粉体学基础
药剂学第十章-粉体学基础

药剂学第十章-粉体学基础成都医学院22考研药剂学第十章粉体学基础第一节概述粉:小于等于100微米粒:大于100微米单一粒子为一级粒子,单一粒子聚结体为二级粒子第二节粉体的基本性质基本性质:粉体的粒径及其分布和总表面积,单一粒子的形态及表面积一、粒径及粒径分布(一)粒径的表示方法1、几何学粒径1)三轴径:在粒子平面图上测定的长径l,短径b 和高度h2)定方向径:在粒子平面投影图上测得的特征径a)Fe ret:径:定方向接线径,在粒子投影图上画出外接平行线,其平行线见得距离即是定方向径b)Krummbein:定方向最大径,用一直线将粒子投影面按一定方向进行分割,分割的最大长度为定方向最大径c)Martin:定方向等分径,用一直线将粒子投影面按一定方向进行分割,恰好将投影面积等分时的长度为定方向等分径3)圆相当径a)Heywood:投影面积圆相当径,系与粒子投影面积相同的圆的直径b)周长圆相当径:系与投影面积周长相等的圆的直径4)球相当径a)球体积相当径:与粒子体积相同的球体的体积b)球面积相当径:与粒子体表面积相同的球体的直径5)纵横比:系颗粒的最大轴长度与最小轴长度之比2、筛分径:细孔通过相当径3、有效径:沉降速度相当径,与粒子在液相中具有相同沉降速度的球的直径4、比表面积等价径:与粒子具有相同比表面积的球的直径5、空气动力学相当径:空气动力学径,与不规则粒子具有相同动力学行为的单位密度球体的直径(二)粒径分布频率分布:表示各个粒径所对应的粒子在全体粒子群中所占的百分数累计分布:表示小于或大于某粒径的粒子在全体粒子群中所占的百分数粒度分布基准:个数基准、质量基准、面积基准、体积基准、长度基准(三)平均粒径:中位径:中值径,累计分布图中累计正好为50%所对应的粒径众数粒径:颗粒出现最多的粒度值,即频率分布曲线的最高峰值(四)粒径的测定方法显微镜法或筛分法测定药物制剂的粒子大小和限度,光散射法测定原料药或药物制剂的粒度分布1、显微镜法:将粒子放在显微镜下,根据投影测定等价粒径2、筛分法:筛孔机械阻挡的分级方法3、沉降法:液相中混悬粒子的沉降速度4、库尔特计数法:电阻法,等体积球的相当径5、激光散射/衍射法:光传播遇到颗粒阻挡发生散射,颗粒越大,散射光夹角越小6、比表面积法:吸附法和透过法测定7、级联撞击器法:测量可吸入颗粒物的空气动力学粒径和粒径分布的首选二、粒子形态:系指粒子的轮廓或表面个点所构成的图像(一)形态指数:将粒子某些性质与球或圆的理论值比较形成的无因次组合1、球形度:真球度,系指用粒子的球相当径计算的球的表面积与粒子实际面积之比2、圆形度:系指用粒子的投影面积相当径计算的圆周长与粒子投影面积周长之比(二)形状系数1、体积形状系数2、表面积形状系数3、比表面积形状系数三、粒子比表面积(一)比表面积的表示方法:单位体积或单位重量的表面积1、体积比表面积:单位体积粉体的表面积2、重量比表面积:单位重量粉体的比表面积(二)比表面积的测定方法1、气体吸附法:利用粉体吸附气体的性质2、气体透过法:气体通过粉体时的阻力与比表面积有关第三节粉体的其他性质一、粉体的密度(一)粉体密度分类和定义1、真密度:粉体质量除以真体积得到的密度,不包括颗粒内外空隙的体积2、粒密度:粉体质量除以粒体积得到的密度,包括内部空隙3、堆密度:,松密度,粉体质量除以该粉体所占体积得到的密度,包括内部空隙振实密度:经一定规律振动或轻敲后测得的堆密度理论上:真密度大于等于粒密度大于等于振实密度大于等于堆密度(二)粉体密度的测定方法1、真密度的测定1)氦气测定法:首先通入已知重量的氦气到代测定空仪器中,测得仪器容积V0,然后将供试品放入容器抽真空,完成后导入一定量氦气,而后计算出粉体周围及进入粉体孔径氦气体积Vt,V0-Vt既是粉体体积计算可得真密度2)液体汞、苯置换法2、粒密度的测定:比重瓶法(常用)、吊斗法3、堆密度与振实密度的测定方法:将约50立方厘米到的经过二号筛处理的粉体装入100ml量筒中,将量筒从一英寸处落下到坚硬木板三次,所得体积即为粉体堆体积,计算可得堆密度二、粉体的空隙率分类:颗粒内空隙率、颗粒间空隙率、总空隙率测定:压汞法、气体吸附法三、粉体的流动性(一)粉体流动性的评价方法1、休止角:粉体堆积层的自由斜面与水平面形成的最大夹角测定方法:固定圆锥底法、固定漏斗法动态休止角:流动粉体与水平面形成的夹角,可装入量筒后以一定速度旋转测定休止角小于等于30度时流动性好,小于等于40度时,可以满足生产需要2、流出速度:单位时间内从容器小孔中流出粉体的量表示3、压缩度和Hausenr测量方法:将一定量粉体装入量筒中测得最初堆体积,采用轻敲法测得粉体最紧状态得到最终体积,后根据相关公式计算出压缩度压缩度为20%以下流动性较好,增大流动性下降,超过30%很难流出HR在1.25以下流动性好,大于1.6时很难操作(二)改善流动性的方法1、增大粒子大小:250~2000微米流动性好,72~250微米流动性取决于形态和其他因素,小于100微米时流动性会出现问题2、改善粒子形态及表面粗糙度3、改变表面作用力4、助流剂的影响5、改变过程条件四、粉体的填充性(一)表示方法:堆容比:单位质量所占体积空隙率:堆体积中空隙所占体积堆密度:单位体积的质量空隙比:空隙体积与真体积之比充填率:堆密度与真密度之比配位数:一个粒子周围相邻其他粒子个数(二)颗粒的排列模型球形粒子规则排列,接触点最小为6,此时空隙率最大,为48%,接触点为12时最小为26%,粒径大小不影响空隙率和接触点(三)充填状态的变化和速度方程:久野方程、川北方程(四)影响粉体充填性的因素1、粒径大小及其分布2、颗粒的形状和结构3、颗粒的表面性质4、粉体处理及过程条件5、助流剂的影响五、粉体的吸湿性定义:固体表面吸附水分的现象(一)水溶性药物的吸湿性CRH:水溶性药物在较低的相对湿度环境中平衡水分含量较低,不吸湿,但当空气中相对湿度提高到一定值时吸湿量急剧增加,此时的相对湿度即为物料的临界相对湿度。
主管药师考试辅导讲义-药剂学——第四节 固体制剂

