实验3 时域抽样和频域抽样定理
数字信号处理实验报告 3
数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。
二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。
2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。
实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。
由此讨论原时域信号不失真地由频域抽样恢复的条件。
实验三:由X32(k)恢复X(z)和X(e jw)。
四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。
实验三(时域抽样与频域抽样)
时域抽样与频域抽样
一、实验目的
1. 加深理解连续时间信号的离散化过程中的数学概念和物 理概念,掌握时域抽样定理(奈奎斯特采样定理)的基 本内容。 2. 加深对时域取样后信号频谱变化的认识。掌握由抽样序 列重建原连续信号的基本原理与实现方法,理解其工程 概念。 3. 加深理解频谱离散化过程中的数学概念和物理概念,掌 握频域抽样定理的基本内容。
二. 实验原理——时域抽样
1、时域抽样概述
时域抽样定理给出了连续信号抽样过程中信 号不失真的约束条件:信号抽样频率 fs 大于等于2 倍的信号最高频率fm,即 fs 2fm。
时域抽样先把连续信号 x(t)变成适合数字系统 处理的离散信号x[k];然后根据抽样后的离散信号 x[k]恢复原始连续时间信号x(t)完成信号重建。
0
0.01
0.02
0.03
三. 程序示例——频域抽样
2.已知序列 x [ k ] {1, 1, 1; k 0,1,2} 对其频谱X(ej)进行抽样, 分别取N=2,3,10,观察频域抽样造成的混叠现象。
x=[1,1,1]; P=256; omega=[0:P-1]*2*pi/P; X0=1+exp(-j*omega)+exp(-2*j*omega); N=input('Type in N= '); omegam=[0:N-1]*2*pi/N; Xm=1+exp(-j*omegam)+exp(-2*j*omegam); subplot(2,1,1); plot(omega./pi,abs(X0)); xlabel('Omega/PI'); hold on stem(omegam./pi,abs(Xm),'r','o'); hold off x1=[zeros(1,2*N) x zeros(1,2*N)]; x2=[zeros(1,N) x zeros(1,3*N)]; x3=[x zeros(1,4*N)]; x4=[zeros(1,3*N) x zeros(1,N)]; x5=[zeros(1,4*N) x]; xx=x1+x2+x3+x4+x5; k=-2*N:2*N+length(x)-1; subplot(2,1,2); stem(k,x1); hold on subplot(2,1,2); stem(k,xx,'r','*'); hold off
实验三 时域采样与频域采样
实验二 时域采样与频域采样一 实验内容1 时域采样定理的验证给定模拟信号0()sin()()t a x t Ae t u t α-=Ω,式中,A=444.128,α=,0/rad s Ω=选取三种采样频率,即1s F kH z =,300Hz ,200Hz ,对()a x t 进行理想采样,得到采样序列:0()()sin()()nT a x n x nT Ae nT u nT α-==Ω。
观测时间长度为64p T m s =。
分别绘出三种采样频率得到的序列的幅频特性曲线图,并进行比较。
注:为与课本中幅频特性曲线比较,将纵坐标进行了归一化。
实验结果:由实验结果发现,采样频率为1000HZ 时,时域采样后的频谱函数可以较好的表现出原模拟信号的幅频特性,且是原幅频特性的周期延拓。
当采样频率为300HZ和200HZ时,其频谱函数与原幅频特性相比,有较大的误差,且在fs/2的位置误差最大。
实验分析:理想采样信号的频谱是原模拟信号的频谱沿频率轴,每间隔采样角频率2*pi*fs重复出现一次,并叠加形成的周期函数,所以只有当采样角频率2*pi*fs大于等于原模拟信号的角频率时才不会发生混叠。
2 频域采样定理的验证给定信号:1013()271426n nx n n nothers+≤≤⎧⎪=-≤≤⎨⎪⎩,对()x n的频谱函数()jX eω在[0,2π]上分别等间隔采样16点和32点,得到16()X k和32()X k,再分别对16()X k和32()X k进行IDFT,得到16()x n和32()x n。
分别画出()jX eω、16()X k和32()X k的幅度谱,并绘图显示()x n、16()x n和32()x n的波形,进行对比和分析。
实验结论:由上图分析知,频域采样32点时,其逆变换得到的xn32能较好的还原xn,只是尾部多了几个0而已,而对于频域采样16点时,逆变换之后已经产生较大的误差,不能等效为xn。
