药物代谢动力学

合集下载

药物的代谢动力学名词解释

药物的代谢动力学名词解释

药物的代谢动力学名词解释
药物的代谢动力学是研究药物在体内代谢过程的一门学科,涉及到一系列特定的名词和概念。

以下是一些常见的药物代谢动力学名词解释:
1. 代谢:药物代谢是指药物在体内发生的化学转化过程,通过代谢作用,药物可以被转化为活性代谢产物或无活性代谢产物,以及被清除出体外。

2. 代谢酶:代谢酶是参与药物代谢反应的酶类蛋白,负责催化药物分子的转化。

常见的代谢酶包括细胞色素P450酶(CYP450酶)和UDP-葡萄糖转移酶(UGT)等。

3. 代谢途径:代谢途径是药物在体内发生代谢反应的不同路径。

代谢途径可以是氧化、还原、水解、酯化、葡萄糖苷化等。

4. 代谢产物:代谢产物是药物代谢反应的终产物。

代谢产物可以是活性代谢产物,具有药理活性或毒性;也可以是无活性代谢产物,无药理作用或低药效。

5. 半衰期:药物的半衰期是指体内的半数药物浓度消失所需的时间。

半衰期可以反映药物在体内的代谢速率,通常用于衡量药物的清除速度和给药间隔。

6. 受体饱和:当药物在体内代谢酶的催化下发生代谢反应时,代谢酶可能会达到其最大催化能力。

当药物浓度超过代谢酶的饱和点时,药物的代谢速率将不再线性增加,而是逐渐趋于饱和。

这些名词和概念是药物代谢动力学中的重要内容,对于理解药物在体内的代谢过程和药物效应具有重要意义。

药物代谢动力学题库

药物代谢动力学题库

药物代谢动力学题库
药物代谢动力学是药理学中的重要分支,它研究药物在体内的
吸收、分布、代谢和排泄等过程。

以下是一些与药物代谢动力学相
关的常见问题及其答案:
1. 什么是药物代谢动力学?
药物代谢动力学是研究药物在体内被代谢、转化和清除的过程
的科学。

它涉及到药物在体内的吸收、分布、代谢和排泄等过程,
以及这些过程的动力学特性。

2. 什么是药物的代谢?
药物代谢是指药物在体内经过化学反应转化为代谢产物的过程。

这些代谢产物通常具有不同的药理活性和生物学活性,对药物的药
效和毒性都有影响。

3. 药物代谢的主要部位有哪些?
药物代谢主要发生在肝脏、肠道、肾脏和肺部等组织器官中。

其中肝脏是最重要的药物代谢器官,大部分药物在体内经过肝脏的代谢转化。

4. 什么是药物的半衰期?
药物的半衰期是指药物在体内浓度下降到初始浓度的一半所需的时间。

它是衡量药物在体内代谢和排泄速度的重要指标,对于确定药物的给药方案和用药间隔具有重要意义。

5. 药物代谢动力学的影响因素有哪些?
药物代谢动力学受到许多因素的影响,包括个体的遗传因素、年龄、性别、肝功能、肾功能、饮食习惯、药物相互作用等。

这些因素都会对药物的代谢速率和代谢产物产生影响。

总的来说,药物代谢动力学是一个复杂而重要的领域,它对于药物的临床应用和药物研发具有重要意义。

希望以上回答能够满足你的需求,如果你有其他关于药物代谢动力学的问题,也欢迎继续提出。

药物代谢动力学

药物代谢动力学

还原
某些药物可被还原为更具活性的代谢物或其前体 。例如,某些硝基芳香族化合物可被还原为胺类 化合物。
结合
结合是药物代谢的最后一步,涉及药物与内源性 物质的结合,如葡萄糖醛酸、硫酸等。结合后的 药物通常更易排泄。
药物代谢的研究方法
体外实验
通过使用动物或人体组织离体实 验来研究药物代谢,如肝切片、 肝微粒体等。
02
药物吸收
药物吸收的机制
80%
被动扩散
药物通过细胞膜的被动转运进入 细胞,扩散速度与药物浓度差和 细胞膜通透性有关。
100%
主动转运
药物通过细胞膜的主动转运进入 细胞,需要载体蛋白的参与,具 有选择性。
80%
胞饮和胞吐作用
大分子药物或颗粒可通过细胞膜 的内吞或外排作用进入细胞。
影响药物吸收的因素
体内实验
通过给动物或人体注射药物,观 察其代谢过程和排泄情况,以了 解药物的代谢动力学特征。
计算模型
利用数学模型和计算机模拟技术, 对药物在体内的吸收、分布、代 谢和排泄过程进行模拟和预测。
04
药物排泄
药物排泄的途径与机制
1 2
肾脏排泄
药物通过肾小球滤过和肾小管排泄,以原形或代 谢产物的形式随尿液排出体外。
之比值。它反映了药物在体内的代谢和排泄能力。
计算方法02ຫໍສະໝຸດ Cl = (剂量 / Vd) / (峰浓度 - 谷浓度)
影响因素
03
Cl受多种因素影响,如肝肾功能、年龄等。
半衰期
定义
半衰期(t1/2)是指血药浓度下降一半所需的 时间。它反映了药物在体内的消除速度。
计算方法
t1/2 = 0.693 / Cl
药物剂型设计

