运动控制系统(PPT文档)
合集下载
《运动控制系统》课件
开环控制系统的缺点是抗干扰能力差,受环境影响较大,无法自动修正误差。
闭环控制系统包含反馈回路,通过负反馈来自动调节系统的输出量,使其达到预定的目标值。
闭环控制系统的优点是精度高,抗干扰能力强,能够自动修正误差,适用于对精度要求较高的复杂系统。
闭环控制系统的缺点是结构复杂,设计难度较大,需要具备一定的稳定性分析和调整能力。
03
反馈控制原理的实现需要具备一定的传感器和控制器技术,以及对系统的数学建模和仿真分析能力。
01
反馈控制原理是通过比较系统的输入与输出信号,将输出信号的差值用于控制执行机构,以实现系统的自动调节。
02
反馈控制原理广泛应用于各种运动控制系统,能够提高系统的稳定性和精度。
04
运动控制系统的应用
运动控制系统能够精确控制机器人的动作和位置,实现自动化生产线的连续作业,提高生产效率和产品质量。
控制器的种类繁多,根据应用需求可以选择不同的控制器,如单片机、PLC、运动控制卡等。
执行器是运动控制系统的输出部分,负责将驱动器的电压或电流信号转换为机械运动。
执行器的种类也很多,常见的有步进电机、伺服电机、直线电机等。
执行器的选择要根据实际应用需求来决定,如需要高精度定位、快速响应等。
传感器的种类也很多,常见的有光电编码器、旋转变压器、霍尔元件等。
自动化决策
智能化运动控制系统将具备自适应学习能力,能够根据不同环境和工况自动调整控制策略,以适应各种复杂和动态的运动需求。
自适应控制
远程监控与控制
通过网络技术,实现对运动控制系统的远程监控和控制,方便对设备进行远程调试、故障诊断和远程维护。
数据共享与协同工作
通过网络化实现多设备之间的数据共享和协同工作,提高生产效率和设备利用率。
闭环控制系统包含反馈回路,通过负反馈来自动调节系统的输出量,使其达到预定的目标值。
闭环控制系统的优点是精度高,抗干扰能力强,能够自动修正误差,适用于对精度要求较高的复杂系统。
闭环控制系统的缺点是结构复杂,设计难度较大,需要具备一定的稳定性分析和调整能力。
03
反馈控制原理的实现需要具备一定的传感器和控制器技术,以及对系统的数学建模和仿真分析能力。
01
反馈控制原理是通过比较系统的输入与输出信号,将输出信号的差值用于控制执行机构,以实现系统的自动调节。
02
反馈控制原理广泛应用于各种运动控制系统,能够提高系统的稳定性和精度。
04
运动控制系统的应用
运动控制系统能够精确控制机器人的动作和位置,实现自动化生产线的连续作业,提高生产效率和产品质量。
控制器的种类繁多,根据应用需求可以选择不同的控制器,如单片机、PLC、运动控制卡等。
执行器是运动控制系统的输出部分,负责将驱动器的电压或电流信号转换为机械运动。
执行器的种类也很多,常见的有步进电机、伺服电机、直线电机等。
执行器的选择要根据实际应用需求来决定,如需要高精度定位、快速响应等。
传感器的种类也很多,常见的有光电编码器、旋转变压器、霍尔元件等。
自动化决策
智能化运动控制系统将具备自适应学习能力,能够根据不同环境和工况自动调整控制策略,以适应各种复杂和动态的运动需求。
自适应控制
远程监控与控制
通过网络技术,实现对运动控制系统的远程监控和控制,方便对设备进行远程调试、故障诊断和远程维护。
数据共享与协同工作
通过网络化实现多设备之间的数据共享和协同工作,提高生产效率和设备利用率。
MTC101-运动控制系统基础PPT课件
Servo Drive
Motor Brake
Mechanical Brake Option
Vertical Applicatio
n
Gravity
Mass
.
11
伺服驱动Servo Drive
Motor with Feedback
Motor Power
Position Feedback
Servo Drives 伺服驱动 接受运动控制器的指令信号,控制 电机所提供的速度和扭矩(电流),要完成这些,驱动器需 要将主进线电能转换成电机所需要的电压和电流,以完成营 工控制要求。
Position Feedback
•存储和执行运动程序 •控制运动 •存贮配置参数
Servo Drive
Command Signal Position Feedback
.
Motion Controller
Motion Software
14
课程内容
2. 运动控制产品
.