时域采样与频域采样
备注:(1)、按照要求独立完成实验内容。
(2)、实验结束后,把电子版实验报告按要求格式改名(例:09号_张三_实验七.doc )后,实验室统一刻盘留档。
实验四 时域采样与频域采样一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。
掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样前后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对采样点数选择的指导作用。
二、实验原理在数字信号处理的应用中,只要涉及时域或者频域采样,都必须服从这两个采样理论的要点。
时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论具有对偶性:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。
因此放在一起进行实验。
三、实验内容(包括代码与产生的图形及结果分析)1. 给定模拟信号如下:xa(t)=Ae -αt sin(Ω0t)u(t)式中, A=444.128,α=50 π,Ω0=50 π rad/s ,将这些参数带入上式中,对x a (t进行傅里叶变换,它的幅频特性曲线如图1所示。
现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。
按照xa(t)的幅频特性曲线,选取三种采样频率,即Fs=1 kHz ,300 Hz ,200 Hz 。
观测时间选Tp=64 ms 。
要求: 编写实验程序,计算x 1(n)、 x 2(n)和x 3(n)的幅度特性,并绘图显示。
观察分析频谱混叠失真。
close all;clear all;clc;22图1 x a (t)的幅频特性曲线Tp=64/1000; %观察时间Tp=64毫秒%产生M长采样序列x(n)% Fs=1000;T=1/Fs;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M); %M点FFT[xnt)]subplot(3,2,1);n=0:length(xnt)-1;stem(n,xnt,'.');xlabel('n');ylabel('yn');axis([0,n(end),min(xnt),1.2*max(xnt)]);%绘图box on;title('(a) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])%========================% Fs=300Hz;T=1/Fs;Fs=300;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M); %M点FFT[xnt)]subplot(3,2,3);n=0:length(xnt)-1;stem(n,xnt,'.');xlabel('n');ylabel('yn');axis([0,n(end),min(xnt),1.2*max(xnt)]);%绘图box on;title('(a) Fs=300Hz');k=0:M-1;fk=k/Tp;subplot(3,2,4);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=300Hz');xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])%========================% Fs=200Hz;T=1/Fs;Fs=200;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M); %M 点FFT[xnt)]subplot(3,2,5);n=0:length(xnt)-1;stem(n,xnt,'.');xlabel('n');ylabel('yn');axis([0,n(end),min(xnt),1.2*max(xnt)]);%绘图box on;title('(a) Fs=200Hz');k=0:M-1;fk=k/Tp;subplot(3,2,6);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=200Hz');xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])2. 频域采样理论的验证。
东北大学秦皇岛分校 信号与系统实验报告三 抽样定理实验 2020.04.30
2K
2K 正弦波
4K
2K
2K 正弦波
8K
2K
2K 正弦波
16K
2K
1K 三角波
16K
2K
1K 三角波
16K
6K
自己尝试设计某种组合进行扩展
说明 1.5 倍抽样脉冲 2 倍抽样脉冲 4 倍抽样脉冲 8 倍抽样脉冲 复杂信号恢复 复杂信号恢复
3. 频谱混叠现象验证