药物动力学与药物代谢研究

药物动力学与药物代谢研究

药物动力学与药物代谢研究药物动力学与药物代谢是药学领域中重要的研究方向,通过研究药物在体内的吸收、分布、代谢和排出等过程,可以更好地理解药物对机体产生的影响,从而指导药物的合理使用和剂量调整。

本文将对药物动力学与药物代谢的研究进行探讨。

一、药物动力学研究药物动力学研究主要关注药物在体内的吸收、分布和排泄这三个过程。

1. 药物吸收动力学研究药物吸收动力学研究着重于研究药物在体内的吸收速率和程度。

药物的吸收过程受多种因素影响,包括药物的性质、给药途径、剂型等。

研究者通过实验测定血药浓度与时间的关系,得出药物吸收的速率常数和吸收半衰期等参数,从而揭示药物吸收的特点。

2. 药物分布动力学研究药物分布动力学研究关注药物在体内的分布情况。

药物分布过程受到生理和药物因素的影响,如血流速度、血浆蛋白结合、组织亲和力等。

研究者通过实验测定不同组织或器官中的药物浓度,分析药物在体内的分布规律,为合理使用药物提供依据。

3. 药物排泄动力学研究药物排泄动力学研究关注药物在体内的排泄速率和途径。

药物的排泄主要通过肾脏和肝脏完成,其中肾脏排泄是主要的排泄途径。

研究者通过实验测定尿液或粪便中的药物浓度,并计算药物排泄的速率常数和排泄半衰期等参数,揭示药物从体内排泄的规律。

二、药物代谢研究药物代谢研究主要关注药物在体内的代谢途径和代谢产物。

1. 药物代谢途径研究药物代谢途径研究着重于研究药物在体内被酶系统代谢的途径。

药物代谢主要通过肝脏的细胞色素P450酶系统完成。

研究者通过实验测定药物代谢产物的结构和含量,确定药物的代谢途径和代谢产物,为了解药物活性和毒性提供依据。

2. 药物代谢产物研究药物代谢产物研究关注药物代谢的产物及其药理作用。

药物经过代谢常常会产生代谢物,这些代谢物有时会比原药物具有更强的药理活性,也有时可能会导致毒副作用。

研究者通过实验测定代谢产物的结构和活性,评估药物代谢的药理意义,为药物研发和临床应用提供指导。

药物代谢动力学在临床用药中的应用

药物代谢动力学在临床用药中的应用

药物代谢动力学在临床用药中的应用随着药物研发和临床应用的不断深入,药物代谢动力学在临床用药中的应用逐渐成为研究的热点之一。

药物代谢动力学主要研究药物在人体内的代谢过程及其动力学特征,通过研究药物的代谢途径、代谢产物、代谢酶等参数,可以为临床用药提供科学依据,指导用药方案的制定,提高药物治疗效果,减少药物不良反应。

