高中数学人教版选修4-4教学课件ppt

合集下载

最新人教版高三数学选修4-4电子课本课件【全册】

最新人教版高三数学选修4-4电子课本课件【全册】
最新人教版高三数学选修4-4电子 课本课件【全册】
四 柱坐标系与球坐标系简介
最新人教版高三数学选修4-4电子 课本课件【全册】
第二讲 参数方程
最新人教版高三数学选修4-4电子 课本课件【全册】目录
0002页 0066页 0118页 0187页 0243页 0338页
引言 一 平面直角坐标系 三 简单曲线的极坐标方程 第二讲 参数方程 二 圆锥曲线的参数方程 四 渐开线与摆线
引言
最新人教版高三数学选修4-4电子 课本课件【全册】
第一讲 坐标系
一 曲线的参数方程
最新人教版高三数学选修4-4电子 课本课件【全册】
最新人教版高三数学选修4-4电子 课本课件【全册】
一 平面直角坐标系
最新人教版高三数学选修4-4电子 课本课件【全册】
二 极坐标系
最新人教版高三数学选修4-4电子 课本课件【全册】
三 简单曲线的极坐标方程

高中数学人教A版选修4-4第二讲 一 1. 参数方程的概念 课件

高中数学人教A版选修4-4第二讲 一 1. 参数方程的概念 课件
[思路点拨] 此类问题关键是参数的选取.本例中由于 A、 B 的滑动而引起点 P 的运动,故可以 OB 的长为参数,或以角 为参数,不妨取 BP 与 x 轴正向夹角为参数来求解.
[解] 法一:设 P 点的坐标为(x,y),过
P 点作 x 轴的垂线交 x 轴于 Q.如图所示,则 Rt△OAB≌Rt△QBP.
∴xy==bascions
θ, θ.
这就是所求的轨迹方程.
9.如图所示,OA是圆C的直径,且OA=2a, 射线OB与圆交于Q点,和经过A点的切线 交于B点,作PQ⊥OA,PB∥OA,试求点P 的轨迹方程.
解:设 P(x,y)是轨迹上任意一点,取∠DOQ=θ, 由 PQ⊥OA,PB∥OA,得 x=OD=OQcosθ=OAcos2θ= 2acos2θ,y=AB=OAtan θ=2atan θ. 所以 P 点轨迹的参数方程为xy==22aatcaons2θθ,, θ∈-π2,π2.
解析:x轴上的点横坐标可取任意实数,纵坐标为0.
答案:D
2.若点P(4,a)在曲线x=2t , (t为参数)上,则a等于(
)
y=2 t
A.4
B.4 2
C.8
D.1
解析:根据题意,将点P坐标代入曲线方程中得
4=2t , a=2 t
⇒ta==84,2.
答案:B
3.在方程
参数方程是曲线方程的另一种表达形式,点与曲线 位置关系的判断,与平面直角坐标方程下的判断方法是 一致的.
1.已知点 M(2,-2)在曲线 C:x=t+1t , (t 为参数)上, y=-2
则其对应的参数 t 的值为________. 解:由 t+1t =2 知 t=1. 答案:1
2.已知某条曲线 C 的参数方程为xy==a1t+2 2t, (其中 t 为参数, a∈R).点 M(5,4)在该曲线上,求常数 a.

人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件

人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
空间点 P 的直角坐标(x,y,z)与球坐标(r,φ 之间的变换关系为:____x_2_+__y2_+__z_2=__r_2,___.
x=rsin φcos θ , y=rsin φsin θ , z=rcos φ
预习 思考
(1,1,1)
1.设
P







