电位分析法

合集下载

电位分析法

电位分析法
电极的主要组成部分是电极 下端的玻璃泡,它是电极的 敏感膜,是在SiO2基质中 加入Na2O、Li2O和CaO烧 结而成的特殊玻璃膜。利用 玻璃膜的组成不同可制成对 不同阳离子有响应的玻璃电 极。对H+有响应的电极叫 pH玻璃电极,它是问世最 早(1906年)的离子选择 性电极,也是人们研究较多 的离子选择性电极。
电位分析法按原理分类
直接电位法和电 位滴定法。 直接电位法是通 过测量电池电动 势,从而确定指 示电极电位,然 后根据Nernst方 程,计算被测物 含量。

电位滴定法是通 过测量在滴定过 程中指示电极电 位的变化来确定 滴定终点,再按 滴定中消耗的标 准溶液的体积和 浓度计算待测物 质含量,实质上 是一种容量分析 方法。
第二节 离子选择性电极(ISE)概述
离子选择性电极由三部分组成:
离子选择性电极由三部分组成:①敏感膜:对
给定离子响应; ②内参液:含有与膜及内参 比电极响应的离子;③内参比电极。 也有的膜电极不用内参液和内参比电极,在 压膜时,在膜上压一层银粉,焊上一根金属 导线,或用导电胶将导线与膜粘在一起,或 把敏感膜涂在金属丝或片上制成涂层电极。
φm = K RT ln α FF
氟离子选择性电极的使用范围

一般在1~10-6 mol· -1范围内电极电位符合能斯特方程;检测 L 下限由单晶膜的溶度积决定,LaF3饱和溶液中F-离子浓度 约为10-7 mol· -1,因此氟电极在纯水体系中最低检测下限为 L 10-7 mol· -1左右;实验中要用F-离子的标准溶液校正电极。 L 电极在低活度范围内响应时间为~3min,而后在高活度范围 内响应迅速。氟电极的选择性较好,PO43-,CH3COO-,X -,NO -,SO 2- ,HCO -等离子不干扰,主要干扰离子 3 4 3 -。干扰的原因是在膜表面产生如下反应: 是OH LaF3 + 3OH- = La(OH)3 + 3F- 产生的F-离子对测定造成正干扰,而La(OH)3 层也对 测定有干扰. 在酸度较高时,会形成HF,HF2-,HF32-,而使F-离子浓 度降低,因此测定时应控制pH值在5~6之间。

电位分析法

电位分析法
M
RT Pot z / m Pot z / n K ln a M K m a K ...... ,i i m, ja j ZF


0.059 Pot z / m Pot z / n M K ln a M K m a K ...... ,i i m, j a j Z
★ 试样组分较稳定的试液,如火力发电厂水 蒸气中Na+的测定。
<二> 校准曲线法: 配制试液和一系列标准溶液,加 1. 方法要点: 入总离子强度调节缓冲溶液,使 各溶液的实验条件一致。分别测 定它们的电动势,根据标准系列 溶液的浓度,作E~C曲线,再用 内插法求试液中被测物含量。 2. 适用范围: ★ 适用于大批量试样的分析。
二、膜电位的产生: 〈一〉膜电位: ● 膜电位: 膜两侧接触不同浓度电解质 溶液而产生的电位差。
〈一〉膜电位产生的模型: 1.扩散电位:
●C1>C2:产生浓差扩散 ●H+迁移较Cl-快:造 成溶液界面上的电荷 分布不匀 ●C1负电荷多而C2正电 荷多:在相界面产生 电位差 ●电位差的产生,使离子 的扩散速度减慢,最后 达到平衡,使两相界面 之间有稳定的界面电位
① 当正、负离子的迁移数相等时,扩散电位 等于零;
② 扩散电位可以出现在液体、固体界面上; ③ 扩散电位不具备强制性和选择性; ④ 扩散电位是膜电位的组成部,它存在于膜 相内部。
2.道南电位:
●渗透膜:它至少能阻止 一种离子从一个液相扩 散到另一个液相。 ●C1>C2:产生浓差扩散
●仅允许少量的K+通过,
§3—1 电位分析法原理
一、电位分析法:
●将指示电极和参比电极同时浸入试液,组 成电池,在通过电路的电流为零的条件下, 测量指示电极的平衡电位,从能斯特方程 式求待测离子浓度的方法,称电位分析法。