一、药物代谢动力学的基本概念药物代谢动力学是研究药物在体内代谢过程的一门科学,主要包括药物在体内的吸收、分布、代谢和排泄等过程。

其中,药物代谢是指药物经过生物体内代谢酶的作用,转化为代谢产物的过程。

药物的代谢通常发生在肝脏,也可以在肾脏、肠道等部位发生。

药物代谢动力学研究药物代谢的速度、代谢产物的结构、代谢途径、代谢酶的种类和活性等参数,可以为药物的药效学、毒理学、药代动力学等研究提供依据。

二、药物代谢动力学在临床用药中的应用1. 个体化用药药物代谢动力学研究表明,不同个体对同一种药物的代谢速度存在差异。

有些人代谢速度较快,药物在体内的清除速度较快,需要增加药物的剂量才能达到治疗效果;有些人代谢速度较慢,药物在体内的滞留时间较长,对药物的剂量要求较低。

因此,了解患者的药物代谢动力学特征,可以根据个体差异,选择最适合的药物剂量和用药方案,实现个体化用药,提高治疗效果。

2. 预测药物的药效和毒性药物代谢动力学研究可以揭示药物在体内的代谢途径和代谢产物,预测药物的药效和毒性。

通过研究药物的代谢途径和代谢产物的活性,可以了解药物的治疗效果和毒性发生的机制,指导用药方案的制定。

例如,一些药物经过代谢后产生的活性代谢产物可能具有毒性,药物代谢动力学研究可以提醒临床医生注意药物的毒副作用。

3. 药物相互作用药物代谢动力学研究还可以揭示药物之间的相互作用。

有些药物可能通过影响代谢酶的活性和代谢途径,影响其他药物的代谢,导致药物浓度的变化和药效的改变。

因此,在临床用药中,需要考虑药物之间的相互作用,避免药物不良反应的发生。

药物代谢动力学

药物代谢动力学
药物的理化性质决定其固定的pKa值。
2021年2月9日
中药学专业《药理学》
碱化酸化体液和尿液
通过用药可轻微改变pH,如应用碳酸氢钠 可碱化,而用氯化铵可酸化体液和尿液,应用 此原理可使药物吸收或排泄的速度改变,对提 高药物的吸收或促进中毒物质的排泄有临床意 义。
弱酸性药物在pH低的溶液中解离度小,容 易跨膜转运,在酸性胃液中吸收较快;但如用 药碱化尿液pH变大,则解离度增大而妨碍原形 排泄的药物在肾小管中的重吸收,促进药物从 体内排泄。
2021年2月9日
中药学专业《药理学》
Байду номын сангаас
被动转运(passive diffusion)
特点: 顺浓度梯度转运 不耗能 不需要载体 无饱和性、无竞争性
影响因素:分子大小、脂溶性、极性、 两侧浓度差、解离度等
2021年2月9日
中药学专业《药理学》
被动转运(passive diffusion)
1)简单扩散:因为生物膜的脂质特性, 药物的被动扩散主要与药物的脂溶性(油水 分布系数)与解离度有关。非极性物质、解 离度小或脂溶性强的药物容易通过膜的类脂 相,极性大、解离形式或脂溶性小的药物, 一般不易通过生物膜。大多数药物的转运方 式属于简单扩散。
(Placental barrier)
是指胎儿胎盘绒毛与孕妇子宫血窦间的屏障。 胎毛细血管内皮对药物转运的选择性
脂溶度、分子大小是主要影响因素 (MW 600易通 过;>1000 不能)
母血pH = 7.44; 胎血pH=7.30。弱碱性药物在胎血内 易离解
胎盘有代谢(如氧化)药物的功能
转运方式和其它细胞相同:简单扩散
二、分布
药物以各种途径给药后自给药部位吸收入血, 随血液转运到组织脏器,称分布。研究药物的分 布对探讨药物的作用机制、不良反应的产生,发 现新药以及新的用途,均可得到启示。影响分布 的因素主要有:组织血流量及药物与组织细胞的 亲和力、屏障现象及药物与组织蛋白的结合等。

药物的药物代谢动力学与药效动力学研究

药物的药物代谢动力学与药效动力学研究

药物的药物代谢动力学与药效动力学研究药物代谢动力学(Pharmacokinetics,简称PK)和药效动力学(Pharmacodynamics,简称PD)是药物研究中的重要分支,用于评估药物在体内的代谢过程以及对生理系统产生的效应。

