脉冲单元电路.ppt

合集下载

锁存器与触发器ppt课件.ppt

锁存器与触发器ppt课件.ppt
二、分类 1. 按触发方式(电平,脉冲,边沿) 2. 按逻辑功能(RS, JK, D, T)
5.2 SR锁存器 SR是各种触发器的基本构成部分 一、电路结构与工作原理
图5.2.1 或非门构成的SR锁存器
’ ’
a.电路图
b.图形符号
图5.2.2 与非门构成的SR锁存器
5.2.1 SR锁存器
电路的初态与次态
VI1 1 VO1 Q 1 1
VI1 1 VO1 Q 0 0
1 VI2
G2
Q0 VO2
1 VI2
G2
Q1 VO2
3. 模拟特性分析
O1 = I2 I1 = O2
G1 VI1 1 VO1 Q
O1
e
稳态点
(dQ=1)
1 VI2
G2
Q VO2
c
介稳态

a
0
b 稳态点
(Q=I01)
概述
一、能用于记忆1位二进制信号的基本单元电 路统称为触发器
5)动作特点:E=1期间电路对信号敏感,并按S 、 R信号改变 锁存器的状态。
5.2.2 D 锁存器
1. 逻辑门控 D 锁存器
逻辑电路图
R
G4 & Q4
G2
≥1
E
1 G5
D S
≥1 &
Q3 G1 G3
国标逻辑符号
Q
D 1D
Q
E E1
Q
Q
该锁存器有几种工作状态?有非定义状态吗?
1. 逻辑门控 D 锁存器
逻辑功能
D 锁存器的功能表
E
R =D
G4 &
Q4
G2 ≥1
G5 1
≥1 & Q3

脉冲电流综述---PPT

脉冲电流综述---PPT

6
2 脉冲电流凝固技术;
电流对液态金属主要有以下作用:电传输效应、Jouler 效应、Peltier 效应、起伏效应、趋肤 效应、电磁力效应、磁致收缩效应等。这些效应可以改变液体金属凝固时的传热、传质和动 量传输过程,进而影响金属的凝固组织及其形态和成分分布等。采用脉冲电流处理液态金属, 一方面可以减小电流细晶技术应用中电路负荷过大的问题,另一方面可减小电流在液态金属 中产生的焦耳热,并有效地利用脉冲电流对金属液的扰动作用。
5
20 世纪 80 年代,A.K.Mism 在 Pb—Sb—Sn 三元合金的凝固过程中使用了电流技术,通 过施加电流密度 30~40mA/cm2、电压约 30V 的直流电流,得到了均匀细小的凝固组织。 共晶片间距减小到原来的 1/4,共晶团数量增加,这说明电流对形核和生长两个阶段都有 作用。同样,把直流电流换成交流电流也可得到相同的结果(如图 2)。
图 5 为翟启杰等研究结果,表明超声波可细化 T10 钢凝固组织。在金属凝固过程中引入超 声振动,凝固组织从粗大的柱状晶变为均匀细等轴晶,金属的宏观及微观偏析均得到改善。
3 磁场在材料加工 磁场,与其它外场比较,有一个最大特点,即其非接触性,由于各相磁化率及介电常数不同, 相变中施加磁场,会影响各相稳定性,从而改变不同相的形貌,材料在磁场中的引入,最先 从普通磁场开始,并已进行了广泛的研究,目前,侧重于都材料在强磁场作用下的研究, 外加磁场包括稳恒、交变和脉冲磁场。用于细化金属凝固组织的方法主要包括外加交变磁场 和脉冲磁场。外加交变磁场即电磁搅拌,大量实践证明,电磁搅拌能细化金属凝固组织闭,
7
------试验研究中,研究者选择有代表性的试验金属,以求对其他金属有参考意义,从低熔点 到高熔点及单元单相到多元多相的原则,考虑工程实用性,对纯金属、二元合金和多元合金 都进行了探索性研究。 对纯金属,主要选择纯铝开展研究 对二元合金,主要选择低熔点、便于开展试验研究的 Pb—sn 合金和较高熔点、工业上广泛 应用的 A1-Si、A1-Cu 合金等结构材料开展研究 高熔点的高锰钢、碳钢、轴承钢、螺纹钢、电工钢、不锈钢和铸铁来开展研究