2,π4,1 . 则 它 的 直 角 坐 标 为
____________.
2.设点 M 的球坐标为2,34π,34π,它的直角坐标为 ____ቤተ መጻሕፍቲ ባይዱ_______.
(-1,1,- 2)
题型1 柱坐标、球坐标的确定
例1 如图所示,已知长方体 ABCD-A1B1C1D1 的边长 AB 6 3,AD=6,AA1=12,以这个长方体的顶点 A 为坐标原点 以射线 AB、AD、AA1 分别为 x 轴、y 轴、z 轴的正半轴, 立空间直角坐标系,求长方体顶点 C1 的空间直角坐标、柱 标、球坐标.
变式 训练
1.建立如下图所示的柱坐标系,写出棱长为 1 的正方
各顶点的柱坐标.
变式 训练
变式 训练
题型2 柱、球坐标与直角坐标的互化
例2
已知点
M




人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

A. y 1
sin t
1
x t2
C.
1
yt 2
x cos t
B. y 1
cos t
x tan t
D. y 1
tan t
7.极坐标方程
2
arcsin化(为 直0)角坐标方程的形
式是 ( )
A. x2 y2 x 0
B.y x(1 x)
C. 2x 1 4y2 1 D..y (x 1)
2.极坐标(,)与(ρ,2kπ+θ)( k )表z 示 同一个点.即一点的极坐标的统一的表达式 为(ρ,2kπ+θ)
3.如果规定ρ>0,0≤θ<2π,那么除 极 点外,平面内的点和极坐标就可以一一对 应了。
我们学了直角坐标,也学了极坐 标,那么这两种坐标有什么关系呢? 已知点的直角坐标为,如何用极坐标 表示这个点呢?
M (, )
0
x
2
4
5
6
C
1.如图,在极坐标系中,写出点 AF(,6B, ,4C3 ,)D的, G极(坐5, 标53,所) 并在标的出位E置( 72 , ) ,
E D BA
O
X
4 F
3
G 5
3
解:如图可得A,B,C,D的坐标分别为
(4,0)
(2, )
(3, )
(1, 5 )
4
2
6
点E,F,G的位置如图所示
1
4.极坐标方程ρ=cosθ与ρcosθ= 的2 图形是( ) B
A
B
C
D
解x=:12把,ρc故os排θ=除A,、12 化D;为又直圆角ρ坐=c程os,θ显得然: 过点 (0,1),又排除C,故选B。
5、若A、B的两点极坐标为A(4,

人教版高中数学选修4-4课件:第二讲二第2课时双曲线的参数方程和抛物线的参数方程

人教版高中数学选修4-4课件:第二讲二第2课时双曲线的参数方程和抛物线的参数方程

x=sec θ,
解:把双曲线方程化为参数方程
(θ 为参
y=tan θ
数),
林老师网络编辑整理
18
设双曲线上点 Q(sec θ,tan θ),则
|PQ|2=sec2θ+(tan θ-2)2=
(tan2θ+1)+(tan2θ-4tan θ+4)=
2tan2θ-4tan θ+5=2(tan θ-1)2+3,
林老师网络编辑整理
5
2.抛物线的参数方程
如图,抛物线 y2=2px(p>0)的参数方程为
x=2pt2,
____y_=__2_p_t ____t为参数,t=tan1

α.
林老师网络编辑整理
6
温馨提示 t=sin1 α(α 是以射线 OM 为终边的角),即 参数 t 表示抛物线上除顶点之外的任意一点与原点连线的 斜率的倒数.
第二讲 参数方程
林老师网络编辑整理
1
二、圆锥曲线的参数方程 第 2 课时 双曲线的参数方程和
抛物线的参数方程
林老师网络编辑整理
2
[学习目标] 1.了解抛物线和双曲线的参数方程,了 解抛物线参数方程中参数的几何意义(重点). 2.利用抛 物线和双曲线的参数方程处理问题(重点、难点).
林老师网络编辑整理
当 tan θ-1=0,即 θ=π4时,
|PQ|2 取最小值 3,此时有|PQ|= 3.
即 P、Q 两点间的最小距离为 3.
林老师网络编辑整理
19
[迁移探究] (变换条件)已知圆 O1:x2+(y-2)2=1 上一点 P 与双曲线 x2-y2=1 上一点 Q,求 P,Q 两点间 距离的最小值.
解:设 Q(sec θ,tan θ), 由题意知|O1P|+|PQ|≥|O1Q|. |O1Q|2=sec2θ+(tan θ-2)2=

