【必考题】七年级数学下期中模拟试题(附答案)

合集下载

2021-2022学年七年级数学下学期期中期末必考题精准练苏科版试卷+答案

2021-2022学年七年级数学下学期期中期末必考题精准练苏科版试卷+答案

七年级下学期期中模拟卷一一.选择题(共10小题,满分20分,每小题2分)1.(2分)将下列图案通过平移后可以得到的图案是()A.B.C.D.2.(2分)下列计算正确的是()A.3x2+2x2=5x4B.3x7÷x5=3x2C.x3•x2=x6D.(x2)3=x53.(2分)下列长度的三条线段能组成三角形的是()A.3,4,7B.3,4,8C.3,3,5D.3,3,74.(2分)如图,在△ABC中,点D,E,F分别在边BC,AB,AC上,下列能判定DE∥AC的条件是()A.∠1=∠3B.∠3=∠C C.∠2=∠4D.∠1+∠2=180°5.(2分)下列从左到右的运算是因式分解的是()A.4a2﹣4a+1=4a(a﹣1)+1B.(x﹣y)(x+y)=x2﹣y2C.x2+y2=(x+y)2﹣2xy D.(xy)2﹣1=(xy+1)(xy﹣1)6.(2分)下列各式中能用平方差公式计算的是()A.(2x+5)(﹣2x﹣5)B.(m﹣1)(1﹣m)C.(﹣a+b)(a﹣b)D.(﹣x﹣y)(x﹣y)7.(2分)正五边形的内角和是()A.360°B.540°C.720°D.900°8.(2分)下列各式是完全平方式的是()A.a2+4B.x2+2xy﹣y2C.a2﹣ab+b2D.4x2﹣4xy+y29.(2分)如图,在△ABC中,∠ABC和∠ACB的平分线交于点O.若∠BOC=130°,则∠A的度数为()A.100°B.90°C.80°D.70°10.(2分)在如图所示的方格纸中,每个方格都是边长为1的正方形,点A,B是方格纸中的两个格点,在这个5×5的方格纸中,找出点C使△ABC的面积为1个平方单位,则满足条件的格点C的个数是有()A.3个B.4个C.5个D.6个二.填空题(共8小题,满分16分,每小题2分)11.(2分)已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为 千克.12.(2分)(13)−2=.13.(2分)分解因式:m 3﹣n 3=.14.(2分)把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,点D ,C 分别折叠到点M ,N 的位置上,∠EFG =54°,则∠1=度.15.(2分)已知m ﹣n =2,则5m ÷5n =.16.(2分)已知等腰三角形的腰长为5cm ,底边上的中线长为4cm ,则它的周长为cm .17.(2分)任意五边形的内角和与外角和的差为度.18.(2分)如图,在△ABC 中,AD 、CD 是△ABC 的角平分线且相交于点D ,∠B =80°,则∠ADC =.三.解答题(共8小题,满分64分)19.(12分)计算:(1)(2﹣3)0﹣(12)﹣2.(2)x 3•x 5﹣(2x 4)2+x 10÷x 2. (3)(x ﹣2)(x 2+2x +4).(4)4a (a ﹣3b )﹣(3b ﹣2a )(2a +3b ).20.(8分)分解因式:(1)8a 3b 2+12ab 3c ;(2)x 4﹣y 4.21.(6分)先化简,再求值:2(x +1)2﹣3(x ﹣3)(3+x )+(x +5)(x ﹣2),其中x =−32.22.(6分)在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A 'B 'C ;(2)图中AC 与A 'C ′的关系怎样?(3)记网格的边长为1,则△A 'B ′C ′的面积为多少?23.(8分)如图,一条直线分别与直线BE 、直线CE 、直线BF 、直线CF 相交于A ,G ,H ,D ,且∠1=∠2,∠B =∠C .求证:(1)BF ∥EC ;(2)∠A =∠D .24.(7分)如图,图①所示是一个长为2m ,宽为2n 的长方形,用剪刀均分成四个小长方形,然后按图②的方式拼成一个大正方形.(1)图②中的大正方形的边长等于,图②中的小正方形的边长等于;(2)图②中的大正方形的面积等于,图②中的小正方形的面积等于;图①中每个小长方形的面积是;(3)观察图②,你能写出(m +n )2,(m ﹣n )2,mn 这三个代数式间的等量关系吗?.25.(8分)对于任意实数来说,都有“a2≥0”,这个结论在数学里非常有用,有时我们需要利用配方法将代数式配方成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1.∵(x+2)2≥0,∴(x+2)2+1≥1,即x2+4x+5≥1.(1)填空.∵x2﹣4x+6=(x)2+,∴当x=时,代数式x2﹣4x+6有最(填“大”或“小”)值,这个最值为;(2)若代数式x2+(m+2)x+4m﹣7有最小值为0,求m的值.26.(9分)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM交CD于点M,AB ∥CD,且∠FEM=∠FME.(1)当∠AEF=70°时,∠FME=°;(2)判断EM是否平分∠AEF,并说明理由;(3)如图2,点G是射线FD上一动点(不与点F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EGF=α.探究当点G在运动过程中,∠MHN﹣∠FEH和α之间有怎样的数量关系?请写出你的猜想,并加以证明.七年级下学期期中模拟卷一一.选择题(共10小题,满分20分,每小题2分)1.(2分)将下列图案通过平移后可以得到的图案是()A.B.C.D.【分析】根据图形平移、旋转、轴对称的性质对各选项记性逐一分析即可.【解答】解:A、通过平移得到,故本选项正确;B、通过旋转得到,故本选项错误;C、通过旋转得到,故本选项错误;D、通过轴对称得到,故本选项错误.故选:A.【点评】本题考查的是利用平移设计图案,熟知图形平移、旋转、轴对称的性质是解答此题的关键.2.(2分)下列计算正确的是()A.3x2+2x2=5x4B.3x7÷x5=3x2C.x3•x2=x6D.(x2)3=x5【分析】利用合并同类项运算法则判断A,利用单项式除以单项式的运算法则判断B,利用同底数幂的乘法运算法则判断C,利用幂的乘方运算法则判断D.【解答】解:A、原式=5x2,故此选项不符合题意;B、原式=3x2,故此选项符合题意;C、原式=x5,故此选项不符合题意;D、原式=x6,故此选项不符合题意;故选:B.【点评】本题考查整式的混合运算,掌握同底数幂的乘法(底数不变,指数相加),同底数幂的除法(底数不变,指数相减),幂的乘方(a m)n=a mn运算法则是解题关键.3.(2分)下列长度的三条线段能组成三角形的是()A.3,4,7B.3,4,8C.3,3,5D.3,3,7【分析】根据三角形的三边关系进行分析判断,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【解答】解:根据三角形任意两边的和大于第三边,得A、3+4=7,不能组成三角形;B、3+4<8,不能组成三角形;C、3+3>5,能够组成三角形;D、3+3<7,不能组成三角形.故选:C.【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.4.(2分)如图,在△ABC中,点D,E,F分别在边BC,AB,AC上,下列能判定DE∥AC的条件是()A.∠1=∠3B.∠3=∠C C.∠2=∠4D.∠1+∠2=180°【分析】直接利用平行线的判定方法分别分析得出答案.【解答】解:A、当∠1=∠3时,EF∥BC,不符合题意;B、当∠3=∠C时,DE∥AC,符合题意;C、当∠2=∠4时,无法得到DE∥AC,不符合题意;D、当∠1+∠2=180°时,EF∥BC,不符合题意.故选:B.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.5.(2分)下列从左到右的运算是因式分解的是()A.4a2﹣4a+1=4a(a﹣1)+1B.(x﹣y)(x+y)=x2﹣y2C.x2+y2=(x+y)2﹣2xy D.(xy)2﹣1=(xy+1)(xy﹣1)【分析】根据因式分解的定义逐个判断即可.【解答】解:A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点评】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6.(2分)下列各式中能用平方差公式计算的是()A.(2x+5)(﹣2x﹣5)B.(m﹣1)(1﹣m)C.(﹣a+b)(a﹣b)D.(﹣x﹣y)(x﹣y)【分析】根据平方差公式的特点逐个判断即可.【解答】解:A、不能用平方差公式,故本选项不符合题意;B、不能用平方差公式,故本选项不符合题意;C、不能用平方差公式,故本选项不符合题意;D、能用平方差公式,故本选项符合题意;故选:D.【点评】本题考查了平方差公式,能熟记公式的特点是解此题的关键,注意:(a+b)(a﹣b)=a2﹣b2.7.(2分)正五边形的内角和是()A.360°B.540°C.720°D.900°【分析】根据多边形内角和为(n﹣2)×180°,然后将n=5代入计算即可.【解答】解:正五边形的内角和是:(5﹣2)×180°=3×180°=540°,故选:B.【点评】本题考查多边形内角和,解答本题的关键是明确多边形内角和为(n﹣2)×180°.8.(2分)下列各式是完全平方式的是()A.a2+4B.x2+2xy﹣y2C.a2﹣ab+b2D.4x2﹣4xy+y2【分析】根据完全平方公式,对各选项分析判断后利用排除法求解.公式:(a+b)2=a2+2ab+b2;(a ﹣b)2=a2﹣2ab+b2.【解答】解:A、a2+4是二项式,不符合完全平方式,故本选项错误;B、两平方项符号相反,故本选项错误;C、乘积项不是平方项两数的二倍,故本选项错误;D、∵(2x﹣y)2=4x2﹣4xy+y2,∴是完全平方式.故选:D.【点评】本题主要考查完全平方式,熟练掌握平方式的结构特点是求解本题的关键.9.(2分)如图,在△ABC中,∠ABC和∠ACB的平分线交于点O.若∠BOC=130°,则∠A的度数为()A.100°B.90°C.80°D.70°【分析】在△BOC中,根据三角形的内角和定理,即可求得∠OBC与∠OCB的和,再根据角平分线的定义和三角形的内角和定理即可求解.【解答】解:在△OBC中,∠OBC+∠OCB=180﹣∠BOC=180﹣130=50°,又∵∠ABC、∠ACB的平分线交于点O.∴∠ABC+∠ACB=2∠OBC+2∠OCB=2(∠OBC+∠OCB)=100°∴∠A=180﹣(∠ABC+∠ACB)=180﹣100=80°故选:C.【点评】本题主要考查了角平分线的定义与三角形内角和定理的综合应用.10.(2分)在如图所示的方格纸中,每个方格都是边长为1的正方形,点A,B是方格纸中的两个格点,在这个5×5的方格纸中,找出点C使△ABC的面积为1个平方单位,则满足条件的格点C的个数是有()A.3个B.4个C.5个D.6个【分析】由三角形面积关系作出平行线即可求解.【解答】解:在线段AB的两侧,距离点A为1的格点分别作AB的平行线,与网格的格点所有交点就是满足条件的C点,如图所示:共有6个,故选:D.【点评】本题考查了三角形面积,正确画出图形是解题的关键.二.填空题(共8小题,满分16分,每小题2分)11.(2分)已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为 2.1×10﹣5千克.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 021=2.1×10﹣5.故答案为:2.1×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(2分)(13)−2=9.【分析】根据负整数指数幂的运算法则进行计算即可.【解答】解:原式=1 (13)2=1×9=9.故答案为:9.【点评】本题考查的是负整数指数幂,即负整数指数幂等于相应的正整数指数幂的倒数.13.(2分)分解因式:m3﹣n3=(m﹣n)(m2+mn+n2).【分析】根据立方差公式分解即可.立方差公式:m3﹣n3=(m﹣n)(m2+mn+n2).【解答】解:m3﹣n3=(m﹣n)(m2+mn+n2).【点评】本题考查了公式法分解因式,可以直接考虑运用立方差公式分解.14.(2分)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,点D,C分别折叠到点M,N 的位置上,∠EFG=54°,则∠1=72度.【分析】利用平角的定义先求出∠EFC,再利用平行线的性质求出∠FED,最后利用折叠的性质和平角的定义求出∠1的度数.【解答】解:∵∠EFG+∠EFC=180°,∠EFG=54°,∴∠EFC=126°.∵四边形ABCD是长方形,∴DE∥CF.∴∠EFC+∠FED=180°.∴∠FED=54°.∵四边形EFNM是由四边形EFCD折叠而成,∴∠DEF=∠MEF=54°.∵∠1+∠DEF+∠MEF=180°,∴∠1=72°.故答案为:72.【点评】本题考查了平行线的性质,弄清线段的和差关系、掌握平角的定义及“两直线平行,同旁内角互补”是解决本题的关键.15.(2分)已知m﹣n=2,则5m÷5n=25.【分析】利用同底数幂的除法运算法则进行计算,然后代入求值.【解答】解:原式=5m﹣n,∵m﹣n=2,∴原式=52=25,故答案为:25.【点评】本题考查同底数幂的除法,掌握同底数幂的除法(底数不变,指数相减)运算法则是解题关键.16.(2分)已知等腰三角形的腰长为5cm,底边上的中线长为4cm,则它的周长为16cm.【分析】首先根据等腰三角形的三线合一的性质求得底边的一半,然后求得周长即可.【解答】解:∵等腰三角形的腰长为5cm,底边上的中线长为4cm,∴底边的一半=√52−42=3cm,∴底边长为6cm,∴周长=5+5+6=16cm ,故答案为:16.【点评】本题考查了等腰三角形的性质及勾股定理的应用,解题的关键是首先求得底边的一半长,难度不大.17.(2分)任意五边形的内角和与外角和的差为 180 度.【分析】利用多边形的内角和公式求出五边形的内角和,再结合其外角和为360度,即可解决问题.【解答】解:任意五边形的内角和是180×(5﹣2)=540度;任意五边形的外角和都是360度;所以任意五边形的内角和与外角和的差为540﹣360=180度.故答案为:180.【点评】考查了多边形内角与外角,本题利用多边形的内角和公式及多边形的外角和即可解决问题.18.(2分)如图,在△ABC 中,AD 、CD 是△ABC 的角平分线且相交于点D ,∠B =80°,则∠ADC = 130° .【分析】利用角平分线的性质及三角形内角和定理解答即可.【解答】解:∵AD 、CD 是△ABC 的角平分线,∴∠CAD =12∠CAB ,∠ACD =12∠ACB ,∴∠ADC =180°﹣(∠CAD +∠ACD )=180°−12(∠CAB +ACB )=180°−12(180°﹣∠B )=90°+12∠B=90°+12×80°=130°,故答案为:130°.【点评】本题主要考查了角平分线的性质及三角形内角和定理;找准角的关系是解答本题的关键.三.解答题(共8小题,满分64分)19.(12分)计算:(1)(2﹣3)0﹣(12)﹣2. (2)x 3•x 5﹣(2x 4)2+x 10÷x 2.(3)(x ﹣2)(x 2+2x +4).(4)4a (a ﹣3b )﹣(3b ﹣2a )(2a +3b ).【分析】(1)先计算零指数幂和负整数指数幂,再计算减法即可;(2)先计算同底数幂的乘除法和单项式的乘方,再计算加减即可;(3)根据多项式乘多项式法则展开,再计算加减即可;(4)利用单项式乘多项式法则和平方差公式计算,再去括号、合并即可.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=x8﹣4x8+x8=﹣2x8;(3)原式=x3+2x2+4x﹣2x2﹣4x﹣8=x3﹣8;(4)原式=4a2﹣12ab﹣(9b2﹣4a2)=4a2﹣12ab﹣9b2+4a2=8a2﹣12ab﹣9b2.【点评】本题主要考查整式的混合运算,解题的关键是掌握整式的混合运算顺序及相关运算法则、平方差公式.20.(8分)分解因式:(1)8a3b2+12ab3c;(2)x4﹣y4.【分析】(1)提公因式4ab2可分解因式;(2)两次利用平方差公式分解因式即可求解.【解答】解:(1)原式=4ab2(2a2+3bc);(2)原式=(x2+y2)(x2﹣y2)=(x2+y2)(x+y)(x﹣y).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解因式,分解因式要彻底是解题关键.21.(6分)先化简,再求值:2(x+1)2﹣3(x﹣3)(3+x)+(x+5)(x﹣2),其中x=−3 2.【分析】原式利用单项式乘以多项式,平方差公式以及完全平方公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=2(x2+2x+1)﹣3(x2﹣9)+x2﹣2x+5x﹣10=2x2+4x+2﹣3x2+27+x2﹣2x+5x﹣10=7x+19,当x=−32时,原式=7×(−32)+19=−212+382=172.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.(6分)在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A'B'C;(2)图中AC与A'C′的关系怎样?(3)记网格的边长为1,则△A'B′C′的面积为多少?【分析】(1)连接BB′,过A、C分别做BB′的平行线,并且在平行线上截取AA′=CC′=BB′,顺次连接平移后各点,得到的三角形即为平移后的三角形;(2)根据平移的性质解答即可.(3)根据三角形面积公式即可求出△A′B′C′的面积.【解答】解:(1)如图所示:(2)AC=A'C′,AC∥A'C′;(3)△A'B′C′的面积=4×4×12=8.【点评】本题主要考查了根据平移变换作图,以及三角形的中线,高的一些基本画图方法.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.23.(8分)如图,一条直线分别与直线BE、直线CE、直线BF、直线CF相交于A,G,H,D,且∠1=∠2,∠B=∠C.求证:(1)BF∥EC;(2)∠A=∠D.【分析】(1)由∠1=∠2直接可得结论;(2)根据BF∥EC,∠B=∠C,可得∠B=∠BFD,从而AB∥CD,即得∠A=∠D.【解答】证明:(1)∵∠1=∠2(已知),∴BF∥EC(同位角相等,两直线平行);(2)∵BF∥EC(已证),∴∠C=∠BFD(两直线平行,同位角相等),∵∠B=∠C(已知),∴∠B=∠BFD(等量代换),∴AB∥CD(内错角相等,两直线平行),∴∠A=∠D(两直线平行,内错角相等).【点评】本题考查平行线的性质与判定,解题的关键是掌握平行线性质与判定定理.24.(7分)如图,图①所示是一个长为2m,宽为2n的长方形,用剪刀均分成四个小长方形,然后按图②的方式拼成一个大正方形.(1)图②中的大正方形的边长等于m+n,图②中的小正方形的边长等于m﹣n;(2)图②中的大正方形的面积等于(m+n)2,图②中的小正方形的面积等于(m﹣n)2;图①中每个小长方形的面积是mn;(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式间的等量关系吗?(m+n)2﹣(m ﹣n)2=4mn.【分析】(1)依据小长方形的边长,即可得到大正方形的边长以及小正方形的边长;(2)依据正方形的边长即可得到正方形的面积,依据小长方形的边长,即可得到小长方形的面积;(3)依据大正方形的面积减去小正方形的面积等于四个小长方形的面积之和,即可得到三个代数式间的等量关系.【解答】解:(1)图②中的大正方形的边长等于m+n,图②中的小正方形的边长等于m﹣n;故答案为:m+n,m﹣n;(2)图②中的大正方形的面积等于(m+n)2,图②中的小正方形的面积等于(m﹣n)2;图①中每个小长方形的面积是mn;故答案为:(m+n)2,(m﹣n)2,mn;(3)由图②可得,(m+n)2,(m﹣n)2,mn这三个代数式间的等量关系为:(m+n)2﹣(m﹣n)2=4mn.故答案为:(m+n)2﹣(m﹣n)2=4mn.【点评】本题考查了完全平方公式的几何背景,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.25.(8分)对于任意实数来说,都有“a2≥0”,这个结论在数学里非常有用,有时我们需要利用配方法将代数式配方成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1.∵(x+2)2≥0,∴(x +2)2+1≥1,即x 2+4x +5≥1.(1)填空.∵x 2﹣4x +6=(x ﹣2 )2+ 2 ,∴当x = 2 时,代数式x 2﹣4x +6有最 小 (填“大”或“小”)值,这个最值为 2 ;(2)若代数式x 2+(m +2)x +4m ﹣7有最小值为0,求m 的值.【分析】(1)利用完全平方公式的结构特征判断,并利用非负数的性质求出最值即可;(2)原式配方变形后,根据最小值为0,求出m 的值即可.【解答】解:(1)∵x 2﹣4x +6=(x ﹣2)2+2,∴当x =2时,代数式x 2﹣4x +6有最小值,这个最值为2;故答案为:﹣2,2,2,小,2;(2)原式=x 2+(m +2)x +4m ﹣7=x 2+(m +2)x +(m+22)2+4m ﹣7﹣(m+22)2,=(x +m+22)2+4m ﹣7−m 2+4m+44=(x +m+22)2+−m 2+12m−324, ∵(x +m+22)2≥0,且原式的最小值为0, ∴−m 2+12m−324=0,即m 2﹣12m +32=0,分解因式得:(m ﹣4)(m ﹣8)=0,解得:m 1=4,m 2=8.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.26.(9分)如图1,已知两条直线AB ,CD 被直线EF 所截,分别交于点E ,点F ,EM 交CD 于点M ,AB ∥CD ,且∠FEM =∠FME .(1)当∠AEF =70°时,∠FME = 35 °;(2)判断EM 是否平分∠AEF ,并说明理由;(3)如图2,点G 是射线FD 上一动点(不与点F 重合),EH 平分∠FEG 交CD 于点H ,过点H 作HN ⊥EM 于点N ,设∠EGF =α.探究当点G 在运动过程中,∠MHN ﹣∠FEH 和α之间有怎样的数量关系?请写出你的猜想,并加以证明.【分析】(1)依据平行线的性质线,可得∠AEM =∠FME ,根据∠FEM =∠FME ,可得∠AEM =∠FEM ,进而得出∠FME 的度数;(2)由(1)得∠AEM =∠FEM ,根据角平分线的定义即可得出结论;(3)依据平行线的性质可得∠BEG=∠EGF=α,再根据EH平分∠FEG,EM平分∠AEF,即可得到∠MEH=12∠AEG=90°−12α,再根据HN⊥EM,即可得到Rt△EHN中,∠EHN=90°﹣∠MEH=12α,由∠BEH=∠EHF即可得出结论.【解答】解:(1)∵AB∥CD,∴∠AEM=∠FME,又∵∠FEM=∠FME,∴∠AEM=∠FEM,∵∠AEF=70°,∴∠FME=∠AEM=12∠AEF=35°;故答案为:35;(2)由(1)得∠AEM=∠FEM,∴EM平分∠AEF;(3)∠MHN﹣∠FEH=12α.证明:∵AB∥CD,∴∠BEG=∠EGF=α,∵EH平分∠FEG,∴∠FEH=∠HEG=12∠FEG,∴∠FEH+α=∠BEG+∠GEH=∠BEH,∵EM平分∠AEF,EH平分∠FEG,∴∠MEH=12∠AEG=12(180°﹣α)=90°−12,在Rt△EHN中,∠EHN=90°﹣∠MEH=90°﹣(90°−12α)=12α,∵AB∥CD,∴∠BEH=∠EHF,即α+∠GEH=∠EHN+∠NHM,∴α+∠FEH=12α+∠NHM,∴∠MHN﹣∠FEH=12α.【点评】本题主要考查了平行线的性质与判定,角平分线的定义的运用,解决问题的关键是掌握:两直线平行,内错角相等;两直线平行,同旁内角互补;利用角的和差关系进行推算.。

