六年级下册数学试题-2017年希望杯邀请赛第2试 通用版(含答案)

合集下载

(完整版)小学希望杯全国数学邀请赛六年级第二试附答案

(完整版)小学希望杯全国数学邀请赛六年级第二试附答案

学习奥数的重要性1. 学习奥数是一种很好的思维训练。

奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。

通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。

2. 学习奥数能提高逻辑思维能力。

奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。

所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助3. 为中学学好数理化打下基础。

等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。

如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。

小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。

4. 学习奥数对孩子的意志品质是一种锻炼。

大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。

我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。

第八届小学“希望杯”全国数学邀请赛六年级第2试一、填空题(每小题5分,共60分)1.330.24 5.41.35⨯⨯=。

2.已知111116A116B16CC-=+++++,其中A、B、C都是大于0但互不相同的自然数,则(A+B)÷C=。

3.有一类自然数,从左边第三位开始,每个数位上的数字都是它左边两个数位上数字之和,如21347,则这类自然数中,最大的奇数是。

第十四届小学“希望杯”全国数学邀请赛六年级第二试试题及解析

第十四届小学“希望杯”全国数学邀请赛六年级第二试试题及解析
第十四届小学“希望杯”全国数学邀请赛
六年级 第2试试题
一、填空题.
1.计算: ________.
【答案】6
【考点】计算,提取公因数
【解析】
2.已知 , ,则 是 的_______倍.
【答案】13
【考点】计算,分数
【解析】 ,
3.若 ,则自然数 的最小值是_______.
【答案】3
【考点】计算,分数
【解析】 , ,则 最小为3.
【答案】5:12
【考点】几何,比例模型
【解析】设正方形面积ABCD为1,连接BD、AC, , ,
, , .
9.如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中阴影部分的面积等于_______.(圆周率 取3)
【答案】4.5
【考点】几何,圆的面积
【解析】通过平移将阴影部分补成2个小直角三角形和2个小弓形的面积和.
,较长那根还能燃烧: (分钟)
二、解答题
13.如图,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:
(1)图⑥由多少个棱长为1的小正方体堆成?
(2) 图⑩所示的立体图形的表面积.
①②③
【答案】(1)91;(2)420
【考点】几何,正方体
【解析】(1)图⑥正方体个数为: (个)
(2)堆积体的表面积包括:前后2面、左右2面和上下2面,其中前后左右4个面的面积相等,上下2个面的面积相等;
前后左右:
上下:
总表面积:
14.解方程: ,其中 表示 的整数部分, 表示 的小数部分,如 , .(要求写出所有的解)
【答案】 、 、 、
【考点】计算

2017六年级希望杯100题答案--全无水印

2017六年级希望杯100题答案--全无水印

第十五届(2017 年)希望杯 100 题 · 六年级
Байду номын сангаас
2 2 2 2 1 2 1 2 1 2 5 1 7 1 9 1 99 1 2 2 2 2 = 48 4 6 6 8 8 10 98 100 1 1 1 1 1 1 1 1 = 48 4 6 6 8 8 10 98 100 1 1 = 48 4 100 6 = 48 . 25 27 3 9.(1) 0.2 7 = = . 99 11 1206 12 199 = (2) 0.12 0 6 = . 9900 1650 428571 571428 999999 = =1. 10.原式 = 999999 999999 999999 3 4 7 1 , 0.571428 = ,所以 0.4 28571 0.5 71428 = 1 . 另解 0 . 4 2 8 5 = 7 7 142857 1 35 = 35 = 5 . 11.原式 = 999999 7 4 7 12.原式 = = 1 . 7 4 16 1 2 999 16 1 = 13.原式 = 2 16 1 19 34 999 20 999 2 22 90 90 90 2000 16 2 90 10 = = . 999 2014 111 234 2 84 232 168 400 495 = 990 990 = 990 = 10 . 14.原式 = 990 568 56 56 512 112 400 11 900 450 900 900 900 15.原式 = 1 2 3 9 0.12 0.23 0.34 0.90 0.01 90 1 12 23 34 = 45 99 99 99 99 99 495 = 45 = 45 5 = 50 . 99 3 n 11 3 n 11 27 33 3 1 16. ,即 72 72 72 , 27 4n 66 , n , 6 n 16 ,所以满 8 18 12 8 18 12 4 2 4 2 3 n 11 足 的自然数 n 有 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 ,共 10 个. 8 18 12 = 1

希望杯培训题精编打印版六年级.pdf

希望杯培训题精编打印版六年级.pdf

2017年第十五届小学“希望杯”全国数学邀请赛六年级培训题1.计算:671⨯672⨯673-670⨯672⨯674.2.若a ,b 是非0的自然数,并且a <b ,则b b a +的值(填序号)A .是0和1之间的数.B .是1和2之间的数.C .可以是2.D .可以大于23.若p ,q 是非0的自然数,并且p <q ,则四个式子:q p ,p p q -,p q p +,qq p +中,值在1和2之间的是哪一个?4.求三个分数2015201520142014201420142013201320132013,20122012 ,中值最大的.5.计算:2.016⨯1123+2⨯20.16⨯112.4+2⨯201.6⨯11.25+2⨯2016⨯1.126+20160⨯0.1127.6.计算10981 (5431)43213211⨯⨯+⨯⨯+⨯⨯+⨯⨯7.计算20182017201620162016+÷8.计算1-99199......1-9191-7171-51522222222+++++++9.化循环小数为分数:(1)∙∙72.0(2)∙∙6012.010.计算∙∙∙∙+871425.0128574.011.计算35742851.0⨯∙∙12.计算75.1871425.0⨯∙∙13.计算⎪⎭⎫⎝⎛+÷∙∙∙2019261.20610.214.计算45056-856.049584432.0∙∙∙+15.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙+++++++++10.909.898.787.676.565.454.343.232.121.012111883<n<n 有几个?17.已知20162016,20182014,20172015⨯=⨯=⨯=c b a ,将a,b,c 从大到小排列。

18.在9个数:52,7,8,45,1,1.2,15,3.75,0.7中取一个数作被除数,再取另外两个数,用它们的和作除数,使商为整数,请写出3个算式.(答案不唯一)19.定义:a ☆b =ba 1+,求2☆(3☆4).20.若n 个互不相同的质数的平均数是15,求n 的最大值.21.若一位数c (c ≠0)是3的倍数,两位数bc 是7的倍数,三位数abc 是11的倍数,求所有符合条件的三位数abc 的和.22.用a ,b ,c 能组成6个无重复数字的三位数,如abc ,acb 等,且这6个数的和是4662,问:这6个数部是3的倍教吗?23.已知n !=1⨯2⨯3⨯..........⨯ n ,计算:1!⨯ 3 - 2!⨯ 4 + 3!⨯ 5 - 4!⨯ 6 +......+ 2015!⨯ 2017 - 2016!.24.一串分数:,,,,,,,,,,,,,,,,,,,,,,132131101....108109.....10310210171727374757675747372714142434241求第2016个分数.25.在不大于循环小数12.9的自然数中有几个质数?26.设n !=1⨯2⨯3⨯.........⨯ n ,问: 2016! 的末尾连续有多少个 0 ?27.四位数abcd ,若abcd -10(a +b +c +d )=1404,求a +b +d .28.A,a,b都是自然数,且A+50=a2,A+97=b2,求A 29.求72016的十位数字.30.若A是B的1,B是C的352,求CA.31.求17个自然数的平均数,结果保留两位小数,甲得到11.28,这个数百分位上的数字错了,求正确答案.32.从100以内的25个质数中任取两个构成其分数,这样的其分数有几个?假分数有几个。

