离散信道
合集下载
第三章离散信道及其信道容量

0
0 1
不是一一对应,无扰有信息损失
1
(2)有扰信道 例3:
a1
0.9
X
0.1
a2
0.2 0.8
b1
Y
b2
0.9 0.1 [P] 0.2 0.8 有扰有信息损失,干扰严重
例4:
a1
X
a2
1/2 1/2 1/2 1/2
b1
Y
b2
1/ 2 1 / 2 [P] 1/ 2 1 / 2
P yi xi P xi yi
即E{log x} ≤log{E(X)}
即E{log x} ≤log{E(X)}
I(X
;Y
)
X
Y
P(x,
y)
log
P( x)P( y) P(x, y)
log
XY
P(x,
y)
P( x)P( y) P(x, y)
log1
0
∴ I(X;Y) ≥ 0
∵ logx为∩ 型凸函数,只有当且仅当 p(x.y)=P(x)P(y),即x和Y统计独立时I(X;Y)=0
根据输入和输出信号的特点,信道可以分为: (1)离散信道。指输入和输出的随机变量的取值都 有是离散的信道。 (2)连续信道。指输入和输出的随机变量的取值都 是连续的信道。 (3)半离散半连续信道。输入变量是离散型的但相 应的输出变量是连续的信道,或者相反。 (4)波形信道。信道的输入和输出都是一些时间上 连续的随机信号。即信道输入和输出的随机变量的 取值是连续的,并且还随时间连续变化。一般用随 机过程来描述其输入和输出。
p( x1 ) 4
a2 1 4
a3 1 4
a4
1
4
1 P 1
5-2 离散信道的信道容量

第五讲 信道容量 第二节 离散信道的信道容量
1
离散信道的信道容量
一、离散信道容量的定义 二、信道模型 三、离散信道容量的表达式
2
离散信道的信道容量
一、离散信道容量的定义
定义1: C- 每个符号能够传输的平均信息量最大值
定义2: Ct -单位时间(秒)内能够传输的平均信息量最大值
两者之间可以互换:已知信道每秒能够传输的符号数
i =1
j=1
i =1
n
∑ H ( x ) = − P ( x i ) log 2 P ( x i ) i=1
-每个发送符号xi的平均信息量,称为信源的熵
m
n
∑ ∑ H( x / y) = − P( y j ) P( xi / y j )log2 P( xi / y j )
j =1
i =1
-接收yj符号已知后,发送符号xi的平均信息量
0
P(0/0) = 127/128
0
发 送 端 P(0/1) = 1/128
接
收
P(1/0) = 1/128
端
P(1/1) = 127/128
1
1
对称道模型
离散信道的信道容量
信源的平均信息量(熵)
∑ H
(x)
=
−
n i=1
P ( x i ) log
2
P ( xi
)
=
−
⎡ ⎢⎣
1 2
log
2
1 2
离散信道的信道容量
③ 无噪声信道 信道模型
发 x1
送 端
x2
x。 3
。
P(xi) 。 xn
P(y1/x1) P(yn/xn)
1
离散信道的信道容量
一、离散信道容量的定义 二、信道模型 三、离散信道容量的表达式
2
离散信道的信道容量
一、离散信道容量的定义
定义1: C- 每个符号能够传输的平均信息量最大值
定义2: Ct -单位时间(秒)内能够传输的平均信息量最大值
两者之间可以互换:已知信道每秒能够传输的符号数
i =1
j=1
i =1
n
∑ H ( x ) = − P ( x i ) log 2 P ( x i ) i=1
-每个发送符号xi的平均信息量,称为信源的熵
m
n
∑ ∑ H( x / y) = − P( y j ) P( xi / y j )log2 P( xi / y j )
j =1
i =1