人教版七年级第二学期下册期中模拟数学试卷及答案

人教版七年级第二学期下册期中模拟数学试卷及答案

人教版七年级第二学期下册期中模拟数学试卷及答案一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.(3分)4的算术平方根是()A.16B.±2C.2D.2.(3分)在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.4.(3分)如图所示,AB∥CD,若∠1=144°,则∠2的度数是()A.30°B.32°C.34°D.36°5.(3分)在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等6.(3分)如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4B.5C.6D.77.(3分)小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴正方向,图中点A的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A.(3.2,1.3)B.(﹣1.9,0.7)C.(0.7,﹣1.9)D.(3.8,﹣2.6)8.(3分)我们知道“对于实数m,n,k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a,b,c是直线,若a∥b,b∥c,则a∥c.②a,b,c是直线,若a⊥b,b⊥c,则a⊥c.③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余.其中正确的命题是()A.①B.①②C.②③D.①②③9.(3分)如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A.1B.6C.9D.1010.(3分)根据表中的信息判断,下列语句中正确的是()A.=1.59B.235的算术平方根比15.3小C.只有3个正整数n满足15.5D.根据表中数据的变化趋势,可以推断出16.12将比256增大3.19二、填空题(本大题共16分,每小题2分)11.(2分)将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为.12.(2分)如图,数轴上点A,B对应的数分别为﹣1,2,点C在线段AB上运动.请你写出点C可能对应的一个无理数.13.(2分)如图,直线a,b相交,若∠1与∠2互余,则∠3=.14.(2分)依据图中呈现的运算关系,可知a=,b=.15.(2分)平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是.16.(2分)一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点D在斜边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,∠BDE的度数是.17.(2分)如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中号点的位置时,接收到的信号最强(填序号①,②,③或④).18.(2分)若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线P A,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有种连线方案.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.(8分)计算:(1)+()2﹣;(2).20.(8分)求出下列等式中x的值:(1)12x2=36;(2).21.(4分)下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;(2)若中国人民大学的坐标为(﹣3,﹣4),请在坐标系中标出中国人民大学的位置.22.(4分)有一张面积为100cm2的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为150cm2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.四、解答题(本大题共11分,23题5分,24题6分)23.(5分)如图,点D,点E分别在∠BAC的边AB,AC上,点F在∠BAC内,若EF∥AB,∠BDF=∠CEF.求证:DF∥AC.24.(6分)已知正实数x的平方根是m和m+b.(1)当b=8时,求m;(2)若m2x+(m+b)2x=4,求x的值.五、解答题(本大题共19分,25~26每题6分,27题7分)25.(6分)在平面直角坐标系xOy中,已知点A(a,a),B(a,a﹣3),其中a为整数.点C在线段AB上,且点C的横纵坐标均为整数.(1)当a=1时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C纵坐标满足1,直接写出a的所有可能取值:.26.(6分)如图,已知AB∥CD,点E是直线AB上一个定点,点F在直线CD上运动,设∠CFE=α,在线段EF上取一点M,射线EA上取一点N,使得∠ANM=160°.(1)当∠AEF=时,α=;(2)当MN⊥EF时,求α;(3)作∠CFE的角平分线FQ,若FQ∥MN,直接写出α的值:.27.(7分)对于平面直角坐标系xOy中的不同两点A(x1,y1),B(x2,y2),给出如下定义:若x1x2=1,y1y2=1,则称点A,B互为“倒数点”.例如,点A(,1),B(2,1)互为“倒数点”.(1)已知点A(1,3),则点A的倒数点B的坐标为;将线段AB水平向左平移2个单位得到线段A′B′,请判断线段A′B′上是否存在“倒数点”.(填“是”或“否”);(2)如图所示,正方形CDEF中,点C坐标为(),点D坐标为(),请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:.2018-2019学年北京市海淀区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:C.2.【解答】解:点P(﹣3,2)在第二象限,故选:B.3.【解答】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.4.【解答】解:∵AB∥CD,∴∠1=∠CAB=144°,∵∠2+∠CAB=180°,∴∠2=180°﹣∠CAB=36°,故选:D.5.【解答】解:有平行线的画法知道,得到同位角相等,即同位角相等两直线平行.∴同位角相等两直线平行.故选:B.6.【解答】解:根据题意得:平移折线AEB,得到折线CFD,则平移过程中扫过的图形为矩形ABCD,所以其面积为2×3=6,故选:C.7.【解答】解:由图可知,(﹣1.9,0.7)距离原点最近,故选:B.8.【解答】解:①a,b,c是直线,若a∥b,b∥c,则a∥c,是真命题.②a,b,c是直线,若a⊥b,b⊥c,则a∥c,是假命题.③若∠α与∠β互余,∠β与∠γ互余,则∠α=∠γ,是假命题;故选:A.9.【解答】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.10.【解答】解:A.根据表格中的信息知:,∴=1.59,故选项不正确;B.根据表格中的信息知:<,∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:15.52=240.25<n<15.62=243.36,∴正整数n=241或242或243,∴只有3个正整数n满足15.5,故选项正确;D.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.19,故选项不正确.故选:C.二、填空题(本大题共16分,每小题2分)11.【解答】解:将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为(﹣1,7),故答案为:(﹣1,7),12.【解答】解:由C点可得此无理数应该在﹣1与2之间,故可以是,故答案为:(答案不唯一,无理数在﹣1与2之间即可),13.【解答】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为:135°.14.【解答】解:依据图中呈现的运算关系,可知2019的立方根是m,a的立方根是﹣m,∴m3=2019,(﹣m)3=a,∴a=﹣2019;又∵n的平方根是2019和b,∴b=﹣2019.故答案为:﹣2019,﹣2019.15.【解答】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3﹣5=﹣2,点B在点A的右边时,3+5=8,∴点B的坐标为(﹣2,2)或(8,2).故答案为:(﹣2,2)或(8,2).16.【解答】解:∵DF∥BC,∴∠FDB=∠ABC=45°,∴∠EDB=∠DFB﹣∠EDF=45°﹣30°=15°,故答案为15°.17.【解答】解:根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为:①.18.【解答】解:(1)当点Q落在区域②时,线段PQ与AB相交;(2)点A沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C只有一种连接方法,所以共6种方法.故答案为:②,6.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.【解答】解:(1)原式==(2)原式==.20.【解答】解:(1)x2=3∴x=±(2)x3﹣24=3x3=27∴x=321.【解答】解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:22.【解答】解:设长方形信封的长为5xcm,宽为3xcm.由题意得:5x•3x=150,解得:x=(负值舍去)所以长方形信封的宽为:3x=3,∵=10,∴正方形贺卡的边长为10cm.∵(3)2=90,而90<100,∴3<10,答:不能将这张贺卡不折叠的放入此信封中.四、解答题(本大题共11分,23题5分,24题6分)23.【解答】证明:∵EF∥AB,∴∠CEF=∠A,∵∠BDF=∠CEF,∴∠BDF=∠A,∴DF∥AC.24.【解答】解:(1)∵正实数x的平方根是m和m+b ∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=.五、解答题(本大题共19分,25~26每题6分,27题7分)25.【解答】解:(1)(2)由题意可知,点C的坐标为(a,a),(a,a﹣1),(a,a﹣2)或(a,a﹣3),∵点C在x轴上,∴点C的纵坐标为0.由此可得a的取值为0,1,2或3,因此点C的坐标是(0,0),(1,0),(2,0),(3,0)(3)a的所有可能取值是2,3,4,5.故答案为:2,3,4,5.26.【解答】解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠CFE=α,∠AEF=,∴α+=180°,∴α=120°;(2)如,1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD.∵∠ANM=160°,∴∠NMP=180°﹣160°=20°,又∵NM⊥EF,∴∠NMF=90°,∠PMF=∠NMF﹣∠NMP=90°﹣20°=70°.∴α=180°﹣∠PMF=180°﹣70°=110°;(3)如图2,∵FQ平分∠CFE,∴∠QFM=,∵AB∥CD,∴∠NEM=180°﹣α,∵MN∥FQ,∴∠NME=,∵∠ENM=180°﹣∠ANM=20°,∴20°++180°﹣α=180°,∴α=40°.故答案为:120°,40°.27.【解答】解:(1)设A(x1,y1),B(x2,y2),∵x1x2=1,y1y2=1,A(1,3),∴x2=1,y2=,点B的坐标为(1,),将线段AB水平向左平移2个单位得到线段A′B′,则A′(﹣1,3),B′(﹣1,),∵﹣1×(﹣1)=1,3×=1,∴线段A′B′上存在“倒数点”,故答案为:(1,);是;(2)正方形的边上存在“倒数点”M、N,理由如下:①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,∴点N只可能在线段DE上,N(,),此时点M(,)在线段EF上,满足题意;∴该正方形各边上存在“倒数点”M(,),N(,);(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,∵坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又∵该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都≤1,即正方形面积的最大值为1;故答案为:1.人教版七年级第二学期下册期中模拟数学试卷(答案)一、选择题(共10小题,每小题3分,共30分) 1.下列计算中,正确的是( )A.532)(a a = B.632a a a =⋅ C.2632a a a =⋅ D.2532a a a =+2. 如题2图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( ) A.30° B.40° C.50° D.60°3.如题3图,在下列给出的条件中,不能判定AC ∥DE 的是( ) A.∠1=∠A B.∠A=∠3 C.∠3=∠4 D.∠2+∠4=180°4. 如题4图,AE ⊥BC 于E ,BF ⊥AC 于F ,CD ⊥AB 于,则△ABC 中AC 边上的高是哪条垂线段( )A.BFB.CDC.AED.AF题2图 题3图 题4图 5. 观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a )(x+b )=2x -7x+12,则a ,b 的值可能分别是( ) A. -3,-4 B. 3,4 C.3,-4 D.3,46. 小明不慎将一块三角形的玻璃碎成如题6图所示的四块(图中所标1、2、3、4),小明应该带( )去,就能配一块与原来大小一样的三角形玻璃. A. 第1块 B. 第2块 C.第3块 D.第4块7.用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )A.)6.0100(+=mn y B.6.0)100(+=mn y C.)6.0100(+=m n y D.6.0100+=mn y8.如图,点B 、E 、C 、F 在同一条直线上,AB ∥DE ,AB=DE ,要用SAS 证明△ABC ≌△DEF ,可以添加的条件是( )A.∠A=∠DB.AC ∥DFC.BE=CFD.AC=DF9.若a 、b 、c 是正数,下列各式,从左到右的变形不能用题9图验证的是( )A.2222)(c bc b c b ++=+ B.ac ab c b a +=+)( C.ac bc ac c b a c b a 222)(2222+++++=++ D.)2(22b a a ab a +=+ 10.如题10图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )二、填空题(共6小题,每小题4分,共24分11.计算xy y x ÷22)2(的结果是 .12.如图,∠1=∠2,需增加条件 可使得AB ∥CD (只写一种).13.在△ABC 中,∠A=60°,∠B=2∠C ,则∠B= . 14.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:设鸭的质量为x 千克,烤制时间为t ,估计当x=2.9千克时,t 的值为 15.如图,两根旗杆间相距12m ,某人从点B 沿BA 走向点A ,一段时间后他到达点M , 此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM=DM ,已知旗杆AC 的高为3m ,该人的运动速度为1m/s ,则这个人运动到点M 所用时间是16.如图,两个正方形边长分别为a 、b ,如果a+b=20,ab=18,则阴影部分的面积为三、解答题一(共3小题每小题6分,共18分) 17.计算:022019)14.3()31()1(π--+--18.先化简,再求值:))(4()2)(2(y x y x y x y x +--+-,其中2,31-==y x .19.如图,已知:线段βα∠∠,,a ,求作:△ABC ,使BC=a ,∠B=∠α,∠C=β∠.四、解答题二(共3小题,每小题7分,共21分) 20.已知:如图,∠A=∠ADE ,∠C=∠E.(1)∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.21,如图,AB=AD,AC=AE,BC=DE,点E在BC上.(1)求证:△ABC ≌△ADE(2)求证:△EAC ≌△DEB22.如图1,在四边形ABCD中,AB∥CD,∠ABC=90°,动点P从A点出发,沿A→D→C→B 匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.⑴①AD= , CD= , BC= ; (填空)②当点P运动的路程x=8时,△ABP的面积为y= ; (填空)⑵求四边形ABCD的面积图1 图2五、解答题三(共3小题,每小题9分,共27分)23. 如题23图,已知AB∥CD,∠A=40°,点P是射线AB上一动点(与点A不重合),CE、CF 分别平分∠ACP 和∠DCP 交射线AB 于点E 、F. (1)求∠ECF 的度数(2)随看点P 的运动,∠APC 与∠AFC 之间的数量关系是否改变?若不改变,请求出此数量天系;若改变,请说明理由.(3)当∠ABC=∠ACF 时,求∠APC 的度数.24.如图所示,在边长为a 米的正方形草坪上修建两条宽为b 米的道路. (1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下: 方法①: 方法②:请你从小明的两种求面积的方法中,直接写出含有字母a ,b 代数式的等式是: (2)根据(1)中的等式,解决如下问题: ①已知:20,522=+=-b a b a ,求ab 的值;②己知:12)2020()2018(22=-+-x x ,求2)2019(-x 的值.25.如图,在长方形ABCD 中,AB=8m ,BC=12cm ,点E 为AB 中点,如果点P 在线段BC 上以每秒4cm 的速度,由点B 向点C 运动,同时,点Q 在线段CD 上以v 厘米/秒的速度,由点C向点D运动,设运动时间为t秒.(1)直接写出:PC= 厘米,CQ= 厘米;(用含t、v的代数式表示) (2)若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,试求v、t的值;(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针方向沿长方形ABCD的四边运动,求经过多长时间点P与点Q第一次在长方形ABCD 的哪条边上相遇?备用图参考答案1.C.2.C.3.B4.B.5.A.6.B.7.A.8.D.9.A.10.A.11.4x3y;12.AF//DE;13.40°;14.174;15.9秒;16.173;17.原式=7;18.解:原式=-3xy=2;19.画图略;20.解:(1)∵∠A=∠ADE∴AD//DE∴∠CDE+∠C=180°设∠C=x,∠CDE=3x∴4x=180°∴x=45°∴∠C=45°(2)证明:BE//CD.证明如下:∵∠C=∠E∴∠E=45°∵AC//DE∴∠B=∠E=45°∵∠B=∠C=45°∴BE//CD.21.证明:在△ABC和△ADE中∵AD=AB,AE=AC,DE=BC∴△ABC≌△ADE(SSS).22.(1)4,6,4;12;(2)面积为24;23.解:(1)∠ECF=70°;(2)∠APC=2∠AFC.(3)∠APC=40°;24.(1)(a-b )2;a 2-2ab+b 2;(a-b )2=a 2-2ab+b 2;(2)ab=-2.5;(x-2019)2=5; 25.(1)12-4t ;vt ;(2)当BP=CQ 时,t=2,v=4;当BP=PC 时,t=1.5,v=38; (3)4t-38t=12,解得t=9;所以P 点路程为36cm ,所以P 、Q 相遇在边AD 上.七年级(下)期中考试数学试题及答案一、选择题(第1至4题每小题3分,第5至10题每小题2分,共24分)1.4的平方根是( )A.4 B.±4 C.±2 D.22.如图,∠1,∠2是对顶角的是()3.∠1与∠2互余且相等,∠1与∠3是邻补角,则∠3的大小是( )A.30°B.105° C.120° D.135°4.将一直角三角板与两边平行的纸条如图放置.若∠1=60°,则∠2的度数为( )A.60°B.45°C.50°D.30°5.( )A.点PB.点QC.点RD.点S6.在平面直角坐标系中,若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比( )A.向上平移3个单位B.向下平移3个单位C.向右平移3个单位D.向左平移3个单位7.点A (2,-1)关于x轴对称的点B的坐标为()A.(2, 1) B.(-2,1) C.(2,-1) D.(-2,- 1)+=,则a与b的关系是()8.0A.a=b=0 B.a=b C.a与b互为相反数D.a=9.“健步走”越来越受到人们的喜爱,某个“健步走”小组将自己的活动场地定在奥林匹克公园,所走路线为:森林公园—玲珑塔—国家体育场—水立方.如图,设在奥林匹克公园设计图上玲珑塔的坐标为(-1,0),森林公园的坐标为(-2,2), 那么水立方的坐标为()A .(-2, -4)B .(-1, -4)C .(-2, 4)D .(-4, -1) 10.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1, 1),第2次接着运动到点(2, 0),第3次接着运动到点(3, 2),……,按这样的运动规律,经过第2019次运动后,动点P 的坐标是( )A .(2018, 2)B .(2019, 2)C .(2019,1)D .(2017,1)二、填空题(第11至16题每小题3分,第17、18题每小题2分,共22分) 11.在平面直角坐标系中,点(2,3)到x 轴的距离是________.12x 的取值范围是________.13.若33a b-<-,则a_________b .(填“<、>或=”号) 14.在平面直角坐标系中,点(-7+m,2m+1) 在第三象限,则m 的取值范围是_________.153=,则7-m 的立方根是________.16.在平面直角坐标系中,已知两点坐标A(m-1,3), B(1,m 2-1),若AB ∥x 轴,则m 的值是________.17.如图,直径为2个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点O',则点O'对应的数是________。

【必考题】七年级数学下期中模拟试卷(带答案)

【必考题】七年级数学下期中模拟试卷(带答案)
解析:4
【解析】
【分析】
根据总数计算出第5组的频数,用第5组的频数除以数据总数就是第五组的频率.
【详解】
解:第5组的频数:50-2-8-15-5=20,
频率为:20÷50=0.4,
故答案为:0.4.
【点睛】
本题考查频数和频率的求法,关键知道频数=总数×频率,从而可求出解.
14.18°或126°【解析】【分析】根据题意可知∠A+∠B=180°∠A=3∠B-36°或∠A=∠B∠A=3∠B-36°将其组成方程组即可求得【详解】根据题意得:当∠A+∠B=180°∠A=3∠B-36
12.下列各组数中互为相反数的是( )
A.3和 B.﹣|﹣ |和﹣(﹣ )
C.﹣ 和 D.﹣2和
二、填空题
13.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______。
14.如果∠A与∠B的两边分别平行,∠A比∠B的3倍少36°,则∠A的度数是________.
【分析】
分 和 两种情况将所求方程变形,求出解即可.
【详解】
当 ,即 时,所求方程变形为 ,
去分母得: ,即 ,
解得:
经检验 是分式方程的解;
当 ,即 时,所求方程变形为 ,
去分母得: 代入公式得: ,
解得: (舍去),
经检验 是分式方程的解,
综上,所求方程的解为 或-1.
故选D.
【点睛】
本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.
(1)求三角形ABO的面积;
(2)作出三角形ABO平移之后的图形三角形A′B′O′,并写出A′、B′两点的坐标分别为A′、B′;

【3套试卷】人教版七年级第二学期下册期中模拟数学试卷(含答案)

【3套试卷】人教版七年级第二学期下册期中模拟数学试卷(含答案)