小学六年级“希望杯”第1-10届试题及详解(第一试和第二试)

小学六年级“希望杯”第1-10届试题及详解(第一试和第二试)

第四届小学“希望杯”全国数学邀请赛六年级第1试以下每题5分,共120分。

1.2006×2008×()=________。

2.900000-9=________×99999。

3.=________。

4.如果a=,b=,c=,那么a,b,c中最大的是________,最小的是________。

5.将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了________%。

6.小明和小刚各有玻璃弹球若干个。

小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。

”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。

”小明和小刚共有玻璃弹球________个。

7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。

这次测验共有________道题。

8.一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字之和的五分之三是________。

9.将一个数A的小数点向右移动两位,得到数B。

那么B+A是B-A的________倍。

(结果写成分数形式)10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。

11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。

小明的编号是30,他排在第3行第6列,则运动员共有________人。

12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l的小正方体。

则三个面涂漆的小正方体有________块。

13.如图,∠AOB的顶点0在直线l上,已知图中所有小于平角的角之和是400度,则∠AOB=________度。

14.如图,桌面上有A、B、C三个正方形,边长分别为6,8,10。

B的一个顶点在A 的中心处,C的一个顶点在B的中心处,这三个正方形最多能盖住的面积是________。

第十二届希望杯六年级二试

第十二届希望杯六年级二试
与时针路程差120度,最后又超过了时针180度,也就是在整个过程中分针比时针多走了120+180度。
实际上出门和回家这两个时刻的分针位置在表盘上是相同的,所以综上所述,小红出门共用去了从10
点到下午四点,6个小时。
………………………………………………………………【本题解析过程由张旭老师提供】
12.甲乙二人分别从相距10千米的A、B两地出发,相向而行。若同时出发,他们将在距A、B中点1千
天津智康小奥团队
第4页 共4页
53513(千米/分),甲的速度为13230.5(千米/分),甲的行走时间=5÷0.5=10(分)。
………………………………………………………………【本题解析过程由张晓东老师提供】
二、解答题
13.超市购进砂糖桔500千克,每千克进价是4.80元,预计重量损耗为10%。若希望销售这批砂糖桔获
米处相遇。若甲晚出发5分钟,则他们将在A、B中点处相遇,此时甲行了分钟。
【答案】10分钟【考点】行程问题
【解析】由条件可知,甲速度更快,甲乙速度比=3:2。故同时出发的情况下,甲到中点时乙能走
532
10
(千米),那么在甲晚出发的5分钟里乙走了5 -
10
5
(千米),乙的速度为
3
3
3
第十二届希望杯六年级第二试详解
z0时,解9x4y49,x5y1(舍);x1y10(舍)
z1时,解9x4y48,x4y3(舍);x1y12(舍)
z2时,解9x4y47,x3y5(舍,发现如果用3个3×3的,无法放5个2×2的)
z3时,解9x4y46,x2y7,尝试画一下发现可以满足条件。
第十二届希望杯六年级第二试详解天津智康小奥团队第5页 共5页

2017年希望杯六年级二试第8题

2017年希望杯六年级二试第8题


绿
8.如图设点E,F分别是△ABC的边AB,AC上的点,线段 CE,BF交于点D,若△CDF,△BCD,△BDE的面积分 别为3,7,7,则四边形AEDF的面积的边AB,AC上的点,线段 CE,BF交于点D,若△CDF,△BCD,△BDE的面积分 别为3,7,7,则四边形AEDF的面积是多少?
8.如图设点E,F分别是△ABC的边AB,AC上的点,线段 CE,BF交于点D,若△CDF,△BCD,△BDE的面积分 别为3,7,7,则四边形AEDF的面积是多少?
8.如图设点E,F分别是△ABC的边AB,AC上的点,线段 CE,BF交于点D,若△CDF,△BCD,△BDE的面积分 别为3,7,7,则四边形AEDF的面积是多少?
8.如图设点E,F分别是△ABC的边AB,AC上的点,线段 CE,BF交于点D,若△CDF,△BCD,△BDE的面积分 别为3,7,7,则四边形AEDF的面积是多少?

绿
8.如图设点E,F分别是△ABC的边AB,AC上的点,线段 CE,BF交于点D,若△CDF,△BCD,△BDE的面积分 别为3,7,7,则四边形AEDF的面积是多少?

绿
8.如图设点E,F分别是△ABC的边AB,AC上的点,线段 CE,BF交于点D,若△CDF,△BCD,△BDE的面积分 别为3,7,7,则四边形AEDF的面积是多少?

绿
8.如图设点E,F分别是△ABC的边AB,AC上的点,线段 CE,BF交于点D,若△CDF,△BCD,△BDE的面积分 别为3,7,7,则四边形AEDF的面积是多少?

绿
8.如图设点E,F分别是△ABC的边AB,AC上的点,线段 CE,BF交于点D,若△CDF,△BCD,△BDE的面积分 别为3,7,7,则四边形AEDF的面积是多少?

六年级 第17章 第十二届希望杯六年级第二试

六年级 第17章 第十二届希望杯六年级第二试

第十二届小学“希望杯”全国数学邀请赛六年级 第2试试题一、填空题(每题5分,共60分)1. 若5.1742851.0=+⋅⋅x ,则=x 。

预初 分数2. 同一款遥控飞机,网上售价为300元,比星星玩具店的售价低%20,则这款遥控飞机在星星玩具店的售价是 元。

预初 百分数3. 如图17-1所示的老式自行车,前轮的半径是后轮半径的2倍。

当前轮转10圈时,后轮转 圈。

预初 比例4. 有两组数,第一组数的平均数是15,第二组数的平均数是21。

如果这两组数中所有数的平均数是20,那么,第一组数的个数与第二组数的个数的比是 。

预初 比例5. A、B、C三个分数,它们的分子和分母都是自然数,并且分子的比是1:2:3,分母的比是4:3:2,三个分数的和是6029,则=--C B A 。

预初 分数6. 如图17-2,将长方形ABCD 沿线段DE 翻折,得到六边形EBCFGD 。

若20=∠GDF ,则=∠AED 。

预初 角7. 如图17-3,在平行四边形ABCD 中,点E 是BC 的中点,FC DF 2=。

若阴影部分的面积是10,则平行四边形ABCD 的面积是 。

图17-1 图17-2 图17-3预初 三角形面积8. 如图17-4,直角ABC ∆的斜边10=AB ,5=BC ,60=∠ABC 。

以点B 为中心,将ABC ∆顺时针旋转120,点A 、C 分别到达点E 、D 。

则AC 边扫过的面积(即图中阴影部分的面积)是 。

(π取3)初一三角形9.参加体操、武术、钢琴、书法四个兴趣小组的学生中,每人最多可以参加两个兴趣小组。

为了保证所选兴趣小组的情况完全相同的学生不少于6人,则参加兴趣小组的学生至少有人。

初一加法乘法原理的面积为18,则三个阴影部分的面10.如图17-5,在正六边形ABCDEF中,若ACE积和为。

图17-4 图17-5初一全等三角形11.小红在上午将近11点时出家门,这时挂钟的时针和分针重合,当天下午将近5点时,她回到家,这时挂钟的时针与分针方向相反(在一条直线上)。