积分型单稳态电路

积分型单稳态电路

积分型单稳态电路
积分型单稳态电路是一种具有稳态和暂态两种工作状态的基本脉冲单元电路。

这种电路主要由两个集成逻辑门及RC积分电路构成。

当输入正脉冲后,电路会进入暂稳态,随着电容放电,当电压降至阈值后,电路会回到稳态。

这种电路具有较强的抗干扰能力,但其输出波形的边沿比较差,且触发脉冲的宽度必须大于输出脉冲宽度时才能正常工作。

在积分型单稳态电路中,TTL与非门常被用作基本元件。

电路的工作原理包括稳态和暂稳态两个阶段。

在稳态下,输入信号为0,两个门G1和G2同时截止,输出vO为高电平。

当输入正脉冲后,G1导通,输出v01产生负跳变。

由于电容C上的电压不能跳变,G2导通,使vO等于v01,电路进入暂稳态。

在暂稳态期间,电容开始放电,当vA电压降至阈值Vth后,G2截止,vO回到高电平,vA继续下降。

待输入信号回到低电平时,G1又截止,v01为高电平,电容开始充电。

经过一段恢复时间tre后,电路回到稳态,vA为高电平。

此外,积分型单稳态电路的输出脉冲宽度tW可以通过等效电路来计算。

等效电路可以简化为电容C与电阻RO(G1输出为低电平时的输出电阻)串联。

利用公式脉冲宽度tW= (3~5)(RR0')C可以计算出脉冲宽度,其中R0'是G1输出高电平时的输出电阻。

用555制作秒脉冲诸多方法介绍

用555制作秒脉冲诸多方法介绍

1.秒信号的发生电路秒信号发生电路由集成电路555定时器与RC组成的多谐振荡器构成。

需要的芯片有集成电路555定时器,还有电阻和电容。

下图为其电路图:图3-1 秒信号发生电路振荡电路是数字钟的核心部分,它的频率和稳定性直接关系到表的精度。

因此选择555定时器构成的多谐振荡器,其中电容C1为47微法,C2为0.01微法,两个电阻R1=R2=10K欧姆。

此时在电路的输出端就得到了一个周期性的矩形波,其振荡频率为:f=1.43/[(R1+2R2)C] (3-1)由公式(3-1)代入R1 ,R2和C的值得,f=1Hz。

即其输出频率为1Hz的矩形波信号2. 用555制作秒脉冲输出频率为1Hz,占空比为50%.由于CD4060在MULTISIM中仿真不了,所以本设计采用三片74HC161和一片74HC160IC级联,构成2^15分频器。

单元电路连接如下图所示:3、基于NE555的秒方波发生器的设计用NE555芯片以及外围电路搭建成一个多谐振荡器,通过设计外围电路的参数输出方波频率为1Hz,故称为秒方波发生器。

由于脉冲的占空比对系统的影响不大,故把占空比设计为1/3。

输出方波用作计数器及D触发器的clk信号。

NE555定时器引脚图如图1所示,脉冲频率公式:f=1/(R1+2R2)C㏑2选择R1=47K,R2=47K,RV1=2K,C=10μF,形成电路图如图2所示:图62kΩKey=A图7秒脉冲发生器2.1振荡器电路2.1.1 用555作振荡器采用集成电路555定时器与RC 组成的多谐振荡器。