15
单体伺服驱动解决方案
Index 运动解决方案
1) Single CPU (Logix) for PLC / Safety and Motion applications including Kinematics
2) Single programming package (RSLogix5000) (for PLC/Motion applications and also for all Logix controllers, Tag based addressing, Alias addressing and program data scoping, Auto creation of structures (easier to install / program / maintain)
高精度运动控制系统的关键技术及综合运用ppt课件
公司自主研制的0.1微米级精密运动平台及集成 控制系统是微电子制造和测试设备的核心部件,也 是生物医疗设备和精密制造业发展的关键部件,这 些产品在以上领域的应用可以极大提高我国的制造 水平,缩小和先进国家的差距。
3
公司简介(二)
此外公司还与秦皇岛海纳科技公司 合作研发了国内首款可驱动直线电机和 旋转电机的通用型伺服驱动器。该驱动 器具有高阶轨迹生成、支持用户编程等 高端功能,产品性能已达到国际先进水 平,可广泛用于高精密运动控制系统的 驱动和控制。
17
总结
❖ 运动控制技术是多学科复合技术:机械与电子、硬件和软件、算法 和分析
❖ 运动控制应用范围广:开环控制或闭环控制、半闭环或全闭环控制 ❖ 采用闭环控制首要考虑的是系统稳定性 ❖ 运动控制的性能不仅要考核时域响应,还要考核频域特性 ❖ 运动控制系统由控制平台、功率放大器/驱动器、执行机构/电机/
安装误差的影响
15
实例:编码器安装对信号质量及精度的影响(续) 信号质量对误差影响
16
运动控制系统的保护
软件级 •计算错误保护 •位置误差保护 •饱和保护 •震荡保护 •RMS功率保护 •电源故障保护 •急停保护
机械级 •机械限位装置 •机械刹车/卡紧装置 •机械防撞装置 •… …
硬件级 •限位传感器保护 •看门狗保护 •电源故障保护 •过功率保护 •驱动器短路保护 •驱动器过压/欠压保护 •驱动器过温保护 •驱动器RMS电流保护 •… …
➢ 光栅尺的精度
➢ 线距,或信号周期(每毫米线数,或每圈线)
➢ 光栅尺的热敏系数
➢ 差值技术
➢ 信号质量
➢ 频率响应与最高速度
旋转编码器最大速度 = [工作频率 (Hz) / (每转线数) ]*60 [RPM]
3
公司简介(二)
此外公司还与秦皇岛海纳科技公司 合作研发了国内首款可驱动直线电机和 旋转电机的通用型伺服驱动器。该驱动 器具有高阶轨迹生成、支持用户编程等 高端功能,产品性能已达到国际先进水 平,可广泛用于高精密运动控制系统的 驱动和控制。
17
总结
❖ 运动控制技术是多学科复合技术:机械与电子、硬件和软件、算法 和分析
❖ 运动控制应用范围广:开环控制或闭环控制、半闭环或全闭环控制 ❖ 采用闭环控制首要考虑的是系统稳定性 ❖ 运动控制的性能不仅要考核时域响应,还要考核频域特性 ❖ 运动控制系统由控制平台、功率放大器/驱动器、执行机构/电机/
安装误差的影响
15
实例:编码器安装对信号质量及精度的影响(续) 信号质量对误差影响
16
运动控制系统的保护
软件级 •计算错误保护 •位置误差保护 •饱和保护 •震荡保护 •RMS功率保护 •电源故障保护 •急停保护
机械级 •机械限位装置 •机械刹车/卡紧装置 •机械防撞装置 •… …
硬件级 •限位传感器保护 •看门狗保护 •电源故障保护 •过功率保护 •驱动器短路保护 •驱动器过压/欠压保护 •驱动器过温保护 •驱动器RMS电流保护 •… …
➢ 光栅尺的精度