药物代谢动力学研究药物在体内的转化和消除过程,而药效动力学则关注药物与生理系统之间的相互作用。

一、药物代谢动力学药物代谢动力学是研究药物在生物体内的吸收、分布、代谢和排泄(ADME)过程的科学。

它对于理解药物在体内的行为和作用机制至关重要。

1. 药物吸收药物的吸收过程是指药物进入机体循环系统的过程。

吸收方式有经口、经肠道、经皮肤、经肺等多种途径。

药物的溶解性、脂溶性和分子大小等因素会影响其吸收速度和程度。

2. 药物分布药物分布过程是指药物通过血液循环系统进入不同组织和器官的过程。

药物在体内的分布受到血流动力学、药物亲和性和生物膜透过性等因素的影响。

3. 药物代谢药物代谢是指药物在体内经过化学反应转化成代谢产物的过程。

大部分药物在肝脏中发生代谢,药物代谢酶如细胞色素P450系统则起到关键作用。

药物代谢会影响药物的活性、毒性和药物与其他物质之间的相互作用。

4. 药物排泄药物排泄是指药物及其代谢产物通过肾脏、肝脏、肠道、肺等途径离开机体的过程。

主要排泄方式有尿液排泄、胆汁排泄、呼气排泄等。

二、药效动力学药效动力学研究药物与生理系统之间的相互作用,包括药物对受体的结合、信号传导和引起的生理反应等过程。

药效动力学研究可帮助我们理解药物的药理作用和临床应用。

1. 药物作用机制药物作用机制是指药物与受体相互作用引起药物效应的过程。

药物可以通过与受体结合、抑制或激活受体的信号通路等方式产生作用。

2. 药物剂量-效应关系药物剂量-效应关系研究药物剂量与生理效应之间的关系。

通过研究药物的剂量-效应曲线可以确定药物的剂量范围、给药频率以及最佳剂量等。

3. 药物相互作用药物相互作用是指两种或多种药物在体内同时存在时,彼此相互影响或改变对生理系统的作用的现象。

药物代谢动力学概念

药物代谢动力学概念

药物代谢动力学概念
药物代谢动力学是指药物在体内被代谢的过程,包括药物分子的转化、消除和降解等过程。

药物代谢的速度和途径取决于许多因素,如药物的物理化学性质、剂量、给药方式、个体差异、环境因素等。

药物代谢动力学可以用一些参数和模型描述和评价。

常用的参数包括药物的清除率、半衰期、生物利用度等。

药物清除率是指单位时间内体内药物的消除量,可以反映药物代谢的速度。

药物的半衰期是指药物在体内消除一半所需要的时间,可以反映药物的停留时间。

生物利用度是指经口给药后进入循环系统的药物与静脉给药下,进入循环系统绝对生物利用度的比值,可以反映药物在肠道和肝脏的代谢情况。

药物代谢动力学涉及许多代谢途径,包括氧化、还原、水解、酰基化、硫酸化、葡萄糖醛酸化等。

药物代谢通常发生在肝脏,药物经过肝脏的代谢可以增加药物的溶解度、降低药物的毒性、促进药物的排泄等。

此外,药物代谢还可以受到药物相互作用、遗传因素、疾病状态等的影响。

了解药物代谢动力学对于合理用药和预测药物效果、副作用等具有重要意义。

通过了解药物的代谢规律,可以选择适当的给药途径和剂量,提高疗效,减少不良反应。

药物代谢动力学

药物代谢动力学

有些药物在肝脏与葡萄糖醛酸结合后、随胆汁 排到小肠后被水解,游离药物被重吸收;这种肝脏、 胆汁、小肠间的循环称为肝肠循环(hepatoenteral circulation)。
(三)其他途径的排泄
乳腺排泄:由于乳汁略呈酸性又富含脂质,所以 脂溶性高的药物和弱碱性药物如吗啡、阿托品等在 乳汁中浓度高。 其他:肺、胃肠、汗腺等。
第二章 药物代谢动力 学
Pharmacokinetics
学习目标
掌握:药物跨膜转运的特点;简单扩散的规律;药物 的体内过程;首关消除;肝肠循环;一级/零级消
除动力学及特点;主要药动学参数的定义与意义。
熟悉:药物在不同酸碱环境中解离度的计算;血浆蛋
白结合型药物的特点;药酶与药酶的诱导与抑制。
了解:房室模型;时量曲线;多次给药的时量曲线和
- lgKa= -lg
= - lg[H+] - lg
[A-] [HA]
pKa = pH - lg
pH-pKa = ]
[HA]

[解离型]
[非解离型]
[解离型] [非解离型]
当pH = pKa 时: [A- ] =[HA]
[BH+ ] = 弱碱性药物则相似 10 pKa: 是指弱酸或 [B]
肪、结缔组织等则较小。如硫喷妥钠的分布。
(三)组织细胞结合:某些药物与细胞成分具有特 殊亲和力。从而使药物在这些组织中的浓度高于 血浆浓度:碘--甲状腺、氯喹--肝脏、四环素-骨齿。 (四)体液的pH值和药物的解离度;
(五)体内屏障
1. 血-脑屏障
脑组织毛细血管内皮细胞间连接紧密, 外表面几乎全部为星形胶质细胞所包围。许 多分子量大、极性高的药物不能穿透,脂溶 性高或分子量小的药物可透过。

第二章 药物代谢动力学

第二章 药物代谢动力学

肾脏排泄
肾小球滤过; 肾小管分泌(主动分泌通道, 竞争性抑制);
肾小管重吸收(被动扩散,尿液pH)、
消化道排泄 肝肠循环:胆汁排入肠腔的药物部分可再经小肠上皮细胞吸收经
肝脏进入血液循环,形成的肝—胆汁—小肠间的循环。
其他途径 汗液、泪液、唾液、乳汁、呼吸道、头发和皮肤。
第三节 药物的速率过程
一、一次给药的药—时曲线下面积
内转运的药物量随时间而下降;
t1/2恒定,与剂量或血药浓度无关, t1/2=0.693/ ke
消除 5单位/h
2.5单位/h
1.25单位/h
零级动力学消除
单位时间内消除恒定量的药物(超过机体的消除能力),
即血药浓度按恒定消除速度进行消除,也称恒量消除。
过量用药时出现;
单位时间消除恒量的药物;
消除速率与药量或浓度无关,与初始浓度无关;
特点 通过毛细血管壁吸收(简单扩散、滤过); 可避免胃肠液中酸碱及消化酶对药物的影响; 可避免首过消除现象; 给药剂量准确; 药物效应快速显著.
影响因素 药物在组织间液的溶解度; 注射部位血流量。
血管内给药
无吸收过程,可迅速起效; 静脉注射、静脉滴注; 静脉滴注适用于治疗指数小、药物容积大、不易吸收或刺激性
代第 谢二 动章 力药 学物
药物代谢动力学
研究机体对药物的处置过程,即药物在体内吸收、分布、生
物转化(代谢)及排泄的过程,以及血药浓度随时间变化而 变化的规律的科学。
第一节 药物的跨膜转运
药物分子的跨膜转运方式
被动转运(passive transport):滤过、简单扩散 载体转运(active transport):主动转运、易化扩散 膜动转运:胞吐、胞饮