(1) 设置各信号参数 设置原始信号为:“正弦”,频率:1KHz,幅度设置指示为 50;设置抽样脉冲频率: 8KHz,占空比:4/8(50%);恢复滤波器截止频率:2K;
m(t) T (t) 的傅立叶变换是M() 和T () 的卷积:
M () = 1 M () () = 1
M (− n) s
T
s
2
T n =−
该式表明,已抽样信号 ms(t) 的频谱 需要注意,若抽样间隔 T 变得大于
Ms1
() 是无穷多个间隔为 ωs 的 M () 相迭加而成。 , 则 M () 和 () 的卷积在相邻的周期内存在
(5) 抽样信号时域观测 用四通道示波器,在 2P1 可观测原始信号,在 2P2 可观测抽样脉冲信号,在 2P7 可观测PAM 取
样信号;
(6) 抽样信号频域观测 使用示波器的 FFT 功能或频谱仪,分别观测 2P1,2P2,2P7 测量点的频谱;
(7) 恢复信号观察 鼠标点击框图上的“恢复滤波器”按钮,设置恢复滤波器的截止频率为 3K(点击截止频率数
3. 当模拟信号为 2KHz 正弦波、抽样频率为 8KHz、恢复滤波器为 2KHz 时: 原始信号波形、抽样脉冲波形、抽样输出波形、恢复信号波形
4. 当模拟信号为 2KHz 正弦波、抽样频率为 16KHz、恢复滤波器为 2KHz 时: 原始信号波形、抽样脉冲波形、抽样输出波形、恢复信号波形
时、频域采样定理的验证
实验二时、频域采样定理的验证
实验目的
掌握时域采样定理,频域采样定理。
掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;掌握频域采样会引起时域周期化,以及频域采样定理及其对频域采样点数选择的指导作用。
实验内容
1.时域采样理论
的验证
f=1000Hz:
f=300Hz:
f=200Hz:
2.频域采样理论的验证
实验小结
通过本次实验,我巩固了信号在matlab中的运算表示方法、图形输出函数(plot、stem),同时会用软件求fft和ifft,由此验证了时域采样定理,频域采样定理。
通过观察不同平率的模拟信号采样,采样频率如果过低会导致丢失信息;通过频域采样发现它会引起时域周期化。
§3.6--信号抽样与抽样定理(信号抽样-时域抽样定理-连续时间信号的重建--)
所以抽样信号的频谱为
其中, 为抽样角频率, 为抽样间隔 , 为抽样频率,
在时域抽样(离散化)相当于频域周期化
频谱是原连续信号的频谱以抽样角频率为间隔周期地延拓,频谱幅度受抽样脉冲序列的傅立叶系数加权。
(1) 冲激抽样若抽样脉冲是冲激序列,则这种抽样称为冲激抽样或理想抽样。
谢谢大家
二、时域抽样定理
二、时域抽样定理
时域抽样定理的图解:假定信号 f (t)的频谱只占据 的范围,若以间隔 对 f (t)进行抽样,抽样信号 fs (t)的频谱 FS(ω) 是以 ωS 为周期重复,在此情况下,只有满足条件 各频移的频谱才不会相互重叠。这样,抽样信号 fs (t) 保留了原连续信号f (t)的全部信息,完全可以用 fs (t) 唯一地表示 f (t) ,或者说, f (t)完全可以由恢复出 fs (t) 。
§ 3.6 信号抽样与抽样定理
信号抽样也称为取样或采样,是利用抽样脉冲序列 p (t) 从连续信号 f (t) 中抽取一系列的离散样值,通过抽样过程得到的离散样值信号称为抽样信号,用 fs (t) 表示。
一、信号抽样
抽样的原理方框图:
一、信号抽样
连续信号经抽样后变成抽样信号,往往还需要再经量化、编码等步骤变成数字信号。这种数字信号经传输、处理等步骤后,再经过上述过程的逆过程就可连续信号频谱在周期重复过程中,各频移的频谱将相互重叠,就不能从抽样信号中恢复原连续信号。频谱重叠的这种现象称为频率混叠现象。
二、时域抽样定理
在满足抽样定理的条件下,可用一截止频率为 的理想低通滤波器,即可从抽样信号 fs(t) 中无失真恢复原连续信号 f (t) 。
三、连续时间信号的重建
因为所以,选理想低通滤波器的频率特性为若选定 ,则有理想低通滤波器的冲激响应为若选 ,则而冲激抽样信号为
基于MATLAB的时域抽样和频域抽样定理验证
基于MATLAB的时域抽样和频域抽样定理验证作者:吕众李彦松贾辰龙来源:《数字技术与应用》2010年第08期摘要:MATLAB 应用范围广,包括信号和图像处理、通讯、控制系统设计、测试和测量等众多应用领域,是众多领域不可获缺的工具。
本文基于MATLAB,对指数、序列信号进行不同频率的时域、频域抽样。
根据不同抽样频率下还原的信号与原信号均方差、时域逼近程度的差别来验证时域和频域抽样定理。