高二数学之人教版高中数学选修4-4课件:第一讲二极坐标

高二数学之人教版高中数学选修4-4课件:第一讲二极坐标
答案:(1)√ (2)× (3)× (4)√
2.已知 M 点的极坐标为-5,π3,下列极坐标不能 表示点 M 的是( )
A.5,-π3 C.5,-23π
B.5,43π D.-5,-53π
解析:一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)、(-ρ, 2kπ+π+θ)(k∈Z)表示同一个点,检验应选 A.
A________ B________ C________ D________
E________ F________ G________
(2) 与 极 坐 标 -2,π6 不 表 示 同 一 个 点 的 极 坐 标 是
()
A.2,76π
B.2,-76π
C.-2,-116π
D.-2,136π
解析:(1)根据极坐标定义,若 M 是平面上任一点,ρ 表示 OM 的长度,θ 表示以射线 Ox 为始边,射线 OM 为 终边所成的角,则 M 的极坐标为(ρ,θ).
4.写出下图中各点的极坐标:
A________,B________,C________. 答案:(4,0) 2,π4 3,π2
5.极坐标系中,与点3,-π3关于极轴所在直线对 称的点的极坐标是________.
答案:3,π3
类型 1 极坐标系与点的极坐标(自主研析) [典例 1] (1)写出下图中各点的极坐标(ρ>0,0≤ θ<2π,且各线之间间距相等).
③点 A 关于直线 θ=π2的对称点的极坐标是_______. 解析:(1)如图所示,△OAB 为等腰直角三角形, 斜边 AB= 于极轴对称点为 B3,116π. ②关于极点对称点 C3,76π. ③关于直线 θ=π2的对称点为 D3,56π.
答案:(1)2 (2)①3,116π ②3,76π ③3,56π

高中数学人教A版选修4-4课件:1本讲整合

高中数学人教A版选修4-4课件:1本讲整合

综合应用
真题放送
1(2016· 上海高考,理16)下列极坐标方程中,对应的曲线为右图的是 ( )
A.ρ=6+5cos θ B.ρ=6+5sin θ C.ρ=6-5cos θ D.ρ=6-5sin θ
解析:依次取 θ=0, , π,
2 π 3π 2
,
结合题图可知只有ρ=6-5sin θ满足,选D. 答案:D
知识建构 专题一 专题二 专题三
综合应用
真题放送
应用 说出由曲线y=tan x得到曲线y=3tan 2x的变换规律,并求出 满足其图形变换的伸缩变换. ������' = ������������(������ > 0), 提示:主要考查变换公式 ������' = ������������(������ > 0).
知识建构 专题一 专题二 专题三
综合应用
真题放送
应用 求点������ 4,
π 3
到直线������cos ������-
π 3
= 2 上的点的距离的最小值.
提示:可以先化为直角坐标再求解.
解 :点 M 的直角坐标为 (2,2 3), ∵ρcos ������1 2 π 3
= 2,
π π 3 1 2 3 3
知识建构 1 2 3 4 5 6 7
综合应用
真题放送
2(2015· 广东高考,理 14)已知直线 l 的极坐标方程为 2ρsi n ������2, 点������的极坐标为������ 2 2,
7π 4
π 4
= .
, 则点������到直线������的距离为
解析:2ρsin ������π 4
������
与 y=tan x 比较 ,则有 μ=3,λ= . 所以所求的伸缩变换为

人教版高中数学选修4-4课件:第二讲一第2课时圆的参数方程

人教版高中数学选修4-4课件:第二讲一第2课时圆的参数方程
圆的参数方程知 D 正确. 答案:D
3.参数方程x=11-+tt22,(t 为参数),化为普通方程为 y=1+2tt2
() A.x2+(y-1)2=1
B.(x-1)2+y2=1
C.(x-1)2+(y-1)2=1 D.x2+y2=1
1-t2 1-x 解析:x=1+t2,1+x=t2
代入
y=1+2tt2,
|1-(-2)+m|