药剂学中的药物代谢动力学模型

药剂学中的药物代谢动力学模型

药剂学中的药物代谢动力学模型药物代谢动力学模型是药剂学领域中的重要研究内容,它通过数学模型来描述药物在人体内的代谢过程及动力学行为。

药物代谢动力学模型的研究对于药物的合理使用和剂量调整具有重要意义。

本文将介绍药物代谢动力学模型的基本概念、分类及应用,并探讨其在药剂学研究中的意义和挑战。

一、药物代谢动力学模型的基本概念药物代谢动力学模型是研究药物在体内代谢过程的一种定量描述方法。

它可以通过建立数学方程来描述药物浓度与时间的关系,以及药物在人体内的代谢速率和消除速率等动力学参数。

常用的药物代谢动力学模型有零级动力学模型、一级动力学模型和双室模型等。

1. 零级动力学模型零级动力学模型是指药物在体内的消除速率与药物浓度无关,而是固定的。

这意味着无论药物的浓度如何,消除速率都保持不变。

这种模型常见于药物的饱和消除情况,例如乙醇的代谢。

2. 一级动力学模型一级动力学模型是指药物在体内的消除速率与药物浓度成正比。

即随着药物浓度的增加,消除速率也相应增加。

此模型常见于大多数药物的代谢过程,例如头孢菌素的消除。

3. 双室模型双室模型是较为复杂的药物代谢动力学模型。

它认为药物在体内存在两个相互转化的组织或器官,分别为中央室和外周室。

药物在体内的分布和消除分别受到这两个室的影响。

此模型常见于某些特定药物的代谢,如静脉注射药物。

二、药物代谢动力学模型的分类根据药物的作用机制和代谢途径,药物代谢动力学模型可进一步分类为饱和动力学模型和线性动力学模型。

1. 饱和动力学模型饱和动力学模型适用于药物的代谢饱和状态。

当药物在体内的代谢通路达到饱和时,代谢酶的速率将不再增加,而是保持恒定。

此时,药物代谢动力学模型通常采用零级动力学模型。

2. 线性动力学模型线性动力学模型适用于药物的代谢非饱和状态。

当药物在体内的代谢通路尚未达到饱和时,代谢酶的速率将随着药物浓度的增加而线性增加。

此时,药物代谢动力学模型通常采用一级动力学模型。

三、药物代谢动力学模型的应用药物代谢动力学模型的研究对于药物的合理使用和剂量调整具有重要的指导作用。

药物代谢动力学ppt课件精选全文完整版

药物代谢动力学ppt课件精选全文完整版
• 主动转运(active transport) • 易化扩散(facilitated diffusion)
●胞裂外排(exocytosis)
药物代谢动力学
跨膜转运(Membrane Transfer)
simple diffusion
carrier-mediated
active
facilitated
1. 药物理化性质; 2. 给药途径; 3. 药物剂型; 4. 影响药物从消化道内吸收的主要因素;
药物代谢动力学
1. 药物理化性质:
●分子量; ●脂溶性; ●解离度;
问题:什么样的药物容易被吸收?
药物代谢动力学
2. 给药途径
●常见的给药方式:
静脉 、吸入 、舌下和直肠、肌内注射 、皮下注射 、 口服 、皮肤
药物代谢动力学
(二)吸入(呼吸道给药,inhalation)
�定义:经口鼻吸入的药物从肺泡吸收的给药方式; 肺泡上皮细胞能吸收5 µm左右微粒, 肺泡表面积大(达200m2) ,
●适用于挥发性药物和气体药物,如鼻炎喷雾剂 ;
药物代谢动力学
(三)局部用药
●完整的皮肤吸收能力差 ; �适用于脂溶性高的药或加促皮吸收的药剂,如皮康王、无极膏 。 �问题生活当中,还有哪些是局部给药?
药物代谢动力学
6)药物通过胞膜的速度受药物理化性质的影响;
�药物分子大小; �药物脂溶性; �药物解离状况;
分子量小、脂溶性高、极性小、非解离型的药物容易透过细胞膜。
药物代谢动力学
7)药物通过细胞膜的速度受环境pH的影响
� --------------离子障 ion-trapping �大多数药物为弱酸性或弱碱性;
�原则:药物解离程度脂溶性 跨膜转运 效应。