电化学分析方法之一电位分析法

电化学分析方法之一电位分析法

)
(K2
0.0592
lg
aH 内 aH 内表面
)
K
0.0592
lg
a H

K
0.0592
pH
C、PH玻璃电极的电极电位:
E玻 E内参 E膜 E内参 K 0.0592 pH试
E玻 K玻 0.0592 pH试
D、电位法测定溶液pH的基本原理 电位法测定溶液的pH,是以玻璃电
极作批示电极,饱和甘汞电极作参比电 极,浸入试液中构成原电池: E = E甘 – E玻
电位滴定法中拟定终点的办法重 要有下列几个:
第一种办法:以测得的电动势和 对应的体积作图,得到E~V曲线, 由曲线上的拐点拟定滴定终点。
第二种办法:作一次微商曲线, 由曲线的最高点拟定终点。具体 由△E/△V对V作图,得到△E/△V 对V曲线,然后由曲线的最高点拟 定终点。
第三种办法:由二次微商求终点
其中,批示电极是看待测离子的 浓度变化或对产物的浓度变化有 响应的电极,参比电极是含有固 定电位值的电极。
在滴定过程中,随着滴定剂的加 入,待测离子或产物离子的浓度 要不停地变化,特别是在计量点 附近,待测离子或产物离子的浓 度要发生突变,这样就使得批示 电极的电位值也要随着滴定剂的 加入而发生突变。
惯用的有Ag/AgCl、甘汞电极 (Hg/Hg2Cl2电极)。
对于甘汞电极,其电极反映为: Hg2Cl2+2e=2 Hg+2Cl-
3. 第三类电极:它由金属,该金属 的难溶盐、与此难溶盐含有相似阴离 子的另一难溶盐和与此难溶盐含有相 似阳离子的电解质溶液所构成。表达 为M (MX,NX,N+)。如: Zn| ZnC2O4(s),CaC2O4(s),Ca2+ Ca2+ + ZnC2O4 +2e CaC2O4+ Zn

电位分析法

电位分析法
1.分类 直接电位分析:通过测定指示电极的电位, 直接电位分析:通过测定指示电极的电位, 根据电位与待测离子活度之间的定量关系进 行定量分析。 行定量分析。 电位滴定分析: 电位滴定分析:通过测定滴定过程中电极电 位突变来确定滴定终点进行分析。 位突变来确定滴定终点进行分析。
2.特点 (1)仪器设备简单,操作方便,适合现场 仪器设备简单,操作方便, 操作; 操作; 选择性好,测定简便快速; (2)选择性好,测定简便快速; 试样用量少; (3)试样用量少; 自动化程度高; (4)自动化程度高; 精密度较差。 (5)精密度较差。
ϕ玻璃
ϕ甘汞
2.303RT E = K′ + pH F 25 °C: E = K′ + 0.059pH
比较法确定待测溶液pH 比较法确定待测溶液pH
pH已知的标准缓冲溶液 和 pH待测的试液 。 测定 已知的标准缓冲溶液s和 待测的试液 待测的试液x。 已知的标准缓冲溶液 各自的电动势为 的电动势为: 各自的电动势为:
测定待测溶液的电位值, 测定待测溶液的电位值, 通过标准曲线求出其浓度。 通过标准曲线求出其浓度。
Ex
lgcx lg c i
总离子强度调节缓冲溶液( TISAB )的作用 保持较大且相对稳定的离子强度,使活度系数恒定; ①保持较大且相对稳定的离子强度,使活度系数恒定; 范围内, ②维持溶液在适宜pH范围内,满足离子电极的要求; 维持溶液在适宜 范围内 满足离子电极的要求; ③掩蔽干扰离子。 掩蔽干扰离子。 测 F- 过 程 所 使 用 的 TISAB 典 型 组 成 : 1mol/L 的 NaCl,使溶液保持较大稳定的离子强度 ; 0.25mol/L的 , 使溶液保持较大稳定的离子强度; 的 HAc 和 0.75mol/L 的 NaAc, 使 溶 液 pH 在 5 左 右 ; 0.001mol/L的柠檬酸钠 掩蔽 3+、Al3+等干扰离子。 的柠檬酸钠, 掩蔽Fe 等干扰离子。 的柠檬酸钠

第九章--电位分析法(2014)PPT课件

第九章--电位分析法(2014)PPT课件

H水 合层 H溶 液
E内K内0.059lgaaHH内 内 参 水比 化溶 层液 E外K外0.059lgaaH H外 外 部 水溶 化液 层
.
13/6193
E内K内0.059lgaaHH内 内 参 水比 化溶 层液 E外K外0.059lgaaH H外 外 部 水溶 化液 层
同一玻璃电极,膜内外表面性质可以看成是相同 的,所以常数K内=K外;
属于非晶体膜电极。 最早使用的离子选择性电极。 核心部分是玻璃膜。
.
6/696
玻璃膜的不同组成可制成对不同 阳离子响应的玻璃电极。
pH玻璃膜电极的敏感膜是在SiO2 基质中加入Na2O、Li2O和CaO烧 结而成的特殊玻璃膜。厚度约为 100 mm左右。
原理:玻璃膜产生的膜电位与待 测溶液的pH值有关。
.
19/6199
3.3 pH值的测定
pHlogH[] pH loagH
饱和甘汞电极为参比电 极 , 玻 璃 电 极 作 为 H+ 活 度 指 示电极,两者插入溶液中组 成电池:
A A g ,0 . g 1 m C L 1 H ol 玻 lC 试 l 璃 K ( 饱 液 C ) 膜 ,H 2 C l 和 2 H g l
.
34/6394
二氧化碳气敏电极
电极浸入待测液,试液中 待测CO2通过透气膜扩散 ,直到透气膜内外CO2的 分压相等。
CO2引起的内电解质溶液 pH变化用pH玻璃电极指 示,由此测定试液中CO2 的浓度。
.
35/6395
气敏电极一览表:
.
36/6396
7. 酶电极
将 生物酶 涂剂:二癸基磷酸钙+苯基磷酸二辛酯溶液。
.
32/6392