药剂学——第四节固体制剂要点:1.基础理论:粉体学基础2.固体制剂简介3.散剂、颗粒剂、片剂、包衣片剂、胶囊剂、滴丸剂、膜剂一、粉体学基础粉体:固体粒子集合体“粉”←100μm→“粒”1.粉体粒子的性质粉体粒子大小→溶解性、可压性、密度、流动性2.粉体的密度●轻质粉:松密度小●重质粉:松密度大3.粉体的流动性①表示方法:休止角θ、流速、压缩度②休止角小,摩擦力小,流动性好,流速大,填充重量差异小③θ≤30°流动性好,θ≤40°满足生产需要④影响因素:粒子间的黏着力、摩擦力、范德华力、静电力阻碍粒子自由流动⑤改善方法:增大粒子大小(造粒),改善粒子形态及表面粗糙度(球形光滑),适当干燥降低含湿量,加入助流剂(滑石粉、微粉硅胶)4.粉体的充填性√片剂、胶囊剂需进行粉末装填√松密度与孔隙率反映粉体的充填状态√紧密充填:密度大,孔隙率小√助流剂粒径40μm,适量增加流动性5.粉体的吸湿性临界相对湿度(CRH):水溶性药物在相对湿度较低的环境下,几乎不吸湿,而当相对湿度增大到一定值时,吸湿量急剧增加,此时的相对湿度称为CRH。
水不溶性药物:吸湿没有临界点,混合具有加和性。
粉末吸湿:流动性↓、固结、润湿、液化、稳定性↓6.粉体的润湿性表示:接触角——θ越小,润湿性越好水在玻璃板上:0°,水银在玻璃板上:140°7.粉体的黏附性与凝聚性①制粒②加入助流剂防止黏附8.粉体的压缩特性压缩:在压力下体积减小成形:物料紧密结合成一定形状例题:A:下列对休止角表述正确的是A.粒子表面粗糙的物料休止角小B.休止角越大,流动性越好C.休止角大于30°,物料流动性好D.休止角大于40°,可满足生产过程对流动性的需要E.休止角是检验粉体流动性好坏的最简便方法『正确答案』EA:增加粉体流动性的措施不包括A.对于黏附性的粉末进行造粒B.让粒子表面更光滑C.适当干燥D.加入助流剂E.增加粉体孔隙率『正确答案』E二、固体制剂概述1.共同特点①稳定性好、成本低、便携②单元操作类似③口服药物在胃肠道先溶解,再吸收——药物在体内的溶出速度影响药物的起效时间、作用强度和实际疗效2.固体制剂的体内吸收途径口服制剂吸收快慢溶液剂>混悬剂>散剂>颗粒剂>胶囊剂>片剂>丸剂吸收溶解崩解或分散3.制备工艺粉碎、过筛、混合、制粒、干燥、压片、分装含量均匀度改善流动性、充填性→剂量准确制粒方法:4.Noyes-Whitney方程影响药物溶出速率的因素K=D/Vh改善药物溶出速度的措施:①↑药物的溶出面积:粉碎减小粒径②↑溶解速度常数:加强搅拌,以减少药物扩散边界层厚度或提高药物的扩散系数③↑药物的溶解度:提高温度,改变晶型,制成固体分散物k=D/Vh三、散剂学习要点:1.分类2.特点3.制备4.质量检查药物+辅料→粉碎、过筛、混匀→干燥粉末1.散剂粒径要求2.散剂的分类①按使用:口服(内服)、局部(外用)、煮散等②按组成:单、复③按剂量:分剂量(按包服用)、不分剂量(外用)3.散剂的特点①粒径小,比表面积大,易分散,起效快②外用覆盖面大,具保护、收敛等作用③生产、携带、运输、贮存、使用方便——五方便④便于婴幼儿服用⑤缺点:分散度大,易吸湿4.散剂的制备5.粉碎粉碎的目的:减少粒径、增加比表面积①有利于提高难溶性药物的溶出速度以及生物利用度;②有利于各成分的混合均匀;③有利于提高固体药物在液体、半固体、气体中的分散度;④有助于从天然药物中提取有效成分。
13-药剂学-粉体学基础

一、粒子径与粒度分布
(三)平均粒子径 中位径(中值径)是最常用的平均径。 在累计分布中累积值为50%所对应的粒子径为 中 值径。用D50表示。
(四)粒子径的测定方法
1、显微镜法 2、筛分法 3、沉降法 4、感应区测定法:1)电阻变化法:库尔特计数器 2)光散射法:激光散射仪 5、比表面积法 粒子粒径是测量方向的函数,也是测量方法的函 数。 相同粒子用不同方法测量会得到不同粒径。因为 各种方法依据不同的原理。
(二)粉体密度的的测定方法
1、真密度与颗粒密度的测定 (1)液浸法 求真密度时,将颗粒研细,消除开口与闭口细 孔,使用易润湿粒子表面的液体,将粉体浸入液 体中,采用加热或减压脱气法测定粉体所排开的 液体体积,即为粉体的真体积。 求颗粒密度时,使用的液体不同,应为与颗粒的 接触角大,难于浸入开口细孔的液体。 如水银或水
(二)粉体密度的的测定方法
2、松密度与振实密度的测定 将粉体装入容器中测得的体积包括粉体的真体 积、粒子内孔隙和粒子间空隙等,不施加任何外 力测得的密度为松密度.经一定规律振动或轻敲后 测得的密度称振实密度.
粉体的空隙率
孔隙率是粉体层中空隙所占有的比例。 颗粒内孔隙率: ε内=V内/(Vt+V内) 颗粒间孔隙率:ε间=V间/V 总孔隙率: ε总=(V内+V间)/V
第三节 粉体的密度与空隙率
一、粉体的密度 1、真密度(true density):粉体质量除以不包括 颗粒内外孔隙的体积求得的密度 2、颗粒密度(granule density):粉体质量除以 包括开口细孔与封闭细孔在内的体积求得的 密度 3、松密度(堆密度,bulk density):粉体质量 除以该粉体所占容器的体积求得的密度
筛号 一号筛 二号筛 三号筛 四号筛 五号筛 六号筛 七号筛 八号筛 九号筛 筛孔内径 (μm) 2000±70 850±29 355±13 250±9.9 180±7.6 150±6.6 125±5.8 90±4.6 75±4.1 工业筛目数 (孔/英寸) 10 24 60 65 80 100 120 150 200
第六章粉体学基础(micromeritics)