药物代谢动力学

药物代谢动力学

药物代谢动力学药物代谢动力学是指药物在体内代谢过程中的速率和方式。

了解药物代谢动力学对于合理用药和安全用药非常重要,因为药物代谢的速度直接影响药物在体内的浓度和作用时间。

药物代谢动力学主要包括吸收、分布、代谢和排泄四个过程。

吸收是指药物从给药途径进入体内。

不同的给药途径会影响药物的吸收速度和程度。

例如,通过口服给药的药物首先要经过胃肠道吸收,然后通过肠道壁进入血液循环。

而经皮给药的药物需要通过皮肤屏障进入血液循环。

分布是指药物在体内不同组织和器官间的分布。

药物通过血液循环到达不同的组织和器官,如肝脏、肾脏、肺等,从而产生药物在体内的浓度梯度。

药物的脂溶性、蛋白结合率以及组织的血流量等因素都会影响药物的分布。

代谢是指药物在体内经过化学反应转化为代谢产物的过程。

药物主要在肝脏中进行代谢,但其他组织和器官如肾脏、肠道等也能参与药物代谢。

药物代谢的主要目的是通过改变药物的化学结构来提高其水溶性,使其更容易被排泄出体外。

其中,药物代谢的主要途径包括氧化、还原、水解和酰基转移等。

排泄是指药物从体内排出的过程。

主要通过肾脏、肝脏、肺和肠道四个途径排出。

药物在肾脏中通过肾小球滤过和肾小管分泌和再吸收等过程,经尿液排出体外。

肝脏通过胆汁分泌药物代谢产物,然后经肠道排出。

肺脏通过呼吸作用排出药物气体和挥发性物质。

肠道的排泄主要通过粪便排出。

药物代谢动力学的研究可以通过测定药物在体内的浓度变化来获得。

主要有口服给药后的血浆药物浓度-时间曲线和尿液中的药物代谢产物浓度变化。

通过分析药物在体内的浓度变化可以获得药物的代谢速率(代谢净速度),以及代谢的半衰期、清除率等参数,从而了解药物在体内的代谢过程。

药物代谢动力学的知识对于临床用药具有重要的指导意义。

了解药物的代谢特点可以预测和调整药物的剂量、给药方式和给药时间。

对于肝功能或肾功能受损患者,药物代谢动力学的研究可以帮助调整药物的剂量和给予频率,避免药物在体内积累和毒副作用的发生。

药物动力学和药物代谢动力学

药物动力学和药物代谢动力学

药物动力学和药物代谢动力学药物动力学和药物代谢动力学,听上去好像是科学家们的专利,但其实它们和我们日常生活息息相关。

想象一下,你感冒了,医生给你开了药,你是不是也想知道这个药到底是怎么在你体内工作的?那就让我们从头说起,轻松聊聊这两位科学界的“老朋友”吧。

1. 药物动力学的基本概念1.1 什么是药物动力学?药物动力学,顾名思义,就是研究药物在体内是如何运动的。

想象一下,药物就像一位舞者,走进你的身体,在各个角落跳舞。

它的舞蹈包括几个步骤:吸收、分布、代谢和排泄。

听起来复杂,其实就是药物是怎么进入你体内、在体内传播、被处理和最终被排出去的。

1.2 药物的吸收和分布说到吸收,药物就像一颗颗小水滴,进到你的身体里。

你吃药后,胃肠道就像个热锅上的蚂蚁,忙着把药物吸收到血液里。

不同的药物吸收速度也不一样,有的快得像闪电,有的则慢得像蜗牛。

而一旦药物进了血液,接下来就是分布。

药物就像个快递小哥,奔波在全身各处,有的直奔目标,有的可能在你肚子里晃荡半天。

2. 药物代谢动力学的奥秘2.1 药物的代谢接下来,咱们要说的就是药物的代谢了。

这一过程可以理解为药物在你体内的“美容院”,在这里,药物被“打磨”、被“加工”,最终变得“适合出门”。

代谢主要发生在肝脏,肝脏就像个大工厂,忙着把药物转化成各种代谢产物。

有的药物在这里会变得更活跃,有的则会被“废弃”,准备排出体外。

2.2 药物的排泄说到排泄,那可是个不得不提的环节。

药物的代谢产物最终会通过尿液、汗水、甚至是呼吸排出体外。

你知道吗?有时候,药物的气味也可能通过呼吸释放出来,真是“内外兼修”啊!排泄的速度因人而异,跟你身体的代谢能力、喝水的多少、甚至饮食习惯都有关系。

3. 影响药物动力学的因素3.1 个体差异每个人的身体都是独一无二的,所以药物在你身上的表现可能大相径庭。

有些人可能对某种药物“特效”,而有些人却“毫无感觉”。

这就好比你去参加派对,有的人一杯酒就能嗨到天边,而有的人喝了半天还没感觉到热乎乎的。

药理学:第3章 药物代谢动力学

药理学:第3章  药物代谢动力学
Ka:酸性电离常数
药物的理化性质决定其固定的pKa值。 。
一个弱酸性药物(布洛芬,pKa=4.4)
胃液 (pH=2.4)
血液
尿液
(pH=7.4) (pH=8.4)
10pH-pKa
10-2
103
104
[离子型][A-] 0.01
1000 10000
[非离子型] [HA] 1
1
1
总量
1.01
1001 10001
胃肠道内影响吸收的因素
(2) 静脉注射给药(Intravenous,iv)
直接将药物注入血管,吸收完全
(3) 肌肉注射和皮下注射 (Intramuscular and subcutaneous injection, im and sc)
被动扩散+过滤,吸收快而全
毛细血管壁孔半径40Å,大多水溶性药 可滤过
肝药酶的特性
1) 选择性低:能催化多种药物转化;
2) 变异性较大:常因遗传、年龄、营养 和疾病等机体状态的影响而存在明显的 个体差异;如CYP450多态性
3) 酶活性易受外界因素影响而出现增强 (酶诱导)或减弱(酶抑制)现象。
肝药酶诱导剂和抑制剂
药酶诱导 (Induction):
苯巴比妥、利福平,环境污染物等
解离性是指水溶性药物在溶液中溶解后 可生成离子型或非离子型。
非离子型药物可自由跨膜转运,易吸收 离子型药物带有正电荷或负电荷不易跨 膜转运,被限制在膜的一侧,形成离子 障(ion trapping)现象。
酸性药 (Acidic drug):
HA H+ + A
碱性药 (Alkaline drug):
logC Time
第四节 药物消除动力学