第七章 电位分析法

第七章 电位分析法

离子敏感场效应晶体管(ISFET)
16-4 离子选择性电极性能参数


一、检测限与响应斜率 离子选择性电极能够检测到被测离子的最低浓 度。如图16-10中的CD与FG两延长线交叉点A 所对应的离子活度。 依能斯特方程直线的理论斜率为:
2.303 RT 理论斜率 zF
实际测定时斜率与理论值不一定相同。
(二)氟电极
氟电极的敏感膜由LaF3单晶片制成,为提高导电性, 在其中参杂少量Eu2+,Ca2+ ,二价离子的引入,使晶 格点阵中La3+被Eu2+,Ca2+取代,形成较多空的F-点 阵,增强了晶体的导电性,导电由F-完成。 氟离子选择性电极是目前最成功的单晶膜电极。
RT EF k ln a F F
能斯特方 程比较
EM
RT k ln a Ag F
二、电位选择性系数


电极选择性是指:电极对被测离子 和干扰离子响应的差异。 这种差异可用电极选择性系数Ki,j表 示。
RT z/m EM k ln( ai K iPot a ) ,j j zF
Ki,j表征了干扰离子对被测离子干扰的程度
玻璃电极的电位与溶液PH关系

玻璃电极的电位与溶液的PH有如下关系 RT E玻 k玻 ln aH F 2.303 RT E玻 k玻 pH 试 F
E玻 k玻 0.0592pH试
(三)阳离子玻璃电极
二、晶体电极

(一)电极结构 晶体电极的基本结构图16-5,其敏感膜 材料系难溶盐加压或拉制成的。能满足 室温下导电的难溶盐晶体只有少数几种, 氟化镧、硫化银、卤化银等。这类晶体 晶格能比较小,离子半径最小电荷最少 的离子F ,Ag+等参与导电。

电位分析

电位分析

而产生电极电位的,即电极上发生氧化还原反应—电极上
有电子的得失与转移; 离子选择性电极是以敏感膜为基体,选择性地让一些 离子渗透,同时包含着离子的交换过程。因此,离子选择 性电极电位是由离子的交换和扩散作用产生的。 敏感膜是一种能分开两种电解质溶液,并对溶液中某种 物质有选择性响应的薄膜,它能形成膜电位,ISE被认为是 一种电化学传感器,是电位分析中应用最广泛的指示电极。
Chapter 10 Potentiometry
第十章
电位分析法
§10-1 概 述
一、定义
电位分析法指在零电流条件下,利用电极电位和 溶液中某种离子的活度或浓度之间的关系来测定待测 物含量的方法,包括直接电位法和电位滴定法。
直接电位法 电位滴定法
1. 直接电位法 (direct potentiometry) :
将电极插入被测液中,根据测得的电池电动势与
被测溶液中待测物质某种型体的平衡浓度的关系直接
求出待测物质含量的方法。 2. 电位滴定法 (potentiometric titration) : 借助滴定过程中电池电动势的突变来确定滴定 终点,根据滴定剂的体积和浓度来求得待测物质的 含量,所得是某种参与滴定反应物质的总浓度。
3. 任意的i离子选择性电极电位
任意阳离子i 的离子选择性电极的电位均等于膜内扩散
电位和膜与电解质溶液形成的内外界面的界面电位的代数 和。
膜内外表面性质完全相同,所以,内外界面扩散电位 大小相等,方向相反,相互抵消。
而膜内外界面的界面电位为:
外 内
a1 RT K1 ln ’ nF a1 a2 RT K2 ln ’ nF a2
对整个玻璃电极而言,其电极电位应是内参比电极
电位和玻璃膜电位之和:

第九章 电位分析法

第九章  电位分析法

a' H +

aH +

a' H +

p 28
式中:
aH+外, aH+内为待测溶液和内参比溶液中氢离子活度。 aH+外’, aH+内’为外水化胶层和内水化胶层中的氢离子活 度。k外、k内为玻璃外,内膜性质决定常数。若膜内外表 面性质相同,则k外=k内, aH+外‘ = aH+内’ ,则
E膜 E道,外 E道,内 0.0592 lg
EE
0 Ce 4 Ce 3
4

3
0.059 lg
aCe 4 aCe 3
p9
第二节
离子选择性电极
膜电极,又称离子选择性电极(Ion Selective Electrode,ISE) (1)敏感膜:对特定的离子有选择性的响应
(2)响应机理:与金属指示电极区别,没有电子的得失(即 氧化还原反应)
p 31
产生原因
由于玻璃膜内外结构、性质并不完全一致,导致
内外水化胶层中aH+外’ ≠ aH+内 ’ ,在这种情况下, 即使aH+外 = aH+内时, E膜也不为0。 消除或减小、稳定不对称电位方法: 在水中长时间浸泡(24h); 用标准缓冲溶液校正。
p 32
(2)碱差(钠差) 定义:普通玻璃电极的适应范围为1-10,当用 玻璃电极测定pH>10的溶液或钠离子浓度较高的溶液 时,测量值与实际值相比偏低,这种现象称为碱差
电极可用符号记为:
Hg 2C2O4 , CaC2O4 , Ca2 Hg
汞电极的电位可有下式确定
0 E EHg 2 / Hg 0.059 lg aHg 2

第十章-电位分析法

第十章-电位分析法
14
玻璃膜
15
玻璃膜电位的形成:
玻璃电极在水溶液中浸泡,形成一个三层结构,即 中间的干玻璃层和两边的水化硅胶层。 浸泡后的玻璃膜示意图:
膜电位构成:相界电位、扩散电位之和。
16
玻璃膜电位的形成:
水化硅胶层具有界面, 构成单独的一相,厚度一 般为0.01~10 μm。在水化 层,玻璃上的Na+与溶液 中的H+发生离子交换而产 生相界电位。
测定的只是某种型体离子的平衡浓度。
电位滴定法:利用电极电位的突变来指示滴定终点的
滴定分析法,是电位测量方法在容量分析中的应用。 测定的是某种参与滴定反应物质总浓度。