-接收yj符号已知后,发送符号xi的平均信息量
0
P(0/0) = 127/128
0
发 送 端 P(0/1) = 1/128
接
收
P(1/0) = 1/128
端
P(1/1) = 127/128
1
1
对称道模型
离散信道的信道容量
信源的平均信息量(熵)
∑ H
(x)
=
−
n i=1
P ( x i ) log
2
P ( xi
)
=
−
⎡ ⎢⎣
1 2
log
2
1 2
离散信道的信道容量
③ 无噪声信道 信道模型
发 x1
送 端
x2
x。 3
。
P(xi) 。 xn
P(y1/x1) P(yn/xn)
离散信道及其信道容量

第2章 信道及其容量
信道的任务是以信号方式传输信息和存储信息。 研究信道中能够传送或存储的最大信息量,即信道容量。
2.1
信道的数学模型和分类
干扰源
信源
编码器
调制器
物理信道 实际信道
解调器
译码器
信宿
编码信道
等效信道
图2.1.1 数字通信系统的一般模型
一、信道的分类
根据载荷消息的媒体不同
邮递信道
C max { I ( X ;Y )}
解:X:{0,1} Y:{0,1,2} 此时,r =2,s =3, 传递矩阵为:
0 0 1 2 1
1- p
q
1
p 1 p 0 0 1 q q
符号“2”表示接收到了“0”、“1”以外的特殊符 号
• 一般离散单符号信道的传递概率可用矩阵形式表示,即 b1 b2 … bs
a1 P(b1|a1) P(b2|a1) … P(bs|a1) a2 P(b1|a2) P(b2|a2) … P(bs|a2) … …. … …
R = I(X;Y) = H(X) – H(X|Y) (比特/符号)
• 信道中每秒平均传输的信息量----信息传输速率Rt (设传递一个符号用时为t).
Rt = R/t = I(X;Y)/t = H(X)/t – H(X|Y)/t (比特/秒)
一、 信道容量的定义
I ( X ; Y ) I (Y ; X ) P( xy ) log
a1 a2 b1 b2
X
.
. ar
P(bj/ai)
.
. bs
Y
[例1] 二元对称信道,[BSC,Binary Symmetrical Channel] 解:此时,X:{0,1} ; Y:{0,1} ; r=s=2,a1=b1=0;a2=b2=1。 传递概率: 1-p
信道的任务是以信号方式传输信息和存储信息。 研究信道中能够传送或存储的最大信息量,即信道容量。
2.1
信道的数学模型和分类
干扰源
信源
编码器
调制器
物理信道 实际信道
解调器
译码器
信宿
编码信道
等效信道
图2.1.1 数字通信系统的一般模型
一、信道的分类
根据载荷消息的媒体不同
邮递信道
C max { I ( X ;Y )}
解:X:{0,1} Y:{0,1,2} 此时,r =2,s =3, 传递矩阵为:
0 0 1 2 1
1- p
q
1
p 1 p 0 0 1 q q
符号“2”表示接收到了“0”、“1”以外的特殊符 号
• 一般离散单符号信道的传递概率可用矩阵形式表示,即 b1 b2 … bs
a1 P(b1|a1) P(b2|a1) … P(bs|a1) a2 P(b1|a2) P(b2|a2) … P(bs|a2) … …. … …
R = I(X;Y) = H(X) – H(X|Y) (比特/符号)
• 信道中每秒平均传输的信息量----信息传输速率Rt (设传递一个符号用时为t).
Rt = R/t = I(X;Y)/t = H(X)/t – H(X|Y)/t (比特/秒)
一、 信道容量的定义
I ( X ; Y ) I (Y ; X ) P( xy ) log
a1 a2 b1 b2
X
.
. ar
P(bj/ai)
.