2
=2,解得 m=-3±2 2.
类型 2 利用圆的参数方程求轨迹
[典例 2] 如图,圆 O 的半径为 2,P 是圆上的动点, Q(6,0)是 x 轴上的定点,M 是 PQ 的中点.当点 P 绕点 O 作匀速圆周运动时,求点 M 的轨迹的参数方程.
解:设点 M 的坐标为(x,y),∠POQ=θ,取 θ 为参
(2)圆(x-x0)2+(y-y0)2=r2 的参数方程为 ___xy_==__yx_00++__rr_sc_ion_s_θθ_,__(_θ_为__参__数__)_.__
温馨提示 圆的参数方程不唯一,选取的参数不同,
相应的参数方程也不同.
[思考尝试·夯基]
1.思考判断(正确的打“√”,错误的打“×”).
(1)求圆 C 的普通方程及直线 l 的直角坐标方程; (2)设圆心 C 到直线 l 的距离等于 2,求 m 的值.
解:(1)消去参数 t,得到圆的标准方程为(x-1)2+(y
+2)2=9. 由 2ρsin(θ-π4)=m,得 ρsin θ-ρcos θ-m=0. 所以直线 l 的直角坐标方程为 x-y+m=0. (2)依题意,圆心 C 到直线 l 的距离等于 2,
2.利用圆的参数方程容易解决一些与圆有关的最值 和取值范围问题.
求最值问题时,利用圆的参数方程来将问题合理地转 化,常用的方法是建立代数与三角函数的联系,利用三角 函数的值域求解,解决此类问题还要注意数形结合思想的 应用.

2018年高中数学人教版选修4-4课件:渐开线与摆线

2018年高中数学人教版选修4-4课件:渐开线与摆线

, .
是参数
方程 .
在机械工业中 轮传递动力 的齿轮磨损少 安装方便 用这种齿轮
, 广泛地使用齿 .由 于 渐 开 线 齿 形 , 传动平稳 , 制造
,因 此 大 多 数 齿 轮 采 , 设计加工这种齿 程.
轮 , 需要借助圆的渐开线方
欣赏在上述几何条件下 M 形成轨迹的过程 .

渐开线与摆线

图 2 17
根据动点满足的几何条 我们以基圆圆心
件,
O 为原点 ,
直线 OA 为 x 轴 , 建立平面直 角坐标系
图 2 18 .
r , 绳子外
设基圆的半径为 端 M 的坐标为
x , y .显然
.
,
图 2 18
点 M 由角 惟一确定
取 为参数 , 则点 B 的坐标为 从而 BM
O
M D

B C
A
x
图 2 20
设开始时定点 于点 A , 圆心在点 垂足分别是
M 在原点 , 圆滚动 角后与 x 轴相切 B .从点 M 分别作 AB , x 轴的垂线 ,
C , D . 设点 M 的坐标为
,有
x , y , 取 为参
数 , 根据点 M 满足的几何条件
x OD OA DA OA MC r r sin ,
MA 的 长 , 即 OA
M 在 圆 B 沿直线滚动过 .我们把点 M 的轨迹叫做 .
, 又叫
下面我们求摆线的参 数方程 .
y
根据点 M 满足的几何 条件 , 我们取直线为 轴 , 定点 M 滚动时落在 定直 线 上的一个位置 为原点 , 建立直角坐标系 (图 2 20 ), 设圆的半径为 r. x