指示电极: 在电位分析中,将电极电位随被测电活性物
质活度变化的电极称为指示电极。
参比电极: 与被测物质无关的、电位比较稳定的、提供
的电极,K后取负号; b. Ki j 称之为电极的选择性系数; 其意义为:在相同的测定条件下,待测离子和干扰离 子产生相同电位时待测离子的活度αi与干扰离子活度αj的
Zi/Zj次方的比值:
Ki j = αi /(α j)Zi/Zj
25
离子选择性电极的性能参数
Nernst响应,线性范围和检测下限
① 线性范围:AB段对应的检测离子 的活度(或浓度)范围。(Nernst响应)
② 级差: AB段的斜率(S), 活度相差一数量级时,电位 改变值,S=2.303 RT/nF , 25℃时,一价离子S=0.0592 V, 二价离子S=0.0296 V。离子电荷数越大,级差越小,测定 灵敏度也越低,电位法多用于低价离子测定。
电极电位(25℃): EAgCl/Ag = EAgCl/Ag - 0.059lgaCl-
7

第六章 电位分析法

第六章 电位分析法

M
n
/M

0 M n / M
RT ln aM n nF
从上式可见,金属—金属离子电极的电位随
金属离子活度不同而异。这里将电极电位随待测
离子活度变化而变化的电极称为指示电极。 原则上,只要测出指示电极的电极电位, 就可根据Nernst方程式求出溶液中的离子活度 。但单一电极的绝对电位无法直接测量,在电 位分析法中,需要使用另一支电位恒定的即所
谓的参比电极与指示电极共同组成工作电池,
并测量其电动势。
设工作电池为:
-)M/Mn+‖参比电极(+ 该电池的电动势为: E 参比 - M
0
n
/M
RT 参比 - M n / M ln aM n nF RT =K ln aM n nF
上式中参比、0Mn+/M在一定温度下都是常数,可 见,aMn+可通过测量电池电动势而求得。上式是 电位分析法的基本公式及依据。

0 M n / M
RT ln aM n nF
式中:电极电位(V); 0标准电极电位(V); R理想气体常数(8.31445J∙mol-1∙K-1); T热力学温度(K); n电极反应中传递的电子数; F法拉第常数(96487); aMn+ 金属离子Mn+的活度(mol∙L-1)。
电极的电位不应有明显的变化。 参比电极的结构包括:(1)内参比电极;(2) 盐桥电解质;(3)电极尖端的一个小通道,盐桥 电解质非常缓慢地通过它,以便构成一个电通 道。
常用的参比电极有甘汞电极和银-氯化银电极。
1.甘汞电极 甘汞电极属于金 属—金属难溶盐 电极。 将一根铂丝插入汞、 甘汞(氯化亚汞)糊中,并将糊体浸入浓度一定 的氯化钾溶液中,组成甘汞电极。

电位分析法及应用-

电位分析法及应用-

滴定剂用量(V)与相应得电动势数值(E),作图得到 滴定曲线。
将滴定得突跃曲线上得拐点作为滴定终点,该点与 化学计量点非常接近。
通常采用三种方法来确定电位滴定终点。
2、 电位滴定终点确定方法 (1) E-V 曲线法
如图(a)所示,作图得到 E-V曲 线。作两条与滴定曲线相切得平 行线A与B,再过A、B两线得中点 作平行线C,C线与滴定曲线得交 点即为电势滴定终点,对应得体积 即为滴定终点所消耗得滴定剂体 积。E-V曲线法简单,但准确性稍 差。
大家学习辛苦了,还是要坚持
继续保持安静
例:将钙离子选择电极与饱与甘汞电极插入100、00mL水 样中,用直接电位法测定水样中得Ca2+。25℃时,测得钙离子电 极电位为-0、0619V(对SCE),加入0、0731mol/L得Ca(NO3)2 标准溶液1、00mL,搅拌平衡后,测得钙离子电极电位为-0、 0483 V(对SCE)。试计算原水样中Ca2+得浓度?
得标准缓冲溶液定位,然后可直接在pH计上读出pHx。
表 标准pH 溶液
温度 t℃
10 15 20
25
30 35 40
0.05M 磷 酸 25 ℃ 饱 和 酒 0.05M 邻 苯 0.01mol/L
二氢钾
石酸氢钾 二甲酸氢钾 硼 砂
1.671
3.996
9.330
1.673
3.996
9.276
1.676
(2) 指示电极:铂电极 标准溶液:K4[Fe(CN)6;滴定对象:Pd 2+、Cd 2+、Zn 2+、Ba2+ 等。
3、 氧化还原滴定 指示剂法准确滴定得要求就是滴定反应中,氧化剂与
还原剂得标准电位之差必需△φo ≥0、36V(n=1),而电位 法只需≥0、2V,应用范围广。