第三节粉体的性质
一、密度与孔隙率
(一) 粉体的密度
1.密度定义 真密度:指粉体质量与真体积 之比。即排除所有孔隙(粒子本身和粒子之间) 而求得的粉体体积。真密度是物料固有性质。一 般文献中所载密度如无特殊指明是指真密度。
颗粒密度:粉体质量与颗粒体积之比。其体 积排除粒子间的空隙,但不排除粒子本身细小空 隙。
第六章 粉体学基础 (micromeritics)
第六章 粉体学(micromeritics)基础
第一节 概述 粉体是无数个固体粒子的集合体。属于固体分 散在空气中形成的粗分散体系。 粉体学是研究粉体基本性质及其应用的科学。 一级粒子:单个粒子 二级粒子:多个粒子聚结体 <100µm 称“粉” >100µm 称“粒” 表6-1 粉体中颗粒的分类 (3mm~1nm) 固体制剂粒度范围:几µm ~ 十几mm
第二节 粉体的基本性质 一、粒子径及粒度分布(一)粒子径 ⑷球相当径:用球体粒径表示不规则粒子的大小。 体积(球)相当径,表面积(球)相当径,比表面 积(球)相当径, 2.沉降速度相当径 3.筛分径 算术平均径:DA=a+b/2 几何平均径:DA=ab1/2 a: 粒子通过粗筛网直径 b:粒子被截留于细筛网直径 粒径表示方式:(-a +b)即粒径< a, >b 如(-1000+900)µm <1000µm >900µm平均 950µm
第二节 粉体的基本性质
一、粒子径与粒度分布 粒子大小常用粒子径来表示。粒子的大小 也称粒度,含有粒子大小及分布双重含义。 (一)粒子径 1. 几何学粒子径:(1)三轴径:长、短、高 (2) 定向径:粒子在投影面上某 定向直线长度。定方向接线径(Feret或Green径) 定方向等分径( Martin径) 定方向最大径(Krummbein径) (3)圆相当径(Heywood径)
粉体学基础

(2) 定方向径(投影径) 定方向接线径Df:Feret径(Green径);在一定方向上 将粒子的投影面外接的平行线之间的距离
Feret径
定方向等分径Dm:Martin径 在一定方向上将粒子的投影面积分割为两等分的长度
定方向最大径Dk:Krummbein径; 在一定方向上分割粒子投影面积的最大长度
粉体学在药剂学中的应用
1.对制剂工艺的影响 混合均匀度、分剂量准确性、充填性、可压性(密度、 流动性、充填性、压缩成形性、粘附性、凝聚性、粒 子大小形状等)。
2.对制剂有效性的影响 制剂的崩解、药物的溶解和吸收(粒度、润湿性)
3.对制剂稳定性的影响 混悬剂及固体制剂的稳定性(粒度、润湿性、密度、吸 湿性)
算术平均径 DA=(a+b)÷2 几何平均径 a粗筛网直径 b细筛网直径
DA表示方式(-a+b), 如某粉体的粒度表示为(-1000+900)μm
(二)粒度分布
• 粒度分布(particle size distribution):表示 不同粒径的粒子群在粉体中所分布的情况,反 映粒子大小的均匀程度。粒子群的粒度分布可 用简单的表格、绘图和函数等形式表示。
(一)粒子径的表示方法
➢ 1. 几何学粒子径(geometric diameter):根据 几何学尺寸定义的粒子径,见图13-2。
• 测定方法:显微镜法、库尔特记数法等 • (1) 三轴径
• 在粒子的平面投影图上测定长径l与短径b,在投影平面 的垂直方向测定粒子的厚度h
• 长轴 • 短轴 • 厚度
➢ 物态3种,固体无流动性。 ➢ 固体粉碎成粒子群之后具有如下性质: • (1) 具有与液体类似的流动性;(沙漏) • (2) 具有与气体类似的压缩性;(装沙、米) • (3) 具有固体的抗变形能力。 • →粉体第四种物态
药剂学:粉体学基础

物料风干示意图
44
6、粉体的吸湿性
水是化学反应的媒介。 固体药物吸附水份以后,在表面形成一层液膜,分解反
应就在液膜中进行。 药物是否容易吸湿,取决于其临界相对湿度(Critical
Relative Humidity),化合物的CRH越低对湿度越敏感。 药物的降解反应速度与环境的相对湿度成正比。
( ) g t
p
l
8
1、粒子径的表示方法
➢ 筛分径(sieving diameter)
当粒子通过粗筛网且被截留在细筛网上时,粗细筛 孔直径的算术或几何平均值称为筛分径。
算术平均值 几何平均值
D ab
A
2
D ab A
a—粒子通过的粗筛网直径, b—截留粒子的细筛网直径 9
1、粒子径的表示方法
4
1、粒子径的表示方法
➢ 几何学粒子径 geometric diameter
̶ 等体积径 equivalent volume diameter ̶ 比表面积等价径 equivalent specific surface diameter
➢ 有效径 (Stocks沉降径)settling velocity diameter ➢ 筛分径 sieving diameter
45
6、粉体的吸湿性
临界相对湿度(critical relative humidity, CRH)
水溶性的药物粉末在较低相对湿度环境时一般 不吸湿,但当相对湿度提高到某一定值时,吸 湿量急剧增加,此时的相对湿度即CRH。
• CRH是水溶性药物的固有特征; • 是药物吸湿性大小的衡量指标; • CRH越小则越易吸湿;反之,则不易吸湿。46
9. 平均面积径
nd 2 /
粉体学基础