药物代谢动力学

药物代谢动力学

生物转化
图 肝微粒体药物-代谢酶系统的主要组份
*示e 和 2H+来自NADH-黄素蛋白-细胞色素b5或来自NADPH-黄素蛋白
生物转化
肝药酶的特点: (1)专一性低:不仅可对许多脂溶性高的药物发挥 酶促作用,也能对一些内源性生理物质起酶促作 用。 (2)活性有限:数种药物合用后易达饱和,会发生 竞争抑制现象。 (3)个体差异很大,除先天性遗传性的差异外,生 理因素(年龄、营养状态、应激反应等)、病理 因素(肝脏疾病等)均可影响它的活性。 (4)可以受某些药物的诱导:活性增加(肝药酶诱 导)或活性减弱(肝药酶抑制剂)。
体内药量的时-量(效)关系
时-量(效)关系曲线
时-量(效)关系曲线
图 多次静脉注射或静脉滴注后的时-量曲线
a.静脉注射;b.静脉注射(D/t1/2);c.静脉注射(2D/t1/2);d.静脉注射首次量2D、后D/t1/2
被动转运
简单扩散 又称为下山转运,即药物从浓度高的一侧 向浓度低的一侧扩散。 特点: ① 不消耗能量不需载体 ② 不受饱和限速与竞争性抑制的影响 ③ 受药物分子大小、脂溶性、极性等因素 的影响。当细胞膜两侧药物浓度达到平衡 状态时就停止转运。
第三节 药物代谢动力学的一些基本 参数及其概念
药物代谢动力学:研究药物及其代谢产物在体内的吸收、分布、 代谢、排泄的时间过程。 房室模型: 用抽象的数学模型即房室模型来模拟机体,把机体 看作由许多房室构成的体系,将药物转运速度相似的都归为 同一房室,如:一室、二室、多室模型。 表观分布容积: 用来测定药物在体内的表观空间,是通过药 物在体内的总量(A)除以初始血药浓度(C0)计算出来的 参数(Vd)。 Vd = A(总药量)/C0(初始血药浓度) 生物利用度:服用某种药剂后,药剂中主药到达体循环的相对 量和相对速率。F 半衰期: 一般是指血浆半衰期(t1/2),指血浆药物浓度下降 一半所需的时间。

药物代谢动力学

药物代谢动力学

利福平
香豆素类、地高辛、糖皮质激素类、美沙酮、
美托洛尔、口服避孕药、普萘洛尔、奥美拉唑
常用药酶抑制剂及受影响的药物
抑 制 剂 氯霉素、异烟肼 受 影 响 的 药 物 双香豆素、丙磺舒、甲苯磺 丁脲 氯氮卓、地西泮、华法林
西米替丁
五、排泄(excretion)
排泄是指药物及其代谢物经机体的排泄 器官或分泌器官排出体外的过程。
弱酸性药物 阿司匹林 头孢噻啶 呋塞米 青霉素 噻嗪类利尿药 丙磺舒 弱碱性药物 吗啡 哌替啶 氨苯蝶啶 多巴胺
2、胆汁排泄 和 肝肠循环
Liver Bile duct
Gut Portal vein
Feces excretion
肝肠循环
有的药物在肝细胞内与葡萄糖醛酸结 合后分泌到胆汁中,随后排泄到小肠中被 水解,游离药物可经肠粘膜上皮细胞吸收, 经肝门静脉重新进入体循环,这种在小肠、 肝、胆汁间的循环称为肝肠循环 ,使药物 作用时间延长。
1. 主动转运(active transport)
药物借助于特殊的载体并需消耗能量
的跨膜转运,可以由浓度低的一侧向浓 度高的一侧转运,又称逆梯度转运或上 山转运。
主动转运的特点
①需要载体
②消耗能量
③转运时有饱和现象
④不同药物同时转运时有竞争性抑制现象 ⑤当膜一侧药物转运完毕后,转运即停止 如有机酸(或有机碱)药物的转运:青霉素 和丙磺舒在肾小管的主动分泌。
药物/代谢产物 (血循环)
肾脏 体外 胆道,乳腺,汗腺,肺
1.肾排泄
肾小球滤过 (glomerular filtration)
肾小管主动分泌 (active tubule secretion)
肾小管被动重吸收 (passive tubule reabsorp-tion)

药物代谢动力学的名词解释

药物代谢动力学的名词解释

药物代谢动力学的名词解释1. 什么是药物代谢动力学?药物代谢动力学,听起来像个高大上的名词,其实就是研究药物在我们身体里怎么被吸收、分布、代谢和排泄的一门科学。

简单来说,就是药物在我们身体里的“旅行路线图”。

你想象一下,吃了药后,这药就像一位小旅客,得经过好多地方,最后才能走出体外。

想要搞懂药物对身体的影响,这个学科简直是必不可少的!1.1 药物的吸收首先,咱们得说说药物的吸收。

你吃药后,它可不是立马就发挥作用的,而是需要时间在肠道里被吸收。

这就像你在超市里买东西,得排队付款,才能拿到你心爱的商品。

有些药物通过口服进入体内,有些则是打针、喷雾或者贴片,这些方式都影响着药物的吸收效率。

要是吃了个药,但吸收得慢,那你就等着吧,效果可得等一等。

不过,有时候也会有特例,比如那些能迅速进入血液的药物,简直是直通车,让你快点儿见效。

1.2 药物的分布接下来,药物吸收完了,就要分布了。

想象一下,药物在血液里就像小船在河流里漂,得去到各个需要的地方。

有些药物可能喜欢待在特定的器官,比如肝脏、肺部或大脑,而有些则四处游荡。

这个分布过程受好多因素影响,包括血液流动、药物的脂溶性、蛋白结合等等。

这就像每个小船都有自己的航行偏好,有些走得快,有些走得慢,最终目的地各不相同。

2. 药物的代谢说完了吸收和分布,接下来的大戏就是药物的代谢。

其实,代谢就像给药物进行了一场“整容手术”,让它变得更容易被身体处理。

有些药物经过肝脏代谢,变得更小,变得更温柔,最终准备好被排出体外。

这个过程真是妙不可言,像是把大块头的药物切割成小块,方便“快递”走人。

代谢的速度和效率也受个人身体状况、年龄、性别等多种因素影响,像个变幻莫测的天气,让人难以捉摸。

2.1 药物的排泄最后,我们得谈谈药物的排泄。

排泄就像把药物送回家,一般通过尿液、汗水、唾液等方式离开身体。

想象一下,药物在体内住了一段时间,终于可以打包回家,这种感觉绝对爽快!不过,有些药物可能在体内逗留的时间比较长,这就有点让人担心了,因为它们可能会导致不必要的副作用。