第十四届小学“希望杯”全 国数学邀请赛六年级第二试试 题及解析

第十四届小学“希望杯”全    国数学邀请赛六年级第二试试    题及解析

第十四届小学“希望杯”全国数学邀请赛六年级 第2试试题1、 填空题.1. 计算:________.【答案】6【考点】计算,提取公因数【解析】2. 已知,,则是的_______倍.【答案】13【考点】计算,分数【解析】,3. 若,则自然数的最小值是_______.【答案】3【考点】计算,分数【解析】,,则最小为3.4. 定义:如果,那么称为和的比例中项.如,则2是1和4的比例中项.已知0.6是0.9和的比例中项,是和的比例中项,则=______.【答案】0.48【考点】计算,比例【解析】根据比例的基本性质得:,,解得:,,则5. A、B、C三人单独完成一项工程所用的时间如图所示.若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工程的时刻是______时______分.Image【答案】9时57分【考点】应用题,工程问题【解析】如图得A、B、C的工作效率分别是,27分钟为小时,则A单独的工作量:,三人合作时间:(小时),共花时间:(小时),(分钟),即完成这工程时刻为9时57分.6. 如图,A,B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转运,若指针指向A盘的数字是,指针指向B盘的数字是b,则两位数是质数的概率是________.Image【答案】【考点】数论,质数【解析】根据乘法原理可得:组成两位数共有:(个),两位数是质数的情况有:11,13,17,23,31,37,53,共7个,则两位数是质数的概率为:.7. 在算式“”中,不同的汉字代表不同的数字,则所代表的六位偶数是______.【答案】256410【考点】数论,位值原理【解析】,,所以得:当时,结果不是六位偶数,当,符合要求;当扩大4倍时,出现重复数字,当扩大6倍及以上的倍数,不是六位数,不符合要求;综合得:.8. 如图,正方形ABCD中,点E在边AD上,点F在边DC上,AE=2ED,DF=3FC,则△BFE的面积与正方形ABCD的面积的比值是_______.Image【答案】5:12【考点】几何,比例模型【解析】设正方形面积ABCD为1,连接BD、AC,,,,,.9. 如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中阴影部分的面积等于_______.(圆周率取3)【答案】4.5【考点】几何,圆的面积【解析】通过平移将阴影部分补成2个小直角三角形和2个小弓形的面积和.2个三角形的面积:;剩余阴影面积:阴影部分面积:10. 已知三个最简真分数的分母分别是6,15和20,它们的乘积是.则在这三个最简真分数中,最大的数是_______.【答案】【考点】数论,分解质因数【解析】设3个最简真分数的分子分别为,则三个最简真分数为, ,,则分析得三个最简真分数为:,最大为.11. 将100个乒乓球放入从左到右排成一行的26个盒子中.如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15.那么最右边的盒子中有乒乓球________个.【答案】6【考点】找规律【解析】由题意得:每4个盒子为一组,每组的乒乓球数之和为15个,每组的第1个盒子有4个乒乓球,,将100个乒乓球分成6组余2个盒子,,.12. 两根粗细相同,材料相同的蜡烛,长度比是,它们同时开始燃烧,18分钟后,长蜡烛与短蜡烛的长度比是,则较长的那根蜡烛还能燃烧_________分钟.【答案】150【考点】比例应用题【解析】因为是同时燃烧,两根蜡烛原来与现在的长度差是不变的原来现在原来现在第一根2115第二根1611差542020,较长那根还能燃烧:(分钟)2、 解答题13. 如图,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1) 图⑥由多少个棱长为1的小正方体堆成?(2) 图⑩所示的立体图形的表面积.① ② ③【答案】(1)91;(2)420【考点】几何,正方体【解析】(1)图⑥正方体个数为:(个)(2)堆积体的表面积包括:前后2面、左右2面和上下2面,其中前后左右4个面的面积相等,上下2个面的面积相等;前后左右:上下:总表面积:14. 解方程:,其中表示的整数部分,表示的小数部分,如,.(要求写出所有的解)【答案】、、、【考点】计算【解析】 因,原式可化简为:,整理得,,,因为,则,.当,;当;当;当;当不满足;则符合题意取值有:.15. 阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的的话:阿春:“大家取的糖果个数都不同!”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下糖果的.”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?【答案】(1)第4个;(2)15颗;【考点】逻辑推理【解析】根据题意得:由于阿天、阿真、阿美、阿丽取的是剩下的糖果,则第1个为阿春,又因为阿美取了剩下的全部糖果,则第5个为阿美.设阿美最后取1份,当第4个为阿丽或阿丽时,都取1份,矛盾,则第4个为阿真.当第4个为阿真时,阿真取2份,倒推得阿真说的“剩下的”为3份,阿天和阿丽说法一致,不妨设第3个为阿天,阿真取3份,此时“剩下的”6份,第2个为阿丽,阿丽取6份,此时“剩下的”12份,第1个为阿春,因个数不同,则阿春最少取3份,所以这盒糖果最少有(份),则最少为15颗.综上,阿真是第4个取糖果的,这盒糖果最少有15颗.16. 甲乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的3倍.甲乙在离山顶150米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.【答案】1550【考点】行程问题【解析】设山底到山顶全程为S,我们可以把下山的路程转化成上山的路程.在第一个过程中,甲下山的150米可以转化成上山的50米,则甲以上山的速度可以走,乙以上山的速度可以走,则;在第二个过程中,甲下山的S可以转化成上山的,则甲以上山的速度可以走,乙以上山的速度可以走,则.,计算得,米.。

2017年希望杯六年级二试第16题

2017年希望杯六年级二试第16题

16.根据图10的信息计算,鸡大婶和鸡大叔买的花束中, 玫瑰、康乃馨、百合各多少枝? 玫瑰 康乃馨 百合
16.根据图10的信息计算,鸡大婶和鸡大叔买的花束中, 玫瑰、康乃馨、百合各多少枝? 玫瑰 康乃馨 百合
16.根据图10的信息计算,鸡大婶和鸡大叔买的花束中, 玫瑰、康乃馨、百合各婶和鸡大叔买的花束中, 玫瑰、康乃馨、百合各多少枝? 玫瑰 康乃馨 百合
16.根据图10的信息计算,鸡大婶和鸡大叔买的花束中, 玫瑰、康乃馨、百合各多少枝? 玫瑰 康乃馨 百合
16.根据图10的信息计算,鸡大婶和鸡大叔买的花束中, 玫瑰、康乃馨、百合各多少枝? 玫瑰 康乃馨 百合
16.根据图10的信息计算,鸡大婶和鸡大叔买的花束中, 玫瑰、康乃馨、百合各多少枝?
16.根据图10的信息计算,鸡大婶和鸡大叔买的花束中, 玫瑰、康乃馨、百合各多少枝? 玫瑰 康乃馨 百合
16.根据图10的信息计算,鸡大婶和鸡大叔买的花束中, 玫瑰、康乃馨、百合各多少枝? 玫瑰 康乃馨 百合
16.根据图10的信息计算,鸡大婶和鸡大叔买的花束中, 玫瑰、康乃馨、百合各多少枝? 玫瑰 康乃馨 百合

第四届小学“希望杯”全国数学邀请赛六年级第二试试题及答案解析

第四届小学“希望杯”全国数学邀请赛六年级第二试试题及答案解析
小书灯家长社区

第四届小学“希望杯”全国数学邀请赛 六年级 一、填空题(每小题 4 分,共 60 分) 第2试
1. 8.1×1.3-8÷1.3+1.9×1.3+11.9÷1.3=________。
【解析】:原式=(8.1+1.9)×1.3+(11.9-8)÷1.3 =13+3 =16
【解析】 :若每个正方形中数的和都是 18, 那么总和为 54, 而这 10 个数的和为 45, 其中 A、
B 各多算了一次,故 A+B=9。
6.磁悬浮列车的能耗很低。它的每个座位的平均能耗是汽车的 70%,而汽车每个座位的平 均能耗是飞机的 ________倍。 【解析】:磁悬浮列车每个座位的平均耗能是飞机每个座位的平均耗能的 每个座位的平均能耗是磁悬浮列车每个座位的平均能耗的 3 倍。
小书灯家长社区整理发布
3/7
小书灯家长社区