3电位分析法解析

3电位分析法解析
ISE与金属基指示电极在基本原理上有本质区别
3 应用
➢用于测定阴阳离子(包括碱金属离子及一价 阴离子)、有机离子、生物物质,并用于气体 分析
➢适用的浓度范围宽
➢医疗卫生部门、工业流程自动控制、环境监 测等各种传感器
➢微型及超微型电极用于单细胞等活体分析
➢与化学平衡理论相结合测定有关常数
§2 离子选择电极电位法基本原理
电位分析法的理论依据是能斯特公式,它 是通过测量电池电动势进行定量分析。
E电池 ISE SCE 液接
那么,ISE(离子选择电极,膜电极)的
电极电位 ISE 是多少?
一、膜电位的产生
1 含义——膜的一侧或两侧与电解质溶液接触 而产生的电位差,它实质上是一种相间电位。
2 产生 膜电位的产生是由于离子在溶液与膜相内
同理,膜对RZ-产生响应时,

k '
RT ZF
ln

故对阴、阳离子产生响应时:

k '
RT ZF
ln 外
3 离子选择电极的电极电位
ISE 内参 膜
膜电位和膜电极的电 极电位(ISE的电极 电位)有不同的含义
k RT ln
ZF
(k由膜内界面上的相间 电位、内外膜表面不完 全相同的不对称电位和 内参比电极电位决定)
离子缔合物 (有机相)
由于只有响应离子能通过膜与溶液的界面进行扩散,因此
破坏了两相界面附近电荷分配的均匀性,产生相间电位。
电极的选择性决定于缔合物的稳定性及响应离 子在有机溶剂中的淌度;电极的灵敏度取决于活 性物质(缔合物)在有机相和水相中的分配系数, 分配系数越大,灵敏度越高。
➢流动载体
测定阳离子采用带负电荷的流动载体,测定阴离 子采用带正电荷的流动载体,形成离子缔合物

电位分析法

电位分析法
外参比电极‖被测溶液( ai未知)∣ 内充溶液( ai一定)∣ 内参比电极 (敏感膜)
内、外参比电极的电位值固定,且内充溶液中离子的活度 也一定,则电池电动势为:
RT EK ln ai nF
离子选择性电极的类型和结构
1976年IUPAC基于膜的特征,推荐将其分为以下几类
离子选择性电极(又称膜电极)
注意:离子活度系数保持不变时,膜电位才与log ci
呈线性关系。
总离子强度调节缓冲溶液简称TISAB
TISAB的作用:
①保持较大且相对稳定的离子强度,使活度系数恒定; ②维持溶液在适宜的pH范围内,满足离子电极的要求; ③掩蔽干扰离子。 典型组成(测F-): 1mol/L的NaCl,使溶液保持较大稳定的离子强度; 0.25mol/LHAc和0.75mol/LNaAc, 使溶液pH在5左右; 0.001mol/L的柠檬酸钠, 掩蔽Fe3+、Al3+等干扰离子。
公式使用时注意:对阳
离子,△E不变;对阴离子,△E
前加负号或取△E的绝对值。
优点:
(1)无须绘制标准曲线
(仅需一种浓度标液) (2)无需配制或添加 TISAB (3)操作步骤简单、快 速
3、直读法--pH测定原理与方法 ⑴ 直读法:对于被测溶液中
的某种成分能够在仪器上直接读 出其浓度的方法称为直读法。如 在pH计或pNa计上就能测定pH值
影响电位测定准确性的因素
(1) 测量温度:影响主要表现在对电极的标准电极电位、 直线的斜率和离子活度的影响上。 仪器可对前两项进行校正,但多数仅校正斜率。 温度的波动可以使离子活度变化,在测量过程中应尽量 保持温度恒定。 (2) 线性范围和电位平衡时间:一般线性范围在10-1~10-6 mol / L;平衡时间越短越好。测量时可通过搅拌使待测离子 快速扩散到电极敏感膜,以缩短平衡时间。 测量不同浓度试液时,应由低到高测量。