输出的脉冲频率为=2)2+(1=121In C R R f 1KHz ,周期T =1=f S 1ms 。

取电阻为千欧级,电容0.01uF 到0.1uF 。

若参数选择:R 1=R 2=10k 欧姆,C 1=47uF 时,可以得到秒脉冲信号。

虽然直接得到了秒脉冲,但从计时精度的角度考虑,振荡器的振荡频率越高,钟表计时的精度就越高,所以一般不直接输出秒脉冲信号。

第10章-电子技术基础(第2版)-虞文鹏-清华大学出版社

第10章-电子技术基础(第2版)-虞文鹏-清华大学出版社
由于具备这些工作特点,单稳态触发器在脉冲数字系统中应用十分广泛,如用作脉冲的整 形,把波形不规则的脉冲改造成宽度和幅度都一致的脉冲,也可用作延时,用来产生滞后于触 发脉冲的输出信号,以及用作定时,用来产生固定时间宽度的脉冲信号等。
单稳态触发器的暂稳态通常是靠RC电路的充电、放电过程来维持的。根据RC电路的不同 接法(是接成微分形式还是接成积分形式),可将单稳态触发器分为微分型和积分型 两种。
(3) t>t2为电路的恢复期 (4) 输出脉冲宽度tW的计算。
脉冲单元电路>>> 10.1 集成逻辑门构成的脉冲单元电路
2.积分型单稳态触发器 积分型单稳态触发器的电路如图 (a)所示。图中RC构成积分电路连接在与非门G1和G2 之间。门G2的输出uo2作为触发器的输出。 触发器的工作波形如图 (b)所示,下面讨论它的工作过程。 (1) 0~t1为稳定状态 (2) t1~t2为暂稳态
波形变换及整形示意图
脉冲单元电路>>> 10.1 集成逻辑门构成的脉冲单元电路
(2) 抑制干扰。
抑制干扰示意图
脉冲单元电路>>> 10.1 集成逻辑门构成的脉冲单元电路
(3) 脉冲幅度鉴别
脉冲幅度鉴别示意图
脉冲单元电路>>> 10.1 集成逻辑门构成的脉冲单元电路
4.集成施密特触发器 施密特触发器具有良好的波形整形功能,因此无论是在TTL门电路还是在CMOS门电路 中,都具有带施密特触发器作为输入的反相器和与非门,并且手册上都会标注。如 CC40106是CMOS六反相器(施密特触发)、CC14093是CMOS二输入与非门(施密特触发)、 CT5414/CT7414是TTL六反相器(施密特触发)、CT54132/CT74132是TTL四2输入与非门(施 密特触发)等。图1和图2所示为带有施密特触发器作为输入的非门和与非门的逻辑符号。

2812DSP-12EV之全比较单元和PWM电路演示教学

2812DSP-12EV之全比较单元和PWM电路演示教学

PWM Signal Representation
t
Original Signal
same areas (energy)
2
t T
PWM representation
t T
PAM representation
脉宽调制(PWM)信号是脉冲宽度可以变化的脉冲序列,这些脉冲展开到几 个固定长度的周期内,以确保每个周期内都有一个脉冲。这个固定的周期 即为PWM载波周期,其倒数就被称为PWM载波频率
Three phase outputs which go to the motor terminals
DSP技术及应用
死区
281x 全比较单元及PWM电路
◆在运动控制中,通常会将两个功率器件(上级
和下级)串联起来构成一个功率转换桥臂;
◆为了避免受击穿导致失效,两个功率器件的导
通周期不能有重叠。因此就需要一对无重叠的PWM 2 输出信号来正确地开启和关闭这两个桥臂;
一个16位的比较控制寄存器(EVA为COMCONA;EVB为 COMCONB),该寄存器也是可读/写的
2一个16位的动作控制寄存器(EVA为ACTRA;EVB为ACTRB) ,均带有相应的映像寄存器,可读/写
六个PWM(三态)输出(比较输出)引脚(即PWMy引脚,对 于EVA来说y=1,2,3,4,5,6;对于EVB来说y=7,8,9,10,11,12)
存器(带映像的)
CMPRx
2
全比较寄存器 (带映像的)
PWM电路
输出逻辑
通用定时器1的计数器值不断地与三个比较寄存器的值相比 较,当一个比较匹配产生时,比较单元对应的两个输出引脚 就会根据动作控制寄存器(ACTRA)的设置发生跳变