【解析】:
如图,连结 DF、CF,那么显然△DHG 与△DHF 同底等高,两者面积相等,我们容易知道又四 边形 BCFD 是平行四边形, 由蝴蝶定理可知△DHF 与△BHC 面积相等, 那么阴影部分的面积恰 好为正方形 ABCD 的一半即 18 平方厘米。
19.40 名学生参加义务植树活动,任务是:挖树坑,运树苗。这 40 名学生可分为甲、乙、 丙三类, 每类学生的劳动效率如下表所示。 如果他们的任务是: 挖树坑 30 个, 运树苗不限, 那么应如何安排人员才能既完成挖树坑的任务,又使树苗运得最多?
【解析】:比较一下甲乙丙三人运树苗与挖树坑的效率比:
小书灯家长社区整理发布
7/7
2 3 2. 一个数的 比 3 小 ,则这个数是________。 3 7
3 2 27 6 【解析】:该数为 (3 ) 3 。 7 3 7 7

六年级下册数学试题-2017年希望杯邀请赛第2试通用版(含答案)

六年级下册数学试题-2017年希望杯邀请赛第2试通用版(含答案)

2017年小学第十五届“希望杯”全国数学邀请赛六年级第2试试题一、填空题(每题5分,共60分)1、计算:43974´+9.759.75××27+0.142857··×975%975%==。

2、若质数a ,b 满足5a 5a++b =20272027,则,则a +b =。

3、如图1,一只玩具蚂蚁从点O 出发爬行,设定第n 次时,它先向右爬行n 个单位,再向上爬行n 个单位,到达点A n ,然后从点A n 出发继续爬行,若点O 记为(0,0),点A 1记为(1,1),点A 2记为(记为(33,3),点A 3记为(记为(66,6)……,则点A 100记为。

4、按顺时针方向不断取图中的12个数,可组成不超过1000的循环小数x ,如23.067823··,678.230678··等,若将x 的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到20172017,则,则x =。

5、若A :B =213:546,C :A =125:233,则A :B :C 用最简整数比表示是。

6、若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N ,则N 最小是。

7、有三杯重量相等的溶液,它们的浓度依次是10%10%,,20%20%,,45%45%,如果依次将三个杯子中的溶,如果依次将三个杯子中的溶液重量的12,14,15倒入第四个空杯子中,则第四个空杯子中溶液的浓度是倒入第四个空杯子中,则第四个空杯子中溶液的浓度是 % % %。

8、如图3,设定E ,F 分别是△ABC 的边AB AB,,AC 上的点,线段CE CE,,BF 交于点D ,若△CDF,△BCD,△BDE 的面积分别是3,7,7,则四边形AEDF 的面积是。

完整word版,六年级“希望杯”全国数学邀请赛答案详细解析

完整word版,六年级“希望杯”全国数学邀请赛答案详细解析

第十五届小学六年级“希望杯”全国数学邀请赛1.计算:=+⨯20161201620152017( ) 2.计算:=⨯-⨯321128574.03.6742851.0&&&&( ) 3.定义:a ☆b=b 1a -,则2☆(3☆4)=( ) 4.如图1所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有( )个点① ② ③④5.已知A 是B 的21,B 是C 的43。

若A+C=55,则A=( )6.如图2所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如195793.1&&,357919.3&&。

在所有这样只有一位整数的循环小数中,最大的是( )7.甲,乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5。

两人共有的邮票张数是( )张8.从1,2,3,........,2016中任意取出n 个数,若取出的数中至少有两个数互质,则n的最小是( )9.等腰∆ABC 中,有两个内角的度数比是1:2,则∆ABC 的内角中,角度最大的可以是( )度10.能被5和6整除,并且数字中至少有一个6的三位数有( )个11.小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的415与每支钢笔的售价相等,则一支钢笔的售价是( )元12.已知x 是最简真分数,若它的分子加a ,化简得31,若它的分母加a ,化简得41,则x=( )13.a ,b ,c 是三个互不相等的自然数,且a+b+c=48,那么a ,b ,c 的乘积最大是( )14.小丽做一份希望杯练习题,第一小时做完了全部的51,第二小时做完了余下的41,第三小时做完了余下的31,这时,余下24题没有做,则这份练习题共有( )道15.如图3,将正方形纸片ABCD 折叠,使点A 、B 重合于O 点,则EFO ∠=( )度16.如图4,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是( )平方厘米17.如图5,将一根10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是( )立方分米18.将浓度为40%的100克糖水倒入浓度为20%的a 克糖水中,得到的浓度为25%的糖水,则a=( )19.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110度;回家时还未到7点,此时时针和分针的夹角仍是110度,则张强外出锻炼身体用了( )分钟20.甲、乙两人分别从A 、B 两地同时出发,相向而行,在c 点相遇。