人教版七年级第二学期下册期中模拟数学试卷(含答案)一、选择题:(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题意的,请将符合题意的序号填在题号的括号内.)1.(3分)下列实数中,无理数是()A.﹣2B.0C.πD.2.(3分)下列运算中错误的是()A.x2•x3=x5 B.x3•x3=2x3C.(﹣x)4•(﹣x)4=x8D.x•x3=x43.(3分)下列说法正确的是()A.1的平方根是1B.﹣49的平方根是±7C.的平方根是﹣2D.4是(﹣4)2的算术平方根4.(3分)已知x<y,则下列不等式一定成立的是()A.﹣x>﹣y B.1+x>1+y C.D.3x﹣3y>0 5.(3分)﹣8的立方根是()A.2B.﹣2C.±2D.﹣6.(3分)3﹣2可表示为()A.2B.﹣2C.D.7.(3分)下列各组数中,互为相反数的是()A.﹣2与﹣1B.﹣2与C.|﹣3|与3D.﹣3与8.(3分)一个长方形的长、宽分别是2x﹣3、x,则这个长方形的面积为()A.2x﹣3B.2x2﹣3C.2x2﹣3x D.3x﹣39.(3分)不等式3x﹣1<x+3的解集在数轴上表示正确的是()A.B.C.D.10.(3分)﹣27的立方根与的平方根之和为()A.0B.6C.0或﹣6D.﹣12或6 11.(3分)已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.612.(3分)若不等式组无解,那么m的取值范围是()A.m≤2B.m≥2C.m<2D.m>2二、填空题:(每小题3分,共18分,请将答案直接写在题中的横线上.)13.(3分)9的平方根是.14.(3分)据统计,2017年全国普通高考报考人数约为9400000人,数据9400000用科学记数法表示为.15.(3分)若>5是关于x的一元一次不等式,则m=.16.(3分)计算:﹣|﹣2|=.17.(3分)不等式组的最大整数解为.18.(3分)对实数a、b,定义运算☆如下:a☆b.例如2☆3=2﹣3=.计算[2☆(﹣4)]×[(﹣3)☆(﹣2)]=.三、解答题:(本大题共8小题,共计66分.)19.(6分)计算:(π﹣3.14)0+++|﹣3|.20.(6分)解不等式:21.(8分)先化简,再求值:a2•a4﹣a8÷a2+(﹣a3)2÷(a6﹣2)0,其中a=﹣1.22.(8分)解不等式组:,并把解集在数轴上表示出来.23.(8分)先阅读下面的内容,再解决问题:例题:若a2﹣2ab+2b2+6b+9=0,求a、b的值.解:因为a2﹣2ab+2b2+6b+9=0所以a2﹣2ab+b2+b2+6b+9=0所以(a﹣b2)+(b+3)2=0所以a﹣b=0,b+3=0所以a=﹣3.b=﹣3根据以上例题解决以下问题,若x2+2y2+2xy﹣4y+4=0,求x y的值.24.(8分)化简求值:,其中x=﹣1,y=1.25.(10分)已知a、b为实数,且满足关系式|a﹣2b|+(3a﹣b﹣10)2=0.求:(1)a、b的值;(2)求+12的值.26.(12分)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.2017-2018学年广西贺州市昭平县七年级(下)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题意的,请将符合题意的序号填在题号的括号内.)1.(3分)下列实数中,无理数是()A.﹣2B.0C.πD.【分析】根据无理数的定义进行解答即可.【解答】解:∵=2是整数,∴﹣2、0、2是整数,故是有理数;π是无理数.故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)下列运算中错误的是()A.x2•x3=x5 B.x3•x3=2x3C.(﹣x)4•(﹣x)4=x8D.x•x3=x4【分析】直接利用同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、x2•x3=x5 ,正确,不合题意;B、x3•x3=x6,原式计算错误,符合题意;C、(﹣x)4•(﹣x)4=x8,正确,不合题意;D、x•x3=x4,正确,不合题意.故选:B.【点评】此题主要考查了同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.(3分)下列说法正确的是()A.1的平方根是1B.﹣49的平方根是±7C.的平方根是﹣2D.4是(﹣4)2的算术平方根【分析】根据平方根、算术平方根的性质和应用,逐项判定即可.【解答】解:∵1的平方根是±1,∴选项A不符合题意;∵﹣49<0,﹣49没有平方根,∴选项B不符合题意;∵的平方根是±2,∴选项C不符合题意;∵4是(﹣4)2的算术平方根,∴选项D符合题意.故选:D.【点评】此题主要考查了平方根、算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.4.(3分)已知x<y,则下列不等式一定成立的是()A.﹣x>﹣y B.1+x>1+y C.D.3x﹣3y>0【分析】直接根据不等式的性质判断即可.【解答】解:A、∵x<y,∴﹣x>﹣y,故本选项符合题意;B、∵x<y,∴1+x<1+y,故本选项不符合题意;C、∵x<y,∴,故本选项不符合题意;D、∵x<y,∴﹣3x﹣3y<0,故本选项不符合题意;故选:A.【点评】本题主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.(3分)﹣8的立方根是()A.2B.﹣2C.±2D.﹣【分析】直接利用立方根的定义分析求出答案.【解答】解:﹣8的立方根是:=﹣2.故选:B.【点评】此题主要考查了立方根,正确把握立方根的定义是解题关键.6.(3分)3﹣2可表示为()A.2B.﹣2C.D.【分析】直接利用负指数幂的性质计算得出答案.【解答】解:3﹣2==.故选:C.【点评】此题主要考查了负指数幂的性质,正确把握负指数幂的性质是解题关键.7.(3分)下列各组数中,互为相反数的是()A.﹣2与﹣1B.﹣2与C.|﹣3|与3D.﹣3与【分析】利用相反数的定义判断即可.【解答】解:﹣3和=|﹣3|=3,互为相反数,故选:D.【点评】此题考查了实数的性质,相反数,绝对值,以及立方根,熟练掌握相反数的定义是解本题的关键.8.(3分)一个长方形的长、宽分别是2x﹣3、x,则这个长方形的面积为()A.2x﹣3B.2x2﹣3C.2x2﹣3x D.3x﹣3【分析】根据长方形的面积公式即可求出答案.【解答】解:这个长方形的面积为:x(2x﹣3)=2x2﹣3x,故选:C.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算,本题属于基础题型.9.(3分)不等式3x﹣1<x+3的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:解不等式3x﹣1<x+3得,x<2,在数轴上表示为:.故选:D.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.10.(3分)﹣27的立方根与的平方根之和为()A.0B.6C.0或﹣6D.﹣12或6【分析】求出﹣27的立方根与的平方根,相加即可得到结果.【解答】解:∵﹣27的立方根为﹣3,的平方根±3,∴﹣27的立方根与的平方根之和为0或﹣6.故选:C.【点评】此题考查了实数的运算,涉及的知识有:平方根、立方根的定义,熟练掌握定义是解本题的关键.11.(3分)已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.6【分析】根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.【点评】本题考查了完全平方公式的应用,注意:a2+b2=(a+b)2﹣2ab.12.(3分)若不等式组无解,那么m的取值范围是()A.m≤2B.m≥2C.m<2D.m>2【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围.【解答】解:由①得,x<m,由②得,x>2,又因为不等式组无解,所以m≤2.故选:A.【点评】此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.二、填空题:(每小题3分,共18分,请将答案直接写在题中的横线上.)13.(3分)9的平方根是±3.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.14.(3分)据统计,2017年全国普通高考报考人数约为9400000人,数据9400000用科学记数法表示为9.4×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9400000=9.4×106,故答案为:9.4×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(3分)若>5是关于x的一元一次不等式,则m=0.【分析】运用一元一次不等式的定义直接可得.【解答】解:∵>5是关于x的一元一次不等式,∴2m+1=1∴m=0故答案为:0【点评】本题考查了一元一次不等式的定义,熟练运用不等式的定义解决问题是本题的关键.16.(3分)计算:﹣|﹣2|=0.【分析】直接利用立方根的性质以及绝对值的性质化简得出答案.【解答】解:原式=2﹣2=0.故答案为:0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.(3分)不等式组的最大整数解为x=5.【分析】分别求出两个不等式的解集,可得不等式组的解集,即可求最大整数解.【解答】解:解x+1≥﹣3,解得:x≥﹣8,解x﹣2(x﹣3)>0,解得:x<6,∴不等式的解集为:﹣8<x<6∴最大整数解为:x=5故答案为:x=5,【点评】本题考查了一元一次不等式组的整数解,解答本题的关键是掌握一元一次不等式组的解法.18.(3分)对实数a、b,定义运算☆如下:a☆b.例如2☆3=2﹣3=.计算[2☆(﹣4)]×[(﹣3)☆(﹣2)]=.【分析】根据负整数指数幂a﹣p=计算即可.【解答】解:[2☆(﹣4)]×[(﹣3)☆(﹣2)]=2﹣4×(﹣3)2=×9=【点评】本题考查了实数的运算,熟练运用负指数幂运算是解题的关键.三、解答题:(本大题共8小题,共计66分.)19.(6分)计算:(π﹣3.14)0+++|﹣3|.【分析】直接利用负指数幂的性质以及立方根的性质和绝对值的性质分别化简得出答案.【解答】解:原式=1﹣3+4+3=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(6分)解不等式:【分析】去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:去分母得:2x﹣3≥3x+15,2x﹣3x≥15+3,﹣x≥18,x≤﹣18.【点评】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.21.(8分)先化简,再求值:a2•a4﹣a8÷a2+(﹣a3)2÷(a6﹣2)0,其中a=﹣1.【分析】原式利用同底数幂的乘除法则,以及积的乘方与幂的乘方运算法则计算,合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=a6﹣a6+a6=a6,当a=﹣1时,原式=1.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.(8分)解不等式组:,并把解集在数轴上表示出来.【分析】分别解两个不等式,然后根据公共部分找确定不等式组的解集,再利用数轴表示解集;【解答】解:解不等式①,得x<﹣3;解不等式②,得x≥﹣4;原不等式组的解集为﹣4≤x<﹣3,不等式组的解集在数轴上表示出来为:.【点评】本题考查了解一元一次不等式组:一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23.(8分)先阅读下面的内容,再解决问题:例题:若a2﹣2ab+2b2+6b+9=0,求a、b的值.解:因为a2﹣2ab+2b2+6b+9=0所以a2﹣2ab+b2+b2+6b+9=0所以(a﹣b2)+(b+3)2=0所以a﹣b=0,b+3=0所以a=﹣3.b=﹣3根据以上例题解决以下问题,若x2+2y2+2xy﹣4y+4=0,求x y的值.【分析】已知等式变形后,利用完全平方公式变形,利用非负数的性质求出x与y的值,即可求出x y的值.【解答】解:∵x2+2y2+2xy﹣4y+4=0,∴(x+2)2+(y﹣2)2=0∴x=﹣2,y=2,∴x y=(﹣2)2=4.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.24.(8分)化简求值:,其中x=﹣1,y=1.【分析】根据积的乘方、同底数幂的乘除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:=[(﹣)+]=(﹣+)=x6y6﹣,当x=﹣1,y=1时,原式=(﹣1)6×16﹣=1﹣=.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.25.(10分)已知a、b为实数,且满足关系式|a﹣2b|+(3a﹣b﹣10)2=0.求:(1)a、b的值;(2)求+12的值.【分析】(1)利用非负数的性质列出方程组,求出方程组的解即可得到a,b的值;(2)把a与b的值代入原式计算即可求出值.【解答】解:(1)∵|a﹣2b|+(3a﹣b﹣10)2=0,∴,解得:,则a,b的值分别为4,2;(2)当a=4,b=2时,原式=6﹣2+12=16.【点评】此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键.26.(12分)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【分析】(1)设每本文学名著x元,动漫书y元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【解答】解:(1)设每本文学名著x元,动漫书y元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著a本,动漫书为(a+20)本,根据题意可得:,解得:,因为取整数,所以x取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【点评】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.人教版七年级第二学期下册期中模拟数学试卷【含答案】一.选择题(满分30分,每小题3分)1.的相反数是()A.﹣2B.2C.﹣4D.42.如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)3.下列等式正确的是()A.±=2B.=﹣2C.=﹣2D.=0.1 4.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°5.下列各点中位于第四象限的点是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(﹣3,﹣4)6.下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.7.在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c则a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c8.在平面直角坐标系中,点A'(2,﹣3)可以由点A(﹣2,3)通过两次平移得到,正确的是()A.先向左平移4个单位长度,再向上平移6个单位长度B.先向右平移4个单位长度,再向上平移6个单位长度C.先向左平移4个单位长度,再向下平移6个单位长度D.先向右平移4个单位长度,再向下平移6个单位长度10.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣5二.填空题(满分18分,每小题3分)11.1﹣的绝对值是,的平方根是.12.若点A的坐标(x,y)满足条件(x﹣3)2+|y+2|=0,则点A在第象限.13.a、b分别表示5﹣的整数部分和小数部分,则a+b=.14.将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.15.的整数部分为a,则a2﹣3=.16.将直线y=kx﹣2向下平移1个单位后,正好经过点(2,3),则k=.三.解答题17.计算:+﹣+|1﹣|.18.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆(B)位置的坐标;(2)若体育馆位置坐标为C(﹣3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.19.如图,EF∥AD,A D∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC 的度数.20.A,B两点在数轴上如图所示,其中O为原点,点A对应的有理数为a,点B对应的有理数为b,且点A距离原点6个单位长度,a.b满足b﹣|a|=2.(1)a=;b=;(2)动点P从点A出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒(t >0)①当PO=2PB时,求点P的运动时间t:②当PB=6时,求t的值:(3)当点P运动到线段OB上时,分别取AP和OB的中点E、F,则的值是否为一个定值?如果是,求出定值,如果不是,说明理由.21.如图,A、B、C为一个平行四边形的三个顶点,且A、B、C三点的坐标分别为(3,3)、(6,4)、(4,6).(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求这个平行四边形的面积.22.完成下面的证明,如图点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE ∥BA,DF∥CA.求证:∠FDE=∠A.证明:∵DE∥AB,∴∠FDE=∠()∵DF∥CA,∴∠A=∠()∴∠FDE=∠A()23.已知,如图,MN⊥AB,垂足为G,MN⊥CD,垂足为H,直线EF分别交AB、CD于G、Q,∠GQC=120°,求∠EGB和∠HGQ的度数.24.已知一个正数的平方根是a+3和2a﹣15.(1)求这个正数.(2)求的平方根.25.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.参考答案一.选择题1.解:∵=﹣2∴的相反数是2.故选:B.2.解:∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m=﹣3,2m+4=﹣2,∴点P的坐标是(0,﹣2).故选:B.3.解:A、,错误;B、,错误;C、,正确;D、,错误;故选:C.4.解:由三角形的外角性质可得,∠3=∠1+∠B=65°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣65°﹣90°=25°.故选:B.5.解:第四象限的点的坐标的符号特点为(+,﹣),观察各选项只有C符合条件,故选C.6.解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.7.解:A、∵a∥b,b∥c,∴a∥c,故本选项符合题意;B、在同一平面内,当a⊥b,b⊥c时,a∥c,故本选项不符合题意;C、当a∥b,b⊥c时,a⊥c,故本选项不符合题意;D、当a∥b,b∥c时,a∥c,故本选项不符合题意;故选:A.8.解:把点A(﹣2,3)先向右平移4个单位,再向下平移6个单位得到点A′(2,﹣3).故选:D.10.解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.二.填空题11.解:|1﹣|=﹣1,=4,4的平方根为±2,故答案为﹣1,±2.12.解:∵(x﹣3)2+|y+2|=0,∴x﹣3=0,y+2=0,∴x=3,y=﹣2,∴A点的坐标为(3,﹣2),∴点A在第四象限.故填:四.13.解:∵2<<3,∴﹣3<﹣<﹣2,∴2<5﹣<3,∴a=2,b=5﹣﹣2=3﹣;∴a+b=5﹣,故答案为:5﹣14.解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:64°.15.解:∵的整数部分为a,3<<4,∴a=3,∴a2﹣3=9﹣3=6.故答案为:6.16.解:将直线y=kx﹣2向下平移1个单位后所得直接解析式为y=kx﹣3,将点(2,3)代入y=kx﹣3,得:2k﹣3=3,解得:k=3,故答案为:3.三.解答题(共9小题,满分19分)17.解:原式=3+2﹣2+﹣1=4﹣1.18.解:(1)建立直角坐标系如图所示:图书馆(B)位置的坐标为(﹣3,﹣2);(2)标出体育馆位置C如图所示,观察可得,△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为==10.19.解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥B C,∴∠FEC=∠ECB,∴∠FEC=20°.20.解:(1)∵点A距离原点6个单位长度,点A在原点左边,∴a=﹣6,∵b﹣|a|=2.∴b=8,故答案为﹣6,8.(2)①∵OP=2PB,观察图象可知点P在点O的右侧:2t﹣6=2(14﹣2t)或2t﹣6=2(2t﹣14),解得t=或11.②(14﹣2t)=6或(2t﹣14)=6解得t=4或10.(3)当点P运动到线段OB上时,AP中点E表示的数是=﹣6+t,OB的中点F表示的数是4,所以EF=4﹣(﹣6+t)=10﹣t,则==2.所以的值为定值2.21.解:(1)BC为对角线时,第四个点坐标为(7,7);AB为对角线时,第四个点为(5,1);当AC为对角线时,第四个点坐标为(1,5).(2)图中△ABC面积=3×3﹣(1×3+1×3+2×2)=4,所以平行四边形面积=2×△ABC面积=8.22.解:证明:∵DE∥AB,∴∠FDE=∠BFD(两直线平行,内错角相等)∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等)∴∠FDE=∠A(等量代换).故答案为:BFD,两直线平行,内错角相等,BFD,两直线平行,同位角相等,等量代换.23.解:∵∠GQC=120°,∴∠DQG=60°∵MN⊥AB,MN⊥CD,∴AB∥CD,∠BGH=90°,∴∠EGB=∠DQG=60°,∠BGQ=∠GQC=120°,∴∠HGQ=120°﹣90°=30°.24.解:(1)∵一个正数的平方根是a+3和2a﹣15,∴a+3+2a﹣15=0,∴a=4,a+3=7,这个正数为72=49;(2)a+12=4+12=16,∵=4,∴的平方根是=±225.解:∠AED=∠ACB.理由:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).七年级(下)数学期中考试试题(答案)一、选择题(每小题3分,共计30分) 1.下列四个方程是二元次方程的是( )A.x+9=0B.2x-a=7C.3ab=9D.11y x3+=2.以下各组长度的线段为边,能构成三角形的是( )A.1,2,3B.3,4,5C.4,5,11D.8,4,4 3.在数轴上表示不等式x ≥-2的解集 正确的是( ) A.B. C.D.4.下列设备,有利用角形的稳定性的是( )A.活动的四边形衣架B.起重机C.屋顶三角形钢架D.索道支架 5.如果a >b ,那么下列不等式国立的是( )A.a-3>b-3B.-3b <-3aC.2a >2bD.-a <-b 6.关于x 、y 的方程组x 2y 3mx y 9m+=⎧⎨-=⎩的解是方程3x+2y=34的一组解,那么m 的值是( )A.1B.-1C.1D.-2 7.边长是整数,周长不大于12的等边三角形的个数是( ) A.1个 B.2个 C.3个 D.4个8.某种植物适宜生长的温度为18C-20C.已知山区海拔每升高100米,气器下降0.55ºC ,现测得山脚下的气温为22ºC ,问该植物种在山上的哪部分为宜? 如果该植物种植在海拔高度为x 米的山区较适宜,则由题意可列出的不等式组为( ) A..x 182205520100≤-⨯≤ B..x 182205520100≤-⨯<C..1822055x 20≤-≤D.x 182220100≤-≤9.如右图,△ABC 中,BD 是∠ABC 的角平分线,DE ∥BD ,交AB 于E ,∠A=60º,∠BDC=95º,则∠BED 的度数是( )A.35ºB.70ºC.110ºD.130º10.下列说法正确的有( )①同平面内,三条线段首尾顺次相接组成的图形三角形;②三角形的外角大于它的内角;③各边都相等的多边形是正多边形;④三角形的中线把三角形分成面积相等的两部分;⑤三角形的三条高交于一点;⑥果个三角形只有一条高在三角形的内部,那么这个三角用一定是钝角三角形A.1个B.2个C.3个D.4个 二、填空题(每小题3分,共计30分)11.已知方程x-2y=8,用含的式子表示y ,则y=____________. 12.不等式4x-3<4的解集中,最大的整数x=____________. 13.若个多边形内角和等于1260º,则该多边形边数是____________. 14.若方程m n 3m 4n x 2y 60+-++=是二元一次方程,则____________.15.已知三形的两边分别为3和5,当周长为,5的倍数时,第三边长为____________. 16.如图△ABC 中,AD 是BC 上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是24,则△ABE 的面积是___________. 17.关于x 的不等式组3x 515x a 12->⎧⎨+≤⎩有2个整数解,则a 的取值范围是____________.18.如图所示,∠A=100º,作BC 的延长线CD ,∠ABC 与∠ACD 的角平分线相交于A 1,∠A 1BC 与∠A 1CD 的角平分线相交于A 2...以此类推,∠A 5BC 与∠A 5CD 的角平分线相交于A 6,则∠A 6=__________.2A16题18题20题19.在△ABC 中,AD 为高线,AE 为角平分线,当∠B=40º,∠ACD=60º,∠EAD 的度数为_________. 20.如图,AC ⊥BD ,AF 平分∠BAC ,DF 平∠EDB ,∠BED=100º,则∠F 的度数是___________. 21.(本题8分) 解二元一次方程组:()2x y 313x 2y 8-=⎧⎨+=⎩ ()()x y 32433x 2y 120⎧+=⎪⎨⎪--=⎩(1)解一元一次不等式52x x 247x 15210-+--<-(2)解不等式组并把它的解集在数轴上表示出来 (2x 1x 53x 22x 3+<⎧⎨+≥-⎩)+23.(本题6分)如图,在10×10的网格中的每个小正方形边长都是1,线段交点称作格点。