. bs
Y
[例1] 二元对称信道,[BSC,Binary Symmetrical Channel] 解:此时,X:{0,1} ; Y:{0,1} ; r=s=2,a1=b1=0;a2=b2=1。 传递概率: 1-p
差错控制编码第4章 离散信道

i 1 r
【在接收到Y=bj后,关于X的不确定性 的度量】
二、熵及平均互信息的物理 意义
3. 信道疑义度(损失熵):
H ( X | Y ) p(ai b j ) log p (ai | b j )
i 1 j 1 r s
【输出端收到全部符号Y后,对输入X 尚存在的平均不确定性的度量】
三种特殊的离散信道
• 无噪无损信道
•有损无噪信道
•无损有噪信道
1. 无损无噪信道
① 信道中没有随机性的干扰或者干 扰很小,输出信号Y与输入信号 X之间有确定的、一一对应的关 系,即: yn=f(xn)
1. 无损无噪信道
② 传递概率矩阵是单位矩阵,为:
1 y n f ( x n ) p( y n | xn ) ij 0 y n f ( x n )
当X=Y时,有I(X;X)=H(X)
【例4.1】
1 信源X的概率测度为 PX 4
过下图所示的二元信道,计算H(X) 、H(Y) 和H(X|Y)。
0ቤተ መጻሕፍቲ ባይዱ
H(X |Y) p (ai b j ) log p (ai | b j )
j 1 i 1 s r
3 ,通 4
1/2 1/2 1/3
1. 传递概率p(y|x) 描述了输入信号和 输出信号之间统计依赖关系,集中 体现了信道对输入符号X的传递作 用,反映了信道的统计特性。 2. 信道不同,传递概率不同。
补充内容:
1. 有损有噪信道
若信源发出ai有可能收到任意一 个bj;收到bj也有可能来自任意一个 ai,即yn与xn多多对应,传输矩阵中 所有的矩阵元素都有可能不为零。
2. 有噪无损信道
③ 【有噪无损信道的特点】传递概率矩 阵中每列有且仅有一个非零元素,即 具有一行多列的分块对角化形式。
【在接收到Y=bj后,关于X的不确定性 的度量】
二、熵及平均互信息的物理 意义
3. 信道疑义度(损失熵):
H ( X | Y ) p(ai b j ) log p (ai | b j )
i 1 j 1 r s
【输出端收到全部符号Y后,对输入X 尚存在的平均不确定性的度量】
三种特殊的离散信道
• 无噪无损信道
•有损无噪信道
•无损有噪信道
1. 无损无噪信道
① 信道中没有随机性的干扰或者干 扰很小,输出信号Y与输入信号 X之间有确定的、一一对应的关 系,即: yn=f(xn)
1. 无损无噪信道
② 传递概率矩阵是单位矩阵,为:
1 y n f ( x n ) p( y n | xn ) ij 0 y n f ( x n )
当X=Y时,有I(X;X)=H(X)
【例4.1】
1 信源X的概率测度为 PX 4
过下图所示的二元信道,计算H(X) 、H(Y) 和H(X|Y)。
0ቤተ መጻሕፍቲ ባይዱ
H(X |Y) p (ai b j ) log p (ai | b j )
j 1 i 1 s r
3 ,通 4
1/2 1/2 1/3
1. 传递概率p(y|x) 描述了输入信号和 输出信号之间统计依赖关系,集中 体现了信道对输入符号X的传递作 用,反映了信道的统计特性。 2. 信道不同,传递概率不同。
补充内容:
1. 有损有噪信道
若信源发出ai有可能收到任意一 个bj;收到bj也有可能来自任意一个 ai,即yn与xn多多对应,传输矩阵中 所有的矩阵元素都有可能不为零。
2. 有噪无损信道
③ 【有噪无损信道的特点】传递概率矩 阵中每列有且仅有一个非零元素,即 具有一行多列的分块对角化形式。
信息论基础第3章离散信道及其信道容量

也就是说,通过信息处理后,一般只会增加信息的 损失,最多保持原来获得的信息,不可能比原来获得的 信息有所增加。一旦失掉了信息,用任何处理手段也不 可能再恢复丢失的信息,因此也称为信息不增性原理。
《信息论基础》
3.6 多符号离散信道及其信道容量
【例】求图所示的二元无记忆离散对称信道的二次 扩展信道的信道容量。
【例】 已知两个独立的随机变量 X、Y 的分布律如下。
X P(x)
a1 0.5
a2 0.5
,
Y P( y)
b1 0.25
b2 b3 0.25 0.5
计算 H X , H Y , H XY , H X |Y , H Y | X , I X ;Y 。
《信息论基础》
3.4 信道容量的定义
I (ai ) 减去已知事件 bj 后对 ai 仍然存在的不确定性 I (ai | bj ) ,实际就是事件
bj 出现给出关于事件 ai 的信息量。
【例】 甲在一个16 16 的方格棋盘上随意放一枚棋
子,在乙看来棋子放入哪一个位置是不确定的。如果甲 告知乙棋子放入棋盘的行号,这时乙获得了多少信息 量?