➢ 线距,或信号周期(每毫米线数,或每圈线)
➢ 光栅尺的热敏系数
➢ 差值技术
➢ 信号质量
➢ 频率响应与最高速度
旋转编码器最大速度 = [工作频率 (Hz) / (每转线数) ]*60 [RPM]
第7章电力拖动自动控制系统运动控制系统第5版ppt课件
矢量控制系统通过矢量变换和按转 子磁链定向,得到等效直流电动机 模型,然后模仿直流电动机控制。
直接转矩控制系统利用转矩偏差和 定子磁链幅值偏差的符号,根据当 前定子磁链矢量所在的位置,直接 选取合适的定子电压矢量,实施电 磁转矩和定子磁链的控制。
内容提要
异步电动机动态数学模型的性质 异步电动机三相数学模型 坐标变换 异步电动机在正交坐标系上的动态数学
7.3.1 坐标变换的基本思路
当观察者也站到铁心上和绕组一起旋转 时,在他看来,d和q是两个通入直流而 相互垂直的静止绕组。
如果控制磁通的空间位置在d轴上,就和 直流电动机物理模型没有本质上的区别 了。
绕组d相当于励磁绕组,q相当于伪静止 的电枢绕组。
7.3.1 坐标变换的基本思路
图7-4 静止两相正交坐标系和旋转正交坐标系 的物理模型
7.3.1 坐标变换的基本思路
图7-3 三相坐标系和两相坐标系物理模型
7.3.1 坐标变换的基本思路
两相绕组,通以两相平衡交流电流,也 能产生旋转磁动势。
当三相绕组和两相绕组产生的旋转磁动 势大小和转速都相等时,即认为两相绕 组与三相绕组等效,这就是3/2变换。
7.3.1 坐标变换的基本思路
虽然电枢本身是旋转的,但由于换向器和电 刷的作用,闭合的电枢绕组分成两条支路。 电刷两侧每条支路中导线的电流方向总是相 同的。
7.3.1 坐标变换的基本思路
当电刷位于磁极的中性线上时,电枢磁动势 的轴线始终被电刷限定在q轴位置上,其效 果好象一个在q轴上静止的绕组一样。
但它实际上是旋转的,会切割d轴的磁通而 产生旋转电动势,这又和真正静止的绕组不 同。
7.3.2 三相-两相变换 (3/2变换)
三相绕组A、B、C和两相绕组之间的 变换,称作三相坐标系和两相正交坐 标系间的变换,简称3/2变换。
直接转矩控制系统利用转矩偏差和 定子磁链幅值偏差的符号,根据当 前定子磁链矢量所在的位置,直接 选取合适的定子电压矢量,实施电 磁转矩和定子磁链的控制。
内容提要
异步电动机动态数学模型的性质 异步电动机三相数学模型 坐标变换 异步电动机在正交坐标系上的动态数学
7.3.1 坐标变换的基本思路
当观察者也站到铁心上和绕组一起旋转 时,在他看来,d和q是两个通入直流而 相互垂直的静止绕组。
如果控制磁通的空间位置在d轴上,就和 直流电动机物理模型没有本质上的区别 了。
绕组d相当于励磁绕组,q相当于伪静止 的电枢绕组。
7.3.1 坐标变换的基本思路
图7-4 静止两相正交坐标系和旋转正交坐标系 的物理模型
7.3.1 坐标变换的基本思路
图7-3 三相坐标系和两相坐标系物理模型
7.3.1 坐标变换的基本思路
两相绕组,通以两相平衡交流电流,也 能产生旋转磁动势。
当三相绕组和两相绕组产生的旋转磁动 势大小和转速都相等时,即认为两相绕 组与三相绕组等效,这就是3/2变换。
7.3.1 坐标变换的基本思路
虽然电枢本身是旋转的,但由于换向器和电 刷的作用,闭合的电枢绕组分成两条支路。 电刷两侧每条支路中导线的电流方向总是相 同的。
7.3.1 坐标变换的基本思路
当电刷位于磁极的中性线上时,电枢磁动势 的轴线始终被电刷限定在q轴位置上,其效 果好象一个在q轴上静止的绕组一样。
但它实际上是旋转的,会切割d轴的磁通而 产生旋转电动势,这又和真正静止的绕组不 同。
7.3.2 三相-两相变换 (3/2变换)
三相绕组A、B、C和两相绕组之间的 变换,称作三相坐标系和两相正交坐 标系间的变换,简称3/2变换。
【PPT】什么是运动控制系统.