高中数学人教A版选修4-4第二讲 四 渐开线与摆线 课件

高中数学人教A版选修4-4第二讲 四 渐开线与摆线 课件

由参数方程知点M的轨迹方程为xy==aa1φ--csoins
φ, φ.
9.已知一个圆的摆线方程是
x=4φ-4sin φ, y=4-4cos φ
(φ为参数),
求该圆的面积和对应的圆的渐开线的参数方程.
解:首先根据摆线的参数方程可知圆的半径为4,所以面
积是16π,该圆对应的渐开线参数方程是
3.摆线
x=2t-sin t, y=21-cos t
(0≤t≤2π)与直线y=2的交点的直角
坐标是________.
答案:(π-2,2);(3π+2,2)
4.圆的半径为r,沿x轴正向滚动,圆与x轴相切于原点O.圆 上点M起始处沿顺时针已偏转φ角.试求点M的轨迹方 程.
解:xM=r·φ-r·cosφ-π2=r(φ-sin φ), yM=r+r·sin(φ-π2)=r(1-cos φ).
理解教材新知 四
第 二 讲
渐 开 线 与
把握热点考向

线 应用创新演练
考点一 考点二

渐开线与摆线
1.渐开线的产生过程 把一条没有弹性的细绳绕在一个圆盘上,在绳的外端
系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展 开,那么铅笔画出的曲线就是圆的__渐__开__线___,相应的定圆 叫做__基__圆__.__
又OM =(x,y),
因此有xy==44scions
θ+θsin θ-θcos
θ, θ.
这就是所求圆的渐开线的参数方程.
圆的渐开线的参数方程中,字母r表示基圆的半径, 字母φ是指绳子外端运动时绳子上的定点M相对于圆心 的张角;另外,渐开线的参数方程不宜化为普通方程.
1.已知圆的渐开线的参数方程
答案:C
二、填空题

人教版选修4-4 极坐标与参数方程(精品课件)共24张PPT

人教版选修4-4 极坐标与参数方程(精品课件)共24张PPT

三、极坐标的正式应用和扩展
◆1736年出版的《流数术和无穷级数》一书中,牛顿 第一个将极坐标系应用于表示平面上的任何一点。牛 顿在书中验证了极坐标和其他九种坐标系的转换关系。 ◆在1691年出版的《博学通报》一书中伯努利正式使 用定点和从定点引出的一条射线,定点称为极点,射 线称为极轴。平面内任何一点的坐标都通过该点与定 点的距离和与极轴的夹角来表示。伯努利通过极坐标 系对曲线的曲率半径进行了研究。
(2)点P(ρ,θ)与点(ρ,2kπ+θ)(k∈Z)
所表示的是同一个点,即角θ与2kπ+θ的终边是 相同的。 综上所述,在极坐标系中,点与其点的极 坐标之间不是一一对应而是一对多的对应
(ρ,θ),(ρ,2kπ+θ),(-ρ,(2k+1)π+θ)均 表示同一个点
3.极坐标和直角坐标的互化
y
(1)互化背景:把直角坐标系 的原点作为极点,x轴的正半轴 作为极轴,并在两种坐标系中取 相同的长度单位,如图所示:
极坐标系和参数方程虽为选修内容,高中学生也 应该重视对本专题的学习,既可以体会其中的数 学思想,也能提高对数学的认识,而且可以与已 学知识融会贯通
极坐标系
定义:平面内的一条有规 定有单位长度的射线0x,0 为极点,0x为极轴,选定 一个长度单位和角的正方 向(通常取逆时针方向), 这就构成了极坐标系。
关于教材编排
参数方程是选修4-4专题的一个重要内容。这一专 题包含、涉及了很多高中内容。利用高二学生已掌 握的直线、圆和圆锥曲线曲线方程为基础,鼓励学 生利用参数的思想对它们进行探究解析,以及能学 习掌握如何优化参数的选择推出已知曲线方程的参 数形式,能等价互化参数方程与普通方程;借助实 际生活例子或相应习题体会参数方程的优势,理解 学习参数方程的缘由。