(2)等表面积相当径 :与粒子的表面积相 同的球体直径,记作D 同的球体直径,记作DS 。 等比表面积等价径: ( 3 ) 等比表面积等价径 : 与被测粒子具有 等比表面积的球的直径,记作D 等比表面积的球的直径,记作DSV。 ( 4 ) 有效径 ( Stocks 径 ) : 在同一介质中 有效径( Stocks径 与被测粒子有相同沉降速度的球形粒子的直径。 与被测粒子有相同沉降速度的球形粒子的直径。 亦称沉降速度相当径。 亦称沉降速度相当径。
3、筛分径:又称细孔通过相当径。当粒 筛分径:又称细孔通过相当径。 子通过粗筛网且被截留在细筛网时,粗细筛 子通过粗筛网且被截留在细筛网时, 粗细筛 孔直径的算术或几何平均值称为筛分径, 孔直径的算术或几何平均值称为筛分径 ,记 作 D A。 算术平均径 几何平均径 =(a+b)/2 DA=(a+b)/2 DA=√ab
当几种水溶性药物混合( 无相互作用) 当几种水溶性药物混合 ( 无相互作用 ) 混合物的CRH 约等于各药物 CRH的乘积 CRH约等于 各药物CRH 的乘积。 时 , 混合物的 CRH 约等于 各药物 CRH 的乘积 。 水不溶性药物的吸湿性没有临界点, 水不溶性药物的吸湿性没有临界点 , 其混合物的吸湿性具有加和性。 其混合物的吸湿性具有加和性。
第十三章 粉体学基础
§13-1 13-
概述
粉体是无数个固体粒子集合体的总称。 粉体是无数个固体粒子集合体的总称。 是无数个固体粒子集合体的总称 研究粉体各种理化性质及其应用的科学 称为粉体学 粉体学。 称为粉体学。
粒径小于100μm的粒子, 小于100μm的粒子 “粉”:粒径小于100μm的粒子,流动性 较差。 较差。 粒径大于100μm的粒子, 大于100μm的粒子 “粒”:粒径大于100μm的粒子,流动性 较好。 较好。 一级粒子: 一级粒子:指单体粒子 二级粒子: 二级粒子:指聚集粒子 制药行业需处理的粒度范围: μm~ 制药行业需处理的粒度范围:1 μm~10mm
药剂学第六章粉体学基础

第六章粉体学基础一、概念与名词解释12.空隙率20.临界相对湿度34.标准筛二、判断题(正确的填A,错误的填B)1.物料的粒径越小,其流动性越好。
( )2.粉体粒子的粒径影响粉体的流动性,粉粒大于200μm的粉体可自由流动。
( )3.在临界相对湿度(CRH)以上时,药物吸湿度变小。
( )4.比表面积就是单位体积所具有的表面积。
( )5.微粉的流动性常用休止角表示,休止角愈大,其流动性愈好。
( )6.物质分轻质或重质,主要在于她们的堆密度大小,重质的堆密度大,轻质的堆密度小。
( )7.比较同一物质粉体的各种密度,其顺序就是:堆密度>粒密度>真密度。
( )8.粉体的密度就是用真密度进行描述。
( )9.将黏附力较大的粉体装填于模子时,孔隙率大,充填性差。
( )10.压缩速度快,易于塑性变形,有利于压缩成形。
( )11.物料受压时塑性变化所消耗的能量转化成结合能,因此该过程就是可逆过程。
( )12.将黏附力较大的粉体装填于模子时孑L隙率小,充填性好。
( )13.重力流动时,堆密度也反映粉体的流动性。
( )14.粉末的比表面积大,压缩时接触点数多,结合强度大。
( )15.Heckel方程的斜率越大,空隙率的变化大,弹性强。
( )16.推片力的大小等于解除上冲压力后下冲中残留压力的大小。
( )17.最松堆密度与最紧密度相差越小,粉体的充填性越好。
( )18.压缩过程中压力传递率接近于1时,模壁的摩擦力小。
( )19.体积基准的平均粒度与重量基准的平均粒度在数字上相同。
( )20.粉体的附着力大,装填时孔隙率大,充填性好。
( )三、填空题1.将球体规则排列时配位数最大可达(6,8,12)个;空隙率最大可达(26%,30%,48%)。
2.某些药物具有“轻质”与“重质”之分,主要就是因为其不同。
3.在药剂学中最常用来表示粉体流动性的方法就是: 与。
4.测定粒径的方法很多,其中以沉降法测得的就是径,以电感应法测得的为径。
粉体学基础

6.5 15.8 23.2 23.9 24.3 8.8 7.5
19.5 25.6 24.1 17.2 7.6 3.6 2.4
100.0 93.5 77.7 54.5 30.6 16.3 7.5
6.5 22.3 45.5 69.4 83.7 92.5 100.0
100.0 80.5 54.9 30.8 13.6 6.0 2.4
• 在固体剂型的制备过程中(如散剂、颗粒剂、
胶囊剂、片剂、粉针、混悬剂等,他们在医
药产品中约占70%-80%),必将涉及到固体药
物的粉碎、分级、混合、制粒、干燥、压片、
包装、输送、贮存等。
• 粉体技术在固体制剂的处方设计、生产工艺
和质量控制等方面具有重要的理论意义和实
际应用价值。
第二节
粉体的基础性质
• 将单一结晶粒子称为一级粒子(primary particle
),将一级粒子的聚结体称为二级粒子(second
particle)。
• (1)由范德华力、静电力等弱结合力的作用而发生
的不规则絮凝物(random floc)和(2)由粘合剂
的强结合力的作用聚集在一起的聚结物(agglomera • te)属于二级粒子。
颗粒间空隙率ε间=V间/V
总空隙率ε总=(V内+V间)/V
空隙率也可以通过相应的密度计算而求得:
内
g 1 t
间
总
b 1 g
b 1 t
第四节
粉体的流动性与充填性
一、粉体的流动性(flowability)
• 粉体的流动性与粒子的形状、大小、表面状态、 密度、空隙率等有关,加上颗粒之间的内摩擦力 和粘附力等的复杂关系,粉体的流动性无法用单 一的物性值来表达。
粉体学基础——精选推荐