运动控制系统的发展过程及应用(续)
早就普遍应用于恒速运行场合的交流电机可以弥补直流电机的不 足,加之世界范围的能源短缺,人们又开始了新一轮的交流调速的 研究。仅对占传动总量三分之一强的风机、水泵设备而言,如果改 恒速为调速的话,就可节节电30%左右。近三四十年来,随着电力 电子技术、微电子技术、现代控制理论的发展,为交流调速产品的 开发创造了有利的条件,使交流调速逐步具备了宽调速范围、高稳 速精度、快速动态响应和四象限运行等良好的技术性能,并实现了 产品的系列化,从调速性能上完全可与直流调速系统相媲美。目前 交流调速系统已占据主导地位。 当今社会,运动控制系统的应用已相当普及,不论是民用还是军 用。在工厂、农村以及大多数家庭中,到处可以看到以电动机为动 力的各种生产机械或家用电器。例如:轧钢厂的连轧机,加工车间 的切削机床,造纸厂的纸机,纺织厂的纺织机,化工厂的搅拌机和 离心机,搬运场的起重机和传送带,矿山的卷扬机,田间的抽水泵, 家庭中的冰箱、空调、洗衣机以及电脑等。
图0.1 运动控制系统的基本结构
图中的三个主要组成部分是构成运动控制系统所必需的,而 且也是变化多样的。任何一部分微小的变化都可构成不同的 运动控制系统,这些不同系统的共性和特点以及它们的分析 和设计方法就是本课程研究的主要内容。我们把每一部分可 能的变化列于表0.1中。
表中各部分的不同组合,可以构成不同的运动控制系统。电动机部分、功率驱动部分 和控制器中的大部分内容分别在其他课程中有介绍,但它们组合成完整的运动控制系统以 后,有哪些新的控制要求,如何分析系统的性能,如何设计控制器使系统达到较高的性能 指标,在实际应用中存在哪些具体问题,以及如何解决等,这些都是个课程要解决的问题。
0.1 什么是运动控制系统
按中国大百科全书的解释,运动是物质的固有性质和 存在方式,是物质所固有的根本属性.没有不运动的物 质,也没有离开物质的运动、这是基于哲学的解释。与 中文“运动”对应的英义词汇有“movment”和 “motion”,按照大英百科全书的解释,运动是一个物 体相对于另一个物体或相对于一个坐标系统的位置的变 化、这是基于运动学的定义。运动涉及宇宙万物、大到 遥远的天体,小到物质内部的质子和电子,对这些运动 的研究覆盖了整个科学技术领域。 本课程所指的运动(motion)和运动控制系统(motion control system)是近10多年来在国际上流行的一个技术 术语,它源于一种狭义的、约定俗成的共识,即它的主 要研究内容是机械运动过程中涉及的力学、机械学、动 力驱动、运动参数检测和控制等方面的理论和技术问题。
《运动控制》课件
运动控制的基本原理
1 控制系统的要素
解释构成运动控制系统的重要要素,如传感器和执行器。
2 反馈控制原理
介绍反馈控制原理的基本概念和运作方式。
运动控制的技术方法
位置控制技术
详解位置控制技术,包括编码 器和位置伺服系统。
速度控制技术
深入研究速度控制技术,包括 PID控制和电机驱动。
力控制技术
探讨力控制技术在工业自动化 和机器人领域中的应用。
《运动控制》PPT课件
欢迎来到《运动控制》PPT课件!本课程将带您深入了解运动控制的重要性和 应用领域,并探索其基本原理、技术方法和发展趋势。
课件பைடு நூலகம்绍
本节将介绍课件的目的和重要性,以及主要内容的概述。
运动控制概述
定义
了解运动控制的定义,涵盖其在不同领域的应用。
应用领域
探索运动控制在工业、机器人和自动化等领域的 广泛应用。
2 发展前景展望
展望运动控制的未来发展,包括智能化和高效能的前景。
运动控制的发展趋势
1
高精度
2
介绍高精度运动控制技术的发展,如高
精度传感器和控制算法。
3
智能化
展望运动控制的智能化趋势,如人工智 能和机器学习的应用。
高效能
探讨提高运动控制系统效能的方法,如 优化控制策略和能源管理。
总结
1 运动控制的重要性
总结运动控制的重要性,强调其在现代工业和机器人技术中的关键作用。
运动控制系统ppt课件
ud
ua
ub
uc
ud
O
ud
ua
ub
uc
ud
Ud E
t O
id ic O
ia
ib
ic
id
a)电流连续
ic
t O
ia
ib
ic
b)电流断续
图1-9 V-M系统的电流波形
Ud E
t
t
1.2.3 抑制电流脉动的措施
在V-M系统中,脉动电流会产生脉动的 转矩,对生产机械不利,同时也增加电机 的发热。为了避免或减轻这种影响,须采 用抑制电流脉动的措施,主要是:
• 瞬时电压平衡方程
ud0
E
id R
L
did dt
(1-3)
式中
E — 电动机反电动势;
id — 整流电流瞬时值; L — 主电路总电感;
R — 主电路等效电阻;
且有 R = Rrec + Ra + RL;