高中数学人教B版选修4-4第二章 2.3 2.3.1 椭圆曲线的参数方程 课件

高中数学人教B版选修4-4第二章 2.3 2.3.1 椭圆曲线的参数方程 课件
答案: 6
三、解答题 9.在平面直角坐标系 xOy 中,点 P(x,y)是椭圆x32+y2=1 上的一
个动点,求 S=x+y 的最大值.
解:椭圆x32+y2=1 的参数方程为xy==sin3cφo,s φ, 0≤φ≤2π. 故可设动点 P 的坐标为( 3cos φ,sin φ), 其中 0≤φ≤2π.
D.152,152
解析:因为xy--00=43tan θ=tan π4=1,所以 tan θ=34.
所以 cos θ=45,sin θ=35,代入得 P 点坐标为152,152. 答案:D
二、填空题 5.已知曲线 C:xy==2cosisnθθ, (0≤θ≤2π)经过点m,12,则 m=
11.椭圆xa22+by22=1(a>b>0)与 x 轴正半轴交于点 A,若这个椭圆上总 存在点 P,使 OP⊥AP(O 为坐标原点),求离心率 e 的取值范围. 解:由题意,知 A(a,0),若存在点 P,使 OP⊥AP, 则点 P 必落在第一或第四象限,故根据椭圆的参数方程可 设 P(acos φ,bsin φ),φ∈0,π2∪32π,2π. 因为 OP⊥AP, 所以 kOP·kAP=-1,即abcsions φφ·acbossinφ-φ a=-1. 所以 b2sin2φ+a2cos2φ-a2cos φ=0,
(1)利用椭圆的参数方程可把几何问题转化为三角问题,便 于计算或证明.
(2)利用参数方程解决此类问题时,要注意参数的取值范围.
3.求证:椭圆xy==bascions
θ, θ
(a>b>0,0≤θ≤2π)上一点 M 与其
左焦点 F 的距离的最大值为 a+c(其中 c2=a2-b2).
证明:M,F 的坐标分别为(acos θ,bsin θ),(-c,0). |MF|2=(acos θ+c)2+(bsin θ)2 =a2cos2θ+2accos θ+c2+b2-b2cos2θ =c2cos2θ+2accos θ+a2=(a+ccos θ)2. ∴当 cos θ=1 时,|MF|2 最大,|MF|最大,最大值为 a+c.

人教版高中数学选修4-4第二讲第二节5圆的参数方程(共18张ppt)

人教版高中数学选修4-4第二讲第二节5圆的参数方程(共18张ppt)

思考:圆心为C(a,b),半径为r的圆的参数 方程是什么?
y b
v O
P r y
C
(x,y)
a
x
x
探究点1 圆的参数方程
圆心为C(a,b), 半径为r 的圆的参数方程 x a r cos (为参数) y b r sin
y b
v O
P(x,y) r y
C
a
x
∴该圆的圆心为(-1,3),半径为2. x 1 2 cos (θ为参数) ∴参数方程为 y 3 2 sin
练习:已知圆方程为 x2+y2=2x,写出它的参数方程.
x 1 cos 解: (为参数) y sin
比较圆的标准方程与参数方程,思考用参数 方程表达圆时有什么优点?
x f (t ), y g (t ).
并且对于 t 的每一个允许值,由方程组所确定的点 M(x, y) 都在这条曲线上,那么方程组就叫做这条曲线 的参数方程,联系变数 x, y 的变数 t 叫做参数. 2、求曲线的参数方程的步骤有哪些?
(1)建系;(2)设点;(3)选参;(4)列式;(5)证明.
x 2 cos (为参数) 2: y 2 sin _____________
x 5 cos 1 练习2 : 若圆的参数方程为 (为参数), y 5 sin 1 2+(y+1)2=25 ( x 1) 则其标准方程为_____________
答案: [1,3]
课堂训练
x 2 cos 1、P( x, y )是曲线 (为参数)上一点,则 y sin ( x 5) 2 ( y 4) 2的最大值为( A )