电位分析法的原理

电位分析法的原理

电位分析法的原理
电位分析法是一种电化学实验技术,通过测量电极在不同电位下的电流来研究电化学反应的机理和动力学。

其基本原理可以归结为以下几点:
1. 电位与电荷转移:根据法拉第定律,电极上的电位与与之相关的电荷转移是密切相关的。

当电位发生变化时,伴随着电荷转移的发生。

因此,通过测量电极的电位变化,可以了解电化学反应的过程。

2. 电位与物理化学性质:电位是描述电极表面上化学反应活性的物理化学性质之一。

不同电位下,电极的表面状态、吸附物种和电流密度等均会发生变化。

通过分析电位的变化,可以推断出电极表面的性质和反应活性。

3. 电极响应与反应机理:在电位分析过程中,观察电极的电流响应可以揭示出电化学反应的机理信息。

不同电位下,电流密度的变化可以反映出化学反应速率、中间体的生成和消耗等过程。

通过电位分析,可以探究电极反应的机理和动力学。

4. 电位与反应速率:电位分析法还可以用来研究电极上的反应速率。

根据泊松方程和负荷传递原理,电流密度与电极的电位变化之间存在相关性。

通过测量电位和电流密度,并应用极谱计算和相关的数学模型,可以确定电极反应的速率常数和相关动力学参数。

总之,电位分析法通过测量电极在不同电位下的电流,揭示了
电位与电荷转移、物理化学性质、反应机理和速率之间的关系。

这项技术在电化学研究、催化剂评价、电池性能测试等领域具有广泛应用。

电位分析法

电位分析法

此即电位法测pH值的操作定义.
D、对 H+ 有高度选择性的指示电极,使用 范围广,不受氧化剂还原剂影响,可用于 有色、浑浊或胶态溶液的 pH 测定;响应 快 ( 达到平衡快 )、不沾污试液。
E、膜太薄,易破损,且不能用于含 F-的 溶液;电极阻抗高,须配用高阻抗的测量 仪表。 F、 通过改变玻璃膜的结构可制成对 K+、 Na+、 Ag+、 Li+等响应的电极。
(3) 溶液pH值的测定
• pH值定义:pH=-lga H+ =-lgrH+[H+] • 玻璃电极作为氢离子的指示电极,饱和 甘汞电极作为参比电极,两者插入溶液组 成如下电池:
参比电极‖未知溶液或标准缓冲溶液│玻璃电极
• 在实际操作中,未知溶液的pH值是同已知 pH值的标准缓冲溶液相比较而求得。 • 若为未知溶液,该溶液的pH值以pHx来表 示,测得的电动势为Ex,则 Ex=E玻 – ESCE + E接 • 25℃时, E玻 =K – 0.059pH
用水浸泡玻璃膜时,玻璃表面的Na+与水中的H+交换, 在表面形成一层水合硅胶层 。当组成一定时 ,玻璃电极功能 的好坏主要取决于它的表面性质。 玻璃电极使用前,必须在水溶液中浸泡,使之生成一个三 层结构,即中间的干玻璃层和两边的水化硅胶层。 浸泡后的玻璃膜示意图:
水化硅胶层的化学性质和电性质不同于干玻璃层和溶液, 具有界面,构成单独的一相,厚度一般为0.01~10μm。
(1) 构造:
• 软质球状玻璃膜: 含 Na2O 、 CaO 和 SiO2 厚 度 小 于 0.1mm 对H+选择性响应 • 内部溶液: pH6—7 的 膜 内 缓 冲 溶 液 0.1 mol/L 的KCl内参比溶液 • 内参比电极:Ag-AgCl电极

电位分析法的定义、分类和特点

电位分析法的定义、分类和特点

电位分析法的定义、分类和特点1、电位分析法的定义、分类和特点定义:利用测得电极电位与被测物质离子浓度的关系求得被测物质含量的方法叫电位分析法。

分类:直接电位法――利用专用的指示电极――离子选择性电极,选择性地把待测离子的活度(或浓度)转化为电极电位加以测量,依据Nernst方程式,求出待测离子的活度(或浓度),也称为离子选择电极法。

这是二十世纪七十时代初才进展起来的一种应用广泛的快速分析方法。

·电位滴定法――利用指示电极在滴定过程中电位的变化及化学计量点相近电位的突跃来确定滴定尽头的滴定分析方法。

电位滴定法与一般的滴定分析法的根本差别在于确定尽头的方法不同。

特点:应用范围广――可用于很多阴离子、阳离子、有机物离子的测定,尤其是一些其他方法较难测定的碱金属、碱土金属离子、一价阴离子及气体的测定。

由于测定的是离子的活度,所以可以用于化学平衡、动力学、电化学理论的讨论及热力学常数的测定。

·测定速度快,测定的离子浓度范围宽。

·可以制作成传感器,用于工业生产流程或环境监测的自动检测;可以微型化,做成微电极,用于微区、血液、活体、细胞等对象的分析。

2.化学电池化学电池是由两组金属—溶液体系构成的。

每一个化学电池有两个电极。

分别浸入适当的电解质溶液中,用金属导线从外部将两个电极连接起来,同时使两个电解质溶液接触,构成电流通路。

电子通过外电路导线从一个电极流到另一个电极,在溶液中带正负电荷的离子从一个区域移动到另一个区域以输送电荷,*后在金属—溶液界面处发生电极反应,即离子从电极上取得电子或将电子交给电极,发生氧化—还原反应。

假如两个电极浸在同一个电解质溶液中,这样构成的电池称为无液体接界电池;假如两个电极分别浸在用半透膜或烧结玻璃隔开的或用盐桥连接的两种不同的电解质溶液中,这样构成的电池称为有液体接界电池。

用半透膜、烧结玻璃隔开或用盐桥连接两个电解质溶液,是为了避开两种电解质溶液的机械混合,同时又能让离子通过。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

被测物质的最低量可以达到 10 mol/L 数量级。

第一章 电位分析法第 一节 基本原理1、电化学分析概述根据物质在溶液中的电化学性质及其变化来进行分析的方法。

它是 以电导、电位、电流和电量等电参量与被测物之间的关系做为计量的基 础。

依据物质电化学性质来测定物质组成及含量的分析方法称为电化学 分析或电分析化学。

它通常是使待分析的试样溶液构成一化学电池(原电池或电解池), 然后根据所组成电池的某些电物理量(如两电极间的电位差,通过电解 池的电流或电量,电解质溶液的电阻等)与其化学量之间的内在联系来 进行测定。

电化学分析法的特点:(1)灵敏度、准确度高,选择性好-12(2)电化学仪器装置较为简单,操作方便直接得到电信号,易传递,尤其适合于化工生产中的自动控制和在线分析。

(3)应用广泛传统电化学分析:无机离子的分析; 测定有机化合物也日益广泛; 有机电化学分析;药物分析;电化学分析在药物分析中也有较多应用。

活体分析。

根据所量的电参量的不同,电分析化学方法可分为三类:第一类:在某些特定条件下,通过待试液的浓度与化学电池中某些电参量的关系进行定量分析,如电导、电位、库仑极谱及伏 安分析第二类:通过某一电参量的变化来指示终点的电容量分析好电位滴定第三类:通过电极反应把被测物质,转变为金属或其它形式的搓化物,用重量法测定基会量。