对ud0进行积分,即得理想空载整流电压 平均值Ud0 。
用触发脉冲的相位角 控制整流电压的
序言
课程的内容、目的
以电动机为控制对象、以实现既定(旋转) 运动规律和特性为目标、以电力能量变换技 术(电力电子应用技术)和自动控制理论及 相关控制技术为手段,探讨如何构成运动控 制系统。
序言
课程的地位、意义
• 自动化学科及自动控制领域背景知识 • 自动化专业的内涵及专业特征 • 本课程的专业地位及重要性
O
TL
2 3
Te
曲线变软。
调磁调速特性曲线
▪ 三种调速方法的性能与比较
对于要求在一定范围内无级平滑调速 的系统来说,以调节电枢供电电压的方式 为最好。改变电阻只能有级调速;减弱磁 通虽然能够平滑调速,但调速范围不大, 往往只是配合调压方案,在基速(即电机 额定转速)以上作小范围的弱磁升速。
运动控制系统PPT参考课件
9
第1篇 直流拖动பைடு நூலகம்制系统
1.1 直流调速系统用的可控直流电源 ❖ 直流调速方法 ❖ 直流调速电源 ❖ 直流调速控制
10
1.1.1 直流调速方法
根据直流电机转速方程
n U IR Ke
(1-1)
n — 转速(r/min);
U — 电枢电压(V);
I — 电枢电流(A);
R — 电枢回路总电阻( );
晶闸管-电动机调速系统(简称VM系统,又称静止的Ward-Leonard系 统),图中VT是晶闸管可控整流器,通 过调节触发装置 GT 的控制电压 Uc 来移 动触发脉冲的相位,即可改变整流电压 Ud ,从而实现平滑调速。
22
• V-M系统的特点
与G-M系统相比较: 晶闸管整流装置不仅在经济性和可靠性上都有很大提
25
1). 直流斩波器的基本结构
控制电路
+
VT
Us
VD
_
a)原理图
u
+ Us ton
M _O
T
b)电压波形图
图1-5 直流斩波器-电动机系统的原理图和电压波形
Ud t
26
2). 斩波器的基本控制原理
在原理图中,VT 表示电力电子开关器件, VD 表示续流二极管。当VT 导通时,直流电源 电压 Us 加到电动机上;当VT 关断时,直流电 源与电机脱开,电动机电枢经 VD 续流,两端 电压接近于零。如此反复,电枢端电压波形如 图1-5b ,好像是电源电压Us在ton 时间内被接上, 又在 T – ton 时间内被斩断,故称“斩波”。
改变电压 UN U
U n , n0
❖ 调速特性:
O
转速下降,机械特性
第1篇 直流拖动பைடு நூலகம்制系统
1.1 直流调速系统用的可控直流电源 ❖ 直流调速方法 ❖ 直流调速电源 ❖ 直流调速控制
10
1.1.1 直流调速方法
根据直流电机转速方程
n U IR Ke
(1-1)
n — 转速(r/min);
U — 电枢电压(V);
I — 电枢电流(A);
R — 电枢回路总电阻( );
晶闸管-电动机调速系统(简称VM系统,又称静止的Ward-Leonard系 统),图中VT是晶闸管可控整流器,通 过调节触发装置 GT 的控制电压 Uc 来移 动触发脉冲的相位,即可改变整流电压 Ud ,从而实现平滑调速。
22
• V-M系统的特点
与G-M系统相比较: 晶闸管整流装置不仅在经济性和可靠性上都有很大提
25
1). 直流斩波器的基本结构
控制电路
+
VT
Us
VD
_
a)原理图
u
+ Us ton
M _O
T
b)电压波形图
图1-5 直流斩波器-电动机系统的原理图和电压波形
Ud t
26
2). 斩波器的基本控制原理
在原理图中,VT 表示电力电子开关器件, VD 表示续流二极管。当VT 导通时,直流电源 电压 Us 加到电动机上;当VT 关断时,直流电 源与电机脱开,电动机电枢经 VD 续流,两端 电压接近于零。如此反复,电枢端电压波形如 图1-5b ,好像是电源电压Us在ton 时间内被接上, 又在 T – ton 时间内被斩断,故称“斩波”。
改变电压 UN U
U n , n0
❖ 调速特性:
O
转速下降,机械特性
第6章电力拖动自动控制系统运动控制系统第5版ppt课件
差功率、减小输出功率来换取转速的降低。
增加的转差功率全部消耗在转子电阻上,
这就是转差功率消耗型的由来。
6.2.2 异步电动机调压调速 的机械特性
增加转子电阻值, 临界转差率加大, 可以扩大恒转矩负 载下的调速范围, 这种高转子电阻电 动机又称作交流力 矩电动机。
缺点是机械特性
较软。
图6-6 高转子电阻电动机(交流力矩 电动机)在不同电压下的机械特性
6.2.3 闭环控制的调压调速系统
要求带恒转 矩负载的调 压系统具有 较大的调速 范围时,往 往须采用带 转速反馈的 闭环控制系 统。
图6-7 带转速负反馈闭环控 制的交流调压调速系统
6.2.3 闭环控制的调压调速系统