高中数学课件-选修4-4课件

高中数学课件-选修4-4课件

2cos( )
=
6
2 cos ( ) 2
2,
2
6
由此得,当cos( ) 1时, 6
d 取得最小值,且最小值为 2 . 阅后报告:本题主要考查极坐标与直角坐标的互化、椭圆的参数方程等基础知识. 考查运算求解能力,考查化归与转化思想.
1.(2013·安徽卷)在极坐标系中,圆ρ=2cosθ的垂直于极轴的两条切线 方程分别为( )
1.在同一平面直角坐标系中,经过变换
x y
5x 3y
后,ห้องสมุดไป่ตู้线
C 变为2x2 8 y2 1,则曲线 C 的方程为 ( )
A. 50x2 72 y 2 1 B. 9x2 100 y2 1
C. 10x2 24 y2 1
D. 2x2 8y2 1
25 9
解析:

x
y
5x 3y
代入
3.极坐标与直角坐标的转化 设 M 为平面上的一点,它的直角坐标为(x,y),极坐标为
(p, ).由图可知下面的关系式成立:
x
y
cos sin


2
tan
x2
y2
yx
x
顺便指出,
0.
上式对 p<0 也成立.这就是极坐标与直角坐标的互化公式.
【思考探究】 2.极坐标与直角坐标有何不同?
解析:
伸缩变换
x
y
32xy,可以化为
x y
1 3 1 2
x, y