关键词:时域抽样定理频域抽样定理指数信号离散序列MATLAB中图分类号:TN914.3 文献标识码:A 文章编号:1007-9416(2010)08-0000-00The Verification of Time-domain sampling theorem and Frequency sampling theorem based on MATLABAbstract:This experiment will systematically verify Time-domain sampling theorem andFrequency sampling theorem,including analysis of the original signal,how to restore the original signal with sampling data,calculation of error of mean squre between original and reconstructed signal and an innovative application of MATLAB in processing matrix.With powerful Modeling and Data-processing Functions of MATLAB,original signals are discretized by different sampling frequency firstly.And with analysis of sampled data,Fourier inversion based on MATLAB and vivid figures comparing different restoring effects,this experimental can help readers understand and grasp these two theorems and applications of MATLAB in depth.Key words:Time-domain sampling theorem,Frequency sampling theorem,MATLAB,Fourier inversion1 引言时域、频域抽样定理是信号在频域、时域间转化的基础性理论,也是《信号与系统》、《数字信号处理》等多门学科的基础性理论。
实验三-时域及频域采样定理
实验三-时域及频域采样定理⼴州⼤学学⽣实验报告开课学院及实验室:电⼦楼317 ?2013年⽉⽇n)以N为周期进⾏周期延拓后的主值区序列,--三、实验⽤MATL AB函数介绍Xk=fft(x n,N):采⽤FFT 算法计算序列向量x n的N点DFT ,缺省N 时,fft 函数⾃动按xn 的长度计算xn 的DFT 。
当N 为2的整数次幂时,ff t按基2算法计算,否则⽤混合基算法。
2. i ff t功能:⼀维快速逆傅⽴叶变换(IFFT)。
调⽤格式:与f ft 相同。
四、实验内容和步骤(⼀)时域采样定理实验1. 给定模拟信号如下:0()sin()()at a x t Ae t u t -=Ω假设式中A=444.128,250π=a , 2500π=Ωrad /s ,将这些参数代⼊上式中,对()a x t 进⾏傅⽴叶变换,得到()a X j Ω,画出它的幅频特性()~a X jf f,如图3.1所⽰。
根据该曲线可以选择采样频率。
图3.1()a x t 的幅频特性曲线实验过程及原始数据:clf ;A=444.128;a=50*pi *sqrt(2);w0=50*pi *sqrt (2); fs=1000; %采样频率1000HZ T =1/fs;n=0:0.05*fs -1; %产⽣的长度区间nx t=A*exp(-a*n*T).*sin(w0*n*T); %产⽣采样序列xt(n) f =f ft(xt,l eng th(n)); %采样序列xt(n)的FFT 变换 k1=0:le ng th (f)-1;fk1=k1/0.05; %设置xt(n)的频谱的横坐标的取值subplot (1,2,1)st em(n,xt,'.') %xt 离散图 tit le('(a)fs=1000Hz');xlab el ('n ');ylab el('x(n )'); subplot (1,2,2) plot(fk1,ab s(f))title('(a ) FT[x(nT)],Fs =1000Hz '); xlabel('f(H z)');ylabel('幅度')2. 按照选定的采样频率对模拟信号进⾏采样,得到时域离散信号()x n :0()()sin()()anT a x n x nT Ae nT u nT ==Ω这⾥给定采样频率如下:1s f kHz =,300Hz ,200Hz 。
抽样定理
抽样定理词义就是对时间连续的信号隔一定的时间间隔T抽取一个瞬时幅度值分类时域抽样定理、频域抽样定理基本定义所谓抽样,就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),抽样是由抽样门完成的。
在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。
或者说,如果一个连续信号f(t)的频谱中最高频率不超过f h,这种信号必定是个周期性的信号,当抽样频率f S≥2 f h时,抽样后的信号就包含原连续信号的全部信息,而不会有信息丢失,当需要时,可以根据这些抽样信号的样本来还原原来的连续信号。
根据这一特性,可以完成信号的模-数转换和数-模转换过程。