弧焊电源 第4版 第四单元 脉冲弧焊电源

弧焊电源 第4版 第四单元  脉冲弧焊电源

在普通直流弧焊电
源直流侧或交流侧接入大功率晶闸管,分别组成晶闸管交
流断续器或直流断续器,利用它们的周期性通、断获得脉 冲电流。
第四单元 脉冲弧焊电源
§4-1 脉冲弧焊电源概述
一、脉冲弧焊电源的特点和应用范围 ⒈ 设计目的
★脉冲弧焊电源,是为焊接薄板和热敏感性强的金属材料及 全位置焊接而设计的。
⒉ 特点
1.所提供的焊接电流是周期性脉冲式的;
2.可调参数较多。
目前脉冲弧焊电源主要用于气体保护焊和等离子弧焊。
二、脉冲电流的获得方法和脉冲弧焊电源的分类
1.脉冲电流的获得方法
(1)利用硅二极管的整流作用获得脉冲电流
这类脉
冲弧焊电源采用硅二极管提供脉冲电流,可获得100Hz和
50Hz两种频率的脉冲电流。
(2)利用电子开关获得脉冲电流
第四单元 脉冲弧焊电源
§4-4 晶闸管式脉冲弧焊电源
晶闸管直流断续器式脉冲弧焊电源,按供电方式不同可 分为单电源式和双电源式两种 。
(1)单电源式 如图4-1所示。这种脉冲弧焊电源主要由 直流弧焊电源、晶闸管直流断续器VT、电阻箱R组成。 基本电流和脉冲电流都由直流弧焊电源提供,但电流的 流通路径不同。
§4-1 脉冲弧焊电源概述
2. 利用电子开关获得脉冲电流
第四单元 脉冲弧焊电源
§4-1 脉冲弧焊电源概述
3.利用阻抗变换获得脉冲电流
第四单元 脉冲弧焊电源
§4-1 脉冲弧焊电源概述
4. 利用给定信号变换和电流截止反馈获得脉冲电流
1)给定信号变换式 在晶体管式、晶闸管式弧焊电源的控制 电路中,把脉冲信号指令送到给定环节,从而在主回路中可 得到脉冲电流。 2)电流截止反馈式 通过周期性变化的电流截止反馈信号, 使晶体管式弧焊电源获得脉冲电流输出。用以上两种方法获 得的脉冲电流波形是不连续的。为了防止电弧在脉冲电流休 止时熄灭,需采取相应措施或用另一电源来产生基本电流, 以维持电弧连续、稳定的燃烧。脉冲弧焊电源可以由脉冲电 流电源和基本电流电源并联构成,称为双电源式;也可以采 用一台电源来兼顾,称为单电源式或一体式,这时需通过切 换它的两条外特性,来分别满足脉冲和维弧的需求。

数字电子技术第7章脉冲波形的产生与变换简明教程PPT课件

数字电子技术第7章脉冲波形的产生与变换简明教程PPT课件

v I' vO1 vO __________________ |
于是电路的状态迅速转换为 vO VOH VDD 。
' 由此可知,输入信号 v I 上升的过程中电路的状态发生转换是在 vI VTH 时,把此 时对应的输入电压值称为上限阈值电压,用 VT 表示。
1
使 v O1 迅速跳变为低电平。由于电容上的电压不能跃变,所以v I2 也同时跳变到低电平,并 使 vO 跳变为高电平,电路进入暂稳态。这时即使 vd 回到低电平, vO 的高电平仍将维持。 与此同时,电容C开始充电。
③暂稳态维持一段时间后自行回到稳态。随着充电过程的进行, v I2 逐渐上升,当上升到 略高于 VTH 时,又引发另外一个正反馈过程
根据以上分析,电路中各点电压波形如图所示。
(3) 主要参数计算
输出脉冲的宽度:
t W RC ln VDD 0 RC ln 2 0.69RC VDD VTH
输出脉冲的幅度:
Vm VOH VOL VDD
微分型单稳态触发器可以用窄脉冲触发。在 v I 的脉冲宽度大于输出脉冲宽度的情况 下,电路仍能正常工作,但是输出脉冲的下降沿较差。
根据以上分析,电路中各点电压的波形如图所示。
(3) 主要参数计算
输出脉冲的宽度:
t W ( R RO )C ln
VOH VOL VTH VOL
式中RO 为反相器 G 1 输出为低电平时的输出电阻。
输出脉冲的幅度:
Vm VOH VOL
积分型单稳态触发器的优点是抗干扰能力较强。它的缺点是输出波形的边沿比较差。 此外,积分型单稳态触发器必须在触发脉冲的宽度大于输出脉冲的宽度时才能正常工作。