(完整版)人教版七年级数学下册期中模拟试卷及答案完整

(完整版)人教版七年级数学下册期中模拟试卷及答案完整

(完整版)人教版七年级数学下册期中模拟试卷及答案完整一、选择题1.14的算术平方根为()A .116 B .12±C .12D .12-2.为进一步扩大和提升浑源县旅游知名度和美誉度,彰显浑源的自然魅力和文化内涵,浑源县面向全社会公开征集浑源县旅游城市形象宣传语、宣传标识及主题歌曲,如图所示是其中一幅参赛标识,将此宣传标识进行平移,能得到的图形是( )A .B .C .D .3.在平面直角坐标系中,点(﹣1,a +1)一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列四个命题:①9的平方根是3±;②5是5的算术平方根;③经过一点有且只有一条直线与这条直线平行;④两条直线被第三条直线所截,同旁内角互补.其中真命题有( ) A .0个B .1个C .2个D .3个5.如图,已知AP 平分BAC ∠,CP 平分ACD ∠,1290∠+∠=︒.下列结论正确的有( ) ①//AB CD ;②180ABE CDF ∠+∠=︒;③//AC BD ;④若2ACD E ∠=∠,则2CAB F ∠=∠.A .1个B .2个C .3个D .4个 6.若一个正数的两个平方根分别是2m +6和m ﹣18,则5m +7的立方根是( ) A .9B .3C .±2D .﹣97.如图,直线l ∥m ,等腰Rt △ABC 中,∠ACB =90°,直线l 分别与AC 、BC 边交于点D 、E ,另一个顶点B 在直线m 上,若∠1=28°,则∠2=( )A .75°B .73°C .62°D .17°8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O 运动到点P 1(1,1),第二次运动到点P 2(2,0),第三次运动到P 3(3,﹣2),第四次运动到P 4(4,0),第五次运动到P 5(5,2),第六次运动到P 6(6,0),…,按这样的运动规律,点P 2021的纵坐标是( )A .﹣2B .0C .1D .2二、填空题9.已知 6.213=2.493, 62.13=7.882,则621.3=______________. 10.点(,1)a 关于x 轴的对称点的坐标为(5,)b ,则+a b 的值是______. 11.如图,BE 是△ABC 的角平分线,AD 是△ABC 的高,∠ABC=60°,则 ∠AOE=_____.12.如图,直线//a b ,//AB CD ,160∠=︒,则4∠=________.13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若45EFB ∠=︒,则DEC ∠=________°14.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=.例如:(-3)☆2=32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 15.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.16.如图,每一个小正方形的边长为1个单位长,一只蚂蚁从格点.A 出发,沿着A →B →C →D →A →B →...路径循环爬行,当爬行路径长为2020个单位长时,蚂蚁所在格点坐标为___.三、解答题17.计算:(1)232 (222312127(6)(5)-- 18.求下列各式中x 的值. (1)4x 2﹣25=0; (2)(2x ﹣1)3=﹣64.19.完成下面的证明与解题.如图,AD∥BC,点E是BA延长线上一点,∠E=∠DCE.(1)求证:∠B=∠D.证明:∵AD∥BC,∴∠B=∠______________(______________)∵∠E=∠DCE,∴AB∥CD(______________).∴∠D=∠______________(______________).∴∠B=∠D.(2)若CE平分∠BCD,∠E=50°,求∠B的度数.20.已知点A(-2,3),B(4,3),C(-1,-3).(1)在平面直角坐标系中标出点A,B,C的位置;(2)求线段AB的长;(3)求点C到x轴的距离,点C到AB的距离;(4)求三角形ABC的面积;(5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,求点P的坐标.21.请回答下列问题:(1)17介于连续的两个整数a 和b 之间,且a b <,那么a = ,b = ; (2)x 是172+的小数部分,y 是171-的整数部分,求x = ,y = ; (3)求()17yx -的平方根.22.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:2=1.414,3=1.732,5=2.236)23.如图,已知AM //BN ,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点,C D .(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数. 24.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在ABC 中,90ACB ∠=︒,AE 是角平分线,CD 是高,AE 、CD 相交于点F .求证:CFE CEF ∠=∠;(变式思考)如图2,在ABC 中,90ACB ∠=︒,CD 是AB 边上的高,若ABC 的外角BAG ∠的平分线交CD 的延长线于点F ,其反向延长线与BC 边的延长线交于点E ,则CFE ∠与CEF ∠还相等吗?说明理由;(探究延伸)如图3,在ABC 中,AB 上存在一点D ,使得ACD B ∠=∠,BAC ∠的平分线AE 交CD 于点F .ABC 的外角BAG ∠的平分线所在直线MN 与BC 的延长线交于点M .直接写出M ∠与CFE ∠的数量关系.【参考答案】一、选择题 1.C 解析:C 【分析】根据算术平方根的定义求解. 【详解】解:因为21124⎛⎫= ⎪⎝⎭,所以14的算术平方根为12.故选C. 【点睛】本题主要考查算术平方根的定义,解决本题的关键是要熟练掌握算术平方根的定义.2.B 【分析】根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解. 【详解】解:A.选项是原图形旋转得到,不合题意;B.选项是原图形平移得到,符合题意;C.选项是原图形解析:B【分析】根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解.【详解】解:A.选项是原图形旋转得到,不合题意;B.选项是原图形平移得到,符合题意;C.选项是原图形翻折得到,不合题意;D.选项是原图形旋转得到,不合题意.故选:B【点睛】本题考查了平移的性质,理解平移的定义和性质是解题关键.3.B【分析】根据非负数的性质判断出点的纵坐标是正数,再根据各象限点的特点解答.【详解】,∴>0,∴点(-1)一定在第二象限,故选B.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号并判断出点的纵坐标是负数是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据算术平方根的概念、平方根的概念、平行公理、平行线的性质判断即可.【详解】解:3=,3的平方根是5的算术平方根,正确,是真命题,符合题意;③经过直线外一点,有且只有一条直线与这条直线平行,故原命题错误,是假命题,不符合题意;④两条平行直线被第三条直线所截,同旁内角互补,故原命题错误,是假命题,不符合题意.真命题只有②,故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 5.C 【分析】由三个已知条件可得AB ∥CD ,从而①正确;由①及平行线的性质则可推得②正确;由条件无法推出AC ∥BD ,可知③错误;由2ACD E ∠=∠及CP 平分ACD ∠,可得∠ACP =∠E ,得AC ∥BD ,从而由平行线的性质易得2CAB F ∠=∠,即④正确. 【详解】∵AP 平分BAC ∠,CP 平分ACD ∠∴∠ACD =2∠ACP =2∠2,∠CAB =2∠1=2∠CAP ∵1290∠+∠=︒∴∠ACD +∠CAB =2(∠1+∠2)=2×90゜=180゜ ∴//AB CD 故①正确 ∵//AB CD ∴∠ABE =∠CDB ∵∠CDB +∠CDF =180゜ ∴180ABE CDF ∠+∠=︒ 故②正确由已知条件无法推出AC ∥BD 故③错误∵2ACD E ∠=∠,∠ACD =2∠ACP =2∠2 ∴∠ACP =∠E ∴AC ∥BD ∴∠CAP =∠F ∵∠CAB =2∠1=2∠CAP ∴2CAB F ∠=∠ 故④正确故正确的序号为①②④ 故选:C . 【点睛】本题考查了平行线的判定与性质,角平分线的定义,掌握这些知识是关键. 6.B 【分析】根据立方根与平方根的定义即可求出答案. 【详解】解:由题意可知:2m +6+m ﹣18=0, ∴m =4, ∴5m +7=27,∴27的立方根是3, 故选:B . 【点睛】考核知识点:平方根、立方根.理解平方根、立方根的定义和性质是关键. 7.B 【分析】如图标注字母M ,首先根据等腰直角三角形的性质得出EBM ∠,再利用平行线的性质即可得出∠2的度数. 【详解】解:如图标注字母M ,∵△ABC 是等腰直角三角形, ∴45A ABC ∠=∠=︒,∴1284573EBM EBA ∠=∠+∠=︒+︒=︒, 又∵l ∥m ,∴273EBM ∠=∠=︒, 故选:B . 【点睛】本题主要考查等腰直角三角形的性质和平行线的性质,解题关键是熟练掌握等腰直角三角形的性质和平行线的性质.平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.8.D 【分析】观察图象,结合动点P 第一次从原点O 运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,-2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到解析:D 【分析】观察图象,结合动点P 第一次从原点O 运动到点P 1(1,1),第二次运动到点P 2(2,0),第三次运动到P 3(3,-2),第四次运动到P 4(4,0),第五运动到P 5(5,2),第六次运动到P 6(6,0),…,结合运动后的点的坐标特点,分别得出点P 运动的纵坐标的规律,再根据循环规律可得答案.【详解】解:观察图象,结合动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,-2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到P6(6,0),…,结合运动后的点的坐标特点,可知由图象可得纵坐标每6次运动组成一个循环:1,0,-2,0,2,0;∵2021÷6=336…5,∴经过第2021次运动后,动点P的纵坐标是2,故选:D.【点睛】本题考查了规律型点的坐标,数形结合并从图象中发现循环规律是解题的关键.二、填空题9.93【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开解析:93【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则24.93点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开方数每缩小100倍,则算术平方根就缩小10倍;对于立方根,当被开方数每扩大1000倍,则算术平方根就扩大10倍,当被开方数每缩小1000倍,则算术平方根就缩小10倍.10.4【分析】根据横坐标不变,纵坐标相反,确定a,b的值,计算即可.【详解】∵点关于轴的对称点的坐标为,∴a=5,b= -1,∴a+b= 5-1=4,故答案为:4.【点睛】本题考查了坐解析:4【分析】根据横坐标不变,纵坐标相反,确定a,b的值,计算即可.【详解】∵点(,1)a关于x轴的对称点的坐标为(5,)b,∴a=5,b= -1,∴a+b= 5-1=4,故答案为:4.【点睛】本题考查了坐标系中轴对称问题,熟练掌握轴对称的坐标变化特点是解题的关键.11.60°【分析】先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD 的度数,由对顶角相等即可得出结论.【详解】∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠A解析:60°【分析】先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论.【详解】∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=12∠ABC=12×60°=30°,∵AD是△ABC的高,∴∠ADC=90°,∵∠ADC是△OBD的外角,∴∠BOD=∠ADC-∠OBD=90°-30°=60°,∴∠AOE=∠BOD=60°,故答案为60°.【点睛】本题考查的是三角形外角的性质,即三角形的一个外角等于和它不相邻的两个内角的和. 12.120°.【分析】延长AB交直线b于点E,可得,则,再由,可得,即可求解.【详解】解:如图,延长AB交直线b于点E,∵,∴,∴,∵,,∴ ,∴.故答案为: .【点睛】解析:120°.【分析】延长AB 交直线b 于点E ,可得//AE CD ,则4180AED ∠+∠=︒ ,再由//a b ,可得1AED ∠=∠ ,即可求解.【详解】解:如图,延长AB 交直线b 于点E ,∵//AB CD ,∴//AE CD ,∴4180AED ∠+∠=︒ ,∵//a b ,160∠=︒,∴160AED ∠=∠=︒ ,∴4180120∠=︒-∠=︒AED .故答案为:120︒ .【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.13.5【分析】根据翻折的性质,可得到∠DEC=∠FED ,∠BEF 与∠DEC 、∠FED 三者相加为180°,求出∠BEF 的度数即可.【详解】解:∵△DFE 是由△DCE 折叠得到的,∴∠DEC=∠FE解析:5【分析】根据翻折的性质,可得到∠DEC =∠FED ,∠BEF 与∠DE C 、∠FED 三者相加为180°,求出∠BEF 的度数即可.【详解】解:∵△DFE 是由△DCE 折叠得到的,∴∠DEC =∠FED ,又∵∠EFB =45°,∠B =90°,∴∠BEF =45°,∴∠DEC =12(180°-45°)=67.5°.故答案为:67.5.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键. 14.8【解析】解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b ++- =a ,a 最大为8; 当a <b 时,a ☆b =2a b a b ++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.(-4,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a ,即可得解.【详解】解:∵点P (2a ,2-3a )是第二象限内的一个点,且P 到两坐标轴的距离之和为12,∴-2a解析:(-4,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a ,即可得解.【详解】解:∵点P (2a ,2-3a )是第二象限内的一个点,且P 到两坐标轴的距离之和为12, ∴-2a+2-3a=12,解得a=-2,∴2a=-4,2-3a=8,∴点P的坐标为(-4,8).故答案为:(-4,8).【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(2,2)【分析】由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标.【详解析:(2,2)【分析】由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标.【详解】解:∵A点坐标为(−2,2),B点坐标为(3,2),C点坐标为(3,−1),∴AB=3−(−2)=5,BC=2−(−1)=3,∴从A→B→C→D→A→B→…一圈的长度为2(AB+BC)=16.∵2020=126×16+4,∴当蚂蚁爬了2020个单位时,它所处位置在点A右边4个单位长度处,即(2,2).故答案为:(2,2).【点睛】本题考查了规律型中点的坐标以及矩形的性质,根据蚂蚁的运动规律找出蚂蚁每运动16个单位长度是一圈.三、解答题17.(1)(2)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解.【详解】(1)||+2==(2)==3.【点睛】此题主要考查实数与二次根式的运算解析:(12)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解.【详解】(1)-+(22(=11365+--=3.【点睛】此题主要考查实数与二次根式的运算,解题的关键是熟知其运算法则.18.(1)x=;(2)x=.【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解.【详解】解:(1)4x2﹣25=0,4x2=25,x2=,x=;(2)(2x﹣1)3=﹣64解析:(1)x=52±;(2)x=32-.【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解.【详解】解:(1)4x2﹣25=0,4x2=25,x2=254,x=52±;(2)(2x﹣1)3=﹣64,2x﹣1=﹣4,2x=﹣3,x=32 .【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.19.(1)EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)80°.【分析】(1)根据平行线的性质及判定填空即可;(2)由∠E=∠DCE,∠E=50°,解析:(1)EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)80°.【分析】(1)根据平行线的性质及判定填空即可;(2)由∠E=∠DCE,∠E=50°,可得AB∥CD,∠DCE=50°,而CE平分∠BCD,即得∠BCD=100°,故∠B=80°.【详解】(1)证明:∵AD∥BC,∴∠B=∠EAD(两直线平行,同位角相等),∵∠E=∠DCE,∴AB∥CD(内错角相等,两直线平行),∴∠D=∠EAD(两直线平行,内错角相等),∴∠B=∠D;故答案为:EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)解:∵∠E=∠DCE,∠E=50°,∴AB∥CD,∠DCE=50°,∴∠B+∠BCD=180°,∵CE平分∠BCD,∴∠BCD=2∠DCE=100°,∴∠B=80°.【点睛】本题考查平行线性质及判定的应用,解题关键是要掌握平行线的性质及判定定理,熟练运用它们进行推理和计算.20.(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根解析:(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根据点到直线的距离和到x 轴的距离为点的纵坐标的绝对值即可求解; (4)根据三角形面积=AB 的长×C 到直线AB 的距离求解即可;(5)根据同底等高的两个三角形面积相等即可求解.【详解】解:(1)如图所示,即为所求;(2)∵A (-2,3),B (4,3),∴AB =4-(-2)=6;(3)∵C (-1,-3),∴C 到x 轴的距离为3,到直线AB 的距离为6;(4)∵AB =6,C 到直线AB 的距离为6, ∴1=66=182ABC S ⨯⨯△;(5)如图所示,三角形ABP与三角形ABC同底等高,即为所求∴P(0,-3);同理当P在AB的上方还有一个到AB距离是6的点满足要求,即P(0,9);∴P(0,-3)或(0,9).【点睛】本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)4;b =(2)−4;3(3)±8【分析】((1)由16<17<25,可以估计的近似值,然后就可以得出a ,b 的值; (2)根据(1)的结论即可确定x 与y 的值;(3)把(2)的结论代入计算即解析:(1)4;b =(24;3(3)±8【分析】((1)由16<17<25a ,b 的值; (2)根据(1)的结论即可确定x 与y 的值;(3)把(2)的结论代入计算即可.【详解】解:(1)∵16<17<25,∴4<5,∴a =4,b =5,故答案为:4;5;(2)∵45,∴6+2<7,由此整数部分为64,∴x −4,∵4<5,∴3-1<4,∴y =3;4;3(3)当x 4,y =3时,)y x =)3=64, ∴64的平方根为±8.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“逐步逼近”是估算的一般方法,也是常用方法.22.(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x 分米、2x 分米,得出方程3解析:(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出长方形的长和宽和5比较即可得出答案.试题解析:(1)∵正方形的面积是 25 平方分米,∴正方形工料的边长是 5 分米;(2)设长方形的长宽分别为 3x 分米、2x 分米,则3x•2x=18,x2=3,x1,x2=5,,即这块正方形工料不合格.23.(1)120°;(2)90°-x°;(3)不变,;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠解析:(1)120°;(2)90°-12x°;(3)不变,12;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-12x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=12∠ABN=2∠DBN,由平行线的性质可得12∠A+12∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP +2∠DBP =180°-x °,∴∠CBD =∠CBP +∠DBP =12(180°-x °)=90°-12x °;(3)不变,∠ADB :∠APB =12.∵AM ∥BN ,∴∠APB =∠PBN ,∠ADB =∠DBN ,∵BD 平分∠PBN ,∴∠PBN =2∠DBN ,∴∠APB :∠ADB =2:1,∴∠ADB :∠APB =12;(4)∵AM ∥BN ,∴∠ACB =∠CBN ,当∠ACB =∠ABD 时,则有∠CBN =∠ABD ,∴∠ABC +∠CBD =∠CBD +∠DBN ,∴∠ABC =∠DBN ,∵BC 平分∠ABP ,BD 平分∠PBN ,∴∠ABP =2∠ABC ,∠PBN =2∠DBN ,∴∠ABP =∠PBN =2∠DBN =12∠ABN ,∵AM ∥BN ,∴∠A +∠ABN =180°, ∴12∠A +12∠ABN =90°, ∴12∠A +2∠DBN =90°, ∴14∠A +∠DBN =12(12∠A +2∠DBN )=45°. 【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键. 24.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸]∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可证明;[变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF 、再根据直角三角形的性质和等角的余角相等即可得出CFE ∠=CEF ∠;[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE,由此可证∠M+∠CFE=90°.【详解】[习题回顾]证明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分线,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;[变式思考]相等,理由如下:证明:∵AF为∠BAG的角平分线,∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD为AB边上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,证明:∵C、A、G三点共线 AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.。

【必考题】七年级数学下期中第一次模拟试题附答案 (2)

【必考题】七年级数学下期中第一次模拟试题附答案 (2)

【必考题】七年级数学下期中第一次模拟试题附答案 (2)一、选择题1.已知点P(3a ,a +2)在x 轴上,则P 点的坐标是( )A .(3,2)B .(6,0)C .(-6,0)D .(6,2)2.如图,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,若∠CAB=50º,∠ABC=100º,则∠CBE 的度数为( )A .45°B .30°C .20°D .15° 3.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( ) A .(2,1) B .(﹣2,﹣1) C .(﹣2,1) D .(2,﹣1)4.若x y >,则下列变形正确的是( )A .2323x y +>+B .x b y b -<-C .33x y ->-D .33x y ->- 5.如图,AB∥CD,BC∥DE,∠A=30°,∠BCD=110°,则∠AED 的度数为( )A .90°B .108°C .100°D .80° 6.下列生活中的运动,属于平移的是( ) A .电梯的升降B .夏天电风扇中运动的扇叶C .汽车挡风玻璃上运动的刮雨器D .跳绳时摇动的绳子 7.若x y <,则下列不等式中成立的是( ) A .11x y ->-B .22x y -<-C .22x y < D .3232x y -<- 8.若a <b <0,则在ab <1、1a >b 1、ab >0、b a >1、-a >-b 中正确的有( ) A .2个 B .3个C .4个D .5个 9.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3--B .()4,2C .()0,1D .()1,810.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135° 11.过一点画已知直线的垂线,可画垂线的条数是( )A .0B .1C .2D .无数 12.下列调查方式,你认为最合适的是( )A .调查市场上某种白酒的塑化剂的含量,采用普查方式B .调查鞋厂生产的鞋底能承受的弯折次数,采用普查方式C .旅客上飞机前的安检,采用抽样调查方式D .了解我市每天的流动人口数,采用抽样调查方式二、填空题13.已知AB ∥x 轴,A (-2,4),AB =5,则B 点横纵坐标之和为______.14.命题“对顶角相等”的逆命题是_______.15.对非负实数x “四舍五入”到个位的值记为x ,即当n 为非负整数时,若1122n x n -≤<+,则x n =,如0.460=,3.674=,给出下列关于x 的结论: ①1.4931=; ②22x x =; ③若1142x -=,则实数x 的取值范围是911x ≤<; ④当0x ≥,m 为非负整数时,有20182018m x m x +=+; ⑤x y x y +=+;其中,正确的结论有_________(填写所有正确的序号).16.对于x y ,定义一种新运算“☆”,x y ax by =+☆,其中a b ,是常数,等式右边是通常的加法和乘法运算.已知3515=☆,4728=☆,则11☆的值为____.17.如果一个正数的两个平方根为a+1和2a-7,则这个正数为_____________.18.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____.19.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.20.知a ,b 为两个连续的整数,且5a b <<,则ba =______.三、解答题21.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用有理数加法表示为()321+-=.若坐标平面上的点做如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移b 个单位),则把有序数对{},a b 叫做这一平移的“平移量”;“平移量”{},a b 与“平移量”{},c d 的加法运算法则为{}{}{},,,a b c d a c b d +=++ 解决问题:(1)计算:{}{}3,11,2+;(2)动点P 从坐标原点O 出发,先按照“平移量”{}3,1平移到A ,再按照“平移量”{}1,2平移到B :若先把动点P 按照.“平移量”{}1,2平移到C ,再按照“平移量”{}3,1平移,最后的位置还是B 吗?在图1中画出四边形OABC .(3)如图2,一艘船从码头O 出发,先航行到湖心岛码头()2,3P ,再从码头P 航行到码头()5,5Q ,最后回到出发点O .请用“平移量”加法算式表示它的航行过程.解:(1){}{}3,11,2+______;(2)答:______;(3)加法算式:______.22.解方程组:2783810x y x y -=⎧⎨-=⎩23.解方程组:23238x y x y -=⎧⎨-=⎩24.解方程组:x 4y 1216x y -=-⎧⎨+=⎩. 25.如图,已知//BC GE 、//AF DE 、150∠=︒.(1)AFG ∠=________°.(2)若AQ 平分FAC ∠,交直线BC 于点Q ,且15Q ∠=︒,求ACQ ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据点P 在x 轴上,即y=0,可得出a 的值,从而得出点P 的坐标.【详解】∵点P (3a ,a+2)在x 轴上,∴y=0,即a+2=0,解得a=-2,∴3a=-6,∴点P 的坐标为(-6,0).故选C .【点睛】此题考查平面直角坐标系中点的坐标,明确点在x 轴上时纵坐标为0是解题的关键.2.B解析:B【解析】【分析】根据平移的性质得出AC ∥BE ,以及∠CAB=∠EBD=50°,∠ABC=100º,进而求出∠CBE的度数.【详解】解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°(两直线平行,同位角相等),∵∠ABC=100°,∴∠CBE的度数为:180°-50°-100°=30°.故选B.【点睛】此题主要考查了平移的性质以及直线平行的性质,得出∠CAB=∠EBD=50°是解决问题的关键.3.C解析:C【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.4.A解析:A【解析】【分析】根据不等式的性质逐个判断即可.【详解】解: A、两边都乘2再加3,不等号的方向不变,故A正确;B、两边都减,b不等号的方向不变,故B错误;C、两边都乘以3-,不等号的方向改变,故C错误;D、两边都除以3-,不等号的方向改变,故D错误;故选:A【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.5.C解析:C【解析】【分析】在图中过E作出BA平行线EF,根据平行线性质即可推出∠AEF及∠DEF度数,两者相加即可.【详解】过E 作出BA 平行线EF ,∠AEF=∠A =30°,∠DEF=∠ABC AB ∥CD ,BC ∥DE ,∠ABC=180°-∠BCD =180°-110°=70°, ∠AED=∠AEF+∠DEF=30°+70°=100°【点睛】 本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.6.A解析:A【解析】【分析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动; 旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.然后根据平移与旋转定义判断即可.【详解】电梯的升降的运动属于平移,运动的刮雨器、摇动的绳子和吊扇在空中运动属于旋转; 故选A .【点睛】此题考查了平移与旋转的意义及在实际当中的运用,关键是根据平移的定义解答.7.C解析:C【解析】【分析】各项利用不等式的基本性质判断即可得到结果.【详解】由x <y ,可得:x-1<y-1,-2x >-2y ,3232x y -->,22x y <, 故选:C .【点睛】此题考查不等式的性质,熟练掌握不等式的性质是解题的关键. 8.B解析:B【解析】【分析】根据不等式的性质即可求出答案.【详解】解:①∵a<b<0,∴ab不一定小于1,故①错误;②∵a<b<0,∴1a>b1,故②正确;③∵a<b<0,ab>0,故③正确;④∵a<b<0,ba<1,故④错误;⑤∵a<b<0,-a>-b,故⑤正确,故选B.【点睛】此题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.9.C解析:C【解析】【分析】根据点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D的对应点的坐标.【详解】点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,故D(0,1).故选C.【点睛】此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.10.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.11.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.12.D解析:D【解析】【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.据此对各项进行判断即可.【详解】解:A、调查市场上某种白酒的塑化剂的含量,采用抽样调查比较合适,故此选项错误;B、调查鞋厂生产的鞋底能承受的弯折次数,采用抽样调查比较合适,故此选项错误;C、旅客上飞机前的安检,必须进行普查,故此选项错误;D、了解我市每天的流动人口数,采用抽样调查方式,比较合适,故此选项正确.故选D.【点睛】此题主要考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.二、填空题13.-3或7【解析】【分析】由AB∥x轴可知B点的纵坐标和A点的纵坐标相同再根据线段AB的长度为5B点在A点的坐标或右边分别求出B点的坐标即可得到答案【详解】解:∵AB∥x轴∴B点的纵坐标和A点的纵坐标解析:-3或7【解析】【分析】由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案.【详解】解:∵AB∥x轴,∴B点的纵坐标和A点的纵坐标相同,都是4,又∵A(-2,4),AB 5,∴当B点在A点左侧的时候,B(-7,4),此时B点的横纵坐标之和是-7+4=-3,当B点在A点右侧的时候,B(3,4),此时B点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B点位置的不确定得出两种情况分别求解.14.如果两个角相等那么它们是对顶角【解析】【分析】将原命题的条件及结论进行交换即可得到其逆命题【详解】∵原命题的条件是:如果两个角是对顶角结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等那么这两解析:如果两个角相等,那么它们是对顶角【解析】【分析】将原命题的条件及结论进行交换即可得到其逆命题.【详解】∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等,那么这两个角是对顶角,简化后即为:相等的角是对顶角.【点睛】考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题.15.①③④【解析】【分析】对于①可直接判断②⑤可用举反例法判断③④我们可以根据题意所述利用不等式判断【详解】∵1-<1493<1+∴故①正确当x=03时=12=0故②错误;∵∴4-≤x-1<4+解得:9解析:①③④【解析】【分析】对于①可直接判断,②、⑤可用举反例法判断,③、④我们可以根据题意所述利用不等式判断.【详解】∵1-12<1.493<1+12, ∴1.4931=,故①正确,当x=0.3时,2x =1,2x =0,故②错误; ∵1142x -=, ∴4-12≤12x-1<4+12, 解得:9≤x <11,故③正确,∵当m 为非负整数时,不影响“四舍五入”, ∴2018m x +=m+2018x ,故④正确,当x=1.4,y=1.3时,1.3 1.4+=3,1.3 1.4+=2,故⑤错误,综上所述:正确的结论为①③④,故答案为:①③④【点睛】本题考查了一元一次不等式组的应用和理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题可得解.16.-11【解析】【分析】利用题中的新定义化简椅子等式求出a 与b 的值即可确定出所求【详解】解:根据题中的新定义得:解得:所以;故答案为:【点睛】本题考查的是二元一次方程组以及有理数的混合运算熟练掌握运算 解析:-11【解析】【分析】利用题中的新定义化简椅子等式求出a 与b 的值,即可确定出所求.【详解】解:根据题中的新定义得:35154728a b a b +=⎧⎨+=⎩, 解得:3524a b =-⎧⎨=⎩, 所以111(35)12411☆=⨯-+⨯=-;故答案为:11-.本题考查的是二元一次方程组以及有理数的混合运算,熟练掌握运算法则是解本题的关键.17.9【解析】【分析】根据一个正数的平方根有2个且互为相反数求出a 的值即可确定出这个正数【详解】解:根据一个正数的两个平方根为a+1和2a-7得:解得:则这个正数是故答案为:9【点睛】本题主要考查了平方解析:9【解析】【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: 1270a a ++-=,解得:2a =,则这个正数是2(21)9+=.故答案为:9.【点睛】本题主要考查了平方根,熟练掌握平方根的定义是解本题的关键. 18.三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤直接填空即可【详解】第一步应假设结论不成立即三角形的三个内角都小于60°故答案为三角形的三个内角都小于60°【点睛】反证法的步骤是:(1) 解析:三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤,直接填空即可.【详解】第一步应假设结论不成立,即三角形的三个内角都小于60°.故答案为三角形的三个内角都小于60°.【点睛】反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.19.15【解析】【分析】由题意可知阴影部分为长方形根据平移的性质求出阴影部分长方形的长和宽即可求得阴影部分的面积【详解】∵边长为6cm 的正方形ABCD 先向上平移3cm∴阴影部分的宽为6-3=3cm∵向右解析:15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=3cm,∵向右平移1cm,∴阴影部分的长为6-1=5cm,∴阴影部分的面积为3×5=15cm2.故答案为15.【点睛】本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.20.6【解析】【分析】直接利用的取值范围得出ab的值即可得出答案【详解】∵ab为两个连续的整数且∴a=2b=3∴3×2=6故答案为:6【点睛】此题考查估算无理数的大小正确得出ab的值是解题关键解析:6【解析】【分析】a,b的值,即可得出答案.【详解】<<,∵a,b为两个连续的整数,且a b∴a=2,b=3,∴ba=3×2=6.故答案为:6.【点睛】此题考查估算无理数的大小,正确得出a,b的值是解题关键.三、解答题21.(1){4,3};(2)B,图见解析;(3){0,0}.【解析】【分析】(1)根据平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}计算;(2)根据题意画出图形、结合图形解答;(3)根据平移量的定义、加法法则表示即可.【详解】(1){}{}3,11,2+={3+1,1+2}={4,3},(2)如图.最后的位置仍是点B ,(3)从O 出发,先向右平移2个单位,再向上平移3个单位,可知平移量为{2,3}, 同理得到P 到Q 的平移量为{3,2},从Q 到O 的平移量为{-5,-5},故有{2,3}+{3,2}+{-5,-5}={0,0}.【点睛】本题考查的是几何变换,掌握“平移量”的定义、平移的性质是解题的关键.22.6545x y ⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】方程组利用加减消元法求出解即可.【详解】解:(1)2783810x y x y -=⎧⎨-=⎩①②, ②×2-①×3得:x= 56, 把x= 56代入①得:106-7y=8, 解得:y= 45-, 则方程组的解为6545x y ⎧=⎪⎪⎨⎪=-⎪⎩【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.72x y =⎧⎨=⎩【解析】【分析】方程组利用加减消元法求出解即可.【详解】解:(1)23238x y x y -=⎧⎨-=⎩①②, ②×2-①×3得:x=7, 把x=-1代入①得:7-2y=3,解得:y=2,则方程组的解为72x y =⎧⎨=⎩【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.72x y =⎧⎨=⎩【解析】【分析】利用代入法解二元一次方程组.【详解】x 4y 1216x y -=-⎧⎨+=⎩①② 由①得:x=4y-1 ③将③代入②,得:2(4y-1)+y=16,解得:y=2,将y=2代入③,得:x=7.故原方程组的解为72x y =⎧⎨=⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握代入法及加减消元法是解题的关键.25.(1)50;(2)100°【解析】【分析】(1)根据//AF DE 可知∠AFG=∠E ,再根据//BC GE 即可求得∠AFG=∠1=50°, (2)先根据三角形内角和求出∠DHQ ,再根据//AF DE 求出∠FAH ,根据角平分线可知∠CAQ ,再根据三角形内角和即可求出ACQ ∠.【详解】解:(1)∵//AF DE ,∴∠AFG=∠E ,∵//BC GE ,∴∠E=∠1,又150∠=︒,∴∠AFG=∠1=50°.(2)解:在HDQ ∆中∵1180Q DHQ ∠+∠+∠=︒,15Q ∠=︒,150∠=︒,∴18011801550115DHQ Q ∠=︒-∠-∠=︒-︒-︒=︒;∵AEE ∠与DHQ ∠为对顶角,∴115AHE DHQ ∠=∠=︒,∵//AF EH ,∴180FAQ AHE ∠+∠=︒,∴65FAQ ∠=︒;∵AQ 平分FAC ∠,∴65CAQ FAQ ∠=∠=︒,∴1801806515100ACQ CAQ Q ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查的平行线的性质,用到的知识点为:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补等.。