2、电化学电池2.1原电池能自发的将本身的化学能变成电能,这种化学电池称为原电池。

以铜锌原电池为例锌电极、负极(阳极):Z n→Z n2++2e氧化反应铜电极、正极(阴极):C u2++2e→C u还原反应2.2电解池实现某种电化学反应的能量由外电源供给则这种化学电池称为电解池仍以铜电极和锌电极为例。

锌电极、负极(阴极):Z n2++2e→Z n还原反应铜电极、正极(阳极):C u→C u2++2e氧化反应应注意:阳极、阴极是对实际发生的反应而言,阳极发生氧化反应,阴极发生还原反应;正极、负极是对电荷的流向而言,电子流出为负极,电子流入为正极。

2.3电池的表示方法Zn ZnSO4(a1)CuSO4(a2)CuE电池=E右-E左规定:⒈发生氧化反应的一极(阳极)写在左边,发生还原反应的写在右边。

⒉电池组成的每一个接界面用单竖线“∣”隔开,两种溶液通过盐桥连接,用双竖线“‖”表示。

⒊电解质溶液位于两电极之间,并应注明浓度,如有气体应注明压力、温度电池电动势E电池=E右-E左3、电位分析法概述电位分析法(potentiometry):是基于测量浸入被测液中两电极间的电动势或电动势变化来进行定量分析的一种电化学分析方法,称为电位分析法。

根据分析应用的方式又可分为直接电位法和电位滴定法。

直接电位法(direct potentiometry):是将电极插入被测液中构成原电池,根据原电池的电动势与被测离子活度间的函数关系直接测定离子活度的方法。

电位滴定法(potentiometric titration):是借助测量滴定过程中电池电动势的突变来确定滴定终点,再根据反应计量关系进行定量的方法。

电位分析法的实质是通过在零电流条件下测定两电极间的电位差(即所构成原电他的电动势)进行分析测定。

由于电位法测定的是一个原电池的平衡电动势值,而电池的电动势与组成电池的两个电极的电极电位密切相关,所以我们一般将电极电位与被测离子活度变化相关的电极称指示电极或工作电极,而将在测定过程中其电极电位保持恒定不变的另一支电极叫参比电极。

若参比电极的电极电位能保持不变,则测得电池的电动势就仅与指示电极有关,进而也就与被测离子活度有关。

基本原理电极电位的大小:由能斯特方程确定由该金属浸入全有该金属离子的溶液组成,如 Ag Ag整个氧化还原反应的电位由下列公式确定:4、电极种类4.1 根据电极组成分类根据组成体系和作用机理,可以分成五类:: 第一类电极+第二类电极:由金属,该金属的难溶盐的阴离子组成。

如 AgCl Ag Hg 2Cl 2 Hg 第三类电极金属与两种具有共同阴离子的难溶盐组成。

如Hg | Hg 2C 2O 4 | CaC 2O 4 | Ca 2+零类电极由惰性金属与全有可溶性的氧化和还原物质的溶液组成的电极。

如P t | Fe 2+, Fe 3+膜电极具有敏感膜并能产生膜电位的电极,是一种电化学传感器。

应用:测定某种特定离子 例:玻璃电极;各种离子选择性电极 特点(区别以上四种):(1)无电子转移,靠离子扩散和离子交换产生膜电位(2)仅对溶液中特定离子有选择性响应(离子选择性电极),选择性好。

膜电极的关键:是一个称为选择膜的敏感元件。

敏感元件:单晶、混晶、液膜、高分子功能膜及生物膜等构成。

膜内外被测离子活度的不同而产生电位差。

将膜电极和参比电极一起插到被测溶液中,组成电池。

则电池结构为:外参比电极‖被测溶液(a i未知)∣内充溶液(a i一定)∣内参比电极(敏感膜)内外参比电极的电位值固定,且内充溶液中离子的活度也一定,则电池电动势为:4.2根据电极所起的作用分类4.2.1参比电极参比电极是测量电池电动势,计算电极电位的基准,因此要求它的电极电位已知而且恒定,在测量过程中,即使有微小电流(约10-8A或更小)通过,仍能保持不变,它与不同的测试溶液间的液体接界电位差异很小,数值很低(1--2mV),可以忽略不计,并且容易制作,使用寿命长。

标准氢电极(SHE)是最精确的参比电极,是参比电极的一级标准,它的电位值规定在任何温度下都是0V。

实际工作中常用的参比电极是甘汞电极和银-氯化银电极。

甘汞电极1)构造示意图1甘汞电极示意图2)电极反应为:3)甘汞电极的电位计算:银-氯化银电极1)基本结构示意图图2Ag-AgCl电极构造示意图2)电极反应:3)电位计算:4.2.2指示电极1概述电位分析中,还需要另一类性质的电极,它能快速而灵敏的对溶液中参与半反应的离子的活度或不同氧化态的离子的活度比,产生能斯特响应,这类电极称为指示电极。