意义介绍抽样定理指出,由样值序列无失真恢复原信号的条件是f S≥2 f h ,为了满足抽样定理,要求模拟信号的频谱限制在0~f h之内(fh为模拟信号的最高频率)。
为此,在抽样之前,先设置一个前置低通滤波器,将模拟信号的带宽限制在fh以下,如果前置低通滤波器特性不良或者抽样频率过低都会产生噪声。
例如,话音信号的最高频率限制在3400HZ,这时满足抽样定理的最低的抽样频率应为fS=6800HZ,为了留有一定的防卫带,CCITT规定话音信号的抽样率fS=8000HZ,这样就留出了8000-6800=1200HZ作为滤波器的防卫带。
应当指出,抽样频率fS不是越高越好,太高时,将会降低信道的利用率(因为随着fS升高,数据传输速率也增大,则数字信号的带宽变宽,导致信道利用率降低。
)所以只要能满足fS≥2f h,并有一定频带的防卫带即可。
以上讨论的抽样定理实际上是对低通信号的情况而言的,设模拟信号的频率范围为f0~fh,带宽B=fh - f0.如果f0<B,称之为低通型信号,例如,话音信号就是低通型信号的,弱f0>B,则称之为带通信号,载波12路群信号(频率范围为60~108KHZ)就属于带通型信号。
数字信号处理实验三时域及频域采样定理
Xk1=fft(x1,length(n1)); %采样序列x1(n)的FFT变换
Xk2=fft(x2,length(n2)); %采样序列x2(n)的FFT变换
Xk3=fft(x3,length(n3)); %采样序列x3(n)的FFT变换
k1=0:length(Xk1)-1;
fk1=k1/Tp; %x1(n)的频谱的横坐标的取值
这里给定采样频率如下: ,300Hz,200Hz。分别用这些采样频率形成时域离散信号,按顺序分别用 、 、 表示。选择观测时间 。
3.计算 的傅立叶变换 :
(3.6)
式中, ,分别对应三种采样频率的情况 。采样点数用下式计算:
(3.7)
(3.6)式中, 是连续变量。为用计算机进行数值计算,改用下式计算:
下面分析频域采样定理。对信号x(n)的频谱函数 ,在[0,2π]上等间隔采样N点,得到
(3.4)
则N点IDFT[ ]得到的序列就是原序列x(n)以N为周期进行周期延拓后的主值区序列,公式为:
(3.5)
由上式可知,频域采样点数N必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N点IDFT[ ]得到的序列 就是原序列x(n),即 =x(n)。如果N>M, 比原序列尾部多N-M个零点;如果N<M,z则 =IDFT[ ]发生了时域混叠失真,而且 的长度N也比x(n)的长度M短,因此。 与x(n)不相同。
频域抽样定理
零点:z
e
j
2 N
r,r
0,1,...,
N
1
极点:z
e
j 2 N
k,
0
(N -1)阶
4、用频域采样 X (k) 表示 X (e j ) 的内插公式
N 1
X (e j ) X (z) ze j X (k )k (e j )
k 0
k (e j ) k (z)
( k 2 )
ze j
x(n)为无限长序列—混叠失真 x(n)为有限长序列,长度为M
1) N≥M ,不失真 2) N<M, 混叠失真
频率采样定理
若序列长度为M,则只有当频域采样点数:
时,才有
NM
xN (n)RN (n) IDFS[ X (k)]RN (n) x(n)
即可由频域采样X(k)不失真地恢复原信号x(n) ,否则产生时域混叠现象。
k 0 m
m
x(m)[ 1 N
N 1
W (mn N
)
k
]
k 0
x(n rN )
r
1
N
N 1
W (mn)k Nk 0Fra bibliotek1 0
m n rN 其它m
r为任意整数
可见,由 X~ (k)得到的周期序列 x~N (n)是非
周期序列x(n)的周期延拓。其周期为频域抽样点 数N。
所以:时域抽样造成频域周期延拓 同样,频域抽样造成时域周期延拓
1 N
N 1 k 0
X
(k
)
1 WN Nk 1 WNk
zN z 1
1 zN N
N 1 X (k ) k0 1 WNk z1
内插公式:X (z)
第四章3-时域采样与频域采样
抽样间隔(周期) 抽样角频率 抽样频率
T
(s)
wsam=2/T (rad/s)
fsam=1/T (Hz)
例 已知实信号x(t)的最高频率为fm (Hz),试计 算对各信号x(2t), x(t)*x(2t), x(t)x(2t),
x(t)x(2t)抽样不混叠的最小抽样频率。
解:根据信号时域与频域的对应关系得:
F ( jw)
1
f (t) F( jw)
最高频率: fm
wm
w
0 wm
最小抽样频率: 2fm
17
根据信号时域与频域的对应关系及抽样定理得:
f (2t) 1 F( jw )
22
最高频率: 2fm 最小抽样频率: 4fm
根据信号时域卷积与频域的对应关系及抽样定理得:
X (jw)
1 X (j ) T
X (e j )
W sam
ω
0 wm s
W sam
离散序列x[k]频谱与抽样间隔T之间的关系
X ( jw)
wsam 2wm
1
w
wm 0 wm
X (e jwT )
X [ j(w wsam )]
1 X ( jw)
X [ j(w wsam )]
...