数字电子技术第5单元脉冲信号产生和变换电路

数字电子技术第5单元脉冲信号产生和变换电路

• 该电路的暂稳态时间即定时时间为 T=(0.7~1.3)RC
2.由或非门构成的单稳态电路
• 图5-7是由或非门构成的单稳态电路。
• 平时第二个或非门(此处连接成非门状 态)的输入端通过电阻R成为高电平,所 以它的输出是低电平。 • 该低电平又送到第一个或非门的一个输 入端B上。
图5-7 由或非门构成的于将波 形变陡峭,以形成定宽、定幅的脉冲信号。
5.2 单稳态触发器
5.2.1 分立元件微分型单稳电路
• 图5-5是一种典型的分立元件集基耦合微 分型单稳电路。 • 该电路也是由两级反相器交叉耦合而成 的正反馈电路。
图5-5 分立元件集基耦合微分型单稳电路
• 它的一部分电路结构与多谐振荡器十分 相似,另一部分电路结构又和双稳电路十 分相似,再加上该电路也有一个微分触发 电路。 • 由此可见,它是由半个无稳态电路和半 个双稳态电路组合而成的,所以该电路有 一个稳态和一个暂稳态。
4.下降时间tf
• 下 降 时 间 是 指 脉 冲 后 沿 从 0.9Um 下 降 至 0.1Um时所需要的时间,用tf来表示。
5.脉冲宽度tW
• 脉冲宽度是指从脉冲前沿0.5Um处开始, 到脉冲后沿下降到0.5Um为止的宽度,又称 为半值脉冲宽度,用tW来表示。
• 有时也可以用上升沿与下降沿0.1Um之间 的宽度来表示脉冲宽度。
图5-1 由分立元器件多谐振荡器构成的低电压土壤 缺水告知电路
• 图5-2则是由集成块双稳态电路与多谐振 荡器构成的双闪灯电路。
• 该电路中的IC1-1与IC1-2、RP1等组成了 多谐振荡器,IC2构成了双稳态电路。
图5-2 由集成块双稳态电路与多谐振荡器构成的双闪灯电路
• 除了以上两种实际应用外,单稳态触发 器、双稳态触发器、多谐振荡器电路还广 泛应用于自动控制与调节系统、自动检测 系统、汽车电子、电子仪表及其他各种数 字电子电路等方面。

脉冲发生器电路原理

脉冲发生器电路原理

脉冲发生器电路原理
脉冲发生器电路原理是一种电子设备,用于产生固定频率和幅度的脉冲波形。

该电路由以下几部分组成:
1. 时钟源:提供稳定的时钟信号作为脉冲发生器的参考信号。

常见的时钟源包括晶振或时钟信号发生器。

2. 频率控制电路:根据需要设置脉冲发生器的输出频率。

频率控制电路通常采用可变电容或电感器,通过改变电容或电感的值来调节振荡电路的频率。

3. 振荡电路:产生连续波形的振荡电路。

常见的振荡电路包括RC振荡电路和LC振荡电路。

其中,RC振荡电路由电阻和电容器组成,而LC振荡电路由电感和电容器组成。

4. 整形电路:将振荡电路产生的波形进行整形,使其转变为脉冲波形。

整形电路通常采用比较器、门电路或触发器等元件。

5. 控制电路:用于控制脉冲发生器的起始时间、占空比和输出幅度等参数。

控制电路通常采用计数器、编码器、运算放大器等元件来实现。

以上是脉冲发生器电路的基本原理。

实际电路中,还可以根据需要添加滤波电路、放大电路或保护电路等功能来提高性能和稳定性。

数字电子技术第五版课件

数字电子技术第五版课件
10 i-表示第i位的权值,10为基数,即采用数码的个数
n、m-为正整数, n为整数部分的位数, m为小数部分的位数
团结 信赖 创造 挑战
例如: (249.56)10=2×102+ 4×101+ 9×100
+ 5×10–1+ 2×10-2
其中n=3,m=2
若用N表示任意进制(称为N进制)的基数,则展成十进制数的通式为
团结 信赖 创造 挑战
二、二进制:
进位规则是“逢二进一”,任意一个n位整数、m位小数的二进制可表示