【必考题】初一数学下期中模拟试题及答案

【必考题】初一数学下期中模拟试题及答案
故答案为:-1.
【点睛】
本题考查了坐标与图形变化,注意到平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
14.112°【解析】【分析】根据折叠前后对应角相等得∠DEF=∠GEF由AD∥BC得∠EFG=∠DEF=56°进而求出∠DEG的度数再由AD∥BC求出∠DEG=∠EGB【详解】解:∵折叠根据折叠前后对应
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
由∠1=∠2结合“内错角(同位角)相等,两直线平行”得出两平行的直线,由此即可得出结论.
【详解】
A、∵∠1=∠2,
∴AD∥BC(内错角相等,两直线平行);
B、∵∠1=∠2,∠1、∠2不是同位角和内错角,
∴不能得出两直线平行;
∴a+b=2+2=4
故答案为:4
【点睛】
此题主要考查了坐标与图形的变化--平移,关键是掌握点的坐标的变化规律.
16.70°或86°【解析】【分析】根据两边互相平行的两个角相等或互补列出方程求出x然后求解即可【详解】∵∠α与∠β的两边分别平行∴①∠α=∠β∴(2x+10)°=(3x−20)°解得x=30∠α=(2×
22.我们规定以下三种变换:
(1) .如: ;
(2) .如: ;
(3) .如: .
按照以上变换有: ,
求 的值.
23.某商场购进甲,乙两种服装后,都加价50%标价出售.春节期间,商场搞优惠促销,决定将甲,乙两种服装分别按标价的七折和八折出售.某顾客购买甲,乙两种服装共付款186元,两种服装标价和为240元.问:这两种服装打折之后售出的利润是多少元?
又∵AD∥BC
∴∠EGB=∠DEG=112°.

【必考题】七年级数学下期中一模试题(带答案)

【必考题】七年级数学下期中一模试题(带答案)
=20+2×3
=26.
故选D.
点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.
2.A
解析:A
【解析】
【分析】
先由直线a∥b,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.
6.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于( )
A.2B.3C. D.
7.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )
A.40°B.50°C.60°D.70°
8.下列所示的四个图形中,∠1=∠2是同位角的是()
7.D
解析:D
【解析】
【分析】
根据折叠的知识和直线平行判定即可解答.
【详解】
解:如图可知折叠后的图案∠ABC=∠EBC,
又因为矩形对边平行,根据直线平行内错角相等可得
∠2=∠DBC,
又因为∠2+∠ABC=180°,
所以∠EBC+∠2=180°,
即∠DBC+∠2=2∠2=180°-∠1=140°.
可求出∠2=70°.
17.已知方程3x+5y-3=0,用含x的代数式表示y,则y=________.
18.若关于x的不等式组 的整数解共有4个,则m的取值范围是__________.
19.若 ,则 ______.
20.知 , 为两个连续的整数,且 ,则 ______.

【必考题】初一数学下期中试卷附答案 (2)

【必考题】初一数学下期中试卷附答案 (2)

【必考题】初一数学下期中试卷附答案 (2)一、选择题1.下列说法一定正确的是( )A .若直线a b ∥,a c P ,则b c ∥B .一条直线的平行线有且只有一条C .若两条线段不相交,则它们互相平行D .两条不相交的直线叫做平行线2.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )A .106cmB .110cmC .114cmD .116cm3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)4.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a (a >1),那么所得的图案与原图案相比( )A .形状不变,大小扩大到原来的a 倍B .图案向右平移了a 个单位长度C .图案向左平移了a 个单位长度,并且向下平移了a 个单位长度D .图案向右平移了a 个单位长度,并且向上平移了a 个单位长度5.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-26.下列图形中,1∠和2∠的位置关系不属于同位角的是( )A .B .C .D .7.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A .B .C .D .8.若x y <,则下列不等式中成立的是( )A .11x y ->-B .22x y -<-C .22x y <D .3232x y -<- 9.若a <b <0,则在ab <1、1a >b 1、ab >0、b a >1、-a >-b 中正确的有( ) A .2个B .3个C .4个D .5个 10.下列现象中是平移的是( ) A .将一张纸对折B .电梯的上下移动C .摩天轮的运动D .翻开书的封面 11.在平面直角坐标中,点M(-2,3)在( ) A .第一象限B .第二象限C .第三象限D .第四象限12.下列各组数中互为相反数的是( )A .3和2(3)-B .﹣|﹣2|和﹣(﹣2)C .﹣38和38-D .﹣2和12二、填空题13.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a ,则2x y +的值为______.14.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.15.若3a ++(b-2)2=0,则a b =______.16.已知方程3x +5y -3=0,用含x 的代数式表示y ,则y=________.17.比较大小:-2____-3,5____2.18.比较大小1-5______ 12-.(填“>”、“<”或“=”) 19.如图,已知AB ∥CD ,∠B=25°,∠D=45°,则∠E=__度.20.已知点P 的坐标(3-a ,3a -1),且点P 到两坐标轴的距离相等,则点P 的坐标是_______________.三、解答题21.在平面直角坐标系中,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使得点A移至图中的点A'的位置.(1)平移后所得△A'B'C'的顶点B'的坐标为,C'的坐标为;(2)平移过程中△ABC扫过的面积为;(3)将直线AB以每秒1个单位长度的速度向右平移,则平移秒时该直线恰好经过点C'.22.某校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)求本次接受随机抽样调查的学生人数及图①中m的值;(2)本次调查获取的样本数据的平均数是,众数是,中位数是;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.23.在学习了“普查与抽样调查”之后,某校八(1)班数学兴趣小组对该校学生的视力情况进行了抽样调查,并画出了如图所示的条形统计图.请根据图中信息解决下列问题:(1)本次抽查活动中共抽查了名学生;(2)已知该校七年级、八年级、九年级学生数分别为360人、400人、540人.①试估算:该校九年级视力不低于4.8的学生约有名;②请你帮忙估算出该校视力低于4.8的学生数.24.已知 2x-y 的平方根为±3,-4 是 3x+y 的一个平方根,求 x-y 的平方根.25.解不等式:121123x x+--≤,并把解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【详解】A、在同一平面内,平行于同一直线的两条直线平行.故正确;B、过直线外一点,有且只有一条直线与已知直线平行.故错误;C、根据平行线的定义知是错误的.D、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;故选:A.【点睛】此题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解题的关键.2.A解析:A【解析】【分析】通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解.【详解】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则29714x yx y+=⎧⎨+=⎩,解得17xy=⎧⎨=⎩则99x+y=99×1+7=106即把100个纸杯整齐的叠放在一起时的高度约是106cm.故选:A.【点睛】本题以实物图形为题目主干,图形形象直观,直接反映了物体的数量关系,这是近年来比较流行的一种命题形式,主要考查信息的收集、处理能力.本题易错点是误把9cm当作3个纸杯的高度,把14cm当作8个纸杯的高度.3.A解析:A【解析】【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【详解】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).故选:A.【点睛】考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.4.C解析:C【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a(a>1),那么所得的图案与原图案相比,图案向左平移了a 个单位长度,并且向下平移了a 个单位长度.故选:C .【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.5.A解析:A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Qx b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.6.D解析:D【解析】【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】解:A .根据根据同位角的特征得,∠1和∠2是同位角.B .根据根据同位角的特征得,∠1和∠2是同位角.C .根据根据同位角的特征得,∠1和∠2是同位角.D .由图可得,∠1和∠2不是同位角.故选:D .【点睛】本题主要考查了同位角,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.7.D解析:D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.8.C解析:C【解析】【分析】各项利用不等式的基本性质判断即可得到结果.【详解】由x <y ,可得:x-1<y-1,-2x >-2y ,3232x y -->,22x y <, 故选:C .【点睛】此题考查不等式的性质,熟练掌握不等式的性质是解题的关键. 9.B解析:B【解析】【分析】根据不等式的性质即可求出答案.【详解】解:①∵a <b <0,∴ab 不一定小于1,故①错误;②∵a <b <0, ∴1a >b1,故②正确; ③∵a <b <0,ab>0,故③正确;④∵a<b<0,b<1,故④错误;a⑤∵a<b<0,-a>-b,故⑤正确,故选B.【点睛】此题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.10.B解析:B【解析】【分析】根据平移的概念,依次判断即可得到答案;【详解】解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:A、将一张纸对折,不符合平移定义,故本选项错误;B、电梯的上下移动,符合平移的定义,故本选项正确;C、摩天轮的运动,不符合平移定义,故本选项错误;D、翻开的封面,不符合平移的定义,故本选项错误.故选B.【点睛】本题考查平移的概念,在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.11.B解析:B【解析】∵−2<0,3>0,∴(−2,3)在第二象限,故选B.12.B解析:B【解析】【分析】根据相反数的定义,找到只有符号不同的两个数即可.【详解】解:A3,3B 、﹣||=﹣,﹣||)两数互为相反数,故本选项正确;C 22D 、﹣2和12两数不互为相反数,故本选项错误. 故选:B .【点睛】 考查了相反数的定义:要知道,只有符号不同的两个数互为相反数.二、填空题13.3【解析】【分析】利用平方根立方根的定义求出x 与y 的值即可确定的值【详解】解:根据题意的2a+1+3-4a=0解得a=2∴故答案为:3【点睛】本题考查了平方根和立方根熟练掌握相关的定义是解题的关键解析:3【解析】【分析】利用平方根、立方根的定义求出x 与y 的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,∴=,故答案为:3.【点睛】 本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.14.4【解析】【分析】设购买x 个A 品牌足球y 个B 品牌足球根据总价=单价×数量即可得出关于xy 的二元一次方程结合xy 均为正整数即可得出各进货方案此题得解【详解】解:设购买x 个A 品牌足球y 个B 品牌足球依题意 解析:4【解析】【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,y 个B 品牌足球,依题意,得:60x +75y =1500,解得:y=20−45x.∵x,y均为正整数,∴x是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.15.9【解析】【分析】根据非负数的性质列式求出ab的值然后代入代数式进行计算即可得解【详解】解:根据题意得a+3=0b-2=0解得a=-3b=2所以ab=(-3)2=9故答案为:9【点睛】本题考查了非负解析:9【解析】【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a+3=0,b-2=0,解得a=-3,b=2,所以,a b=(-3)2=9.故答案为:9.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.;【解析】分析:将x看作已知数求出y即可详解:方程3x+5y-3=0解得:y=故答案为点睛:此题考查了解二元一次方程解题的关键是将x看作已知数求出y解析:335x -;【解析】分析: 将x看作已知数求出y即可.详解:方程3x+5y-3=0,解得:y=335x -.故答案为33 5x -.点睛: 此题考查了解二元一次方程,解题的关键是将x看作已知数求出y.17.>>【解析】【分析】【详解】∵∴;∵5>4∴故答案为(1)>;(2)>解析:>>【分析】【详解】 ∵23< , ∴23->-;∵225=5,2=4() ,5>4,∴52>.故答案为(1). >;(2). >.18.<【解析】【分析】首先比较进而得出答案【详解】解:∵∴∴故答案为:【点睛】此题主要考查了实数比较大小正确比较与是解题关键解析:<【解析】【分析】首先比较151-<-,进而得出答案 .【详解】解:∵52>,∴52-<-,∴151-<-,∴15122-<-. 故答案为:<.【点睛】此题主要考查了实数比较大小, 正确比较15-与1-是解题关键 .19.【解析】【分析】首先过点E 作EF∥AB 由AB∥CD 可得AB∥CD∥EF 然后根据两直线平行内错角相等即可求出答案【详解】解:过点E 作EF∥AB∵AB∥CD∴AB∥CD∥EF∵∠B=25°∠D=45°∴解析:【解析】【分析】首先过点E 作EF ∥AB ,由AB ∥CD 可得AB ∥CD ∥EF ,然后根据两直线平行,内错角相等即可求出答案.【详解】解:过点E 作EF ∥AB∴AB ∥CD ∥EF∵∠B=25°,∠D=45°∴∠1=∠B=25°,∠2=∠D=45°∴∠BED=∠1+∠2=25°+45°=70°故答案为70.【点睛】本题考查了平行线的性质.掌握辅助线的作法是解题的关键,注意数形结合思想的应用.20.(22)或(4-4)【解析】【分析】点P 到x 轴的距离表示为点P 到y 轴的距离表示为根据题意得到=然后去绝对值求出x 的值再写出点P 的坐标【详解】解:∵点P 到两坐标轴的距离相等∴=∴3a -1=3-a 或3a解析:(2,2)或(4,-4).【解析】【分析】点P 到x 轴的距离表示为31a -,点P 到y 轴的距离表示为3a -,根据题意得到31a -=3a -,然后去绝对值求出x 的值,再写出点P 的坐标.【详解】解:∵点P 到两坐标轴的距离相等 ∴31a -=3a -∴3a-1=3-a 或3a-1=-(3-a)解得a=1或a=-1当a=1时,3-a=2,3a-1=2;当a=-1时,3-a=4,3a-1=-4∴点P 的坐标为(2,2)或(4,-4).故答案为(2,2)或(4,-4).【点睛】本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系.点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;①到x 轴的距离与纵坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.三、解答题21.(1)(5,3),(8,4);(2)232;(3)5 【解析】【分析】(1)根据网格结构找出点B 、C 的对应点B ′、C '的位置,顺次连接之后,根据平面直角坐标系写出点B ′,C '的坐标;(2)结合图形可知所求为线段AB 扫过的图形为平行四边形ABB A ''加上三角形A B C '''的面积,分别求解之后再求和即可;(3)结合网格结构可知线段AB 向右平移时,A 点坐标变为(8,0)时满足题意,据此可解答本题.【详解】解:(1)根据题意画图:∴(5,3)B ',(8,4)C ';(2)如图, ∵1111634221422182222ABB A S ''=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯=Y , 1117322121312222A B C S '''=⨯-⨯⨯-⨯⨯-⨯⨯=V , ∴平移过程中△ABC 扫过的面积为723822+=; (3)结合网格结构可知线段AB 向右平移时,A 点坐标变为(8,0)时满足题意, 此时A 点向右平移了5个单位长度,∵直线AB 以每秒1个单位长度的速度向右平移,∴平移5秒时该直线恰好经过点C '.【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.(1)50、32;(2)16,10,15;(3)608人.【解析】【分析】(1)由5元的人数及其所占百分比可得总人数,用10元人数除以总人数可得m 的值; (2)根据统计图可以分别得到本次调查获取的样本数据的平均数、众数和中位数; (3)根据统计图中的数据可以估计该校本次活动捐款金额为10元的学生人数.【详解】解:(1)本次接受随机抽样调查的学生人数为48%50÷=人,Q 16100%32%50⨯=, 32m ∴=,故答案为:50、32;(2)15元的人数为5024%12⨯=,本次调查获取的样本数据的平均数是:1(45161012151020830)1650创+????(元),本次调查获取的样本数据的众数是:10元,本次调查获取的样本数据的中位数是:15元;(3)估计该校本次活动捐款金额为10元的学生人数为190032%608⨯=人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件.23.(1)145;(2)①216,②该校视力低于4.8的学生数为604人.【解析】(1)求出各组的人数的和即可;(2)①利用九年级的人数乘以对应的比例即可求解;②利用各班的人数乘以对应的比例求解.详解:(1)本次抽查的人数是:10+35+25+25+30+20=145(人),故答案是:145;(2)①九年级视力不低于4.8的学生约有540×2030+20=216(人), 故答案是:216;②该校视力低于4.8的学生数360×1045+400×2550+540×3050=604(人). 点睛:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.24.±2【解析】【分析】根据题意可求出2x-y 及3x+y 的值,从而可得出x-y 的值,继而可求出x-y 的平方根.【详解】解:由题意得:2x-y=9,3x+y=16,解得:x=5,y=1,∴x-y=4,∴x-y 的平方根为=±2. 【点睛】本题主要考查了平方根的知识,难度不大,解题的关键是求x 、y 的值.x≥-25.1【解析】【分析】当不等式有分母时,应先两边都乘6,去分母;然后去括号,移项及合并,系数化为1.【详解】解:去分母得,3(1+x)-2(2x-1)≤6去括号得,3+3x-4x+2≤6,移项得,3x-4x≤6-5,即-x≤1,∴x≥-1.解集在数轴上表示得:【点睛】本题考查解不等式的一般步骤,需注意;去分母时单独的一个数也必须乘各分母的最简公分母;在不等式两边都除以一个负数时,应只改变不等号的方向,余下该怎么除还怎么除.。