f (t)* f (2t) F( jw) 1 F( jw )
22
最高频率: fm
最小抽样频率: 2fm
根据信号时域与频域的对应关系及抽样定理得:
f (t) f (2t) 1 F( jw)* 1 F( j w )
2
22
1
1 F ( jw)* 1 F( jw )
2
数字信号处理实验三
实验报告课程名称: 数字信号处理院系部:电气与电子工程学院专业班级:信息1002学生姓名:王萌学号: 1101200219同组人:实验台号:指导教师:范杰清成绩:华北电力大学(北京)实验二 时域抽样与频域抽样一、实验目的加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理的基本内容。
掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。
加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。
二、 实验原理时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:对于基带信号,信号抽样频率fsam 大于等于2倍的信号最高频率fm ,即 fsam 2fm 。
时域抽样是把连续信号x(t)变成适于数字系统处理的离散信号x[k] ;信号重建是将离散信号x[k]转换为连续时间信号x(t)。
非周期离散信号的频谱是连续的周期谱。
计算机在分析离散信号的频谱时,必须将其连续频谱离散化。
频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件。
三、实验内容:1、利用MATLAB 实现对 的抽样)20π2cos()(t t x ⨯=程序代码:自己设计:w0=2*pi*20;t=0:0.0001:0.1;x=cos(w0*t);plot(t,x);hold on;t=0:0.01:0.1;x=cos(w0*t);stem(t,x);hold off;所给代码:t0 = 0:0.001:0.1;x0 =cos(2*pi*20*t0);plot(t0,x0,'r')hold on%信号最高频率fm为20 Hz,%按100 Hz抽样得到序列。
Fs = 100;00.010.020.030.040.050.060.070.080.090.1-1-0.8-0.6-0.4-0.20.20.40.60.81连续信号及其抽样信号t=0:1/Fs:0.1;x=cos(2*pi*20*t);stem(t,x);hold offtitle('连续信号及其抽样信号')自己设计的程序结果截图:实际截图:2、已知序列}2,1,0;1,1,1{][==kkx对其频谱X(ejW)进行抽样。
《频域抽样定理》课件
这对于数字信号处理、通信系统等领域具有重要意义,因为在实际应用中,我们 通常需要处理的是离散时间信号。通过频域抽样定理,我们可以将连续时间信号 转换为离散时间信号,从而方便进行数字信号处理和传输。
复。
实验二:通过数字信号验证频域抽样定理
要点一
总结词
要点二
详细描述
数字信号具有精度高、稳定性好的优点,通过数字信号验 证频域抽样定理可以更精确地验证定理的正确性。
实验二采用数字信号源,通过数字合成方法生成各种复杂 度的信号。在采样过程中,利用高精度计时器和数据采集 卡进行采样。实验结果表明,当采样频率满足抽样定理的 条件时,信号在频域能够得到精确的恢复。
升。
THANKS
感谢观看
频域抽样定理在数字信号处理中广泛应用于信号的频谱分析 和重构。通过对信号进行频谱分析,可以得到信号的频率成 分和幅度信息,从而对信号进行滤波、调制和解调等操作。
在频域抽样定理的指导下,可以对信号进行离散化处理,将 连续的频谱转换为离散的频谱,便于数字信号处理器的计算 和存储。
在通信系统中的应用
在通信系统中,频域抽样定理用于信号的调制和解调。通 过将信号的频谱进行离散化处理,可以将模拟信号转换为 数字信号,便于数字通信系统的传输和处理。
非均匀抽样的频域抽样定理
总结词
非均匀抽样的频域抽样定理描述了如何在非均匀频率域进行抽样以重建信号。
详细描述