《信息论基础》
第3章 离散信道及其信道容量
通信系统的基本功能是实现信息的传递,信道是信息 传递的通道,是信号传输的媒质。一般而言,信源发出的 消息,必须以适合于信道传输的信号形式经过信道的传输, 才能被信宿接收。
从信源的角度看,信源发出的每个符号承载的平均信 息量由信源熵来定量描述;而从信宿的角度看,信宿收到 的每个符号平均能提供多少信息量由平均互信息来定量描 述。在信息论中,信道问题主要研究在什么条件下,信道 能够可靠传输的信息量最大,即信道容量问题。
《信息论基础》
3.7 信源与信道的匹配
《信息论基础》
3.6 多符号离散信道及其信道容量
【例】求图所示的二元无记忆离散对称信道的二次 扩展信道的信道容量。
【例】 已知两个独立的随机变量 X、Y 的分布律如下。
X P(x)
a1 0.5
a2 0.5
,
Y P( y)
b1 0.25
b2 b3 0.25 0.5
计算 H X , H Y , H XY , H X |Y , H Y | X , I X ;Y 。
《信息论基础》
3.4 信道容量的定义
I (ai ) 减去已知事件 bj 后对 ai 仍然存在的不确定性 I (ai | bj ) ,实际就是事件
bj 出现给出关于事件 ai 的信息量。
【例】 甲在一个16 16 的方格棋盘上随意放一枚棋
子,在乙看来棋子放入哪一个位置是不确定的。如果甲 告知乙棋子放入棋盘的行号,这时乙获得了多少信息 量?
《信息论基础》
第3章 离散信道及其信道容量
通信系统的基本功能是实现信息的传递,信道是信息 传递的通道,是信号传输的媒质。一般而言,信源发出的 消息,必须以适合于信道传输的信号形式经过信道的传输, 才能被信宿接收。
从信源的角度看,信源发出的每个符号承载的平均信 息量由信源熵来定量描述;而从信宿的角度看,信宿收到 的每个符号平均能提供多少信息量由平均互信息来定量描 述。在信息论中,信道问题主要研究在什么条件下,信道 能够可靠传输的信息量最大,即信道容量问题。
《信息论基础》
3.7 信源与信道的匹配
第4章-单符号离散信道

p( y3 / xr )
p( ys / x1) p( ys / x2 )
p( ys / x3)
p( ys / xr )
信道确定,则转移概率矩阵确定。反之,转移概率矩 阵确定,则信道确定。
日思日睿 笃志笃行
信息论与编码
湖北大学物电学院蒋碧波
第1节 离散信道的数学模型
3) 状态转移图模型
a1 a2 a3 ai ar
1
1
0
0
0
1
1
1
1
日思日睿 笃志笃行
信息论与编码
湖北大学物电学院蒋碧波
第2节 条件自信量及平均条件自信量
1、几种概率及其关系
信源符号的概率分布,也称作先验概率
信道的转移概率 后验概率 联合概率分布
P(yj / xi ) P(xi / yj ) P(xi y j )
信宿符号的概率分布 P( y j )
P(x1)
log2
2 3
0.58(bits)
日思日睿 笃志笃行
信息论与编码
湖北大学物电学院蒋碧波
第2节 条件自信量及平均条件自信量
7 P( x0 | y0 ) 11
P( x0 )
1 3
P( x0
|
y1 )
3 19
I ( x0 | y0 ) 0.65(bits)
I (x0 ) 1.58(bits)
第2节 条件自信量及平均条件自信量
3、平均条件自信量
1)、定义
rs
H ( X |Y )