当系统带负载稳定时,如果负载增大或减 小,引起转速下降或上升,反馈控制作用 会自动调整定子电压,使闭环系统工作在 新的稳定工作点。
由于受电动机绝缘和磁路饱和的限制, 定子电压只能降低,不能升高,故又 称作降压调速。
异步电动机调压调速
调压调速的基本特征:电动机同步转速保 持额定值不变
n1
n1N
60 f1N np
气隙磁通
Φm
Us 4.44 f1NskNS
随定子电压的降低而减小,属于弱磁调速。
6.2.1 异步电动机调压调速 主电路
12
Lls
L'lr
2
异步电动机的机械特性
异步电动机传递的电磁功率
Pm
3I
'2 r
Rr'
s
机械同步角速度
m1
1
np
异步电动机的机械特性
异步电动机的电磁转矩(机械特性方程式 )
Te
Pm
m1
3n p
运动控制器PPT资料(正式版)
Q170MCPU特点(1)
QDMotion特点(2)
通过多CPU间的高速总线,在一个 工作周期内,可以进行多达 14K字的数据传送
©COPYRIGHT
三菱电机自动化(中国)
QDMotion特点(2)
©COPYRIGHT
三菱电机自动化(中国)
Q170MCPU特点(1)
集成性高:三合一的运动控制器
结构紧凑的Q170MCPU将电源模块,顺控PLC CPU和MOTION CPU集成于一体.开 发程序时,PLC CPU型号选择Q03UDCPU,MOTION CPU型号选择Q170MCPU.并内置 了增量型同步编码器接口和手动脉冲发生器接口,特别适合包装设备中的同 步要求.
SSCNETIII
……
©COPYRIGHT
三菱电机自动化(中国)
运动控制器的特点(3)
根据不同的使用场合,可变更控制器的操作系统(OS)
1.适用于搬运及组装,如搬运机,注塑机,涂装机等场合的操作系统—SV13 2.适用于自动机械,如同步控制,食品包装等场合的操作系统—SV22 3.适用于机床行业的操作系统—SV43 4.适用于机械手的操作系统—SV54
运动控制器
运动控制器的特点(1)
QPLC CPU和MOTION CPU组成的多CPU系统
顺序控制由 QPLC CPU 负责
复杂的伺服控制由
Q MOTION CPU 模块进行处理
©COPYRIGHT
三菱电机自动化(中国)
运动控制器的特点(2)
可与伺服放大器进行高速的串行通讯 通过SSCNETIII光纤网络进行高速通讯,通讯速率可达到50Mbps,并且具有良好的 抗干扰性
标签编辑 可以对使用了标签的运动SFC 进行编辑 提高动作SFC程序的可读性
运动控制系统ppt课件
IdL
馈的作用降低下来,
电机的电磁转矩也随 O
t
之减小,加速过程延
图2-1 a) 带电流截止负反馈
长。
的单闭环调速系统
最新版整理ppt
6
性能比较(续)
❖ 理想起动过程波形 如图,这时,起动
Id Idm
电流呈方形波,转
n
速按线性增长。这
是在最大电流(转
IdL
矩)受限制时调速 系统所能获得的最 快的起动过程。
为了分析双闭环调速系统的静特性, 必须先绘出它的稳态结构图,如下图。 它可以很方便地根据上图的原理图画出 来,只要注意用带限幅的输出特性表示 PI 调节器就可以了。分析静特性的关键 是掌握这样的 PI 调节器的稳态特征。
最新版整理ppt
19
1). 系统稳态结构图
Id
U*n +
R
ASR U*i +
Ui -
最新版整理ppt
10
1). 系统的组成
TA
L
U*n +-
Ui U*i ASR +
内环
V
ACR Uc UPE
+
Ud
Id
Un
-
外环
+
MM
n
TTGG
图2-2 转速、电流双闭环直流调速系统结构
ASR—转速调节器 ACR—电流调节器 TG—测速发电机
TA—电流互感器最新U版P整E理—pp电t 力电子变换器
11
第六讲
2.1 转速、电流双闭环直流调速系统及其静特性
2.2 双闭环直流调速系统的数学模型和动态性能 分析
最新版整理ppt
1
转速、电流双闭环直流调速系统和调节器的工程设计方法
运动控制系统5课件
静态结构图: 1) 转速调节器不饱和 2) 转速调节器饱和
稳态工作时:
U n* U n n U i* U i I d I dL
比例U调ct 节 器UK的ds0输出C量en总K是sI d正R比于C输eU与输入量关系复杂.
第6页,共15页。
静态结构图
2.5.1 双闭环调速系统的组成及其静特性
一、为什么引入双闭环
1 最佳起动过程的要求:
缩短起动时间,起动电流为Idm 2 单闭环系统存在的问题:
1)起动过程电流不是最大;
2)扰动造成的动态偏差大;
3)所有的反馈都到一个调节器上,
参
数整定困难。
第2页,共15页。
理想启动过程
第3页,共15页。
二、 双闭环系统的组成及其特点
态转速无静差.