在实际应用中,信号的频率成分可能在不同频率上具有不同的重要性。非均匀抽样的频域抽样定理允许在频域内 进行非均匀抽样,以便更有效地表示和重建信号。这种非均匀抽样可以提高信号处理的效率和精度。
抽样定理
E Fs ( ) Ts 上式表明:
n s Sa( ) F ( n s ) 2 抽样性 周期性 n
信号在时域被抽样后,它的频谱 Fs () 是连续信 号的频谱 F () 以取样角频率 s 为间隔周期地重复 而得到的。在重复过程中,幅度被取样脉冲p(t)的 傅立叶系数所加权,加权系数取决于取样脉冲序列 的形状。 (p152 图3-50)
F ()
1
Fs ()
Es
-m
m
w
抽样后频谱
抽样前频谱
m
s
由以上推导可知,当抽样脉冲为矩形抽样脉冲时, 幅度以Sa函数的规律变化。从 Fs ()的频谱图可见 抽样后的信号频谱包括有原信号的频谱以及无限个 经过平移的原信号的频谱,平移的频率为抽样频率 及其各次谐波频率。且平移后的频谱幅值随频率而 呈Sa函数分布。但因矩形脉冲占空系数很小,所以 其频谱所占的频带几乎是无限宽。
§3.10~3.11 抽样与抽样定理
本次课讨论的内容为 :
一、信号的时域抽样 二、抽样定理 三、连续信号的恢复(内插公式) 四、时域抽样和频域抽样的类比
一. 取样的目的及所遇到的问题
模 拟 信 号 输 入
模 拟
抽 样
量 化
数字信号 处理器
信 号 输 出
A/ D 转换器
D/ A 转换器
数字信号处理系统简单框图
E n s dt Sa Ts 2
1 p( ) 2 Pn ( n s ) Fs ( ) F ( ) * p ( ) 2 n
E Fs ( ) Ts
理想取样
n s Sa F ( n s ) 2 n
上式表明:由于冲激序列的傅立叶系数Pn为常数, 所以 F () 是以 s 为周期等幅地重复,如下图所示:
验证时域采样定理和频域采样定理—
课程设计报告课程名称数字信号课程设计系别:专业班级:学号:姓名:课程题目:验证时域采样定理和频域采样定理完成日期:2013年5月23日指导老师:2013年5 月23 日验证时域采样定理和频域采样定理摘要数字信号处理是将信号以数字方式表示并处理的理论和技术。
数字信号处理与模拟信号处理是信号处理的子集。
数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。
因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。
而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。
编制Matlab程序,完成以下功能,对给定模拟信号进行时域采样,观察不同采样频率对采样信号频谱的影响,验证时域采样定理;对给定序列进行傅里叶变换,并在频域进行采样,观察不同采样点数对恢复序列的影响,验证频域采样定理;绘制相关信号的波形。
关键字:时域采样,频域采样,数字信号处理,matlab目录一、摘要 (4)二、绪论 (6)三、方案 (6)1.验证时域采样定理 (6)2.详细程序及仿真波形分析 (7)3.频域采样理论的验证 (15)4.频域采样定理程序 (16)5.频域采样定理信号波形 (17)四、结论 (17)致谢 (18)参考文献 (18)一、绪论数字信号处理是将信号以数字方式表示并处理的理论和技术。
数字信号处理与模拟信号处理是信号处理的子集。
数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。
因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。
而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。
编制Matlab程序,完成以下功能,对给定模拟信号进行时域采样,观察不同采样频率对采样信号频谱的影响,验证时域采样定理;对给定序列进行傅里叶变换,并在频域进行采样,观察不同采样点数对恢复序列的影响,验证频域采样定理;绘制相关信号的波形。