粉体学基础粉体学基础⼀粉体概述1 粉体相关概念1.1 粉体粉体是⽆数固体粒⼦的集合体1.2 粒⼦在粉体中不能再分离的运动单元1.3 “粉”和“粒”通常≤100µm的粒⼦叫“粉”,容易产⽣粒⼦间的相互作⽤⽽流动性较差;> 100µm的粒⼦叫“粒”,较难产⽣粒⼦间的相互作⽤⽽流动性较好。
2 粉体的物理特征⾃然界中的物质可分为三种形态:⽓体、固体和液体,那么粉体属于哪种形态?粉体虽然具有与固体类似的抗变形能⼒,但不是固体粉体虽然具有与流体相似的流动性,但不是液体。
粉体虽然具有与⽓体相似的可压缩性,但不是⽓体。
它属于第四种物质形态3 粉体的性质3.1 ⼀般性质粉体的⼀般性质包括:粉体粒度(尺⼨、形状和粒度分布)、流动性、分散性及稳定性、填充性及吸湿性等等。
3.2 特殊性质当尺⼨处于亚微⽶级或纳⽶级时,粉体具有与普通粉体完全不同的特殊性质。
(1)表⾯效应纳⽶材料的表⾯效应是指纳⽶粒⼦的表⾯原⼦数与总原⼦数之⽐随粒径的变⼩⽽急剧增⼤后所引起的性质上的变化。
如图1所⽰。
超微粉体尺⼨⼩,⽐表⾯积⼤,位于表⾯的原⼦占有相当⼤的⽐例。
随着尺⼨减⼩,⽐表⾯积急剧增⼤,引起表⾯原⼦数迅速增加,增强了粒⼦的活性。
例如,尺⼨⼩于5 m的⾚磷在空⽓中能⾃燃,⽽某些纳⽶级的⾦属粉末在空⽓中也会燃烧。
随着颗粒尺⼨的量变,在⼀定的条件下会引起颗粒性质的质变。
由于颗粒尺⼨变⼩所引起的宏观物理性质的变化称为⼩尺⼨效应。
纳⽶颗粒尺⼨⼩,表⾯积⼤,在熔点,磁性,热阻,电学性能,光学性能,化学活性和催化性等都较⼤尺度颗粒发⽣了变化,产⽣⼀系列奇特的性质。
例如,⾦属纳⽶颗粒对光的吸收效果显著增加,并产⽣吸收峰的等离⼦共振频率偏移;出现磁有序态向磁⽆序态,超导相向正常相的转变。
(3)量⼦尺⼨效应各种元素原⼦具有特定的光谱线。
由⽆数的原⼦构成固体时,单独原⼦的能级就并合成能带,由于电⼦数⽬很多,能带中能级的间距很⼩,因此可以看作是连续的,从能带理论出发成功地解释了⼤块⾦属、半导体、绝缘体之间的联系与区别,对介于原⼦、分⼦与⼤块固体之间的超微颗粒⽽⾔,⼤块材料中连续的能带将分裂为分⽴的能级;能级间的间距随颗粒尺⼨减⼩⽽增⼤。
《粉体学基础》课件

药物载体
粉体可作为药物载体,将 药物包裹在粉体中,以控 制药物的释放速度和部位 。
医疗器械
粉体在医疗器械的制造中 也有应用,如用于制造人 工关节、牙科材料等。
化妆品工业
粉底
粉体作为化妆品中的主要成分,起到遮盖皮肤瑕疵、调整肤色等 作用。
眼影
不同颜色的粉体用于制造眼影,增加眼部层次感和立体感。
腮红
粉体腮红能够增添脸部红润感,提升整体妆容效果。
粉体作为食品添加剂,如面粉、 糖粉、奶粉等,用于改善食品的 口感、质地和外观。
食品包装材料
粉体材料如二氧化硅、滑石粉等 ,用于食品包装,起到防潮、防 霉、防虫等作用。
食品加工助剂
粉体如碳酸钙、碳酸镁等,作为 食品加工助剂,起到调节酸碱度 、增加食品稳定性等作用。
医药工业
药物制备
粉体在医药工业中用于制 备药物,如中药粉末、西 药颗粒等。
应用
在化工、陶瓷、制药等领域,粉体的密度与孔隙率对产品的性能和生 产工艺具有重要影响,如流动性和填充性等。
粉体的流动性与填充性
总结词
粉体的流动性与填充性是描述粉体流 动和填充性能的重要参数,它们对粉 体的加工和应用具有重要影响。
影响因素
粉体的流动性与填充性受到粒径、粒 径分布、颗粒形状、表面粗糙度、摩 擦系数等因素的影响。
干式粉碎
通过机械力将大颗粒物料 破碎成小颗粒,如球磨、 振动磨等。
湿式粉碎
将物料与液体一起送入粉 碎机,使物料在湿润状态 下进行粉碎。
超细粉碎
利用超音速气流、高能球 磨等技术将物料粉碎至纳 米级别。
物理粉碎法
结晶法
利用物质结晶时体积膨胀、硬度增加的特性,通 过反复结晶、破碎来制备粉体。
粉体学基础及其应用

MCMB超细粉末的SEM照片
可以看出,颗粒近似呈球形或椭球形,粒径约为0.1~0.5μm,是各 向同性沥青母液中经初期成长的胶体颗粒。
a
b
SEM photograph of LiCoO2 & MGS(shanshan)
a—LiCoO2,D50 :6~10μm;b—MGS, D50 :13~15 μm
16
14
12
10
8
6
4
2
00.01
0.1
CMS, 2003粒5粒31粒 14:39:06
粒粒粒粒
1
10
粒粒 (um)
100
1000 3000
Particle size distribution of MGS
(3)粒子的形态: 定义: 指一个粒子的轮廓或表面上各点所构成的图像。 粒子的形态系数: 平均粒径为D,体积为V,表面积为S,则粒子的各种形态
筛分径(sieving diameter) 当粒子通过粗筛网且被截留在细筛网时,粗细筛孔直径的 算术或几何平均值称为筛分经,记作DA 。
算术平均径 DA=(a+b)/2 几何平均径DA=(ab)1/2
式中,a—粒子通过的粗筛网直径; b—粒子被截留的细筛网直径。
# 粒径的表示方式是(-a +b),即粒径小于a,大于b。
系数: a. 体积形态系数 Φv=V/D3 b. 表面积形态系数 Φs=S/D2 c. 比表面积形态系数 Φ= Φs/Φv
Φ→6 该粒子越接近于球体或立方体 不对称粒子Φ>6,常见粒子Φ6~8。
粒子的比表面积(specific surface area): 比表面积的表示方法: 粒子的比表面积的表示方法根据计算基准不同,可分为体 积比表面积SV和质量比表面积SW:
药剂学第六章粉体学基础