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第2试).doc

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第2试).doc

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第2试)7 2017 年第十五届小学希望杯全国数学邀请赛试卷(六年级第 2 2 试)一、填空题 1.计算: 9 +9.75 +0. 4285 975%= . 2.若质数 a,b 满足 5a+b=2027,则 a+b= . 3.如图,一只玩具蚂蚁从 O 点出发爬行,设定第 n 次时,它先向右爬行 n 个单位,再向上爬行 n 个单位,达到点 A n ,然后从点 A n 出发继续爬行,若点 O 记为(0,0),点 A 1 记为(1,1),点 A 2 记为(3,3),点 A 3 记为(6,6),,则点 A 100 记为. 4.按顺时针方向不断取如图中的 12 个数字,可组成不超过 1000 的循环小数 x,如23.067823,678.30678 等,若将 x 的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到 2017,则 x= . 5.若 A:B=1 :4 ,C:A=2 :3 ,则 A:B:C 用最简整数比表示是. 6.若将算式 987654321 中的一些改成使得最后的计算结果还是自然数,记为 N,则 N 最小是. 7.有三杯重量相等的溶液,它们的浓度依次是 10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是 %.8.如图,设定 E、F 分别是△ABC 的边 AB、AC 上的点,线段 CE,BF 交于点 D,若△CDF,△BCD,△BDE 的面积分别为 3,7,7,则四边形AEDF 的面积是. 9.如图,六边形 ABCDEF 的周长是 16 厘米,六个角都是 120,若 AB=BC=CD=3厘米,则 EF= 厘米. 10.如图所示的容器中放入底面相等并且高都是 3 分米的圆柱和圆锥形铁块,根据图 1 和图 2 的变化知,圆柱形铁块的体积是立方分米. 11.若一个十位数是 99 的倍数,则a+b= . 12.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做 2 天,接着乙丙两人合作了 4 天,最后余下的工程由丙 1 人完成,则完成这项工程共用天.二、解答题 13.用 1,2,3,4,5,6,7,8,9 九个数字组成三个三位数(每个数字只能用1 次),使最大的数能被 3 整除;次大的数被 3 除余 2,且尽可能的大;最小的数被 3 除余 1,且尽可能的小,求这三个三位数. 14.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图 1 所示的长方体容器,此容器装满雨水需要 1 小时.请问:雨水要下满如图 2 所示的三个不同的容器,各需要多长时间? 15.对大于 0 的自然数 n 规定一种运算G:①当 n 是奇数时,G(n)=3n+1;②当 n 是偶数时,G(n)等于 n 连续被 2 除,直到商是奇数;将 k 次G运算记作 Gk ,如 G 1 (5)=35+1=16,G 2 (5)=G 1 (16)=162222=1,G3 (5)=31+1=4,G 4 (5)=422=1.计算:(1)G1 (2016)的值;(2)G5 (19)的值;(3)G2017 (19)的值. 16.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?7 2017 年第十五届小学希望杯全国数学邀请赛试卷(六年级第 2 2 试)参考答案与试题解析一、填空题 1.计算: 9 +9.75 +0. 4285 975%= 9 .【分析】先把 0. 4285 化成,再提取公因数 9 ,然后根据乘法的分配律简算.【解答】解: 9 +9.75 +0. 4285 975% = 9 +9 + 9 =9 () =9 1 =9 ;故答案为:9 .【点评】完成本题要注意分析式中数据,运用合适的简便方法计算. 2.若质数 a,b 满足 5a+b=2027,则 a+b= 2019 .【分析】质数的和为奇数,那么一定有一个是偶数,讨论即可解决.【解答】解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是 2.当 b=2 时,5a+2=2027,a=405 不符合题意.当 a=2 时,10+b=2027,b=2017 符合题意,a+b=2+2017=2019.故答案为:2019.【点评】本题考查对奇偶性的理解和运用,两数字和为奇数,必然有一个是偶数,问题解决. 3.如图,一只玩具蚂蚁从 O 点出发爬行,设定第 n 次时,它先向右爬行 n 个单位,再向上爬行 n 个单位,达到点 A n ,然后从点 A n 出发继续爬行,若点 O 记为(0,0),点 A 1 记为(1,1),点 A 2 记为(3,3),点 A 3 记为(6,6),,则点 A 100 记为(5050,5050).【分析】一只玩具蚂蚁从 O 点出发爬行,设定第 n 次时,它先向右爬行 n 个单位,再向上爬行 n 个单位,达到点 A n ,然后从点 A n 出发继续爬行,若点 O 记为(0,0),点 A 1 记为(1,1),点 A 2 记为(1+2,1+2),点 A 3 记为(1+2+3,1+2+3),,则点 A n 记为(1+2+3++n,1+2+3++n).【解答】解:根据分析可知 A 100 记为(1+2+3++100,1+2+3++100);因为 1+2+3++100=(1+100)1002=5050,所以 A 100 记为(5050,5050);故答案为:A 100 记为(5050,5050).【点评】根据等差数列原理,分别对向右和向上爬行的距离求和. 4.按顺时针方向不断取如图中的 12 个数字,可组成不超过 1000 的循环小数 x,如 23.067823,678.30678 等,若将 x 的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到 2017,则 x= 78. 3067 .【分析】首先分析数字的周期发现数字周期为 6,7,8,2,3,0.找到对应组数和余数即可.【解答】解:依题意可知:按照顺时针方向观察可发现,不管起始数字是几,循环小数的循环节均由 6,7,8,2,3,0 这六个数字组成.因 2017(6+7+8+2+3+0)=77(组)15. 15=7+8,因此 x=78. 3067 故答案为:78. 3067 【点评】本题考查对周期问题的理解和运用,关键问题是找到数字和的周期数字.问题解决. 5.若 A:B=1 :4 ,C:A=2 :3 ,则 A:B:C 用最简整数比表示是 10:29:6 .【分析】先根据比的基本性质,把 A:B=1 :4 ,C:A=2 :3 化简,从而得出三个数的比.【解答】解:A:B =1 :4 = :=( 6):( 6) =10:29 C:A =2 :3 = : =( 15):( 15) =33:55 =3:5 =6:10 这样 A 的份数都是 10,所以 A:B:C=10:29:6.故答案为:10:29:6.【点评】本题主要是考查了比的基本性质的运用:比的前项和后项同时乘或除以相同的数(0 除外),比值不变. 6.若将算式 987654321 中的一些改成使得最后的计算结果还是自然数,记为 N,则 N 最小是 70 .【分析】要使最后的结果还是自然数,可把 9、8、6 分解质因数,再根据分解质因数的情况来确定把多少个乘号换成除号,最后再求出结果.【解答】解:根据分析,先分解质因数 9=33,8=222,6=23,故有: 987654321=(33)(222)7(32)5(22)321,所以可变换为:987654321=70,此时 N 最小,为 70,故答案是:70.【点评】本题考查了最大与最小的知识,本题突破点是:分解质因数,再确定把多少个乘号换成除号. 7.有三杯重量相等的溶液,它们的浓度依次是 10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是 20 %.【分析】首先看三杯溶液的浓度是已知的,重量相同也是相当于已知的,可以求出混合后溶质的重量和溶液的重量即可.【解答】解:依题意可知:设三杯溶液的重量为 a.根据浓度= 100%= 100%=20% 故答案为:20% 【点评】本题考查对浓度的理解和运用.浓度问题关键从浓度的定义出发,表示出溶质和溶液的量即可,问题解决. 8.如图,设定 E、F 分别是△ABC 的边 AB、AC 上的点,线段 CE,BF 交于点 D,若△CDF,△BCD,△BDE 的面积分别为 3,7,7,则四边形AEDF 的面积是 18 .