七年级下册数学期中模拟试卷(带答案)完整

七年级下册数学期中模拟试卷(带答案)完整

七年级下册数学期中模拟试卷(带答案)完整一、选择题1.2的平方根是()A .﹣1.414B .±1.414C .2D .2±2.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 3.若点(),P a b 在第四象限,则点(),Q b a -在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中,假命题是( )A .对顶角相等B .两直线平行,内错角相等C .在同一平面内,垂直于同一直线的两直线平行D .过一点有且只有一条直线与已知直线平行5.把一张有一组对边平行的纸条,按如图所示的方式折叠,若∠EFB =35°,则下列结论错误的是( )A .∠C 'EF =35°B .∠AEC =120° C .∠BGE =70°D .∠BFD =110° 6.下列说法中正确的是( )A .有理数和数轴上的点一一对应B .0.304精确到十分位是0.30C .立方根是本身的数只有0D .平方根是本身的数只有07.如图,AB //CD ,AD ⊥AC ,∠ACD =53°,则∠BAD 的度数为( )A .53°B .47°C .43°D .37°8.如图,一个机器人从点O 出发,向正西方向走2m 到达点1A ;再向正北方向走4m 到达点2A ,再向正东方向走6m 到达点3A ,再向正南方向走8m 到达点4A ,再向正西方向走10m 到达点5A ,…按如此规律走下去,当机器人走到点20A 时,点20A 的坐标为( )A .(20,20)-B .(20,20)C .(22,20)--D .(22,22)-二、填空题9.2(4)-的算术平方根为__________10.平面直角坐标系中,点(3,1)--关于y 轴的对称点的坐标为________.11.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B =50°,∠C =70°,则∠DAE =_____________°.12.将直角三角板与两边平行的纸条如图放置,若154∠=︒,则2∠=__________︒.13.如图,将四边形纸片ABCD 沿MN 折叠,点A 、D 分别落在点A 1、D 1处.若∠1+∠2=130°,则∠B +∠C =___°.14.已知57a ,57b ,则2019()a b +=________. 15.在平面直角坐标系中,已知线段3,AB =且//AB x 轴,且点A 的坐标是()1,2,则点B 的坐标是____.16.如图,动点P 在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点(2,2),第2次运动到点(4,0)A ,第3次接着运动到点(6,1)按这样的运动规律,经过第2021次运动后动点P 的坐标是________.三、解答题17.计算题(1)122332-+-+-. (2)3314827-+-; 18.求下列各式中x 的值:(1)24241x -=;(2)()38127x -=.19.如图.已知∠1=∠2,∠C =∠D ,求证:∠A =∠F .(1)请把下面证明过程中序号对应的空白内容补充完整.证明:∴∠1=∠2(已知)又∵∠1=∠DMN ( )∵∠2=∠DMN (等量代换)∴DB ∥EC ( )∴∠DBC +∠C =180°( ).∵∠C =∠D (已知),∴∠DBC +( )=180°(等量代换)∴DF ∥AC ( )∴∠A =∠F ( )(2)在(1)的基础上,小明进一步探究得到∠DBC =∠DEC ,请帮他写出推理过程.20.在平面直角坐标系中,已知O ,A ,B ,C 四点的坐标分别为O (0,0),A (0,3),B (-3,3),C (-3,0).(1)在平面直角坐标系中,描出O ,A ,B ,C 四点;(2)依次连接OA ,AB ,BC ,CO 后,得到图形的形状是___________.21.阅读下面的文字,解答问题: 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用21-来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的.因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.根据以上内容,请解答:已知103x y +=+,其中x 是整数,01y <<,求x y -的值.22.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上.(1)请求出图中阴影部分(正方形)的面积和边长(2)若边长的整数部分为a ,小数部分为b ,求213a b +-的值.23.已知,AB ∥CD ,点E 在CD 上,点G ,F 在AB 上,点H 在AB ,CD 之间,连接FE ,EH ,HG ,∠AGH =∠FED ,FE ⊥HE ,垂足为E .(1)如图1,求证:HG ⊥HE ;(2)如图2,GM 平分∠HGB ,EM 平分∠HED ,GM ,EM 交于点M ,求证:∠GHE =2∠GME ;(3)如图3,在(2)的条件下,FK 平分∠AFE 交CD 于点K ,若∠KFE :∠MGH =13:5,求∠HED 的度数.24.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明;(2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.【参考答案】一、选择题1.D解析:D【分析】根据平方根的定义求解即可.【详解】解:2的平方根是2故选:D .【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都是由旋转得到的,D是由平移得到的.故选:D.【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.A【分析】首先得出第四象限点的坐标性质,进而得出Q点的位置.【详解】解:∵点P(a,b)在第四象限,∴a>0,b<0,∴-b>0,∴点Q(-b,a)在第一象限.故选:A.【点睛】此题主要考查了点的坐标,正确把握各象限点的坐标特点是解题关键.4.D【分析】根据对顶角的定义、平行线的性质、平行公理及其推论可直接进行排除选项.【详解】解:A、对顶角相等,是真命题,故不符合题意;B、两直线平行,内错角相等,是真命题,故不符合题意;C、在同一平面内,垂直于同一直线的两直线平行,是真命题,故不符合题意;D、过直线外一点有且只有一条直线与已知直线平行,所以原命题是假命题,故符合题意;故选D.【点睛】本题主要考查命题、平行线的性质、平行公理及对顶角的定义,熟练掌握命题、平行线的性质、平行公理及对顶角的定义等相关知识点是解题的关键.5.B【分析】根据平行线的性质即可求解.A.∵AE∥BF,∴∠C'EF=∠EFB=35°(两直线平行,内错角相等),故A选项不符合题意;B.∵纸条按如图所示的方式析叠,∴∠FEG=∠C'EF=35°,∴∠AEC=180°﹣∠FEG﹣∠C'EF=180°﹣35°﹣35°=110°,故B选项符合题意;C.∵∠BGE=∠FEG+∠EFB=35°+35°=70°,故C选项不符合题意;D.∵AE∥BF,∴∠EGF=∠AEC=110°(两直线平行,内错角相等),∵EC∥FD,∴∠BFD=∠EGF=110°(两直线平行,内错角相等),故D选项不符合题意;故选:B.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.6.D【分析】根据实数与数轴、精确度、立方根及平方根的概念和性质逐项判断即可.【详解】解:A. 实数和数轴上的点一一对应,原说法错误;B. 0.304精确到十分位是0.3,原说法错误;C. 立方根是本身的数是0、±1,原说法错误;D. 平方根是本身的数只有0,正确,故选:D.【点睛】本题考查了实数与数轴、精确度、立方根及平方根的概念和性质,熟练掌握基础知识是解题关键.7.D【分析】因为AD⊥AC,所以∠CAD=90°.由AB//CD,得∠BAC=180°﹣∠ACD,进而求得∠BAD的度数.【详解】解:∵AB//CD,∴∠ACD+∠BAC=180°.∴∠CAB=180°﹣∠ACD=180°﹣53°=127°.又∵AD⊥AC,∴∠CAD =90°.∴∠BAD =∠CAB ﹣∠CAD =127°﹣90°=37°.故选:D .【点睛】本题考查了平行线的性质,垂线的定义,掌握平行线的性质是解题的关键.8.A【分析】先求出A1,A2,A3,…A8,发现规律,根据规律求出A20的坐标即可.【详解】解:∵一个机器人从点出发,向正西方向走到达点,点A1在x 轴的负半轴上, ∴A1(-2,0)从点A2解析:A【分析】先求出A 1,A 2,A 3,…A 8,发现规律,根据规律求出A 20的坐标即可.【详解】解:∵一个机器人从点O 出发,向正西方向走2m 到达点1A ,点A 1在x 轴的负半轴上, ∴A 1(-2,0)从点A 2开始, 由点1A 再向正北方向走4m 到达点2A ,A 2(-2,4),由点2A 再向正东方向走6m 到达点3A ,A 3(6-2,4)即(4,4),由点3A 再向正南方向走8m 到达点4A ,A 4(4,4-8)即(4,-4),由点A 4再向正西方向走10m 到达点5A ,A 5(4-10,-4)即(-6,-4),由点A 5再向正北方向走12m 到达点A 6,A 6(-6,12-4)即(-6,8),由点A 6再向再向正东方向走14m 到达点A 7,A 7(14-6,8)即(8,8),由点A 7再向正南方向走16m 到达点8A ,A 8(8,8-16)即(8,-8),观察图象可知,下标为偶数时在二四象限,下标为奇数时(除1外)在一三象限,下标被4整除在第四象限.且横坐标与下标相同,因为2054=⨯,所以20A 在第四象限,坐标为(20,20)-.故选择A .【点睛】本题考查平面直角坐标系点的坐标规律问题,掌握求点的坐标方法与过程,利用下标与坐标的关系找出规律是解题关键.二、填空题9.4【分析】先利用平方的意义求出值,再利用算术平方根的概念求解即可.【详解】=16,16的算术平方根是4故答案为4.【点睛】本题考查算术平方根的定义,难度低,属于基础题,注意算术平方根与解析:4【分析】先利用平方的意义求出值,再利用算术平方根的概念求解即可.【详解】2(4)=16,16的算术平方根是4故答案为4.【点睛】本题考查算术平方根的定义,难度低,属于基础题,注意算术平方根与平方根的区别. 10.(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴解析:(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴对称的点特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.11.10【分析】根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可.【详解】解:∵∠B=50°,∠C=70°,∴∠BAC=1解析:10【分析】根据三角形内角和定理求出∠BAC ,再根据角平分线的定义求出∠BAD ,根据直角三角形两锐角互余求出∠BAE ,然后求解即可.【详解】解:∵∠B=50°,∠C=70°,∴∠BAC=180°-∠B-∠C=180°-50°-70°=60°,∵AD 是角平分线,∴∠BAD=12∠BAC=12×60°=30°,∵AE 是高,∴∠BAE=90°-∠B=90°-50°=40°,∴∠DAE=∠BAE-∠BAD=40°-30°=10°.故答案为:10.【点睛】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键. 12.36【分析】先根据平角的定义求出的度数,再根据平行线的性质即可得求解.【详解】∵,∴,∵,故答案为:.【点睛】本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键. 解析:36【分析】先根据平角的定义求出3∠的度数,再根据平行线的性质即可得求解.【详解】∵154∠=︒,∴3180190180549036∠=︒-∠-︒=︒-︒-︒=︒,∵12//l l ,2336∴∠=∠=︒故答案为:36.【点睛】本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键.13.115【分析】先根据∠1+∠2=130°得出∠AMN+∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN+∠DNM= =115°.∵∠A+∠解析:115【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒-︒ =115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故答案为:115.【点睛】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.14.1【分析】根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a 用5+减去其整数部分即可,同理可得b 的值,再将a ,b 的值代入所求式子即可得出结果.【详解】解析:1【分析】根据4<7<9可得,2<3,从而有7<<8,由此可得出7,小数部分a 用b 的值,再将a ,b 的值代入所求式子即可得出结果.【详解】解:∵4<7<9,∴23,∴-3<<-2,∴7<<8,2<3,∴7,2,∴,∴2019()a b +=12019=1.故答案为:1.【点睛】此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.15.或【分析】设点B 的坐标为,然后根据轴得出B 点的纵坐标,再根据即可得出B 点的横坐标.【详解】设点B 的坐标为,∵轴,点A (1,2)∴B 点的纵坐标也是2,即 .∵,或 ,解得或 ,∴点解析:()4,2或()2,2-【分析】设点B 的坐标为(,)a b ,然后根据//AB x 轴得出B 点的纵坐标,再根据3,AB =即可得出B 点的横坐标.【详解】设点B 的坐标为(,)a b ,∵//AB x 轴,点A (1,2)∴B 点的纵坐标也是2,即2b = .∵3AB =,13a ∴-=或13a -= ,解得4a =或2a =- ,∴点B 的坐标为()4,2或()2,2-.故答案为:()4,2或()2,2-.【点睛】本题主要考查平行于x 轴的线段上的点的特点,掌握平行于x 轴的线段上的点的特点是解题的关键.16.【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.【详解】解:根据动点在平面直角坐标系中按图中箭头所示方向运动解析:(4042,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.【详解】解:根据动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(2,2),第2次接着运动到点(4,0),第3次接着运动到点(6,1),∴第4次运动到点(8,0),第5次接着运动到点(10,2),⋯,∴横坐标为运动次数的2倍,经过第2021次运动后,动点P 的横坐标为4042, 纵坐标为2,0,1,0,每4次一轮,∴经过第2021次运动后,202145051÷=⋅⋅⋅,故动点P 的纵坐标为2,∴经过第2021次运动后,动点P 的坐标是(4042,2).故答案为:(4042,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.三、解答题17.(1)1;(2).【分析】(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.【详解】解:(1)原式=;(2)原式=.解析:(1)1;(2)13-. 【分析】(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.【详解】解:(1)原式121;(2)原式=112233--=-. 【点睛】本题考查绝对值、算术平方根、立方根的性质,熟练的掌握性质进行运算是解题的关键. 18.(1);(2)【分析】(1)先移项,然后运用直接开平方法,即可求出的值;(2)方程两边同时除以8,然后计算立方根,即可得到答案.【详解】解:(1)∴,∴,∴;(2),∴,∴,解析:(1)52x =±;(2)52x = 【分析】(1)先移项,然后运用直接开平方法,即可求出x 的值;(2)方程两边同时除以8,然后计算立方根,即可得到答案.【详解】解:(1)24241x -=∴2425x =, ∴2254x =, ∴52x =±; (2)()38127x -=,∴()32718x -=,∴3x-=,12∴5x=;2【点睛】本题考查了直接开平方法、开立方根法求方程的解,解题的关键是熟练掌握直接开平方法、开立方根法进行解题.19.(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即解析:(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即可得解;(2)由平行线的性质及等量代换即可得解.【详解】解:(1)证明:∵∠1=∠2(已知),又∵∠1=∠DMN(对顶角相等),∴∠2=∠DMN(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠DBC+∠C=180°(两直线平行,同旁内角互补),∵∠C=∠D(已知),∵∠DBC+(∠D)=180°(等量代换),∴DF∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).(2)∵DB∥EC,∴∠DBC+∠C=180°,∠DEC+∠D=180°,∵∠C=∠D,∴∠DBC=∠DEC.【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.20.(1)见解析;(2)正方形【分析】(1)根据平面直角坐标系找出各点的位置即可;(2)观察图形可知四边形ABCO是正方形.【详解】解:(1)如图.(2)四边形ABCO是正方形.【点睛】解析:(1)见解析;(2)正方形【分析】(1)根据平面直角坐标系找出各点的位置即可;(2)观察图形可知四边形ABCO是正方形.【详解】解:(1)如图.(2)四边形ABCO是正方形.【点睛】本题考查了坐标与图形性质,能够准确在平面直角坐标系中找出点的位置是解题的关键.21.同意;【分析】找出的整数部分与小数部分.然后再来求.【详解】解:同意小明的表示方法.无理数的整数部分是,即,无理数的小数部分是,即,,【点睛】本题主要考查了无理数的大小.解题解析:同意;123- 【分析】 找出3的整数部分与小数部分.然后再来求x y -.【详解】解:同意小明的表示方法.1110312<+<∴无理数103+的整数部分是11,即11x =,∴无理数103+的小数部分是()10311 31+-=-, 即31y =-,()1131123x y ∴-=--=-, 【点睛】本题主要考查了无理数的大小.解题关键是确定无理数的整数部分即可解决问题. 22.(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a 和b 的值,然后得出答案.解析:(1)S=13,边长为 13;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a 和b 的值,然后得出答案.详解:解:(1)S=25-12=13, 边长为, (2)a=3,b= -3 原式=9+-3-=6.点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长.23.(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H 作HP ∥AB ,根据平行线的性质解答即可;(3)过点H 作HP ∥AB ,根据平行线的性质解答即可.解析:(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.【详解】证明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)过点M作MQ∥AB,∵AB∥CD,∴MQ∥CD,过点H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∠BGH,∴∠BGM=∠HGM=12∵EM平分∠HED,∴∠HEM=∠DEM=1∠HED,2∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)过点M作MQ∥AB,过点H作HP∥AB,由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=12∠AFE,即1(18010)132x x︒-=,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.24.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H解析:(1)EAF EDG AED∠+∠=∠,证明见解析;(2)证明见解析;(3)80EKD∠=︒.【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;α+5°,再根(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°+α+10°+20°,求得据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.。

期中模拟测试卷(一)七年级数学下学期期中期末满分必刷常考压轴题人教版

期中模拟测试卷(一)七年级数学下学期期中期末满分必刷常考压轴题人教版

七年级下册期中模拟测试(一)数学学科(考试时间:120分钟满分:120分)注意:本试卷分试题卷和答题卡(卷)两部分,答案一律填写在答题卡(卷)上,在试题卷上作答无效.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.36的平方根是()A.±6 B.6 C.﹣6 D.±【答案】A【解答】解:∵(±6)2=36,∴36的平方根是±6.故选:A.2.如图,小手盖住的点的坐标可能为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(﹣4,﹣3)【答案】D【解答】解:小手盖住的点的坐标在第三象限,点横坐标与纵坐标都是负数,只有(﹣4,﹣3)符合.故选:D.3.如图,直线AB、CD相交于点O,OE平分∠BOD,若∠AOE=150°,则∠AOC的度数为()A.50°B.60°C.70°D.80°【答案】B【解答】解:∵∠AOE=150°,∴∠BOE=180°﹣150°=30°,∵OE平分∠BOD,∴∠BOD=2∠BOE=60°,∴∠AOC=∠BOD=60°,故选:B.4.如图,点A为直线BC外一点,AC⊥BC,垂足为C,AC=3,点P是直线BC上的动点,则线段AP长不可能是()A.2 B.3 C.4 D.5【答案】A【解答】解:∵AC⊥BC,∴AP≥AC,即AP≥3.故选:A.5.下列各数3.1415926,﹣,0.202202220…,π,,﹣中,无理数的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:3.1415926,﹣是分数,属于有理数;,是整数,属于有理数;无理数有﹣,0.202202220…,π,共3个.故选:C.6.下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.【答案】B【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.7.下列命题是真命题的有()①过直线外一点有且只有一条直线平行于已知直线;②同位角相等,两直线平行;③内错角相等;④在同一平面内,同垂直于一条直线的两条直线平行.A.1个B.2个C.3个D.4个【答案】C【解答】解:①过直线外一点有且只有一条直线平行于已知直线,正确,为真命题;②同位角相等,两直线平行,正确,为真命题;③两直线平行,内错角相等,故原命题为假命题;④在同一平面内,同垂直于一条直线的两条直线平行,正确,为真命题;故真命题的个数为3个,故选:C.8.若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对【答案】A【解答】解:由题意得,a﹣2=0,3﹣b=0,解得,a=2,b=3,则b﹣a=1,故选:A.9.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【答案】D【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.10.如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°【答案】C【解答】解:过点P作P A∥a,则a∥b∥P A,∴∠1+∠MP A=180°,∠3+∠NP A=180°,∴∠1+∠2+∠3=360°.故选:C.11.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米【答案】C【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,图是矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,则小明从出口A到出口B所走的路线长为50+(25﹣1)×2=98米.故选:C.12.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2021次,点P依次落在点P1、P2、P3…,P2021的位置,由图可知P1(1,1),P2(2,0),P3(2,0),P4(3,1),则P2021的坐标为()A.(2020,0)B.(2020,1)C.(2021,0)D.(2021,1)【答案】D【解答】解:根据图形可得,正方形旋转4次为一个周期,即P→P4为一周期,且相差3﹣(﹣1)=4,∴一个周期P向右移动4个单位长度.∵2021÷4=505…1,∴到P2021有505个周期再旋转一次,505×4﹣1=2019,∴P2020(2019,1),由P2020→P2021与P→P1类似,∴P2021(2021,1).故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.把命题“对顶角相等”改写成“如果…那么…”的形式:.【答案】如果两个角是对顶角,那么这两个角相等【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.14.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为.【答案】110°【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣70°=110°,故答案为:110°.15.如图,△ABC沿着由点B到点E的方向平移,得到△DEF,若BC=4,EC=1,那么平移的距离是.【答案】3【解答】解:根据平移的性质,平移的距离=BE=4﹣1=3,故答案为:3.16.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是.【答案】35°【解答】解:如图,∵AB∥CD,∴∠AEF=∠1=25°,∵∠MEF=60°,∴∠2=∠MEF﹣∠AEF=60°﹣25°=35°,故答案为35°.17.若第三象限内的点P(x,y)、满足|x|=3,y2=25.则P点的坐标是.【答案】(﹣3,﹣5)【解答】解:∵|x|=3,y2=25,∴x=±3,y=±5,∵P在第三象限,∴点P的坐标是(﹣3,﹣5).故答案为:(﹣3,﹣5).18.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的横坐标为.【答案】45【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的横坐标为45.故答案为:45.三、解答题(本大题共8小题,共66分.解答题应写出文字说明,证明过程或演算步骤.)19.计算下列各式的值:【答案】6【解答】解:=+(﹣5)+9﹣(﹣2)=+(﹣5)+9﹣+2=6.20.求满足下列各式x的值(1)2x2﹣8=0;(2)(x﹣1)3=﹣4.【答案】(1)x=±2;(2)x=﹣1【解答】解:(1)2x2﹣8=0,2x2=8,x2=4,x=±2;(2)(x﹣1)3=﹣4,(x﹣1)3=﹣8,x﹣1=﹣2,x=﹣1.21.一个正数的平方根是2a﹣1与﹣a+2,求a和这个正数.【答案】9【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9.22.如图,已知单位长度为1的方格中有个三角形ABC.(1)将三角形ABC向上平移3格再向右平移2格所得三角形A'B'C',在所给的网格中画出三角形A'B'C'的位置;(2)求出三角形A'B'C'的面积;(3)如果点C的坐标为(3,﹣1),请在所给的网格中建立平面直角坐标系.填空:①BC与B'C'的关系是;②BB'与CC'的关系是.【答案】(1)略(2)(3)平行且相等,平行且相等.【解答】解:(1)如图所示,三角形A'B'C'即为所求;(2)S△A'B'C'=3×3﹣=;(3)坐标系如图所示,①BC与B'C'的关系是:平行且相等,②BB'与CC'的关系是:平行且相等,故答案为:平行且相等,平行且相等.23.如图,AB,CD相交于点O,OM平分∠BOD.(1)若∠AOC=50°,求∠AOM的度数;(2)若2∠AOD=3∠AOC,求∠COM的度数.【答案】(1)160°(2)144°【解答】解:(1)由题意可得∠BOD=∠AOC=50°,∠AOD=180°﹣∠AOC=130°,∵OM平分∠BOD,∴∠DOM==25°,∴∠AOM=∠AOD+∠DOM=135°+25°=160°;(2)∵2∠AOD=3∠AOC,∠AOD+∠AOC=180°,∴∠AOD+∠AOD=180°,解得∠AOD=108°,∴∠BOD=180°﹣108°=72°,∠COB=∠AOD=108°,∵OM平分∠BOD,∴∠BOM==36°,∴∠COM=∠COB+∠BOM=108°+36°=144°.24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【答案】(1)略(2)25°【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠A,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°,∵AB∥CD,∴∠C=∠3=25°.25.我们知道:无理数是无限不循环的小数.下面是探究无理数的大小过程:因为12=1,22=4,所以1<<2;因为1.42=1.96,1.52=2.25,所以1.4<<1.5;因为1.412=1.9881,1.422=2.0164,所以1.41<<1.42;因为1.4142=1.999396,1.4152=2.002225,所以1.414<<1.415;……如此进行下去,可以得到的更加精确的近似值.(1)请仿照上面的思考过程,请直接写出无理数的大致范围?(精确到0.01)(2)填空:①比较大小:32(填“>、<或=”);②若a、b均为正整数,a>,b<,则a+b的最小值是.(3)现有一块长4.1dm,宽为3dm的长方形木板,要想在这块木板上截出两个面积分别为2dm2和5dm2的正方形木板,张师傅准备采用如图的方式进行,请你帮助分析一下,他的方法可行吗?【答案】(1)2.23<<2.24(2)>,4(3)可行【解答】解:(1)∵2.232<5<2.242,∴2.23<<2.24;(2)①∵(3)2=18,(2)2=12,∴3>2;故答案为:>;②∵a、b均为正整数,a>,b<,∴a最小为3,b=1,∴a+b最小为4;故答案为:4;(3)他的方法可行,理由如下:∵面积分别为2dm2的正方形边长是dm,面积分别为5dm2的正方形是dm,≈2,236<3,+≈3.65<4.1,∴他的方法可行.26.如图,在平面直角坐标系,点A、B的坐标分别为(a,0),(0,b),且|a﹣26|+=0,将点B向右平移24个单位长度得到C.(1)求A、B两点的坐标;(2)点P、Q分别为线段BC、OA两个动点,P自B点向C点以2个单位长度/秒向右运动,同时点Q自A点向O点以4个单位长度/秒向左运动,设运动的时间为t,连接PQ,当PQ恰好平分四边形BOAC的面积时,求t的值;(3)点D是直线AC上一点,连接QD,作∠QDE=120°,边DE与BC的延长线相交于点E,DM平分∠CDE,DN平分∠ADQ,当点Q运动时,∠MDN的度数是否变化?请说明理由.【答案】(1)A(26,0),B(0,8)(2)t=(3)不变【解答】解:(1)∵|a﹣26|+=0,∴a﹣26=0,且8﹣b=0,∴a=26,b=8,∴A(26,0),B(0,8);(2)∵BC∥x轴,BC=24,∴C(24,8),由题意得:BC∥OA,BP=2t,AQ=4t,则PC=24﹣2t,OQ=26﹣4t,BO=8,∴S梯形AOBC=×(24+26)×8=200,当PQ恰好平分四边形BOAC时,S梯形OBPQ=×200=100,∴:×(2t+26﹣4t)×8=100,解得:t=;(3)当点Q运动时,∠MDN的度数不变,理由如下:如图1,当点D在线段CA的延长线上或AC的延长线上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDC=,∠QDA,∠MDC=∠CDE,∴∠MDN=∠NDC+∠MDC=(∠QDA+∠CDE)=∠QDE=60°;如图2,当点D在线段AC上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDQ=∠ADQ,∠MDC=∠CDE,设∠CDE=α,∴∠QDC=120°﹣α,∠ADQ=180°﹣(120°﹣α)=60°+α,∴∠MDN=∠MDC+∠QDC+∠NDC=α+120°﹣α+(60°+α)=150°;综上所述,∠MDN的度数为150°或60°,∴当点Q运动时,∠MDN的度数不变化.。