()定向径(投影径):
径(或径) :定方向接线径,即一定方向的 平行线将粒子的投影面外接时平行线间的 距离。
径:定方向等分径,即一定方向的线将粒 子投影面积等份分割时的长度。
径:定方向最大径,即在一定方向上分割 粒子投影面的最大长度。
()圆相当径: 径:投影面积圆相当径,即与粒子的投影面
积相同圆的直径,常用表示。 :等投影面周长相当径,记作。
混悬剂、乳剂、脂质体、粉末药物等可以用本 法测定。
. 沉降法( )
是液相中混悬的粒子在重力场中恒速沉降 时,根据方程求出粒径的方法。
①具有与液体相类似的流动性;
②具有与气体相类似的压缩性;
③具有固体的抗变形能力。
粉体学是药剂学的基础理论,对制剂的处 方设计、制剂的制备、质量控制、包装等 都有重要指导意义。
第二节 粉体粒子的性质
一、粒子径与粒度分布 二、粒子形态 三、粒子的比表面积
一、粒子径与粒度分布
粉体的粒子大小也称粒度,含有粒子大 小和粒子分布双重含义,是粉体的基础 性质。
Ф·ρ
式中,—比表面积,Ф—粒子的性状系数, 球体时Ф,其他形状时一般情况下Ф。
.沉降速度相当径
粒径相当于在液相中具有相同沉降速度 的球形颗粒的直径。该粒经根据方程计 算所得,因此有叫 径或有效径( ) , 记作 .
η [
(ρ ρ) ·
h ·]
t
式中, ρ ,ρ—分别表示被测粒子与液相的密度; η— 液相的粘度;——等速沉降距离;—沉降时间。
频数最多的粒子直径
累 积 中 间 值 ( D 50)
nd 2 / nd
nd 3 / nd 2
nd 4 / nd 3
n d 2 /
1/ 2
粉体学基础

(1)三轴径:在粒子的平面投影图上测定长 径l与短径b,在投影平面的垂直方向测 定粒子的厚度h。反映粒子的实际尺寸。
(2)定向径(投影径):
Feret径(或Green径) :定方向接线径,即 一定方向的平行线将粒子的投影面外接 时平行线间的距离。
Krummbein径:定方向最大径,即在一 定方向上分割粒子投影面的最大长度。
粉体的物态特征: ①具有与液体相类似的流动性; ②具有与气体相类似的压缩性; ③具有固体的抗变形能力。
粉体学是药剂学的基础理论,对制剂的处 方设计、制剂的制备、质量控制、包装等 都有重要指导意义。
第二节 粉体粒子的性质
一、粒子径与粒度分布 二、粒子形态 三、粒子的比表面积
一、粒子径与粒度分布
利用电阻与粒子的体积成正比的关系将电信号 换算成粒径,以测定粒径与其分布。
测得的是等体积球相当径,粒径分布以个数或 体积为基准。
混悬剂、乳剂、脂质体、粉末药物等可以用本 法测定。
3. 沉降法(sedimentation method)
是液相中混悬的粒子在重力场中恒速沉降 时,根据Stocks方程求出粒径的方法。
测量容器的形状、大小、物料的装填速度及装 填方式等均影响粉体体积。
不施加外力时所测得的密度为最松松密度,施 加外力而使粉体处于最紧充填状态下所测得的 密度是最紧松密度。
最终振荡体积不变时测得的振实密度即为最紧 松密度。
二、粉体的空隙率
空隙率(porosity)是粉体层中空隙所占 有的率。
粒子的体积V=πDv3/6
2.筛分径(sieving diameter) 又称细孔通过相当径。当粒子通过粗筛网
且被截留在细筛网时,粗细筛孔直径的算 术或几何平均值称为筛分经,记作DA 。
粉体学基础知识.doc

粉体学基础知识(一)粉体的基本概念粉体是指无数细小固体粒子的集合体,粉体学是研究粉体的基本性质及其应用的科学。
粒子是粉体运动的最小单元, 包括粉末(粒径小于lOOUm)和颗粒(粒径大于lOO^m), 通常所说的“粉末”、“粉粒”或“颗粒”都属于粉体的范畴。
组成粉体的单元粒子可能是单体的结晶,称为一级粒子;也可能是多个单体粒子聚结在一起的粒子,称为二级粒子。
在制药行业中,常用的粒子大小范围为从药物原料粉的1M 到片剂的lOmmo物态有固体、液体、气体3种。
液体与气体具有流动性,而固体没有流动性;但把固体粉碎成颗粒的聚集体之后则具有与液体相类似的流动性,具有与气体相类似的压缩性,也具有固体的抗形变能力,所以有人把粉体列为“第四种物态” 来进行研究。
(二)粉体的特性1.粒子大小与测定粉体粒子大小是以粒子直径的微米数为单位来表示的。
粉体大部分不规则,代表粒径大小的方法有:几何学粒径、有效粒径、比表面积粒径等。
1. 1.几何学粒径是指用显微镜看到的实际长度的粒子径。
1.2.有效粒径用沉降法求得的粒子径,即以粒子具有球形粒子的同样沉降速度来求得。
该粒径根据Stokes方程计算所得,因此又称Stokes粒径。
1.3比表面积粒径用透过法和吸附法求得的粉体的单位表面积的比面积。
这种比表面积法是假定所有粒子都为球形求出的粒子径。
常用的粒径测定方法有:显微镜法、筛分法、沉降法、小孔透过法和激光衍射法等。
2.粒子形态粉体除了球形和立方形等规则而对称的形态外很难精确地描述粒子的形状。
因此,研究工作者用体积形态系数,比表面形态系数等术语来表示微粒形态。
3.粉体的比表面积粒子的比表面积的表示方法根据计算基准不同可分为体积比表面积Sv和重量比表面积Sw。
体积比表面积是单位体积粉体的表面积,重量比表面积是单位重量粉体的表面积。
4.粉体密度与孔隙率粉体密度为单位体积粉体的质量。
由于颗粒内部含有的空隙以及及颗粒堆积时颗粒间的空隙等,给粉体体积的测定带来麻烦。
粉体学基础及其应用

(3)粒子的形态:
定义:
指一个粒子的轮廓或表面上各点所构成的图像。 粒子的形态系数: 平均粒径为D,体积为V,表面积为S,则粒子的各种形态 系数:
a. 体积形态系数 Φv=V/D3
b. 表面积形态系数 Φs=S/D2 c. 比表面积形态系数 Φ= Φs/Φv Φ→6 该粒子越接近于球体或立方体 不对称粒子Φ>6,常见粒子Φ6~8。
总孔隙率:
总= V -Vt/V =1- b/t
BT-1000型粉体特性测试仪
BT-2003激光粒度分布仪
一、性能指标 二、测试对象
1、测试范围:40nm~600μm;
2、进样方式:循环泵式; 3、重复性误差:小于1%; 4、测试时间:一般2-3min/次; 5、自动对中系统精度:≤1微米。
(2)粒度分布(particl大小的均匀程度。粒子群的粒度
分布可用简单的表格、绘画和函数等形式表示。
频率分布(frequncy size distribution):
表示与各个粒径相对应的粒子在全粒子群中所占的百分数
(微分型)。
累积分布(cumulative size distribution):
20 24 27 32 35 40
991
833 701 589 495 417 350
80
100 110 180 200 250 270
198
165 150 83 74 61 53
500
625 800 1250 2500 3250 12500
25
20 15 10 5 2 1
平均粒径: 由不同粒径组成的粒子群的平均粒径。亦称叫中值径,常
度,也是表示固体吸附能力的重要参数。
(4)粉体的密度与空隙率: 粉体的密度: 粉体的密度指单位体积粉体的质量。 由于粉体的颗粒内部和颗粒间存在空隙,粉体的体积具有不 同的含义。 粉体的密度根据所指的体积不同分三种:
粉体学基础PPT教学课件