P( xi , y j )I ( xi | y j )
i1 j
r
i 1
s j
P( xi ,
y
j
《离散信道》课件

输入和输出都是离散的符号序列。
最大化信道容量的编码
包括香农编码、海明编码和线性码。
离散信道的度量
包括信息熵、互信息和信道容量。
离散信道的应用
广泛应用于无线通信、宽带通信、数据压缩 和错误校正等领域。
联合概率分布
输入和输出同时发生的概率分布。
离散信道的度量
1
信息熵
用于表示随机变量的不确定性,是一个非负实数。
2
互信息
度量输入和输出之间的相互依赖性。
3
信道容量
指在存在一定的噪声时,通过离散信道可以传送的最大信息量。
最大化信道容量的编码
1 香农编码
用于达到信道容量的上限。
2 海明编码
纠正输入中的错误,常用于数字通信中的误码控制。
3 线性码
它具有高效的编码和译码算法,因此在通信中经常使用。
离散信道的应用
无线通信
使得人们可以随时随地通过信号相互沟通交流。
宽带通信
有足够的带宽和速度以支持多种智能设备。
数据压缩
降低存储或传输数据所需的比特数量,从而节省 带宽和存储空间。
错误校正
处理输入错误,并通过编码和解码操作纠正错误。
总结
离散信道
离散信道
通过本课件,您将了解离散信道的定义,概率模型,度量,编码方法和应用, 并深入探讨离散信道技术在现代通讯中的应用成的通道。
例子
二进制对称信道是一个常见的离散信道,每个符号由0或1组成。
离散信道的概率模型
条件概率分布
给定输入,输出发生的概率分布。
最大化信道容量的编码
包括香农编码、海明编码和线性码。
离散信道的度量
包括信息熵、互信息和信道容量。
离散信道的应用
广泛应用于无线通信、宽带通信、数据压缩 和错误校正等领域。
联合概率分布
输入和输出同时发生的概率分布。
离散信道的度量
1
信息熵
用于表示随机变量的不确定性,是一个非负实数。
2
互信息
度量输入和输出之间的相互依赖性。
3
信道容量
指在存在一定的噪声时,通过离散信道可以传送的最大信息量。
最大化信道容量的编码
1 香农编码
用于达到信道容量的上限。
2 海明编码
纠正输入中的错误,常用于数字通信中的误码控制。
3 线性码
它具有高效的编码和译码算法,因此在通信中经常使用。
离散信道的应用
无线通信
使得人们可以随时随地通过信号相互沟通交流。
宽带通信
有足够的带宽和速度以支持多种智能设备。
数据压缩
降低存储或传输数据所需的比特数量,从而节省 带宽和存储空间。
错误校正
处理输入错误,并通过编码和解码操作纠正错误。
总结
离散信道
离散信道
通过本课件,您将了解离散信道的定义,概率模型,度量,编码方法和应用, 并深入探讨离散信道技术在现代通讯中的应用成的通道。
例子
二进制对称信道是一个常见的离散信道,每个符号由0或1组成。
离散信道的概率模型
条件概率分布
给定输入,输出发生的概率分布。
离散信道及容量

P(y 0) P(x) P(0 | x) p (1) p p p
平均信息量之和; H XY H X H Y
(b)一个符号不能提供有关另一符号的任何信息。
IX ;Y IY; X 0
HX ,Y 0
当两个信源相关时 (a)联合熵小于两个信源的熵的和:
H XY H X H Y
(b)平均互信息量等于两信源熵重合的部分; (c)信源的条件熵等于其熵减去平均互信息量:
3. 平均互信息的交换性(对称性)