常用的指示电极主要是金属电极和膜电极两大类,就其结构上的差异可以分为金属-金属离子电极,金属-金属难溶盐电极,汞电极,惰性金属电极,玻璃膜及其他膜电极等。

2分类1)金属-金属离子电极金属-金属离子电极是由某些金属插入该金属离子的溶液中而组成的,称为第一类电极。

2)金属-金属难溶盐电极金属-金属难溶盐电极是由金属表面带有该金属难溶盐的涂层,浸在与其难溶盐有相同阴离子的溶液中组成的,也称为第二类电极。

在电位分析中,作为指示电极使用已不多见,已逐渐为离子选择性电极所代替。

3)汞电极汞电极是由金属汞(或汞齐丝)浸入含少量Hg2+-EDTA络合物(约10-6mol/L)及被测金属离子M n+的溶液中所组成,也称为第三类电极。

4)惰性金属电极惰性金属电极一般由惰性材料如铂、金或石墨炭作成片状或棒状,浸入含有均相和可逆的同一元素的两种不同氧化态的离子溶液中组成,称为零类电极或氧化还原电极。

这类电极的电极电位与两种氧化态离子活度的比率有关,电极起传递电子的作用,本身不参与氧化还原反应。

5)离子选择性电极离子选择性电极是通过电极上的薄膜对各种离子有选择性的电位响应⎪均相膜⎨⎧单晶LaF 3制成F 电极 ⎧硬质电极,如pH 电极 ⎪原电极⎨⎧正电荷载体电极如NO 3-电极 离子选择性电极⎨ ⎪ ⎪非晶体膜电极⎨流动载体电极⎪⎪⎨负电荷载体电极如钙电极 ⎪⎪ ⎪ ⎪ ⎪ ⎪中性载体电极如钾电极 ⎪敏化电极⎧气敏电极:如氨电极⎪⎩ 而作为指示电极的。

它与上述金属基电极的区别在于电极的薄膜并不给 出或得到电子,而是选择性地让一些离子渗透,同时也包含着离子交换 过程。

离子选择性电极的分类⎧ ⎧ ⎧⎪ ⎪⎪ ⎪晶体膜电极⎨ ⎩混晶AgCl - Ag 2 S 制成氯电极 ⎪ ⎪ ⎪ ⎪ ⎪ ⎩非均相膜:如Ag 2 S 搀入硅橡胶中制成硫电极 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎩ ⎪⎪⎨ ⎩ ⎩酶电极:如尿素电极3 玻璃电极3.1 玻璃电极的构造它包括 pH 敏感膜、内参比电极(AgCl/Ag )内参比液带屏蔽的导线 组成,玻璃电极的核心部分是玻璃敏感膜。

3.2 玻璃电极的响应原理纯的 SiO 2 制成的石英玻璃由于没有可供离子交换用的电荷质点,不能完成传导电荷的任务,因此石英玻璃对氢离子没有响应。

然而在石英玻璃中加入碱金属的氧化物(如 Na 2O ),将引起硅氧键断裂形成荷电的 硅氧交换点位,当玻璃电极浸泡在水中,溶液中的氢离子可进入玻璃膜与钠离子交换而占据钠离子的点位,交换反应为:H ++Na +c l - ⇔ Na ++H +c l -此交换反应的平衡常数很大,由于氢离子取代了钠离子的点位,玻璃膜表面形成了一个类似硅酸结构( -Si - OH )的水化胶层。

图 1 显示了 玻璃膜表面与内部离子的分布情况。

外 外 + ++ + + + E 内名 = E Ag/AgCl - 0.059 lg a Cl0 + + + + 内部溶液表面点位被 H + 交换 水化胶层←10-4mm→ 点位为 H +和 Na + 干玻璃层←0.1-4mm→ 点位为 Na +所占 有水化胶层←0.1-4mm→点位为 H + 外部溶液表向点位被H +交换E 外 = k 外 + 0.059 lg E 内 = k 内 + 0.059 lg a H + a'H +a H 内a'H 内 和 Na +所占 有图 3 玻璃膜中离子分布图式中, a H +、a H 内为膜外和膜内溶液氢离子活度。

a'H + 、a'H 内为外水化胶层和内水化胶层中的氢离子活度,k 外、k 内为玻璃外,内膜性质决定常数。

若膜内外表面性质相同,则 k 外=k 内,a'H 外= a'H 内E 膜 = E 外 - E 内 = 0.059 lg a H 外a H 内E 玻 = E 内参 + E 膜于是 E 玻 = E Ag/AgCl - 0.059 lg a Cl - + 0.059 lga H 外 a H 内a H 内和a Cl -为常数 E 玻 = k + 0.059 lg a H 外或 E 玻 = k - 0.059pH 3.3. 玻璃电极的特性3.3.1 不对称电位:如果玻璃膜两侧溶液的 pH 相同,则膜电位应等于零, 但实际上仍有一微小的电位差存在,这个电位差称为不对称电位。

3.3.2 碱差:pH >10 或钠离子浓度较高的溶液时,测得的 pH 比实际数值 偏低,这种现象称之为碱差(钠差)。

加入法及连续标准加入法,是测定离子浓度(活度)的常用方法。

本节重点与难点在一了解活度与浓度及连续标准加入法。

采用讲授的方式。

1、pH的测定1)测量装置如图图4pH测量的原电池电动势可用下式计算E电池=E SCE-E玻+E不对称+E液接=E SCE-E AgCl/Ag-E膜+E不对称+E液接在一定条件下,E SCE、E不对称、E液接及E AgCl/Ag可视为常数合并k于是上式可写为E电池=k-0.059lg a H+(9-7)或E电池=k+0.059pH (9—8)图5活度测量的工作曲线通过能斯特公式来计算待测离子的活度。

相关文档
最新文档