2
27
2.重量比表面积
单位重量粉体的表面积,Sm,cm2/g。
Sw s d 2 n 6 3 d n w d 6
比表面积是表征粉体中粒子粗细的一种量 度,也是表示固体吸附能力的重要参数。可用 于计算无孔粒子和高度分散粉末的平均粒径。 比表面积不仅对粉体性质、而且对制剂性质和 药理性质都有重要意义。
II: Krummbein径 定方向最大径,即在 一定方向上分割粒子 投影面的最大长度。
. 9
II: Martin径
定方向等分径,即 一定方向的线将粒 子的投影面积等份 分割时的长度。
(3)Heywood径
投影面积圆相当径,即 与粒子的投影面积相同 圆的直径,常用DH表示。
.
10
(4)球相当径
体积等价径,与粒子的体积相同的球体直径, 用库尔特计数器测得。记作DV,粒子的体积 V=DV3/6。
. 7
•
对于一个不规则粒子,其粒子径的测 定方法不同,其物理意义不同,测定值也 不同。
(一)粒子径的表示方法
1.几何学粒子径 根据几何学尺寸定义的粒子径。 (1)三轴径 长轴径L 、短轴径b 、厚度h 反映粒子的实际尺寸。
. 8
(2)定方向径(投影径) I: Feret径(或Green径)
定方向接线径,即一 定方向的平行线将粒 子的投影面外接时平 行线间的距离。
2.筛分径
又称细孔通过相当径。当粒 子通过粗筛网且被截留在细 筛网时,粗细筛孔直径的算 术或几何平均值称为筛分径。 记作DA。
.
ab DA 2
DA ab
11
• a:粗筛网直径,b:细筛网直径。粒径范围, 即(-a+b ),表示粒径小于a,大于b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)有效粒径(Stocks径) 在液相中和欲测质点具有相同沉降速度的球 形颗粒的直径。 (用沉降法测定) (3)比表面积径 与待测粒子具有相等比表面积的球的直径。 测定比表面(用吸附法或透过法)后再推算质 点的直径,故此法不知个别质点的直径。 (4)筛分径 粒子通过粗筛网且被截留在细筛网时,粗细筛 子的直径的算术或几何平均值称为筛分径。
混合物的吸湿性:
混合物的CRH值最小
。根据Elder假说, 水溶性药物混合物的CRH约等于各成分 CRH的乘积,而与各成分的比例无关。 CRHAB=CRHA· CRHB
Elder假设的条件是各成分间不发生相互
作用,不适用于能相互作用或受共同离 子影响的药物。
(二) 水不溶性药物的吸湿性
(二)粒子的形态
指一个粒子的轮廓或表面上各点所构成
的图像。
(三)比表面积
微粒的比表面积是指单位质量或容量微 粉所具有的表面积。
粒子的比表面积(specific surface area)的表 示方法根据计算基准不同可分为体积比表面积 SV和质量比表面积SW。 Sw=6/dvs; Sv=6/dvs Sw ,Sv分别为质量和体积比表面积, 为粉 体的粒密度,dvs粒径。
第八节 粘附性与凝聚性
粘附性(adhesion)是指不同分子产生的引
力,如粉体粒子与器壁间的粘附。 凝聚性 (cohesion,粘着性)是指同分子间产生的引 力,如粉体粒子之间发生粘附而形成聚集 体(random floc)。 产生粘附性和凝聚性的原因: 1、在干燥状 态下主要是由于范德华力与静电力发挥作 用; 2、在润湿状态下主要由于粒子表面存 在的水分形成液体桥或由于水分的蒸发而 产生固体桥发挥作用。
2. 流出速度(flow velocity)
是将物料加入漏斗中,测量全部物料流
出所需的时间,即为流出速度。
粉体流动性差时可加入100
μm的玻璃球
助流。
流出速度越大,粉体流动性越好。
3. 压缩度( compressibility) C=(ρf - ρ0)/ ρf ×100% 式中, C为压缩度;ρ0为最松密度;ρf 为最紧密度。
第六节 粉体的填充性
(一)粉体的填充性的表示方法
粉体的填充性是粉体集合体的基本性质, 在片剂、 胶囊剂的填充过程中具有重要 意义。 填充性可用松比容(specific)、松密度 (bulk density)、空隙率(porosity) 、空隙 比(void ratio) 、充填率(packing fraction) 、配位数(coordination number) 来表示。
2.粉体的空隙率 空隙率(porosity)是粉体层中空隙所 占有的比率。 包括颗粒内空隙率,颗粒间空隙率,总 空隙率。
第五节 粉体的流动性
一、粉体的流动性
粉体的流动性(flowability)与粒子的形
状、大小、表面状态、密度、空隙率、表 面摩擦力等有关。对颗粒剂、胶囊剂、片 剂等制剂的重量差异以及正常的操作影响 很大。
1.粒子大小的表示方法
(1)几何学粒径 由直接或间接的方法测定,常用的方法 是粉末经筛分后,在光学显微镜或电子 显微镜下测定质点投影象的几何形态。 此法按测定方向不同而将粒径分为以下 几种:
长径:粒子最长两点间的距离 短径:粒子最短两点间的距离 定向径:全部粒子按同一方向测得的粒子径 等价径:与粒子投影面积相等的圆的直径 外接圆等价径:粒子投影外接圆的直径
(二)颗粒的排列模型
最简单的模型:大小相等的球形粒子的
填充方式。 最著名的Graton-Fraser模型:球形颗粒 规则排列时,最少接触点6个,其空隙率 最大(47.6%).最多接触点12个,其空 隙率最小(26%)
(三)助流剂对充填性的影响
助流剂的粒径一般为40μm左右,
与粉体混合时在粒子表面附着,减 弱粒子间的粘附从而增强流动性, 增大充填密度。 用量为0.05%0.1%(w/w)。
测定CRH的意义:
(1)CRH值可作为药物吸湿性指标,一般 CRH愈大,愈不易吸湿;
(2)为生产、 贮藏的环境提供参考,一般应 将 其相对湿度控制在CRH一下。
(3)为选择防湿性辅料提供参考,一般应选 择CRH值大的物料作辅料。
二、润湿性
(一)润湿性 润湿性 (wetting) 是指固体界面由固-气界 面变为固-液界面现象。粉体的润湿性对 片剂、颗粒剂等到固体制剂的崩解性、溶 解性等具有重要意义。 固体的润湿性用接触角θ表示。 液滴在固 体表面上所受的力达平衡时符合Yong’s公 式: γsg= γsl+ γlgcosθ 式中, γsg、 γsl、 γlg分别固-气、固-液、气 -液间的界面张力。
(四)粉体的密度与空隙率
1.粉体密度 粉体的密度指单位体积粉体的质量。 粉体的密度根据所指的体积不同分为: 真密度、颗粒密度、松密度三种。
1.真密度(true density) ρt 是指粉体质量(W)除以不包括颗粒内 外空隙的体积(真体积Vt)求得的密度 。ρt = w/Vt 2.颗粒密度(granule density) ρg 是指粉体质量除以包括开口细孔与封闭 细孔在内的颗粒体积Vg所求得密度。 ρg = w/Vg 3.松密度(bulk density) ρb 是指粉体质量除以该粉体所占容器的体 积V求得的密度,亦称堆密度。 ρb= w/Vt
第九节 粉体的压缩性质
压缩性(compressibility)表示粉体在压力下
体积减少的能力。 成形性(compactibility) 表示物料紧密结合成一定形状的能力。
粉体的压缩性和成形性简称压缩成形性。 压缩成形理论以及各种物料的压缩特性,
对于处方筛选与工艺选择具有重要意义。
形成机制:
超微粉碎的目的及意义:
药物经超细粉碎后可增加其利用效率,提 高生物利用度,同时也为新剂型特别是 中兽药新剂型的开发创造了条件。药物 经超微粉碎后 (1)提高中兽药复方制剂的均匀度:药物 经粉碎后,其药材的细胞壁破碎,细胞 内的水分及油分迁出,使例子之间能够 形成半稳定的包含相同比例中药成分的 粒子团,这种结构可使药物能够均匀的 被机体吸收,增加了药物的作用效果。
第七节
粉体的吸湿性与润湿性
一、吸湿性
吸湿性是指粉体表面吸
附水分的现象。 危害:可使粉末的流动 性下降、出现固结、润 湿、液化等,甚至发生 化学反应而降低药物的 稳定性。 药物的吸湿性与空气状 态有关
(一)水溶性药物的吸湿性
临界相对湿度( CRH)
CRH是水溶性药物的特征参数,作为粉剂吸湿 性大小的衡量指标,CRH值越小越易吸湿。
粉体学基础
粉体学(micromeritics)是研究具有各种形
状的粒子集合体性质及其应用的科学。 通常<100μm的粒子叫“粉”,容易产生 粒子间的相互作用而流动性减小; > 100μm的粒子叫“粒”,较难产生粒 子间的相互作用而流动性较好。 单体粒子叫一级粒子(primary particles); 聚结粒子叫二级粒子(second particle)。
二、 超微粉
超微粉技术: 是20世纪60~70年代发展起来的一门技 术,是指将物料颗粒粉碎至粒径在30um 以下一种粉碎技术。超微粉根据粒径可 以划分为三个级别:微米级(1~100um )、亚微级(0.1~1um)及纳米级( 1~100nm)。
优点:①可粉碎在常温下难以粉碎的物料,如纤维类、热 敏性和受热易变质的物质(血液制品蛋白质及酶等); ②可提高对易燃、易爆物品粉碎的安全性;③对含芳香性 挥发性成分的天然植物行低温超微粉碎,可避免有效成分 的损失;④在低温环境下细菌的繁殖受到抑制,避免产品 污染;⑤有利于改善物料的流动性。 缺点:生产成本极高,对于低附加值的产品难以承受,故 多用于附加值较高的生物类产品的超细化
(4)有利于保留生物活性成分: 超微粉技 术可以根据药材的不同,在不同温度下 进行,这样有利于保留药物的生物活性 成分。 (5)可以节省原料,降低成本 (6)有利于开发新剂型:药粉微粉化后, 其微粒性质发生改变,可制备出新的剂 型,有利于临床用药。
三、粉体学在药剂学中的应用
散剂、片剂、颗粒剂、胶囊剂等固体 制剂都是以微末为原料,这些制剂的质 量都与粉体的特性有关。 1、微粉理化特性对制剂工艺的影响 (1)对混合的影响 混合是固体制剂生 产的关键工序。微粉的密度、粒子形态 、大小等均会影响混合的均匀度。
一级粒子:单一粒子
二级粒子:单一粒子的聚结物
一· 粉体的特性
(一)粒子大小及其测定 (二)粒子的形态 (三)比表面积 (四)粉体的密度与空隙率 (五)粉体的流动性 (六)粉体的充填性 (七)粉体的吸湿性与润湿性 (八)粉体的黏附性与凝聚性 (九)粉体的压缩性
(一)粒子大小及其测定
玻璃与水银的哪个润湿性大
??
θ=0º ,完全润湿; θ=180º ,完全不润湿; θ=0-90º ,能被润湿; θ=90-180º ,不被润湿。
(二)接触角的测定方法
1. 压缩成平面 水平放置后滴上液滴直 接由量角器测定。
2.在圆筒管里精密充填粉 体 h2= rtYlcosθ /2η 由于毛细管半径不好测 定,常用于比较相对润 湿性。
水不溶性药物的吸湿
性随着相对湿度的变
化而缓慢发生变化, 没有临界点。
水不溶性药物的混合 物(成分互不发生作
用)的吸湿量具有加
和性。
CRH的测定
粉末吸湿法
称取一定量样品,在一定温度下, 分别置于一系列不同湿度容器中,待样 品达到吸湿平衡后,取出样品称重,求 出样品在不同湿度中的吸湿量,以相对 湿度对吸湿量做吸湿平衡曲线即可。
2.粒径的测定方法 (1)直接测定法: 光学显微镜法和筛分法
光学显微镜法: 是将粒子放在显微镜下,根据 投影像测得粒径的方法,主要测定几何粒径。