代入圆的方
程 x2 y2 1,得(1 x)2 (1 y)2 1,
3
2
即 x 2 y2 1,
94
所以经过伸缩变换
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当半径OA绕点O旋转一周时, 到了点M的轨迹,它的参数方程是
x y
a b
cos , sin .
(
为参数)
y
A BM
O
x
欧姆龙贸易(上海)有限公司
当半径OA绕点O旋转一周时, 到了点M的轨迹,它的参数方程是
x y
a b
cos , sin .
(
为参数)
y
A
参数是点BM所 M
对应的圆的半径OA
提下,求出z=x-2y的最大值和最小值 吗?由此可以提出哪些类似的问题?
欧姆龙贸易(上海)有限公司
例2. 如图,x已2 知 y椭2 圆 1 上任 4
一点M(除短轴端点处)与短轴两端点
B1、B2的连线分别交x轴于P、Q两点, 求证|OP| ·|OQ|为y 定值. B2 M
欧姆龙贸易(上海)有限公司
O
B
必过( )
A. 点(2, 3) C. 点(1, 3)
B. 点(2, 0)
D. 点(0, )
2
欧姆龙贸易(上海)有限公司
x2 例y12. 在 1椭圆上求一点M, 94
使点M到直线x+2y-10=0的距离最 小,并求出最小距离.
欧姆龙贸易(上海)有限公司
思考 与简单的线性规划问题进行类比, 你能在实x数2 x,yy2满足1 的前 25 16
么?
以原点为圆心,分别以a、b(a> 为半径作两个同心圆.
y
欧姆龙贸易(上海)有限公司
O
x
以原点为圆心,分别以a、b(a> 为半径作两个同心圆.设A是大圆上的
点,连接OA,与小圆交于点B.
y
A B
O
x
欧姆龙贸易(上海)有限公司
以原点为圆心,分别以a、b(a>
为半径作两个同心圆.设A是大圆上的
点,连接OA,与小圆交于点B.过点A
欧姆龙贸易(上海)有限公司
探究
椭圆规是用来画椭圆的一种器械.它的构造 如图所示.在一个十字形的金属板上有两条互相 垂直的导槽,在直尺上有两个固定滑块A,B, 它们可分别在纵槽和横槽中滑动,在直尺上的 点M处用套管装上铅笔,使直尺转动一周就画
出一个椭圆.你能说明它的构造原理吗?
y M
O aB b x
求卫星轨道的参数方程.
2. 已知实数xx2、y满y2足 1,求 25 16
z=4x+5y的最大值与最小值.
欧姆龙贸易(上海)有限公司
的一个
欧姆龙贸易(上海)有限公司
讲授新课
1. 椭圆的参数方程
椭ax22圆
y2 b2
1(a b 0) 参数方程
的一个
x y
a cos, b sin .
(
为参数)
欧姆龙贸易(上海)有限公司
讲授新课
1. 椭圆的参数方程
椭ax22圆
y2 b2
1(a b 0) 参数方程
的一个
x y
A
欧姆龙贸易(上海)有限公司
x y
练ba习scio1ns.椭(圆为参数),
若∈[0,2],则椭圆上的点(-a,0)
对应的 =( )
A.
B.
C. 2
3
D.
2
2
欧姆龙贸易(上海)有限公司
x y
练ba习scio1ns.椭(圆为参数),
若∈[0,2],则椭圆上的点(-a,0)
对A 应的 =( )
A.
分别作x轴,y轴y 的
垂线,两垂线交于A 点M. B M
O
x
欧姆龙贸易(上海)有限公司
以原点为圆心,分别以a、b(a>
为半径作两个同心圆.设A是大圆上的
点,连接OA,与小圆交于点B.过点A
分别作x轴,y轴y 的
垂线,两垂线交于A 点M. B M
问题:求点M的参数 方程.
O
x
欧姆龙贸易(上海)有限公司
与坐标轴正半轴的两交点,在第一 象限的椭圆弧上求一点P,使四边形
OAPB的面积最大.
欧姆龙贸易(上海)有限公司
课堂小结
x2 a2
y2 b2
1(a
椭b圆 0)
的一个参数方程
x y
a b
cos , sin .
(
为参数)
欧姆龙贸易(上海)有限公司
课后作业 1. 一个人造地球卫星的运行轨道是一 个椭圆,长轴长为15 565km,短轴长 为15 443km.取椭圆中心为坐标原点,
P Qx
B1
练习3. 椭x圆2 y2 1 16 9
的内接矩形
的最大面积是___________________.
欧姆龙贸易(上海)有限公司
练习3. 椭x圆2 y2 1 16 9
的内接矩形
的最大面积是________2_4__________.
欧姆龙贸易(上海)有限公司
练习4. 已知A、xB2是椭y圆2 1 94
(或OB)的旋转O 角(称 x
为点M的离心角).
欧姆龙贸易(上海)有限公司 Nhomakorabea 探究椭圆规是用来画椭圆的一种器械.它的构造 如图所示.在一个十字形的金属板上有两条互相 垂直的导槽,在直尺上有两个固定滑块A,B, 它们可分别在纵槽和横槽中滑动,在直尺上的 点M处用套管装上铅笔,使直尺转动一周就画
出一个椭圆.你能说明它的构造原理吗?
a cos, b sin .
(
为参数)
这是中心在原点O,焦点在x轴上的
椭圆的参数方程.
欧姆龙贸易(上海)有限公司
思考
椭ax22圆
y2 b2
1(a b 0) 参数方程
的一个
x y
a cos, b sin .
(
为参数)
类比圆的参数方程中参数的意义,
此椭圆的参数方程中参数的意义是什
欧姆龙贸易(上海)有限公司
第二讲 参数方程
二 圆锥曲线的参数方程(一)
欧姆龙贸易(上海)有限公司
复习回顾
1. 圆x2+y2=r2的参数方程为
x y
r cos , r sin .
(
为参数);
2. 圆(x-a)2+(y-b)2=r2的参数方程为
x y
a r cos , b r sin .
(
为参数).
欧姆龙贸易(上海)有限公司
B.
C. 2
3
D.
2
2
欧姆龙贸易(上海)有限公司
练习2. 当参数变化时,动点 P(2cos, 3sin)所确定的曲线
必过( )
A. 点(2, 3) C. 点(1, 3)
B. 点(2, 0)
D. 点(0, )
2
欧姆龙贸易(上海)有限公司
练习2. 当参数变化时,动点
P(2cos, 3sin)所确定的曲线
复习回顾
练习.把下列参数方程化为普通方程, 并说明它们各表示了什么曲线.
(1)
x y
cos sin
;
(2)
x y
12co2ssin;
(3)
x y
2cos 3 sin
.
欧姆龙贸易(上海)有限公司
( 为参数)
讲授新课
1. 椭圆的参数方程
椭ax22圆
y2 b2
1(a b 0) 参数方程
相关文档
最新文档