I (X ;Y ) I (Y; X )
4. 平均互信息 I ( X ; Y ) 的凸状性
I ( X ;Y ) P(xy) log P( y | x)
X ,Y
P( y)
P(x)P( y | x) log X ,Y
P( y | x) P(x)P( y | x)
p0 / 0 0.99
0
0
p0 /1 0.01
p1/ 0 0.01
错误的概率为0.01。
1
1
即有
p1/1 0.99
p yi / xi p0/ 0 p1/1 0.99
p yj / xi p1/ 0 p0 /1 0.01 i j
转移矩阵
pY / X p y j / xi
满足其的充要条件是:
N
P(Y X ) p( y1y2...yN x1x2...xN ) p( yi xi ) i1
对任意的N值和x,y值上式都成立。
3.有干扰有记忆信道 信道中某一瞬间的输出符号不但与对应时刻的输入符号 有关,而且还与此前其它时刻信道的输入符号有关,则该信 道称有记忆信道。 此时 P(Y X ) 不满足:
p(xi ) p( y j
N
xi )
平均信息量之和; H XY H X H Y
(b)一个符号不能提供有关另一符号的任何信息。
IX ;Y IY; X 0
HX ,Y 0
当两个信源相关时 (a)联合熵小于两个信源的熵的和:
H XY H X H Y
(b)平均互信息量等于两信源熵重合的部分; (c)信源的条件熵等于其熵减去平均互信息量:
3. 平均互信息的交换性(对称性)
I (X ;Y ) I (Y; X )
4. 平均互信息 I ( X ; Y ) 的凸状性
I ( X ;Y ) P(xy) log P( y | x)
X ,Y
P( y)
P(x)P( y | x) log X ,Y
P( y | x) P(x)P( y | x)
p0 / 0 0.99
0
0
p0 /1 0.01
p1/ 0 0.01
错误的概率为0.01。
1
1
即有
p1/1 0.99
p yi / xi p0/ 0 p1/1 0.99
p yj / xi p1/ 0 p0 /1 0.01 i j
转移矩阵
pY / X p y j / xi
满足其的充要条件是:
N
P(Y X ) p( y1y2...yN x1x2...xN ) p( yi xi ) i1
对任意的N值和x,y值上式都成立。
3.有干扰有记忆信道 信道中某一瞬间的输出符号不但与对应时刻的输入符号 有关,而且还与此前其它时刻信道的输入符号有关,则该信 道称有记忆信道。 此时 P(Y X ) 不满足:
p(xi ) p( y j
N
xi )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3.3信道的平均互信息及其含义 定义4-3信源熵与信道疑义度之差称为平均互 信息 I(X;Y)= H(X) - H(X/Y)
H(X)是信道输入X本身具有的信息量, H(X/Y) 是观察到信道输出之后仍然保留 的关于X的信息量。因此I(X;Y)的含义
是接收到信道的输出符号集Y后,平均每个 符号获得的关于X的信息量,即通过信道传 送过去的信息量。
j=1
共有r*s个P(yj/xi)组成一个矩阵,称为信道转移矩阵
p11 p12 p 21 p 22 PY/X = ... ... pr1 pr2
p1s ... p 2s ... ... ... prs ...