【分析】连接 AD 因△CDF 和△BCD 的高相等,所以它们面积的比等于它们底边的比,所以 FD:DB=3:7,所△AFD 和△ABD 的面积比也是 3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,又因S △BCD =7,S △BDE =7,所以CD=DE,因这两个三角形的高相等,面积的比等于底边的比,从而可得出 S △ACD =S △ADE ,S△ACD +S △BDE =S △ABD ,即 S △ACD +S △BDE =7 份,S △AFD +S △CDF +S △BDE =7 份,3 份+3+7=7 份,从面可求出每份是 2.5,从而根据四边形 AEDF 的面积=10 份﹣7 求出它的面积,据此解答.【解答】解:连接 AD,因△CDF 和△BCD 的高相等,所以 FD:DB=3:7,所△AFD 和△ABD 的面积比也是 3:7,即可把△AFD 的面积看作是 3 份,△ABD 的面积看作是 7 份, S △BCD =7,S △BDE =7 所以 CD=DE, S △ACD =S △ADE ,S △ACD +S △BDE =S △ABD , S △ACD +S △BDE =7 份, S △AFD +S △CDF +S △BDE =7 份, 3 份+3+7=7 份,则 1 份=2.5, S 四边形 AEDF =10 份﹣7 =102.5﹣7 =25﹣7 =18 答:四边形 AEDF 的面积是 18.故答案为:18.【点评】本题的重点是根据三角形的高一定面积的比等于底边的比,求出△AFD中每份是多少,从而解决问题. 9.如图,六边形 ABCDEF 的周长是 16 厘米,六个角都是 120,若 AB=BC=CD=3厘米,则 EF= 5 厘米.【分析】如图延长并反向延长 AF,BC,DE,分别相交与点 G、H、N,因六边形ABCDEF的每个角是120,所以可得出G=H=N=60,所以△GHN,△GAB,△HCD,△EFN 都是等边三角形,AB=BC=CD=3 厘米,所以△GHN 边长是 3+3+3=9厘米,可得出 AN=9﹣3=6 厘米,AN=AF+EF,所以 DE=六边形 ABCDEF 的周长﹣AB﹣BC﹣CD﹣(AF+EF),据此可求出 DE 的长,进而可求出 EN 的长,即 EF 的长,据此解答.【解答】解:如图延长并反向延长 AF,BC,DE,分别相交与点 G、H、N,因六边形 ABCDEF 的每个角是 120 所以G=H=N=60 所以△GHN,△GAB,△HCD,△EFN 都是等边三角形 AB=BC=CD=3 厘米,△GHN 边长是 3+3+3=9(厘米) AN=9﹣3=6(厘米) AN=AF+EF DE=六边形 ABCDEF 的周长﹣AB﹣BC﹣CD﹣(AF+EF) =16﹣3﹣3﹣3﹣6=1(厘米) EF=EN=9﹣3﹣1=5(厘米)答:EF=5 厘米.故答案为:5.【点评】本题的重点是延长并反向延长 AF,BC,DE,得到一个等边三角形,再根据等边三角形的性质和已知条件进行解答. 10.如图所示的容器中放入底面相等并且高都是 3 分米的圆柱和圆锥形铁块,根据图 1 和图 2 的变化知,圆柱形铁块的体积是 15.42 立方分米.【分析】根据等底等高的圆柱的体积是圆锥体积的 3 倍,可知放入一个圆柱和两个圆锥后溢出水的体积是 25.7 立方分米,即是一个圆柱和两个圆锥的体积是25.7 立方分米,据此可求出圆锥的体积,进而可求出圆柱的体积.据此解答.【解答】解:25.7(1+1+3) =25.75 =5.14(立方分米) 5.143=15.42(立方分米)答:圆柱形铁块的体积是 15.42 立方分米.故答案为:15.42.【点评】本题重点考查了学生对等底等高的圆柱是圆锥体积的 3 倍这一知识的灵活运用.11.若一个十位数是 99 的倍数,则 a+b= 8 .【分析】根据 99 的整除特性为从右向左两位截断求和是 99 的倍数即可.【解答】解:根据 99 的整除特性可知: 20+16+ +20+17=99.. a+b=8.故答案为:8.【点评】本题考查是 99 的整除特性,同时注意的顺序是从右向左的顺序.此题和为 99.相加即可解决问题. 12.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做 2 天,接着乙丙两人合作了 4 天,最后余下的工程由丙 1 人完成,则完成这项工程共用 9 天.【分析】首先找到甲乙丙的工作效率,然后求出甲工作 2 天的量和乙丙 4 天工作量,剩余的就是丙的工作天数,相加即可.【解答】解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为: 2+ 4= ;丙的工作天数为:(1﹣) =3(天);共工作2+4+3=9 故答案为:9 【点评】本题是考察对工程问题的理解和运用,多人合作关键求出剩余的工作量除以工作效率问题解决.二、解答题13.用 1,2,3,4,5,6,7,8,9 九个数字组成三个三位数(每个数字只能用1 次),使最大的数能被 3 整除;次大的数被 3 除余 2,且尽可能的大;最小的数被 3 除余 1,且尽可能的小,求这三个三位数.【分析】最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是 1,因此可以根据已知缩小范围,最后确定这三个数.【解答】解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是 1,次大的数倍 3 除余 2,且要尽可能的大,则次大的三位数为:875;最小的数被 3 除余 1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.【点评】本题考查了数字问题,突破点是:通过已知确定三位数的最高位上的数字,再求出三个数. 14.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图 1 所示的长方体容器,此容器装满雨水需要 1 小时.请问:雨水要下满如图 2 所示的三个不同的容器,各需要多长时间?【分析】因为装雨水的单位面积的数量是一定,所以要根据图 1 所示的长方体容器求出每平方厘米每小时接水的体积,然后再根据图 2 所示的三个不同的容器的接水口的面积求各需要多长时间即可.【解答】解:图 1 所示的长方体容器的容积:101030=3000(立方厘米)接水口的面积为:1030=300(平方厘米)接水口每平方厘米每小时可接水:30003001=10(立方厘米)所以,图①需要:101030(101010)=3(小时)图②需要:(101020+101010)(101020)=1.5(小时)图③需要:22=1(厘米)3.141120(3.14110)=2(小时)答:容器①需要 3 小时,容器②需要 1.5 小时,容器③需要 2 小时.【点评】本题考查了长方体圆柱体体积公式的灵活应用,关键是求出不变的单一量,即每平方厘米每小时接水的体积. 15.对大于 0 的自然数 n 规定一种运算G:①当 n 是奇数时,G(n)=3n+1;②当n 是偶数时,G(n)等于 n 连续被 2 除,直到商是奇数;将 k 次G运算记作 Gk ,如 G 1 (5)=35+1=16,G 2 (5)=G 1 (16)=162222=1,G3 (5)=31+1=4,G 4 (5)=422=1.计算:(1)G1 (2016)的值;(2)G5 (19)的值;(3)G2017 (19)的值.【分析】首先对定义的理解当 n=5 为奇数G1(5)=35+1=16,当计算 G2(5)时,转化成 G1 (16)=162222=1 两步相关的计算.再继续推理即可.【解答】解:依题意可知(1)、G1 (2016)=201622222=63 (2)、 G1 (19)=319+1=58. G2 (19)=582=29. G3 (19)=329+1=88. G4 (19)=88222=11. G5 (19)=311+1=34.(3)、 G6 (19)=17 G8 (19)=13. G9 (19)=40. G10 (19)=5. G11 (19)=16.G12 (19)=1. G13 (19)=4. G14 (19)=1. G15 (19)=4. G16 (19)=1.周期规律总结:大于 11 的数字中奇数项结果为 4,偶数项结果为1.故 G2017 (19)=4.答:G1 (2016)=63,G 5 (19)=34,G 2017 (19)=4.【点评】本题考查对新定义的理解和运用,突破口就是对 G3 (5)形式的计算,把数字根据题意代入即可,最后求 G2017 (19)时一定是有规律的,找到循环的周期对应 2017 即可,问题解决. 16.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?【分析】首先把花数量简化成连比,然后与价格相乘,再根据扩倍关系即可求解.【解答】解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:320+156+1510=300;正好是 1 倍关系.答:购买玫瑰 10 枝,康乃馨 15 枝,百合 3 枝.【点评】本题是考察对比例应用题的理解和运用,关键的问题是化连比求出数量的比例,问题解决.。