(D )2 kn 1 kn 2 k0 k 1 k m
n 1
kn 1 2 n 1 ko 2 0 k 1 2 1 k m 2 m ki 2 i i m
数码的编写形式是多样的,其遵循的原则称为码制。码制的编写不受限 制,但有一些通用的码制,如十进制、二进制、八进制和十六进制等等。下 面就介绍这几种常用的码制。
团结 信赖 创造 挑战
1.2 几种常用的数制
数制:就是数的表示方法,把多位数码中每一位的构成方法以及按从低位到 高位的进位规则进行计数称为进位计数制,简称数制
为:期末考试成绩(笔试,70%)+平时成绩(实验、作业及考勤,30%) ,
参考书:《数字电子技术基础》 阎石主编,高等教育出版社
加油啦!!!☺
团结 信赖 创造 挑战
第一章 数码和码制
内容提要 本章首先介绍有关数制和码制的一些基本概念和术语,然后给出数字
电路中常用的数制和编码。此外,还将具体讲述不同数制之间的转化方法 和二进制数算术运算的原理和方法。
(D )N k n 1 k n 2 k 0 k 1 k m
n 1
k n 1 N n 1 k o N 0 k 1 N 1 k m N m k i N i i m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R2
D
uI
R1 V
uI1 &
uO1
1
uO
G1
G2
uO
*脉冲单元电路
二. 用TTL门构成的施密特触发器
当uI从高电平下降时,只要下降到uI=Vth,由于电路中的正反馈作用, 电路状态立刻发生翻转,回到初始的稳定状态。可见,电路的负向阈值
电压VT-=Vth
VT
VT VT
VD

R1 R2
*脉冲单元电路
UCC A4 B4 Y4 A3 B3 Y3 14 13 12 11 10 9 8
&
&
&
&
A
&
Y
B
1 234567 A1 B1 Y1 A2 B2 Y2 GN D
*脉冲单元电路
一. 用两级CMOS反相器电路构成的施密特触发器
1.工作原理 设CMOS反相器的阈值电压VTH=VDD/2,输入信号uI为三角波。
(1)v I

0时,v
' I
vTH ,vO
1,v O
0,第一种稳态;
R2
G1
G2
R1
vI
vI′ 1
1
(a) 电路
vI
vT+
vT-
vO
0
vO
vO
0
uI↑→ uI1 ↑→ uO ↓→uO↑
结果使电路的状态迅速翻转为:uO=UOL,uO=UOH,这是电路的另一个稳定 状态。那么这一时刻的输入电压uI就是电路的正向阈值电压VT+,此时
uI=VT+,uI1=Vth,得: VT VD (1 R1 / R2 )Vth
当uI从VT+再升高时,电路的状态不会发生改变。
R1

R2 2R1 R2
VTH

(1
R1 R2
)VTH
R2
vI
G1
G2
vT+
R1
vI
vI′ 1
vT-
1
vO
0
vO
t
vO
(a) 电路
0
t
(b) 工作波形
*脉冲单元电路
一. 用两级CMOS反相器电路构成的施密特触发器
2.工作波形与电压传输特性
下限触发转换 电平VT-
上限触发转换 电平VT+
3.重要参数:
t
t (b) 工作波形
*脉冲单元电路
一. 用两级CMOS反相器电路构成的施密特触发器
1.工作原理
(2)v I

,v
'=
I
vI R1
R
2
R2
,当v
' I
VTH时,v O
0,v O
1,改变为第二种稳态;
此时v
'= v I I R1
R2
R
2=VTH,VI=
R1 R R2
2
VTH

VT
, VT

1
R1 R2
VTH
R2
G1
G2
R1
vI
vI′ 1
1
(a) 电路
vI
vT+
vT-
vO
0
vO
vO
0
t
t (b) 工作波形
*脉冲单元电路
一. 用两级CMOS反相器电路构成的施密特触发器
1.工作原理
(3)v I