例4-3接例2-12,假设串口通信的误码率为 4%,可以得该信道的转移矩阵为
I ( X ; Y ) p( x, y ) log
x, y
p( x / y) p( x) p( y / x) p( y)
p( x, y) log
x, y
p ( x, y ) p( x) p( y )
p( x, y) log
x, y
可见平均互信息是p(x)和p(y/x)的函数, 而p(x)代表了信源,p(y/x)代表了信道。 因此平均互信息是信源和信道的函数。
例4-10接例4-6 I(X;Y)=
(p p) log 1 1 1 1 (p p) log ( p log p log ) p p p p p p
对于给定的二进制对称信道,当信源为等概分布 时,即ω =1/2时,信道输出端平均每个符号获 得最大信息量,即信道容量为
4.2 信道的分类
1.按输入和输出符号的时间特性分 离散信道、连续信道和半连续信道。 离散信道的输入空间X和输出空间Y都是离散 符号集,离散信道有时又称为数字信道。像 手机和手机之间的信道就是数字信道。 连续信道的输入空间X和输出空间Y都是连续 符号集,连续信道又称为模拟信道。像电台 发出信号,我们用收音机接收就是一个模拟 信道。
4.3.2信道疑义度和噪声熵 定义4-1称信道的输入空间X对输出空间Y的条件熵 H(X/Y)为信道疑义度。 定义4-2称信道的输出空间Y对输入空间X的条件熵 H(Y/X)为噪声熵。 例4-4 (1)无噪无损信道H(X/Y) =0,H(Y/X)=0 (2)有噪无损信道H(X/Y) =0,H(Y/X) ≠0 (3)无噪有损信道H(X/Y) ≠ 0,H(Y/X) = 0
3.按信道的统计特性分为恒参信道和随参信道。 恒参信道的统计特性不随时间发生变化,随 参信道的统计特性随时间发生变化。 4.按信道的记忆特性分为无记忆信道和有记忆 信道。 无记忆信道中当前的输出仅与当前的输入有 关,与过去的输入无关。有记忆信道中当前 的输出不仅与当前的输入有关,还与过去的 输入有关。
PY/X =
0.96 0.04 0.04 0.96
以下是一个可能的信道输出 01001001111011010000000011010010 01001001101001010000000011010010 0111111101111110001000111000 0111101101111110001000111000
4.4信道的组合
多个信道并行传输信息的组合方式称为积信道。 多个信道串行传输信息的组合方式称为和信道 (或级联信道、串联信道)。 级联信道模型
x
信道Ⅰ p(y/x)
y
信道Ⅱ p(z/xy)
z
引理4-1级联信道中的平均互信息满足以下关系 I(XY;Z)≥I(Y;Z) I(XY;Z)≥I(X;Z)等号成立的充要条件是,对 所有的x,y,z有p(z/xy)=p(z/y)=p(z/x) p(z/xy)=p(z/y),表明级联信道的输出Z仅依赖于Y,而 与前面的X无关,即X、Y、Z构成一个马尔可夫链。此时有 定理4-3 若随机变量X、Y、Z构成一个马尔可夫链,则有 I(X;Z)≤I(X;Y)
1 1 C= 1 ( p log p log ) p p
4.5.3三种特殊信道的容量 (1)无噪无损信道H(X/Y) =0,H(Y/X)=0
C max I ( X ; Y ) =logr=logs p(a )
i
最佳输入分布为等概分布。 (2)有噪无损信道H(X/Y) =0,H(Y/X) ≠0
例4-5接例4-3设串口0和1等概分布,计算该信道信道疑义 度和噪声熵。
PX= 1 / 2 1 / 2 PY/X= 0.96 0.04 0.04 0.96
P(X,Y)= 0.48 0.02 0.02 0.48
PX/Y= 0.96 0.04 0.04 0.96 H(X/Y) =0.2423bit/sign H(Y/X)=0.2423bit/sign
I(X;Y) I(X;Z)
1
0 1
1
0.8
0.6
m=1 m=2
0.4
m=3
0.2
0 0 0.5 1
例4-8一个串联信道如图, x、Y、Z构成一个 马尔可夫链。 串联信道
等效信道
4.5信道容量
4.5.1信息传输率 信息传输率:信道中平均每个符号所能传送的信息量, R=I(X;Y)=H(X)-H(X/Y) 比特/符号 信息传输速率:信道在单位时间内平均传输的信息量, Rt=I(X;Y)/t 比特/秒 传输速率是实际通信系统的一个重要指标,它衡量了 实际通信系统实际传输信息的能力,单位为bit/秒, 常写为bps。 例4-9常见无线通信系统的传输速率 在工程实践中,传输速率通常称为信道的带宽。