第十四届小学“希望杯”全国数学邀请赛六年级第二试试题及解析

第十四届小学“希望杯”全国数学邀请赛六年级第二试试题及解析

第十四届小学“希望杯”全国数学邀请赛六年级第2试试题一、填空题.1.计算:323 1.33243⨯+÷=________.【答案】6【考点】计算,提取公因数【解析】32 3 1.332 43⨯+÷=3.75 1.330.375⨯+⨯0.375(133)=⨯+6=2.已知0.5a=,13b=,则a b-是178的_______倍.【答案】13【考点】计算,分数【解析】110.536a b-=-=,1113678÷=3.若111123452x+++<,则自然数x的最小值是_______.【答案】3【考点】计算,分数【解析】1111773023456060x+++=<,3077x >,则x 最小为3.4. 定义:如果::a b b c =,那么b 称为a 和c 的比例中项.如1:22:4=,则2是1和4的比例中项.已知0.6是0.9和x 的比例中项,15是12和y 的比例中项,则x y +=______.【答案】0.48【考点】计算,比例【解析】根据比例的基本性质得:0.60.60.9x ⨯=,111552y ⨯=,解得:0.4x =,0.08y =,则0.40.080.48x y +=+=5. A 、B 、C 三人单独完成一项工程所用的时间如图所示.若A 上午8:00开始工作,27分钟后,B 和C 加入,三人一起工作,则他们完成这项工程的时刻是______时______分.【答案】9时57分【考点】应用题,工程问题【解析】如图得A 、B 、C 的工作效率分别是111645、、,27分钟为920小时,则A 单独的工作量:19362040⨯=,三人合作时间:31113(1)()406452-÷++=(小时),共花时间:933920220+=(小时),396011720⨯=(分钟),即完成这工程时刻为9时57分.6. 如图,A ,B 盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转运,若指针指向A 盘的数字是a ,指针指向B 盘的数字是b ,则两位数ab 是质数的概率是________.【答案】720【考点】数论,质数【解析】根据乘法原理可得:组成两位数ab 共有:4520⨯=(个),两位数ab 是质数的情况有:11,13,17,23,31,37,53,共7个,则两位数ab 是质数的概率为:720. 7. 在算式“8=5⨯⨯希望杯就是好就是好希望杯”中,不同的汉字代表不同的数字,则希望杯就是好所代表的六位偶数是______.【答案】256410【考点】数论,位值原理【解析】(1000)8(1000)5⨯+⨯=⨯+⨯希望杯就是好就是好希望杯8000850005⨯+⨯=⨯+⨯希望杯就是好就是好希望杯79954992⨯=⨯希望杯就是好,205128⨯=⨯希望杯就是好,所以得:当128,205==希望杯就是好时,结果不是六位偶数,当1282256,2052410=⨯==⨯=希望杯就是好,符合要求;当扩大4倍时,出现753213521重复数字,当扩大6倍及以上的倍数,不是六位数,不符合要求;综合得:256410=希望杯就是好.8. 如图,正方形ABCD 中,点E 在边AD 上,点F 在边DC 上,AE =2ED ,DF =3FC ,则△BFE的面积与正方形ABCD 的面积的比值是_______.【答案】5:12【考点】几何,比例模型【解析】设正方形面积ABCD 为1,连接BD 、AC ,121233AEB S ∆=⨯=,11312348EDF S ∆=⨯⨯=,111248BFC S ∆=⨯=,1115138812BEF S ∆=---=,5::15:1212BEF ABCD S S ∆==正方形.9. 如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中阴影部分的面积等于_______.(圆周率π取3)【答案】4.5【考点】几何,圆的面积【解析】通过平移将阴影部分补成2个小直角三角形和2个小弓形的面积和.2个三角形的面积:422=4⨯÷;剩余阴影面积:2r 221231210.5π÷-⨯÷=⨯÷-=阴影部分面积:40.5=4.5+10. 已知三个最简真分数的分母分别是6,15和20,它们的乘积是130.则在这三个最简真分数中,最大的数是_______.【答案】56【考点】数论,分解质因数【解析】设3个最简真分数的分子分别为a b c ,,,则三个最简真分数为61520a b c、、,160615201800301800a b c abc ⨯⨯===,602235=⨯⨯⨯,则分析得三个最简真分数为:54361520、、,最大为56.11. 将100个乒乓球放入从左到右排成一行的26个盒子中.如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15.那么最右边的盒子中有乒乓球________个.【答案】6【考点】找规律【解析】由题意得:每4个盒子为一组,每组的乒乓球数之和为15个,每组的第1个盒子有4个乒乓球,264=62÷,将100个乒乓球分成6组余2个盒子,100156=10-⨯,104=6-.12. 两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与短蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧_________分钟.【答案】150【考点】比例应用题【解析】因为是同时燃烧,两根蜡烛原来与现在的长度差是不变的8475180.5-÷=(),较长那根还能燃烧:750.5150÷=(分钟)二、解答题13.如图,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.①②③【答案】(1)91;(2)420【考点】几何,正方体【解析】(1)图⑥正方体个数为:222222+++++=(个)12345691(2)堆积体的表面积包括:前后2面、左右2面和上下2面,其中前后左右4个面的面积相等,上下2个面的面积相等;+++++++++前后左右:12345678910=55⨯上下:1010=100总表面积:5541002420⨯+⨯=14. 解方程:[]{}{}29x x x x ⨯+=+,其中[]x 表示x 的整数部分,{}x 表示x 的小数部分,如[]3.143=,{}3.140.14=.(要求写出所有的解)【答案】9.0、187、173、365【考点】计算【解析】 因[]{}x x x =+,原式可化简为:[]{}[]{}{}29x x x x x ⨯++=+,整理得,[]{}[]{}+9x x x x ⨯-=,[]{}(1)(+1)8x x -⨯=,因为{}1+12x ≤≤,则[]418x ≤-≤,[]59x ≤≤.当[]9x =,9.0x =;当[]18,87x x ==;当[]17,73x x ==;当[]36,65x x ==;当[]45,54x x ==不满足;则符合题意取值有:1139.0876735x x x x ====、、、.15. 阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的的话:阿春:“大家取的糖果个数都不同!”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下糖果的23.”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?【答案】(1)第4个;(2)15颗;【考点】逻辑推理【解析】根据题意得:由于阿天、阿真、阿美、阿丽取的是剩下的糖果,则第1个为阿春,又因为阿美取了剩下的全部糖果,则第5个为阿美.设阿美最后取1份,当第4个为阿丽或阿丽时,都取1份,矛盾,则第4个为阿真.当第4个为阿真时,阿真取2份,倒推得阿真说的“剩下的”为3份,阿天和阿丽说法一致,不妨设第3个为阿天,阿真取3份,此时“剩下的”6份,第2个为阿丽,阿丽取6份,此时“剩下的”12份,第1个为阿春,因个数不同,则阿春最少取3份,所以这盒糖果最少有12+3=15(份),则最少为15颗.综上,阿真是第4个取糖果的,这盒糖果最少有15颗.16.甲乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的3倍.甲乙在离山顶150米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.【答案】1550【考点】行程问题【解析】设山底到山顶全程为S ,我们可以把下山的路程转化成上山的路程.在第一个过程中,甲下山的150米可以转化成上山的50米,则甲以上山的速度可以走50S +,乙以上山的速度可以走150S -,则50150V S V S 甲乙+=-; 在第二个过程中,甲下山的S 可以转化成上山的3S ,则甲以上山的速度可以走43S ,乙以上山的速度可以走1766S S S +=,则483776S V V S 甲乙==. 5081507S S +=-,计算得,1550S =米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年小学第十五届“希望杯”全国数学邀请赛六年级 第2试试题一、填空题(每题5分,共60分)1、计算:43974⨯+9.75×27+0.142857∙∙×975%= 。

2、若质数a ,b 满足5a +b =2027,则a +b = 。

3、如图1,一只玩具蚂蚁从点O 出发爬行,设定第n 次时,它先向右爬行n 个单位,再向上爬行n 个单位,到达点A n ,然后从点A n 出发继续爬行,若点O 记为(0,0),点A 1记为(1,1),点A 2记为(3,3),点A 3记为(6,6)……,则点A 100记为 。

4、按顺时针方向不断取图中的12个数,可组成不超过1000的循环小数x ,如23.067823∙∙,678.230678∙∙等,若将x 的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到2017,则x = 。

5、若A :B =213:546,C :A =125:233,则A :B :C 用最简整数比表示是 。

6、若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N ,则N 最小是 。

7、有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的12,14,15倒入第四个空杯子中,则第四个空杯子中溶液的浓度是 %。

8、如图3,设定E ,F 分别是△ABC 的边AB ,AC 上的点,线段CE ,BF 交于点D ,若△CDF,△BCD,△BDE 的面积分别是3,7,7,则四边形AEDF 的面积是 。