2)对负载扰动起抗扰作用 3)起输出限幅值决定允许的最大电流,在启动 时给出最大电流给定信号Uim*.
电流调节器的作用:
1) 对电网电压扰动起及时抗扰作用
2) 启动时保证获得最大允许电流
3) 过载时限制电枢电流最大值 4) 转速调节过程中,使电流Id跟随Ui*变化
第14页,共15页。
双闭环系统的反馈系数计算
组成原理图
特点:
1)ASR为PI调节器,系统无静差;
2)起动时ASR 饱和,取Uim* =*Idm;
3)ACR起电流调节作用,保证恒流起动; 4)对电流环内的扰动能及时调节;
5)设计方法:先内环、再外环。
第4页,共15页。
转速电流双闭环原理图
第5页,共15页。
三、转速、电流双闭环调速系统的静特性
• =Unm * /ned
• =Uim * /Idm
第15页,共15页。
稳态工作时:
U n* U n n U i* U i I d I dL
比例U调ct 节 器UK的ds0输出C量en总K是sI d正R比于C输eU与输入量关系复杂.
第6页,共15页。
静态结构图
2.5.1 双闭环调速系统的组成及其静特性
一、为什么引入双闭环
1 最佳起动过程的要求:
缩短起动时间,起动电流为Idm 2 单闭环系统存在的问题:
1)起动过程电流不是最大;
2)扰动造成的动态偏差大;
3)所有的反馈都到一个调节器上,
参
数整定困难。
第2页,共15页。
理想启动过程
第3页,共15页。
二、 双闭环系统的组成及其特点
态转速无静差.
2)对负载扰动起抗扰作用 3)起输出限幅值决定允许的最大电流,在启动 时给出最大电流给定信号Uim*.
电流调节器的作用:
1) 对电网电压扰动起及时抗扰作用
2) 启动时保证获得最大允许电流
3) 过载时限制电枢电流最大值 4) 转速调节过程中,使电流Id跟随Ui*变化
第14页,共15页。
双闭环系统的反馈系数计算
组成原理图
特点:
1)ASR为PI调节器,系统无静差;
2)起动时ASR 饱和,取Uim* =*Idm;
3)ACR起电流调节作用,保证恒流起动; 4)对电流环内的扰动能及时调节;
5)设计方法:先内环、再外环。
第4页,共15页。
转速电流双闭环原理图
第5页,共15页。
三、转速、电流双闭环调速系统的静特性
• =Unm * /ned
• =Uim * /Idm
第15页,共15页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开环系统 Id n 例如:在图2-4中工作点从A A′
闭环系统
Id n Un Un
n Ud0 Uc
例如:在图2-4中工作点从A B
最终从A点所在的开环机械特性过渡 到B点所在的开环机械特性,电枢电 压由 U d 01增加至 U d 02 。
它们的关系是
ncl
nop
1 K
(2-4)
n
Δncl
n0
1
Δnop
2
0
IL
Id
图2-3 闭环系统静特性与开环系统机械特性
转速静差率的比较
(2)在相同的理想空载转速条件下,闭环系统的转速
静差率也仅为开环系统的 1
。
1 K
scl
ncl
n0cl
sop
nop
n0op
因为条件是 n0cl n0op,所以
TeN
Te
n
n04
开环机械特性
n03
n02
n01
n0cl
A
B
C
A’
0
Id1
Id2
Id3
闭环静特性
D
Ud04
Ud03 Ud02 Ud01
Id4
Id
内容提要
转速单闭环直流调速系统 转速、电流双闭环直流调速系统 调节器的设计方法
本节课要解决的问题
给出单闭环直流调速系统的原理框图、介绍工 作原理;利用稳态结构框图分析系统的静特性; 对静特性改善加以物理过程分析;利用反馈控 制规律对该调速系统的抗扰性能、系统设计需 要注意的问题加以分析(2.1.1)
闭环系统的静特性就是由多条开环 机械特性上相应的工作点组成的一 条特性曲线。
图1-17 开环调速系统的原理图
系统工作原理
~
Un* ΔUn A
Uc
Un
UPE
Id
Ud
M
n
Utg TG
图2-1 带转速负反馈的闭环直流调速系统原理框图系统调节过程nFra bibliotekn04
scl
sop 1 K
(2-5)
调速范围的比较
(3)在相同的静差率约束下,闭环系统的调速范围 为开环系统的(1+K)倍。