人教版七年级数学下册期中考试卷及答案【必考题】

人教版七年级数学下册期中考试卷及答案【必考题】

人教版七年级数学下册期中考试卷及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .437.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .128.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤2310.将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.52二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________.4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解方程组:34(2)521x x yx y--=⎧⎨-=⎩2.如果方程34217123x x-+-=-的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,求代数式a2+a-1的值.3.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD,若∠EFG=90°,∠E=35°,求∠EFB的度数.4.如图,已知AB∥CD,CN是∠BCE的平分线.(1)若CM平分∠BCD,求∠MCN的度数;(2)若CM在∠BCD的内部,且CM⊥CN于C,求证:CM平分∠BCD;(3)在(2)的条件下,连结BM,BN,且BM⊥BN,∠MBN绕着B点旋转,∠BMC+∠BNC是否发生变化?若不变,求其值;若变化,求其变化范围.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.华联超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价?(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、C6、A7、C8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、10.3、0.4、205、两6、48三、解答题(本大题共6小题,共72分)1、31 xy=⎧⎨=⎩2、x=10;a=-4;11.3、20°4、(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变,理由略5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、25元超市一共购进1200个魔方。

【必考题】初一数学下期中模拟试卷(带答案) (2)

【必考题】初一数学下期中模拟试卷(带答案) (2)

【必考题】初一数学下期中模拟试卷(带答案) (2)一、选择题1.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-22.如图,点E 在AB 的延长线上,则下列条件中,不能判定AD BC ∥的是( )A .180D DCB ∠+∠=︒B .13∠=∠C .24∠∠=D .CBE DAE ∠=∠3.下列图形中,1∠和2∠的位置关系不属于同位角的是( )A .B .C .D .4.比较552、443、334的大小( )A .554433234<<B .334455432<<C .553344243<<D .443355342<< 5.若x y <,则下列不等式中成立的是( ) A .11x y ->-B .22x y -<-C .22xy < D .3232x y -<- 6.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=- B .5{1+52x y x y =+= C .5{2-5x y x y =+= D .-5{2+5x y x y ==7.下列所示的四个图形中,∠1=∠2是同位角的是( )A .②③B .①④C .①②③D .①②④8.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.89.如果a >b ,那么下列各式中正确的是( )A .a ﹣2<b ﹣2B .22a b pC .﹣2a <﹣2bD .﹣a >﹣b10.如图,下列能判断AB ∥CD 的条件有 ( )①∠B +∠BCD =180°②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1 B .2 C .3 D .411.如图,AB ∥CD ,EF 平分∠GED ,∠1=50°,则∠2=( )A .50°B .60°C .65°D .70°12.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )A .35°B .45°C .55°D .125°二、填空题13.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______ 。

七年级数学下册期中考试题及答案【必考题】

七年级数学下册期中考试题及答案【必考题】

七年级数学下册期中考试题及答案【必考题】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元2.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.在同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.直线外一点与直线上各点连接的所有线段中,垂线段最短3.如图,下列能判定AB∥EF的条件有( )①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.A.1个B.2个C.3个D.4个4.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)5.如果3ab2m-1与9ab m+1是同类项,那么m等于( )A.2 B.1 C.﹣1 D.06.式子|x﹣1|-3取最小值时,x等于()A.1 B.2 C.3 D.47.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3 B.-2 C.-1 D.1 8.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱9.已知x a=3,x b=4,则x3a-2b的值是()A.278B.2716C.11 D.1910.下列等式变形正确的是()A.若﹣3x=5,则x=3 5B.若1132x x-+=,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6D.若3(x+1)﹣2x=1,则3x+3﹣2x=1二、填空题(本大题共6小题,每小题3分,共18分)1.若3的整数部分是a,小数部分是b,则3a b-=________.2.已知不等式3x-0a≤的正整数解恰是1,2,3,4,那么a的取值范围是_________________.3.如图,直线 AB ,CD 相交于点O ,若∠EOC :∠EOD=4 :5 ,OA平分∠EOC ,则∠BOE=_________.4.写出一个数,使这个数的绝对值等于它的相反数:__________.5.分解因式:222m-=____________.6.八边形的内角和为________度.三、解答题(本大题共6小题,共72分)1.解方程组212319x y x y +=⎧⎨-=-⎩2.已知方程组3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,求m ,n 的值.3.如图①,已知AD ∥BC ,∠B=∠D=120°.(1)请问:AB 与CD 平行吗?为什么?(2)若点E 、F 在线段CD 上,且满足AC 平分∠BAE ,AF 平分∠DAE ,如图②,求∠FAC 的度数.(3)若点E 在直线CD 上,且满足∠EAC=12∠BAC ,求∠ACD :∠AED 的值(请自己画出正确图形,并解答).4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N∠=∠.5.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?6.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、C5、A6、A7、A8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1.2、1215a ≤<3、140°4、1-(答案不唯一)5、2(1)(1)m m +-.6、1080三、解答题(本大题共6小题,共72分)1、25x y =-⎧⎨=⎩2、m=4,n=﹣1.3、(1)平行,理由略;(2)∠FAC =30°;(3)∠ACD :∠AED=2:3或2:1.4、(1)略;(2)略.5、(1)1000;(2)图形见解析;(3)该校18000名学生一餐浪费的食物可供3600人食用一餐.6、安排25人加工甲部件,则安排60人加工乙部件,共加工200套.。

【必考题】初一数学下期中试题(含答案) (2)

【必考题】初一数学下期中试题(含答案) (2)

【必考题】初一数学下期中试题(含答案) (2)一、选择题1.已知点P(3a ,a +2)在x 轴上,则P 点的坐标是( ) A .(3,2)B .(6,0)C .(-6,0)D .(6,2)2.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°3.如图,直线a b ∥,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果160∠=︒,那么2∠等于( )A .30°B .︒40C .50︒D .60︒4.点M (2,-3)关于原点对称的点N 的坐标是: ( ) A .(-2,-3) B .(-2, 3) C .(2, 3) D .(-3, 2)5.解方程组229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩得x 等于( )A .18B .11C .10D .9 6.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-27.如图,AB∥CD,BC∥DE,∠A=30°,∠BCD=110°,则∠AED 的度数为( )A .90°B .108°C .100°D .80°8.若a <b <0,则在ab <1、1a >b1、ab >0、b a >1、-a >-b 中正确的有( ) A .2个B .3个C .4个D .5个9.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( )A .B .C .D .10.在平面直角坐标中,点M(-2,3)在( ) A .第一象限 B .第二象限C .第三象限D .第四象限11.下列所示的四个图形中,∠1=∠2是同位角的是( )A .②③B .①④C .①②③D .①②④ 12.下列运算正确的是( ) A 42=±B 222()-=-C 382-=-D .|2|2--=二、填空题13.不等式332x a a -≤-的正整数解为1,2,则a 的取值范围是____________________. 14.对非负实数x “四舍五入”到个位的值记为x ,即当n 为非负整数时,若1122n x n -≤<+,则x n =,如0.460=,3.674=,给出下列关于x 的结论: ①1.4931=; ②22x x =; ③若1142x -=,则实数x 的取值范围是911x ≤<; ④当0x ≥,m 为非负整数时,有20182018m x m x +=+; ⑤x y x y +=+;其中,正确的结论有_________(填写所有正确的序号).15.如图, 直线AB CD 、相交于点O , OE AB ⊥于点O , OF 平分AOE ∠,11530'∠=︒,则下列结论:①245︒∠=; ②13∠=∠; ③AOD ∠与1∠互为补角; ④1∠的余角等于7530'︒,其中正确的是___________(填序号)16.对于x y ,定义一种新运算“☆”,x y ax by =+☆,其中a b ,是常数,等式右边是通常的加法和乘法运算.已知3515=☆,4728=☆,则11☆的值为____.17.如图,数轴上表示1、3的对应点分别为点A 、点B ,若点A 是BC 的中点,则点C 表示的数为______.18.34330035.12=30.3512x =-,则x =_____________. 19.若点P (a +3,2a +4)在y 轴上,则点P 到x 轴的距离为________.20.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是__________.三、解答题21.1x +2y -z 是64的方根,求x y z -+的平方根 22.为弘扬中华传统文化,某校组织八年级8000名学生参加汉字听写大赛.为了解学生整体听写能力,从中抽取部分学生的成绩(得分取正整数,满分为100分)进行统计分析,得到如下所示的频数分布表: 分数段 50.5~60.5 60.5~70.570.5~80.5 80.5~90.5 90.5~100.5频数 1630 50 m 24所占百分比8% 15%25%40% %n请根据尚未完成的表格,解答下列问题:(1)本次抽样调查的样本容量为___ _,表中m =_ ,n = _; (2)补全如图所示的频数分布直方图;(3)若成绩超过80分为优秀,则该校八年级学生中汉字听写能力优秀的约有多少人? 23.某水果店计划进A ,B 两种水果共140千克,这两种水果的进价和售价如表所示进价(元/千克) 售价(元/千克) A 种水果 5 8 B 种水果913()1若该水果店购进这两种水果共花费1020元,求该水果店分别购进A ,B 两种水果各多少千克?()2在()1的基础上,为了迎接春节的来临,水果店老板决定把A 种水果全部八折出售,B种水果全部降价10%出售,那么售完后共获利多少元? 24.先阅读,再解方程组. 解方程组10,4()5x y x y y --=⎧⎨--=⎩①②时,可由①得1x y -=③,然后再将③代入②,得415y ⨯-=,解得1y =-,从而进一步得0,1.x y =⎧⎨=-⎩这种方法被称为“整体代入法”.请用上述方法解方程组2320,23529.7x y x y y --=⎧⎪-+⎨+=⎪⎩25.通过对某校七年级学生体育选修课程的统计,得到以下信息: ①参加选课的总人数为300;②参加选课的学生在“足球、篮球、排球、乒乓球”中都选择了一门;③选足球和选排球的人数共占总人数的50%;选乒乓球的人数是选排球人数的2倍; 选足球和选篮球的人数共占总人数的85%.设选足球的人数为x,选排球的人数为y,试列出二元一次方程组,分别求出选择足球、篮球、排球、乒乓球各门课程的人数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据点P在x轴上,即y=0,可得出a的值,从而得出点P的坐标.【详解】∵点P(3a,a+2)在x轴上,∴y=0,即a+2=0,解得a=-2,∴3a=-6,∴点P的坐标为(-6,0).故选C.【点睛】此题考查平面直角坐标系中点的坐标,明确点在x轴上时纵坐标为0是解题的关键.2.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.3.A解析:A 【解析】 【分析】先由直线a ∥b ,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2. 【详解】 已知直线a ∥b ,∴∠3=∠1=60°(两直线平行,同位角相等), ∠4=90°(已知),∠2+∠3+∠4=180°(已知直线), ∴∠2=180°-60°-90°=30°. 故选:A . 【点睛】此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.4.B解析:B【解析】试题解析:已知点M (2,-3), 则点M 关于原点对称的点的坐标是(-2,3), 故选B .5.C解析:C 【解析】 【分析】利用加减消元法解方程组即可. 【详解】229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③, ①+②+③得: 3x+3y+3z=90.∴x+y+z=30 ④ ②-①得: y+z-2x=0 ⑤ ④-⑤得: 3x=30 ∴x=10 故答案选:C . 【点睛】本题考查的是三元一次方程组的解法,掌握加减消元法是解题的关键.6.A解析:A 【解析】 【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可. 【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Q x b ∴>综合上述可得32b -≤<- 故选A. 【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.7.C解析:C 【解析】 【分析】在图中过E 作出BA 平行线EF ,根据平行线性质即可推出∠AEF 及∠DEF 度数,两者相加即可. 【详解】过E 作出BA 平行线EF ,∠AEF=∠A =30°,∠DEF=∠ABC AB ∥CD ,BC ∥DE ,∠ABC=180°-∠BCD =180°-110°=70°, ∠AED=∠AEF+∠DEF=30°+70°=100°【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.8.B【解析】 【分析】根据不等式的性质即可求出答案. 【详解】解:①∵a <b <0,∴ab 不一定小于1,故①错误; ②∵a <b <0, ∴1a >b1,故②正确; ③∵a <b <0, ab >0,故③正确; ④∵a <b <0,ba<1,故④错误; ⑤∵a <b <0, -a >-b ,故⑤正确, 故选B. 【点睛】此题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.9.A解析:A 【解析】 【分析】先求出不等式组的解集,再在数轴上表示出来即可. 【详解】213312x x +⎧⎨+≥-⎩<①②∵解不等式①得:x <1, 解不等式②得:x≥-1, ∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A . 【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.10.B解析:B∵−2<0,3>0, ∴(−2,3)在第二象限, 故选B.11.D解析:D 【解析】 【分析】根据同位角的定义(在截线的同侧,并且在被截线的同一方的两个角是同位角),即可得到答案; 【详解】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角; 图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角. 故选D . 【点睛】本题主要考查了同位角的概念,判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.12.C解析:C 【解析】 【分析】分别计算四个选项,找到正确选项即可. 【详解】2=,故选项A 错误;2==,故选项B 错误;2=-,故选项C 正确; D. |2|2--=-,故选项D 错误; 故选C . 【点睛】本题主要考查了开平方、开立方和绝对值的相关知识,熟练掌握各知识点是解题的关键.二、填空题13.【解析】【分析】根据不等式的性质求出不等式的解集根据不等式的正整数解得出2≤<3求出不等式的解集即可【详解】解答:解:3x −3a≤−2a 移项得:3x≤−2a +3a 合并同类项得:3x≤a∴不等式的解集解析:69a ≤<. 【解析】根据不等式的性质求出不等式的解集,根据不等式的正整数解得出2≤3a<3,求出不等式的解集即可. 【详解】解答:解:3x−3a≤−2a , 移项得:3x≤−2a +3a , 合并同类项得:3x≤a , ∴不等式的解集是x≤3a , ∵不等式3x−3a≤−2a 的正整数解为1,2, ∴2≤3a<3, 解得:6≤a <9. 故答案为:6≤a <9. 【点睛】本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的解集得出2≤3a<3是解此题的关键. 14.①③④【解析】【分析】对于①可直接判断②⑤可用举反例法判断③④我们可以根据题意所述利用不等式判断【详解】∵1-<1493<1+∴故①正确当x=03时=12=0故②错误;∵∴4-≤x -1<4+解得:9解析:①③④ 【解析】 【分析】对于①可直接判断,②、⑤可用举反例法判断,③、④我们可以根据题意所述利用不等式判断. 【详解】 ∵1-12<1.493<1+12, ∴1.4931=,故①正确,当x=0.3时,2x =1,2x =0,故②错误;∵1142x -=, ∴4-12≤12x-1<4+12, 解得:9≤x <11,故③正确,∵当m 为非负整数时,不影响“四舍五入”,∴2018m x +=m+2018x ,故④正确,当x=1.4,y=1.3时,1.3 1.4+=3,1.3 1.4+=2,故⑤错误,综上所述:正确的结论为①③④,故答案为:①③④【点睛】本题考查了一元一次不等式组的应用和理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题可得解.15.①②③【解析】【分析】根据角平分线的性质可判断①根据对顶角关系可判断②根据互补的定义可判断③根据余角的定义可判断④【详解】∵OE⊥AB∴∠AOE=90°∵OF 平分∠AOE∴∠2=∠EOF=45°①正解析:①②③【解析】【分析】根据角平分线的性质可判断①,根据对顶角关系可判断②,根据互补的定义可判断③,根据余角的定义可判断④.【详解】∵OE ⊥AB ,∴∠AOE=90°∵OF 平分∠AOE ,∴∠2=∠EOF=45°,①正确;∵∠1与∠3互为对顶角,∴∠1=∠3,②正确;∵∠AOD+∠1=180°,∴AOD ∠与1∠互为补角,③正确;∵11530'∠=︒,∴∠1的补角为901530'=7430'︒-︒︒,④错误故答案为:①②③【点睛】本题考查垂直、角平分线、补角、对顶角的基本定义和性质,注意紧紧把握定义来判断.16.-11【解析】【分析】利用题中的新定义化简椅子等式求出a 与b 的值即可确定出所求【详解】解:根据题中的新定义得:解得:所以;故答案为:【点睛】本题考查的是二元一次方程组以及有理数的混合运算熟练掌握运算 解析:-11【解析】【分析】利用题中的新定义化简椅子等式求出a 与b 的值,即可确定出所求.【详解】解:根据题中的新定义得:35154728a b a b +=⎧⎨+=⎩, 解得:3524a b =-⎧⎨=⎩, 所以111(35)12411☆=⨯-+⨯=-;-.故答案为:11【点睛】本题考查的是二元一次方程组以及有理数的混合运算,熟练掌握运算法则是解本题的关键.17.2﹣【解析】【分析】设点C表示的数是x再根据中点坐标公式即可得出x 的值【详解】解:设点C表示的数是x∵数轴上表示1的对应点分别为点A点B 点A是BC的中点∴=1解得x=2﹣故答案为2﹣【点评】本题考查解析:2【解析】【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上表示1的对应点分别为点A、点B,点A是BC的中点,=1,解得x=2故答案为2【点评】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.18.-00433【解析】【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍则得到的结果扩大或缩小10倍根据规律可得x的值【详解】从3512变为-03512缩小了100倍且添加了-∴根据规律解析:-0.0433【解析】【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”故答案为:-0.0433【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.19.2【解析】【分析】点在y轴上则横坐标为0可求得a的值然后再判断点到x轴的距离即可【详解】∵点P(a+32a+4)在y轴上∴a+3=0解得:a=-3∴P(0-2)∴点P到x轴的距离为:2故答案为:2【解析:2【解析】【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.【详解】∵点P(a+3,2a+4)在y轴上∴a+3=0,解得:a=-3∴P(0,-2)∴点P到x轴的距离为:2故答案为:2【点睛】本题考查坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的.20.【解析】【分析】首先根据频率=频数÷数据总数求得第5组的频数然后根据6个组的频数和等于数据总数即可求得第6组的频数【详解】解:∵有50个数据共分成6组第5组的频率是016∴第5组的频数为50×016解析:【解析】【分析】首先根据频率=频数÷数据总数求得第5组的频数,然后根据6个组的频数和等于数据总数即可求得第6组的频数.【详解】解:∵有50个数据,共分成6组,第5组的频率是0.16,∴第5组的频数为50×0.16=8;又∵第1~4组的频数分别为10,8,7,11,∴第6组的频数为50﹣(10+8+7+11+8)=6.故答案为6.【点睛】本题考查频数与频率.三、解答题21.【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x、y的值,然后求出z的值,再根据平方根的定义解答.【详解】,∴x+1=0,2-y=0,解得x=-1,y=2,∵z是64的方根,∴z=8所以,x y z-+=-1-2+8=5,所以,x y z-+的平方根是±5.【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.22.(1)200、80、12;(2)见详解(3)该校八年级学生中汉字听写能力优秀的约有4160人.【解析】【分析】(1)根据第一组的频数是16,频率是0.08,即可求得总数,即样本容量;(2)根据(1)的计算结果即可作出直方图;(3)利用总数8000乘以优秀的所占的频率即可.【详解】解:(1)样本容量是:16÷0.08=200;样本中成绩的中位数落在第四组;m=200×0.40=80,% n=24200=0.12,则n=12故答案为:200、80、12;(2)补全频数分布直方图,如下:(3)8000×(0.4+0.12)=4160(人).答:该校八年级学生中汉字听写能力优秀的约有4160人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(1) 购进A种水果60千克,B种水果80千克;(2)300元.【解析】(1)设该水果店购进A 种水果x 千克,B 种水果y 千克,根据总价=单价×数量结合花1020元购进A ,B 两种水果共140千克,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据利润=销售收入﹣成本,即可求出结论.【详解】(1)设该水果店购进A 种水果x 千克,B 种水果y 千克,依题意,得:140591020x y x y +=⎧⎨+=⎩解得:6080x y =⎧⎨=⎩. 答:该水果店购进A 种水果60千克,B 种水果80千克.(2)8×0.8×60+13×(1﹣10%)×80﹣1020=300(元).答:售完后共获利300元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.7,4.x y =⎧⎨=⎩【解析】【分析】观察方程组的特点,把23x y -看作一个整体,得到232x y -=,将之代入②,进行消元,得到25297y ++=,解得4y =,进一步解得7x =,从而得解. 【详解】 解:2320,23529,7x y x y y --=⎧⎪⎨-++=⎪⎩①②由①,得232x y -=,③ 把③代入②,得25297y ++=,解得4y =. 把4y =代入③,得2342x -⨯=,解得7x =.故原方程组的解为7,4.x y =⎧⎨=⎩【点睛】本题考查了二元一次方程组的特殊解法:整体代入法.解方程(组)要根据方程组的特点灵活运用选择合适的解法.25.135;120;15;30【解析】设选足球的人数为x ,选排球的人数为y ,根据“选足球和选排球的人数共占总人数的50%;选乒乓球的人数是选排球人数的2倍;选足球和选篮球的人数共占总人数的85%”列出方程组并解答.【详解】解:设选足球的人数为x ,选排球的人数为y ,根据题意,得30050%150230085%x y x y +=⨯⎧⎨+-=⨯⎩解这个方程组,得13515x y =⎧⎨=⎩当135x =,15y =时,230y =;1502120y -=.答:选择足球、篮球、排球、乒乓球课程的人数分别为135、120、15、30.【点睛】本题考查了二元一次方程组的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。