二、方案1.验证时域采样定理基本要求:①掌握数字信号处理的基本概念、基本理论和基本方法;②学会 MATLAB 的使用,掌握 MATLAB 的程序设计方法;③学会用 MATLAB 对信号进行分析和处理;④信号的各参数需由键盘输入,输入不同参数即可得不同的x(t) 和x(n);⑤撰写课程设计论文,用数字信号处理基本理论分析结果。
验证时域采样定理和频域采样定理__数字信号处理.doc
恍恍惚惚课程设计报告Fra bibliotek课程名称
系 别:
专业班级:
学 号:
姓 名:
数字信号课程设计
工程技术系
电子信息工程
09XXXXXX7
课程题目: 验证时域采样定理和频域采样定理
完成日期:
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配0料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高高与中中带资资负料料荷试试下卷卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并中3试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
时域采样和频域采样实验报告
时域采样和频域采样实验报告一、实验目的本次实验旨在掌握时域采样和频域采样的原理、方法和技巧,研究它们在信号处理中的应用。
二、实验原理1. 时域采样时域采样是指将连续时间信号转换为离散时间信号的过程。
其原理是在一定时间间隔内对连续时间信号进行采样,得到离散时间信号。
采样定理规定:如果一个连续时间信号没有高于Nyquist频率两倍以上的频率分量,那么它可以通过等间隔采样来完全恢复。
2. 频域采样频域采样是指将连续频率信号转换为离散频率信号的过程。
其原理是对连续频率信号进行傅里叶变换,得到其频谱,并按照一定间隔取出其中若干个点,得到离散频率信号。
三、实验步骤1. 时域采样实验步骤:(1)使用函数发生器产生正弦波信号;(2)将正弦波信号输入示波器,并设置合适的水平和垂直尺度;(3)调整示波器触发方式为单次触发,同时设置触发电平和触发边沿;(4)按下示波器的单次触发按钮,记录采样到的离散时间信号;(5)将离散时间信号输入计算机,并进行处理和分析。
2. 频域采样实验步骤:(1)使用函数发生器产生正弦波信号;(2)将正弦波信号输入示波器,并设置合适的水平和垂直尺度;(3)通过示波器自带的FFT功能,对正弦波信号进行傅里叶变换,并得到其频谱图;(4)选取频谱图中若干个点,记录其幅值和相位信息;(5)将记录的幅值和相位信息输入计算机,并进行处理和分析。
四、实验结果与分析1. 时域采样实验结果与分析:在本次实验中,我们使用函数发生器产生了一个频率为1kHz、幅度为5V的正弦波信号,并将其输入示波器。
通过调整示波器触发方式为单次触发,同时设置触发电平和触发边沿,我们成功地对正弦波信号进行了时域采样,并得到了一组离散时间信号。
将这些离散时间信号输入计算机,并进行处理和分析,我们得到了正弦波信号的时域图像。
2. 频域采样实验结果与分析:在本次实验中,我们使用函数发生器产生了一个频率为1kHz、幅度为5V的正弦波信号,并将其输入示波器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程名称: 数字信号处理 成绩评定: 实验项目名称: 时域采样定理和频域采样定理 指导教师: 孙 元 学生姓名: 学号: 专业班级: 实验项目类型:综合性 实验地点: 实A-503 实验时间: 年 月 日
一、实验目的:
验证时域采样定理和频域采样定理
二、实验内容:
1. 设有三个不同频率的正弦信号,频率分别为123100,200,3800f Hz f Hz f Hz ===,现用抽样频率4000s f Hz =对这三个正弦信号进行抽样,并绘制出抽样信号的波形及其幅频特性。
(需要写上代码)
2. 设时域离散信号为
()0100n
a n x n others ⎧≤≤=⎨⎩
其中,0.9a =
(1)绘制()x n 的波形;
(2)计算其32点DFT 变换并绘制幅频特性;
(3)对32点DFT 进行抽样,分别抽样16个点和8个点;
(4)计算16点抽样和8点抽样的IDFT ,并绘制其波形。
湖南第一师范学院信息科学与工程系实验报告。