当系统的最高转速是电动机额定转速nN ,所要
求的静差率为s时,
Dcl
nN
ncl( 1 s
)
由式(2-4)得到
Dop
nN
nop ( 1 s )
Dcl ( 1 K )Dop (2-6)
从上述三点可见,
闭环系统的静特性比开环系统的 机械特性要硬得多,
在保证一定静差率的要求下,闭 环系统能够扩大调速范围。
系统调节过程
n
n04
开环机械特性
n03
n02
n01
n0cl
A
B
C
A’
闭环静特性
D
Ud04
Ud03 Ud02 Ud01
0
Id1
Id2
Id3
Id4
Id
图2-4 闭环系统静特性和开环系统机械特性的关系
在原有转速单闭环基础上引入电流截止负反馈, 对其静特性进行分析;给出实现方式(2.1.2)
分析单闭环单闭环直流调速系统的动态数学模 型,对系统的稳定性加以分析(2.1.3)
2.1.1转速单闭环直流调速系 统的控制规律
将系统的被调节量作为反馈量引入 系统中,使之与给定量进行比较,用 比较后的差值对系统进行控制,可以 有效地抑制直至消除扰动造成的影响, 而维持被调节量很少变化或不变,这 就是反馈控制的基本思想。
U d 0——电力电子变换器理想空载输出 电压(V)(变换器内阻已并入电枢回 路总电阻R中)。
稳态结构图
IdR
Un*
ΔUn
Kp Uc Ks Ud0
Un
E
1
Ce
n
α
图2-2 转速负反馈闭环直流调速系统稳态结构框图
只考虑给定作用时的闭环系统
Un*
Kp
Ks
1 Ce
n
α
图2-2 转速负反馈闭环直流调速系统稳态结构框图
U n
U
* n
Un
比例调节器
U c K p U n
测速反馈环节 U n n
电力电子变换器 直流电动机
U d 0 K sU c
n Ud0 I dR Ce
以上各关系式中新出现的系数为:
K p——比例调节器的比例系数;
——转速反馈系数(V·min/r)
Un与给定电压 U*n 相比较后,得 到转速偏差电压 Un ,
Un经过放大器 A,产生电力电 子变换器UPE的控制电压Uc ,用 以控制电动机转速 n。
闭环控制系统和开环控制系统的 主要差别就在于转速经过测量元 件反馈到输入端参与控制。
闭环调速系统中各环节的稳态关 系
电压比较环节
只考虑扰动作用时的闭环系统
-IdR
1
n
Ce
Ks
Kp
α
图2-2 转速负反馈闭环直流调速系统稳态结构框图
静特性方程式
n
K
p
K
sU
* n
Id
R
K
p
KsU
* n
RId
Ce (1 K pKs / Ce ) Ce (1 K ) Ce (1 K )
(2-1)
式中:
K
K
p Ks
Ce
闭环系统的开环 放大系数
n0cl 和 n0op分别表示闭环和开环系统的理想空
载转速;
ncl 和nop 分别表示闭环和开环系统的稳态速
降。
分析比较
负载转速降落、静差率、调速范围
稳态速降的比较
(1)在相同的负载扰动下,闭环系统的负载降落
仅为开环系统转速降落的
1
1 K
。
ncl
RI d Ce(1
K
)
nop
RI d Ce
系统静特性分析
闭环系统的静特性方程式为
n
K
pK sU
* n
Ce (1 K)
RId Ce (1
K)
n0cl
ncl
(2-2)
它的开环机械特性为
n Ud0 Id Ce
K
p
K
sU
* n
RId
Ce
Ce
n0op nop
U
* n
在开环与闭环中的取值不同
(2-3)
式中
基于负反馈(输入量与输出量相 减)基础上的“检测误差,用以 纠正误差”这一原理组成的系统, 对于输出量反馈的传递途径有一 个闭合的环路,因此被称作闭环 控制系统。
系统工作原理
~
Un* ΔUn A
Uc
Un
UPE
Id
Ud
M
n
Utg TG
图2-1 带转速负反馈的闭环直流调速系统原理框图
在反馈控制的闭环直流调速系统 中,与电动机同轴安装一台测速 发电机 TG ,从而引出与被调量 转速成正比的负反馈电压Un ,
运动控制系统 第2章
闭环控制的直流调速 系统
图1-17 开环调速系统的原理图
静差率与调速范围:
D nN s
nN ( 1 s )
开环调速系统静特性方程:n
U
d
0
Ce
RI
d
K sU c Ce
RI d Ce
n
负载
电枢电流
n01
控制电压 电枢电压 n02
ΔnN
U d1
ΔnN
U d2
0