药物代谢动力学药动学

药物代谢动力学药动学

第三章药物代谢动力学药物代谢动力学(pharmacokinetics,PK)简称药代动力学或药动学,是研究机体对药物的处置过程的科学,即研究药物在体内的吸收、分布、代谢及排泄的过程和血药浓度随时间变化规律的科学。

体内过程即吸收(absorption)、分布(distribution)、代谢(metabolism)和排泄(excretion)的过程,又称ADME系统。

吸收、分布、排泄通称药物转运(tranportation of drug)。

代谢也称生物转化(biotransformation)。

代谢和排泄合称为消除(elimination)。

图3-1 药物体内过程示意图第一节药物的跨膜转运生物膜:生物膜是细胞膜和细胞内各种细胞器膜(如核膜、线粒体膜、内质网膜和溶酶体膜等)的总称。

一、转运方式(一)被动转运(passive transport)1.脂溶扩散(lipid diffusion;简单扩散,simple diffusion)2.水溶扩散(aqueous diffusion;滤过,filtration through pores)3.易化扩散(facilitated diffusion)(需转运体,有饱和、竞争抑制)特点:顺差(浓度、电位),不耗能;无饱和、竞争抑制。

(二)主动转运(active transport)1.膜泵转运(pump transport)特点:逆差(浓度、电位),耗能;需转运体,有饱和、竞争抑制。

2.膜动转运(cytopsis transport)(1)胞饮(pinocytosis)(2)胞吐(exocytosis)图3-2 药物转运方式示意图二、药物转运体易化扩散和膜泵转运均需要依赖生物膜上的载体介导,这些载体即药物转运体(drug transporter;药物转运蛋白)。

药物转运体分布广泛,影响药物体内过程的各个环节,进而影响药理活性。

药物转运是药物在体内跨越生物膜的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章
第二章
药物代谢动力学:研究机体对药物的作用。

药物效力动力学:研究药物对机体的作用及作用机制。

药理作用:药物分子对机体大分子产生作用引起机体生理生化作用(药理作用)。

药物的效能(efficacy):或称最大效应,是药理效应的极限,反映药物的内在活性。

药物的效价强度(potency) :用于比较作用性质相同的药物间的等效剂量,反映药物与受体的亲和力。

治疗指数=半数致死量/半数有效量(TI=LD50/ED50)
半数有效量:在质反应中反映50%实验对象出现阳性反应的药量。

半数致死量:效应指标为惊厥或死亡。

PA2:是竞争性拮抗药拮抗作用强度指数,其中,PA2=-log [A2] 。

在拮抗药的这一浓度下,可使激动药在2倍浓度时所引起的效应等于未加入拮抗剂时激动药引起的效应。

PA’2:非竞争拮抗药的减活指数,是非竞争拮抗药的亲和力参数。

激动药的最大效应降低一半时,非竞争拮抗药摩尔浓度的负对数。

第三章
第四章
pKa:
药物在溶液中50%解离型时的PH 值,每个药物都有其特定的pKa 值。

吸收(absorption):指药物从用药部位进入血液循环的过程。

药物吸收的速度和程度影响药物作用的快慢和强弱。

血药浓度随时间变化的通式:
第六章
1.醋甲胆碱主要用于口腔黏膜干燥症,其他药物无效的室上性心动过 速,等。

2.卡巴胆碱对眼、膀胱及胃肠作用较强。

故常应用:卡巴胆碱滴眼用 于青光眼的治疗,也可用于尿潴留和腹气胀。

仅作皮下注射,禁用 于肌内或静脉注射。

中毒时,阿托品对其解救效果差。

3.毒扁豆碱(physostigmine ) 脂溶性高,易吸收,对眼的作用强大持久;可透过血脑屏障进入中枢神经系统。

临床应用:主要治疗青光眼或抗胆碱药物中毒的解救。

4.加兰他敏 口服吸收好,易透过血脑屏障,为中枢性、竞争性、可逆性胆碱酯酶抑制药。

抗胆碱酯酶产生完全拟胆碱样作用(M 和N 样作用);也直接激动N 受体,调节中枢学习功能,增强记忆。

临床应用:轻、中度阿尔茨海默病;小儿麻痹症后遗症。

n
kC dt dC
-=
第十章
1.甲氧明
激动阿尔法1受体作用与去氧肾上腺素相似。

高浓度时还具有β受体阻断作用。

用于其它药物无效的阵发性室上性心动过速。

2.伪麻黄碱(pesudoephedrine)
为麻黄碱的立体异构体,其特点是收缩鼻黏膜血管作用强,主要用于改善感冒时的鼻腔分泌物增多造成的流鼻涕及鼻黏膜充血造成的鼻塞症状。

另外,其还有发汗,舒张支气管作用。

其他作用相似于麻黄碱。

常作为复方抗感冒药的有效成分之一使用。

相关文档
最新文档