(1)无噪无损信道的输入X与输出Y存在一一对应关 系。发送的符号不会发生错误,因此信道中没有噪 声。接收到一个符号能够肯定地判断对应的输入是 什么,因此也没有信息的损失。 (2)有噪无损信道的一个输入符号可能对应多个输出 符号,而一个输出符号只对应一个输入符号。发送 的符号可能会发生错误,因此信道中有噪声。接收 到一个符号能够肯定地判断对应的输入是什么,因 此没有信息的损失。
60个bit中有3bit错误,误码率为0.05与0.04 接近。 该离散无记忆信源的特点: 1.输入输出的符号个数均为2个; 2.信道矩阵为对称矩阵。 称为二进制对称信道BSC。
1-p 0 p p 0
p 1 p P p 1 p
1
1 1-p
•p(Y=0|X=1) = p(Y=1|X=0) = p •p(Y=1|X=1) = p(Y=0|X=0) = 1- p
半连续信道的输入空间X和输出空间Y一个是 离散符号集,另一个是连续符号集。像手机和 固话之间的信道就是一个半连续信道,手机 上处理的是数字信号,固话上处理的是模拟信 号。 2.按输入和输出端的个数分 两端信道、多元接入信道和广播信道。
输 入 端 两端信道 输 出 端 输入端 输入端 输入端 多元接入信道 输 出 端
I(X;Z)
≤ I(Y;Z)
例4-7设有两个离散二元对称信道,进行串联。
1 X 0 P 1 / 2 1 / 2
两个信道的信道矩阵相同,均为:
p 1 p P1 P2 p 1 p
如果x、Y、Z构成一个马尔可夫链,则单个信 道的平均互信息为I(X;Y)=1-H(p); 串联信道的平均互信息为 I(X;Z)=1-H(2p(1-p))
第四章 离散数学
4.1 离散信道的数学模型 4.2 信道的分类 4.3离散无记忆信道 4.4信道的组合 4.5信道容量
4.1 离散信道的数学模型
信道可以看做是一个变换器,它将输入符号x变换 成输出符号y。
设信道 输入矢量为 X ( X 1 , X 2 , X i ,), X i a1 , , an 输出矢量为 Y (Y1,Y2 ,Y j ,), X j b1 , , bm , 条件概率 p(Y/X)来描述信道输入输出信 号之间统计的依赖关系
C max I ( X ; Y ) =logr
p ( ai )
最佳输入分布为等概分布
(3)无噪有损信道H(X/Y) ≠ 0,H(Y/X) = 0
C max I ( X ; Y )
p ( ai )
=logs 最佳输入分布为使得输出为等概分布的输入分布。
4.5.4对称信道的容量
定义4-5输入对称 如果转移概率矩阵P的每一行都是其他行的置 换(包含同样元素),称该信道是输入对称信道。 定义4-6输出对称 如果转移概率矩阵P的每一列都是其他列的置 换(包含同样元素),称该信道是输出对称信道。 定义4-7对称信道 如果输入、输出都对称,该信道是对称信道。
4.5.2信道容量的定义及含义 对于固定信道,平均互信息I(X;Y)是信源 分布p(x)的上凸函数。因此对于一个给定的 信道总存在着一种信源,使平均互信息I(X; Y)达到最大,这个最大的信息传输率定义为 该信道的信道容量。单位比特/符号
C max I ( X ; Y )
p ( ai )
信道容量C是描述信道传输信息能力的一个参数。 信道容量的计算可以通过找出适当的信源分布 p(x),使平均互信息I为最大值来完成。使I 达到最大值的p(x)称为该信道的最佳输入分 布。信道容量反映了信道传输信息的最大能力。
(3)无噪有损信道的一个输入符号只对应一 个输出符号,而一个输出符号可能对应多个 输入符号。发送的符号不会发生错误,因此 信道中没有噪声。接收到一个符号不能够肯 定地判断对应的输入是什么,因此有信息的 损失。
4.3离散无记忆信道
4.3.1离散无记忆信道的数学模型 无记忆信道中当前的输出yj仅与当前的输入 xi有关,与过去的输入无关。 P(yj/xi)(i=1,…,r;j=1,…,s), 其中 P(yj/xi)≥0 s ∑ P(yj/xi)=1
5.几种特殊信道 (1)无噪无损信道 (2)有噪无损信道
(3)无噪有损信道
X 1 1 1 (a) 无噪无损信道 1 1 1 1 (b) 无噪有损信道 (c) 有噪无损信道 Y X 1 Y X Y