,v
'=v DD v I R1 R
I 2
R1 v I
,当v
' I
其中,UD为二极管的导通压降。当uI上升到门电路的阈值电压Vth时,由于uI1 的电压还低于Vth,电路仍然保持这个状态不变; 随着uI的继续升高,当uI1也 上升到Vth时,电路将产生如下正反馈过程:
R2
D
uI
R1 V
uI1 &
uO1
1
uO
G1
G2
u器
脉冲休止期:
在一个周期中(T-t w)的值。
*脉冲单元电路
9.1 概述
脉冲电路:用来产生和处理脉冲信号的电路。 常用的有脉冲波形的产生、变换、整形等电路。 脉冲电路可以用分立晶体管、场效应管作为开 关和RC或RL电路构成,也可以由集成门电路或 集成运算放大器和RC充、放电电路构成。
*脉冲单元电路
Vth
因此,通过改变电阻R1和R2的比值,可以调整回差电压。
R2
D
uI
R1 V
uI1 &
uO1
1
uO
G1
G2
uO
*脉冲单元电路
三. 集成施密特触发器
由于性能稳定,所以在数字系统中集成施密特触发器被 广泛采用。目前,各厂家已经生产出多种单片集成的施密特 触发器产品。
74LS132是一种典型的集成施密特触发器。74LS132内 部包括四个相互独立的两输入施密特触发器,每一个触发器 都是以基本的施密特触发电路为基础,在输入端增加了与的 功能, 在输出端增加反向器,因此将其称为施密特触发的与
VT

VT+ -VT- =2
R1 R2
VT H
*脉冲单元电路
二. 用TTL门构成的施密特触发器
假设在接通电源后,电路输入为低电平uI =VoL,则电路处于如下状态: uo=VoH,uo=VoL。当uI逐步上升,使二极管D导通, uI 1的电压为:
u11

uI R1
VD R2
R2
VOL
9.2.1 施密特触发器
主要用途:
把变化缓慢的信号波形变换为边沿陡峭的矩形波。
特点:
① 电路有两种稳定状态。两种稳定状态的维持和转换完 全取决于外加触发信号。触发方式:电平触发
② 电压传输特性特殊,电路有两个转换电平(上限触发 转换电平UT+和下限触发转换电平UT-)。
③ 状态翻转时有正反馈过程,从而输出边沿陡峭的矩形 脉冲。
VTH时,v O
1,v O
0, 又又回回到 到第第一二种种稳稳态态;
此时v
'=v DD v I R1 R
I 2
R1 v I=VTH,(R1 +R2 -R1)VI=(R1+R2 )VTH
R1VDD ,
VT


VI

R1 R2 R2
VTH

R1 R2
VDD
VDD 2VTH

*脉冲单元电路
第9章 脉冲单元电路
9.1 概述 9.2 脉冲单元电路 9.3 555定时器及其应用
*脉冲单元电路
9.1 概述
脉冲信号:指突然变化的电压或电流。 脉冲电路的研究重点:波形分析。 数字电路的研究重点:逻辑功能。
获得脉冲波形的方法主要有两种: 1.利用脉冲振荡电路产生; 2.是通过整形电路对已有的波形进行整形、变 换,使之符合系统的要求。
Vtr:m:
脉冲信号的幅度; 脉冲信号的上升时间(前沿),它是指脉冲信号由 0.1Vm上升至0.9Vm所经历的时间;
tf: 脉冲信号的下降时间(后延),它是指脉冲信号由
tw:
0是.9脉Vm冲下信降号至持0.续1V时m所间经(历脉的宽时)间,;它是指脉冲信号从上 升至0.5Vm处到又下降到0.5Vm之间的时间间隔;
*脉冲单元电路
9.1 概述
脉冲信号:狭义地说,脉冲信号是指一种持续时间极短的 电压或电流波形。从广义上讲,凡不具有连续正弦波形状 的信号,几乎都可以通称为电脉冲信号。
(a)方波 (b)矩形波 (c)尖顶脉冲 (d)锯齿波 (e)钟形脉冲
*脉冲单元电路
9.1 概述
实际的矩形 脉冲波形
T: 为脉冲信号的周期;
相关文档
最新文档