9、如图4,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC=CD=3厘米,则EF=厘米。

10、如图5所示的容器中放入底面相等且高都是3分米的圆柱和圆锥形铁块,根据图5和图6的变化知,圆柱形铁块的体积是立方分米。

11、若一个十位数20162017ab是99的倍数,则a+b=。

12、图7是甲、乙、丙三人单独完成某项工程所需要天数的统计图,很具图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天。

二、解答题(每小题15分,共60分)每题都要写出推算过程。

13、用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除,次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数。

14、某日是台风天气,雨一直均匀地下着,在雨地里放一个如图8所示的长方体容器,此容器装满雨水需要1小时,请问:雨水要下满图9所示的三个不同的容器,各需要多长时间?15、对大于0的自然数n规定一种运算“G”:①当n是奇数时,G(n)=3n+1;②当n是偶数时,G(n)等于n连续被2除,直到商是奇数;将k次“G”运算计作G k,如G1(5)=3×5+1=16,G2(5)=16÷2÷2÷2÷2=1,G3(5)=3×1+1=4,G4(5)=4÷2÷2=1(1)G1(2016)的值(2)G5(19)的值(3)G2017(19)的值;16、根据图10的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?2017年小学第十五届“希望杯”全国数学邀请赛六年级 第2试答案解析一、填空题(每题5分,共60分)1、答案:394解析:【考查目标】小数、分数和百分数混合运算。

43974⨯+9.75×27+0.142857∙∙×975% =47×394+27×394+17×394=(47+27+17)×394=3942、答案:2019解析:【考查目标】质数的性质及奇偶性。

根据奇偶性“奇=偶+奇=奇+偶”,质数a 和b 中肯定有一个质数是2,若a 是2,则b =2017;若b 是2,则a =405,而405不是质数,所以a +b =2+2017=20193、答案:(5050,5050)解析:【考查目标】找规律。

A 1记为(1,1),点A 2记为(3=1+2,3=1+2),点A 3记为(6=1+2+3,6=1+2+3),…… 点A n 记为(1+2+3+……+n ,1+2+3+……+n ),所以A 100记为(1+2+3+……+100,1+2+3+……+100),即A 100记为(5050,5050)。

4、答案:78.230678∙∙解析:【考查目标】周期问题。

通过观察可以发现,不管起始数字是几,循环小数的循环节都是6,7,8,2,3,0这6个数字。

2017÷(6+7+8+2+3+0)=77(组)……15,而15=7+8,所以这个循环小数x 是:78.230678∙∙5、答案:10:29:6解析:【考查目标】化连比。

A :B =213:546=10:29;C :A =125:233=3:5=6:10,所以A :B :C =10:29:6 6、答案:70解析:【考查目标】最值问题。

要保证最后的结果还是自然数,可以把9和8分解质因数,来确定把其中的几个“×”变成“÷”,9=3×3,8=2×2×2,2×3=6,6前面的“×”可以变成“÷”,2×2=4,4前面的“×”可以变成“÷”,还有1个3,所以3前面的“×”可以变成“÷”,则这个算式变成:9×8×7÷6×5÷4×3÷2×1=707、答案:20%解析:【考查目标】浓度问题。

溶液的浓度=溶质÷溶液×100% (12×10%+14×20%+15×45%)÷(12+14+15)=20% 8、答案:18解析:【考查目标】风筝模型中的两内比。

如下图,连接AD ,设S △ADF =a ,S △ADE =bS △CDF :S △BCD =FD :BD =3:7,S △BCD :S △BCE =CD :DE =7:7=1:1,所以():73:7b a b ⎧⎪⎨⎪⎩=a +3+=,解这个方程得:⎧⎨⎩a =7.5b =10.5 S 四边形AEDF =a +b =7.5+10.5=18解析:【考查目标】几何问题。

如下图,分别延长并反向延长AF,BC,DE,因为六边形ABCDEF的六个角都是120°,所以∠G =∠N=∠H=60°,所以△HCD,△AGB,△NEF,△GHN都是等边三角形。

因为AB=BC=CD=3厘米,所以GB=BC=HC=3厘米,则△GHN的边长是3+3+3=9(厘米)六边形ABCDEF的周长就变成了如图所示的红线部分,则DE的长是:16—9—3—3=1(厘米)因为HD+DE+EF=9,所以EF=9—3—1=5(厘米)10、答案:9.42解析:【考查目标】等底等高的圆柱和圆锥体积之间的关系。

由图6可知,15.7立方分米是一个圆柱和两个圆锥的体积之和等底等高的圆柱和圆锥体积之间的关系是:圆柱的体积是圆锥体积的3倍。

15.7÷(1+1+3)×3=9.42(立方分米)11、答案:8解析:【考查目标】数的整除。

判别一个数能被99整除的方法是:两位断开求和法,即把一个多位数从右向左两位断开,再求和,如果这个和能被99整除,则这个多位数就能被99整除。

ab从右向左两位断开求和是是:17+20+ab+16+20=73,则ab=26十位数20162017所以a+b=2+6=8解析:【考查目标】工程问题。

由图易知,甲、乙、丙三人的工作效率分别是:1÷10=110,1÷12=112,1÷15=1151—110×2—(112+115)×4=15,15÷115=3(天)则完成这项工程共用2+4+3=9(天)二、解答题(每小题15分,共60分)每题都要写出推算过程。

13、答案:这三个数从大到小依次是:963(或936)、875、124解析:【考查目标】数的整除及最值问题。

首先可以确定满足条件的最小的三位数是:124;最大的三位数的最高位是9,次大的三位数的最高位是8,还要保证最大数是3的倍数,次大的数是3的倍数加2,所以最大数963,次大数是875。

答:这三个数从大到小依次是963(或936)、875、124。

14、答案:①3小时;②1.5小时;③2小时解析:【考查目标】立体图形的体积。

雨水要下满容器所需要的时间不仅和容器的体积有关,而且还和容器接收雨水的速度有关,一般容器的口越大,接收雨水的速度越快。

在图8中的容器中,接收水的面积是:30×10=300(平方厘米),体积是:30×10×10=3000(立方厘米),所以在1小时内每平方米接收雨水的速度是:3000÷300÷1=10(立方厘米)容器①接收水的面积是:10×10=100(平方厘米),体积是:10×10×30=3000(立方厘米)所以容器①接满水的时间是:3000÷(100×10)=3(小时),同理:容器②接满水的时间是:(10×20×20+10×10×10)÷(10×20×10)=1.5(小时)容器③接满水的时间是:(3.14×12×20)÷(3.14×12×10)=2(小时)答:雨水下满三个容器所需要的时间分别是3小时、1.5小时、2小时。

15、答案:(1)63;(2)34;(3)4解析:【考查目标】定义新运算。

(1)G1(2016)=2016÷2÷2÷2÷2÷2=63;(2)G1(19)=3×19+1=58,G2(19)=58÷2=29,G3(19)=29×3+1=88,G4(19)=88÷2÷2÷2=11,G5(19)=3×11+1=34;(3)G6(19)=34÷2=17,G7(19)=3×17+1=52,G8(19)=52÷2÷2=13,G9(19)=3×13+1=40,G10(19)=40÷2÷2÷2=5,G11(19)=3×5+1=16,G12(19)=16÷2÷2÷2÷2=1,G13(19)=3×1+1=4,G14(19)=4÷2÷2=1,G15(19)=3×1+1=4,……,从第12个数开始循环,循环节是1、4两个数。

相关文档
最新文档