在x方向受到限制,衍射只发生在x- z平面内,因此具体分析可在该平面图中进行。

按惠更斯菲涅耳原理,我们可以把单缝内的波前AB分割为许多等宽的窄条,它们是振幅相等的相干子波源,朝各个方向发出子波。

由于接收屏幕位于透镜L2的象方焦面上,因此角度相同的衍射光线将会聚于屏幕上同一点进行相干叠加。

图16 - 5 衍射矢量图设入射光与光轴Oz平行,则在波面AB上无相位差。

为求单缝上、下边缘A和B到点的衍射光线间的光程差L和相位差,自A点引这组平行的衍射光线的垂线AN,于是就是所要求的光程差。

设缝宽为b,则有(16.4)(16.5)矢量图解法:用小矢量代表波前每一窄条对点处振动的贡献,由A点作一系列等长的小矢量,首尾相接,逐个转过相同的小角度,最后到达B点,总共转过的角度就是单缝上、下边缘到点的衍射光线间的相位差. 若取波前每一窄条的面积,则由这些小矢量连成的折线将化为圆弧,其圆心角2= . 由于整个缝宽AB内的波前在点处产生的合振幅等于弦长,而在的点处的合振幅A0等于弧长,故有,即,(16.6)其中.(16.7)单缝夫琅禾费衍射的光强分布公式:利用,而表示中央亮斑中心O 处的光强,由式(16.6)可得, .(16.8)( 3 ) 单缝衍射光强分布的特点单缝的夫琅禾费衍射图样的中心有一个主极强(零级衍射斑),两侧都有一系列次极强和暗斑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中央明纹线宽度
x
xk
中央 O 明纹
k2
k 1
(a , )
其他明纹宽度
a sin k k xk tg k f tg k sin k
f
f xk k a
x k f a
中央亮纹的边缘对应的衍射角1,称为
中央亮纹的半角宽
sin 1
总结: ——中央明纹(中心) a sin 0 a sin k,k 1,2,3„ ——暗纹(中心) (注意k 0)
0.017 0.047
1
I / I0
0.047
0.017
-2( /a) -( /a) 0 /a 2( /a)
sin
中央极大值对应的明条纹称 中央明纹。 中央极大值两侧的其他明条纹称 次极大。
sin Δ x / f
明纹暗纹的图示
中央亮纹的半角宽
1
f
x
(1)明纹宽度
中央明纹:两个一级暗纹间的距离,
b sin ( 2k 1)
——暗纹

2
, ( k 1,2)
——明纹(中心) ——中央明纹中心
b sin 0 0
上述暗纹和中央明纹(中心)的位置是准确的,其余 明纹中心的实际位置较上稍有偏离。
四、衍射图样的特点
衍射图样中各级条纹的相对光强如图所示.
相对光强曲线
惠更斯-菲涅尔积分公式
K ( ) E dE C dS cos(wt ) r

P
Hale Waihona Puke a
为衍射角
f
P点的光强取决于狭缝上各子波源 到此的光程差。光强分布?
为缝边缘两条光线在 p 点的光程差
b sin
菲涅耳半波带法
设考虑屏上的 P点 S (它是衍射角为 * 平行光的会聚点):
此时光线遵从直线传播规律。 ∴几何光学是波动光学在 /a 0时的极限 情形。

当缝极细(a )时, sin 11,1 /2
衍射中央亮纹的两端延伸到很远很远的地方, 屏上只接到中央亮纹的一小部分(较均匀),
当然就看不到单缝衍射的条纹了。 这就是我们
前面只考虑干涉,不考虑缝的衍射的缘故。 回忆:在讲杨氏双 缝干涉时,我们并不 考虑每个缝的衍射 影响。
1为1 级暗纹对应的衍射角
a sin 1
1 sin 1
0 2 1
中央明纹
k 1
1

a
k2
2 0 a
上式为中央明纹角宽度
2 f x0 2 x1 2 ftg 0 2 f 0 a 2 f x0 a 0 2 1
3/a 2/a /a
屏幕
0 -/a
-2/a
-3/a
(4) 波长 越大,条纹越宽。
xk
f k a

b

b sin k k
k a b xk
条纹散开了 光通量减少, 清晰度变差。
b

分析与讨论:
1. 极限情形:
当缝极宽 b 0时,各级明纹向中央靠拢, 密集得无法分辨,只显出单一的亮条纹, 这就是单缝的几何光学像。
-----衍射角.
如图所示,可将缝分成了两个“半波带”:
θ
1 2 1′ 2′
a
B 半波带
半波带
A
1 2 1′ 2′
半波带 半波带
λ /2
两个“半波带”上相应的光线1与1’在P点的相位差为 所以两个“半波带”上发的光,在 P 点处干涉相消, 就形成第一条暗纹。
两个“半波带”上相应的光线2与2’在P点的相位差为

a
中央明纹线宽度
而 a sin ( 2k 1) ,k 1,2,3 „ (注意k 0) 2 ——其他明纹(中心) f 其他明纹位置 x k k a

2 f x0 a
其他明纹线宽度 x k
f a
sin
(2)中央亮纹最亮,其宽度是 其他亮纹的两倍; 其他亮纹的宽度相同; 亮度逐级下降(为什么?)。 (3) 缝 a 越小,条纹越宽。
当 再 , =3/2时,可将缝分成三个“半波 带”,
B a A θ a B θ
λ / 2
A
λ / 2
其中两个相邻的半波带发的光在 P 点处干涉相消, 剩一个“半波带”发的光在 P 点处合成,P点 处即为 中央亮纹旁边的那条亮纹的中心。 当 = 2 时,可将缝分成四个“半波带”, 它们发的光在 P 处两两相消,又形成暗纹……
I
2.干涉和衍射的联系与区别: 从本质上讲干涉和衍射都是波的相干叠加, 没有区别。 通常:干涉指的是有限多的子波的相干叠加, 衍射指的是无限多的子波的相干叠加,
二者常常同时存在。
例如,不是极细缝情况下的双缝干涉,就应 该既考虑双缝的干涉,又考虑每个缝的衍射。
缝平面
透镜L B
观察屏 透镜L
b

p ·

f

f
0
•当 =0时, P 在 O 点,为中央亮纹的中心;这些 平行光到达 O点是没有相位差的。 •当 时,相应P点上升,各条光线之间产生了 相位差,所以光强减小;
到什么时候光强减小为零呢?或者说,第一暗纹的 是多大呢?
当 光程差
= bsin = =2×/2 时,
菲涅耳半波带的数目决定于
b sin
P





2
f
1、k 由 b、、 确定。
对应沿 方向衍射 b sin 的平行光狭缝,波 k 阵面可分半波带数
2
2、k 不一定是整数。
三、单缝衍射明暗条纹条件
由半波带法可得明暗纹条件为:
b sin k , (k 1,2)
§2.3 夫琅禾费 单缝衍射
一 实验装置和衍射图样的特点
缝平面
透镜L 装置如图 透镜L
观察屏
p · 0
f
S
*
f
b A
图样特点 中央有一条特别明亮的亮条纹
两侧排列着强度极小的亮条纹,相邻两两 条问纹间还有一条暗纹。 两侧的亮条纹等宽,中央亮条纹的宽度是 两侧的二倍。
二.强度的计算
菲涅尔半波带法
相关文档
最新文档