新人教版七年级数学下册期中考试卷及答案【必考题】

新人教版七年级数学下册期中考试卷及答案【必考题】

新人教版七年级数学下册期中考试卷及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若单项式a m ﹣1b 2与212n a b 的和仍是单项式,则n m 的值是( ) A .3 B .6 C .8 D .92.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 5.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个6.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .15 7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .13208.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.已知3,5a b x x ==,则32a b x -=( )A .2725B .910C .35D .5210.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.2.已知关于x ,y 的二元一次方程组2321x y k x y +=⎧⎨+=-⎩的解互为相反数,则k 的值是_________.3.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 _________.4.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________.5.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第________块。

【必考题】初一数学下期中试题带答案

【必考题】初一数学下期中试题带答案
3.D
解析:D
【解析】
【分析】
由∠1=∠2结合“内错角(同位角)相等,两直线平行”得出两平行的直线,由此即可得出结论.
【详解】
A、∵∠1=∠2,
∴AD∥BC(内错角相等,两直线平行);
B、∵∠1=∠2,∠1、∠2不是同位角和内错角,
∴不能得出两直线平行;
C、∠1=∠2,∠1、∠2不是同位角和内错角,
6.D
解析:D
【解析】
分析:分别判断是否是假命题.
详解:选项A.对顶角相等,正确.
选项B.若直线a、b、c满足b∥a,c∥a,那么b∥c,正确.
选项C.两直线平行,同旁内角互补,正确.
选项D.互补的角是邻补角,错误,不相邻的两个补角不是邻补角.
故选D.
点睛:(1)真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立.简单来说就是成立的、对的就是真命题.比如太阳是圆的...就是真命题.
解析:70°
【解析】
【分析】
根据平行的判定,要使直线a∥b成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.
【详解】
解:要使直线a∥b成立,则∠2=∠3(同位角相等,两直线平行),
∵∠1=110°,
∴∠3=180°-∠1=180°-110°=70°,
【详解】
由点P(a,b)在第四象限内,得
a>0,b<0,
故选:D.
【点睛】
此题考查各象限内点的坐标,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
5.A
解析:A
【解析】
【分析】

人教版七年级数学下册期中考试题及答案【必考题】

人教版七年级数学下册期中考试题及答案【必考题】

人教版七年级数学下册期中考试题及答案【必考题】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.下列说法不正确的是( )A .过任意一点可作已知直线的一条平行线B .在同一平面内两条不相交的直线是平行线C .在同一平面内,过直线外一点只能画一条直线与已知直线垂直D .直线外一点与直线上各点连接的所有线段中,垂线段最短3.如图,下列能判定AB ∥EF 的条件有( )①∠B +∠BFE =180°;②∠1=∠2;③∠3=∠4;④∠B =∠5.A .1个B .2个C .3个D .4个 4.长方形如图折叠,D 点折叠到的位置,已知∠FC =40°,则∠EFC =( )A .120°B .110°C .105°D .115°5.如图,按各组角的位置判断错误的是( )A .∠1与∠4是同旁内角B .∠3与∠4是内错角C .∠5与∠6是同旁内角D .∠2与∠5是同位角6.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+17.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,直线AB 、CD 、EF 相交于点O ,其中AB ⊥CD ,∠1:∠2=3:6,则∠EOD =( )A .120°B .130°C .60°D .150°9.已知3,5a b x x ==,则32a b x -=( )A .2725B .910C .35D .5210.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.若1m +与2-互为相反数,则m 的值为_______.2.如图所示,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是___________________.3.已知80AOB ∠=,40BOC ∠= ,射线OM 是AOB ∠平分线,射线ON 是BOC ∠ 平分线,则MON ∠=________ .4.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色与红球不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.化简: 43ππ-+-=________三、解答题(本大题共6小题,共72分)1.解方程组:20346x y x y +=⎧⎨+=⎩2.甲乙两人同时解方程85mx ny mx ny +=-⎧⎨-=⎩①②由于甲看错了方程①,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②,得到的解是25x y =⎧⎨=⎩,试求正确m ,n 的值.3.如图是一块长方形的空地,长为x 米,宽为120米,现在它分成甲、乙、丙三部分,其中甲和乙是正方形形状.(1)乙地的边长为 ;(用含x 的代数式表示)(2)若设丙地的面积为S 平方米,求出S 与x 的关系式;x=时,求S的值.(3)当2004.如图,在平面直角坐标系中,点A、C分别在x轴上、y轴上,CB//OA,OA=8,若点B的坐标为(a,b),且b=444a a-+-+.(1)直接写出点A、B、C的坐标;(2)若动点P从原点O出发沿x轴以每秒2个单位长度的速度向右运动,当直线PC把四边形OABC分成面积相等的两部分停止运动,求P点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.5.四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、B5、C6、C7、C8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1.2、垂线段最短.3、60°或20°4、205、±46、1三、解答题(本大题共6小题,共72分)1、原方程组的解为=63x y ⎧⎨=-⎩2、74n =-,38m =.3、(1)(0)12x -米 (2)(120)(240)S x x =-- (3)32004、(1)A (8,0),B (4,4),C (0,4);(2)t =3;(3)存在;点Q 坐标(0,12)或(0,−4)5、(1)50; 32;(2)16;10;15;(3)608人.6、(1)120件;(2)150元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【必考题】七年级数学下期中模拟试题(附答案)一、选择题1.点A 在x 轴的下方,y 轴的右侧,到x 轴的距离是3,到y 轴的距离是2,则点A 的坐标是( )A .()23-,B .()23,C .()32,-D .()32--,2.如图,直线a b ∥,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果160∠=︒,那么2∠等于( )A .30°B .︒40C .50︒D .60︒3.若点(),P a b 在第四象限,则( ) A .0a >,0b > B .0a <,0b < C .0a <,0b >D .0a >,0b <4.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7B .6+a >b+6C .55ab >D .-3a >-3b5.已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( )A .18030x y x y +=⎧⎨=-⎩B .180+30x y x y +=⎧⎨=⎩C .9030x y x y +=⎧⎨=-⎩D .90+30x y x y +=⎧⎨=⎩6.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0) 7.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-28.设42a ,小整数部分为b ,则1a b-的值为( ) A .2-B 2C .21+D .21 9.如图,下列条件中,能判断AB//CD 的是( )A .∠BAC=∠ACDB .∠1=∠2C .∠3=∠4D .∠BAD=∠BCD10.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为() A .()8,3--B .()4,2C .()0,1D .()1,811.已知关于x ,y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则n-m 的值是( )A .6B .3C .-2D .112.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )A .35°B .45°C .55°D .125°二、填空题13.如图,把一长方形纸片ABCD 沿EF 折叠后ED 与BC 交于点G ,D 、C 分别在M ,N 的位置,若∠EFG=56°,则∠EGB =___________.14.如图,点,A B 的坐标分别是()1,0、()0,2,把线段AB 平移至11A B 时得到点1A 、1B 两点的坐标分别为()3,b ,(),4a ,则+a b 的值是__________.15.如图,将周长为20个单位的ABC V 沿边BC 向右平移4个单位得到DEF V ,则四边形ABFD 的周长为__________.16.如图,直线AB,CD交于点O,OF⊥AB于点O,CE∥AB交CD于点C,∠DOF=60°,则∠ECO等于_________度.17.如图,将边长为6cm的正方形ABCD先向上平移3cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为______cm2.18.比较大小1-5______12-.(填“>”、“<”或“=”)19.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2= .20.已知方程组236x yx y+=⎧⎨-=⎩的解满足方程x+2y=k,则k的值是__________.三、解答题21.A,B两种型号的空调,已知购进3台A型号空调和5台B型号空调共用14500元;购进4台A型号空调和10台B型号空调共用25000元.(1)求A,B两种型号空调的进价;(2)若超市准备用不超过54000元的资金再购进这两种型号的空调共30台,求最多能购进A 种型号的空调多少台?22.如图,已知∠1+∠2=180°,∠3=∠B ,求证:DE ∥BC .23.某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.24.已知 2x -y 的平方根为±3,-4 是 3x +y 的一个平方根,求 x -y 的平方根. 25.如图,α∠和β∠的度数满足方程组3260100αββα∠+∠=︒⎧⎨∠-∠=︒⎩,且//CD EF ,AC AE ⊥.(1)求证//AB EF ; (2)求C ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据点A 在x 轴的下方,y 轴的右侧,可知点A 在第四象限,根据到x 轴的距离是3,到y 轴的距离是2,可确定出点A 的横坐标为2,纵坐标为-3,据此即可得. 【详解】∵点A 在x 轴的下方,y 轴的右侧,∴点A的横坐标为正,纵坐标为负,∵到x轴的距离是3,到y轴的距离是2,∴点A的横坐标为2,纵坐标为-3,故选A.【点睛】本题考查了点的坐标,熟知点到x轴的距离是点的纵坐标的绝对值,到y轴的距离是横坐标的绝对值是解题的关键.2.A解析:A【解析】【分析】先由直线a∥b,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【详解】已知直线a∥b,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°-60°-90°=30°.故选:A.【点睛】此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.3.D解析:D【解析】【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【详解】由点P(a,b)在第四象限内,得a>0,b<0,故选:D.【点睛】此题考查各象限内点的坐标,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.D解析:D 【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确; D.∵a >b ,∴-3a <-3b ,∴选项D 错误. 故选D.5.D解析:D 【解析】试题解析:∠A 比∠B 大30°, 则有x=y+30, ∠A ,∠B 互余, 则有x+y=90. 故选D .6.A解析:A 【解析】 【分析】根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系进行解答即可. 【详解】解:因为A (﹣2,1)和B (﹣2,﹣3),所以建立如图所示的坐标系,可得点C 的坐标为(2,﹣1).故选:A . 【点睛】考查坐标问题,关键是根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系解答.7.A解析:A 【解析】 【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可. 【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Q x b ∴>综合上述可得32b -≤<- 故选A. 【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.8.D解析:D 【解析】 【分析】 【详解】解:∵1<2<4,∴1<2,∴﹣2<<﹣1,∴2<43,∴a=2,b=422=2-∴1222122a b +-==-=-. 故选D . 【点睛】本题考查估算无理数的大小.9.A解析:A 【解析】 【分析】根据直线平行的判定:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行进行判断即可. 【详解】解:A. ∠BAC=∠ACD 能判断AB//CD (内错角相等,两直线平行),故A 正确; B. ∠1=∠2得到AD ∥BC ,不能判断AB//CD ,故B 错误; C. ∠3=∠4得到AD ∥BC ,不能判断AB//CD ,故C 错误; D. ∠BAD=∠BCD ,不能判断AB//CD ,故D 错误; 故选A . 【点睛】本题主要考查了平行线的判定的运用,解题时注意:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行.10.C解析:C【解析】【分析】根据点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D的对应点的坐标.【详解】点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,故D(0,1).故选C.【点睛】此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.11.B解析:B【解析】【分析】把12xy=⎧⎨=⎩代入方程组3526x myx ny-=⎧⎨+=⎩,求出m、n的值,再代入要求的代数式求值即可.【详解】把12xy=⎧⎨=⎩代入3526x myx ny-=⎧⎨+=⎩得:325226mn-=⎧⎨+=⎩,解得:m=-1,n=2,∴n-m=2-(-1)=3.故选:B.【点睛】本题考查了二元一次方程组的解,能得出m,n的值是解此题的关键.12.C解析:C【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】如图,∵∠1+∠2=180°,∴a∥b,∴∠4=∠5,∵∠3=∠5,∠3=55°,∴∠4=∠3=55°,故选C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.二、填空题13.112°【解析】【分析】根据折叠前后对应角相等得∠DEF=∠GEF由AD∥BC 得∠EFG=∠DEF=56°进而求出∠DEG的度数再由AD∥BC求出∠DEG=∠EGB【详解】解:∵折叠根据折叠前后对应解析:112°【解析】【分析】根据折叠前后对应角相等得∠DEF=∠GEF,由AD∥BC得∠EFG=∠DEF=56°,进而求出∠DEG的度数,再由AD∥BC,求出∠DEG=∠EGB.【详解】解:∵折叠,根据折叠前后对应的角相等∴∠DEF=∠GEF∵AD∥BC∴∠EFG=∠DEF=56°∴∠DEG=∠DEF+∠GEF=56°+56°=112°又∵AD∥BC∴∠EGB=∠DEG=112°.故答案为:112°【点睛】本题结合折叠考查了平行线的性质,熟记两直线平行时,内错角、同位角相等,同旁内角互补这个性质.14.4【解析】【分析】根据横坐标右移加左移减;纵坐标上移加下移减可得线段AB向右平移2个单位向上平移2个单位进而可得ab的值【详解】∵AB两点的坐标分别为(10)(02)平移后A1(3b)B1(a4)∴解析:4【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得线段AB向右平移2个单位,向上平移2个单位,进而可得a、b的值.【详解】∵A、B两点的坐标分别为(1,0)、(0,2),平移后A1(3,b),B1(a,4),∴线段AB向右平移2个单位,向上平移2个单位,∴a=0+2=2,b=0+2=2,∴a+b=2+2=4故答案为:4【点睛】此题主要考查了坐标与图形的变化--平移,关键是掌握点的坐标的变化规律.15.28【解析】【分析】首先根据题意得出AB+BC+AC=20再利用平移的性质得出AD=CF=4AC=BD由此得出AB+BC+DF=20据此进一步求取该四边形的周长即可【详解】∵△ABC的周长为20∴A解析:28【解析】【分析】首先根据题意得出AB+BC+AC=20,再利用平移的性质得出AD=CF=4,AC=BD,由此得出AB+BC+DF=20,据此进一步求取该四边形的周长即可.【详解】∵△ABC的周长为20,∴AB+BC+AC=20,又∵△ABC向右平移4个单位长度后可得△DEF,∴AD=CF=4,AC=DF,∴AB+BC+DF=20,∴四边形ABFE的周长=AB+BC+CF+DF+AD=28,故答案为:28.【点睛】本题主要考查了平移的性质,熟练掌握相关概念是解题关键.16.30【解析】【分析】先求出∠BOD的大小再根据平行的性质得出同位角∠ECO的大小【详解】∵OF⊥AB∴∠BOF=90°∵∠DOF=60°∴∠BOD=30°∵CE∥AB∴∠ECO=∠BOD=30°故答解析:30【解析】【分析】先求出∠BOD的大小,再根据平行的性质,得出同位角∠ECO的大小.【详解】∵OF⊥AB,∴∠BOF=90°∵∠DOF=60°,∴∠BOD=30°∵CE∥AB∴∠ECO=∠BOD=30°故答案为:30【点睛】本题考查平行线的性质,平行线的性质有:同位角相等、内错角相等、同旁内角互补.17.15【解析】【分析】由题意可知阴影部分为长方形根据平移的性质求出阴影部分长方形的长和宽即可求得阴影部分的面积【详解】∵边长为6cm的正方形ABCD先向上平移3cm∴阴影部分的宽为6-3=3cm∵向右解析:15【解析】【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=3cm,∵向右平移1cm,∴阴影部分的长为6-1=5cm,∴阴影部分的面积为3×5=15cm2.故答案为15.【点睛】本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.18.<【解析】【分析】首先比较进而得出答案【详解】解:∵∴∴故答案为:【点睛】此题主要考查了实数比较大小正确比较与是解题关键解析:<【解析】【分析】<-,进而得出答案.首先比较11【详解】>,2-,∴2<-,∴11∴1122-<-. 故答案为:<.【点睛】此题主要考查了实数比较大小,正确比较1-1-是解题关键 .19.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110° 解析:110°【解析】∵a ∥b ,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°20.-3【解析】分析:解出已知方程组中xy 的值代入方程x+2y=k 即可详解:解方程组得代入方程x+2y=k 得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义解析:-3【解析】分析:解出已知方程组中x ,y 的值代入方程x+2y=k 即可.详解:解方程组236x y x y +=⎧⎨-=⎩, 得33x y ⎧⎨-⎩==, 代入方程x+2y=k ,得k=-3.故本题答案为:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组.三、解答题21.(1)A 种型号空调的进价为2000元,B 种型号空调的进价为1700元;(2)10台【解析】【分析】(1)设A 种型号空调的进价为x 元,B 种型号空调的进价为y 元,根据题目意思列二元一次方程组求解即可得到答案;(2)设能购进A 种型号的空调m 台,则购进B 种型号的空调30-m 台,根据题意列不等式求解再取取整数的最大值即可得到答案;【详解】解:(1)设A 种型号空调的进价为x 元,B 种型号空调的进价为y 元,根据题意,可列方程组为351450*********.x y x y +=⎧⎨+=⎩, 解得:20001700.x y =⎧⎨=⎩, 答:A 种型号空调的进价为2000元,B 种型号空调的进价为1700元;(2)设能购进A 种型号的空调m 台,则购进B 种型号的空调30-m 台,根据题意,可列不等式为20001700(30)54000m m +-≤解不等式,得10m ≤∵m 取最大正整数,∴m=10.答:最多能购进A 种型号的空调10台【点睛】本题主要考查了二元一次方程与一元一次不等式的应用,等根据题目意思列出正确的式子求解是解题的关键.22.证明见解析.【解析】要证明DE ∥BC .需证明∠3=∠EHC .而证明∠3=∠EHC 可通过证明EF ∥AB 及已知条件∠3=∠B 进行推理即可.证明:∵∠1+∠2=180°,∠1=∠4,∴∠2+∠4=180°.∴EH ∥AB .∴∠B =∠EHC .∵∠3=∠B ,∴∠3=∠EHC .∴DE ∥BC .23.(1)每个篮球和每个排球的销售利润分别为25元,20元(2)购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.【解析】【分析】(1)设每个篮球和每个排球的销售利润分别为x 元,y 元,根据题意列方程组,解方程即可得到结果;(2)设购进篮球m 个,排球(100﹣m )个,根据题意得不等式组即可得到结果.【详解】解:(1)设每个篮球和每个排球的销售利润分别为x 元,y 元,根据题意得:793551020650x y x y +=+=⎧⎨⎩,解得:2520x y ⎧⎨⎩==.答:每个篮球和每个排球的销售利润分别为25元,20元;(2)设购进篮球m 个,排球(100﹣m )个,根据题意得:200160(100)174001002m m m m ⎪+-≤-⎧⎪⎨⎩≥, 解得:100353m ≤≤, ∴m=34或m=35, ∴购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.【点睛】本题考查一元一次不等式的应用;二元一次方程组的应用;方案型.24.±2【解析】【分析】根据题意可求出2x-y 及3x+y 的值,从而可得出x-y 的值,继而可求出x-y 的平方根.【详解】解:由题意得:2x-y=9,3x+y=16,解得:x=5,y=1,∴x-y=4,∴x-y 的平方根为=±2. 【点睛】本题主要考查了平方根的知识,难度不大,解题的关键是求x 、y 的值.25.(1)详见解析;(2)50°.【解析】【分析】(1)解方程组求出α,β即可判断.(2)证明//AB CD ,利用平行线的性质解决问题即可.【详解】(1)由3260100αββα∠+∠=︒⎧⎨∠-∠=︒⎩,解得:40140αβ=︒⎧⎨=︒⎩,180αβ∴+=︒,//AB EF ∴. (2)//CD EF Q ,//EF AB ,//AB CD ∴,180BAC C ∴∠+∠=︒,AC AE ⊥Q ,90EAC ∴∠=︒,40BAE ∠=︒Q ,130BAC ∴∠=︒,50C ∴∠=︒.【点睛】本题考查了平行线的性质和判定,解题的关键是熟练掌握基本知识,属于中考常考题型.。

相关文档
最新文档