石灰、粉煤灰稳定土(底)基层施工工艺

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石灰、粉煤灰稳定土(底)基层施工工艺

石灰、粉煤灰稳定土具有良好的力学性能,初期强度和稳定性较低,后期强度和稳定性较高。实践证明,强度形成较好的石灰稳定土具有较高的抗压强度(最高能达到4~5MPa)和一定的抗拉强度,且成本低,板体性好,具有很大的刚度和荷载分布能力。因此,它是一种较好的路面基层(非高等级公路)和底基层材料。

1 工艺特点

石灰、粉煤灰稳定土基层施工技术在我国有很成熟的施工经验,国内已在各级公路中成熟运用。

2 工艺范围

石灰、粉煤灰稳定土基层广泛用于高速公路、一级公路的底基层和其他等级公路的基层和底基层的路拌法施工。

3 工艺原理和设计要求

3.1工艺原理

在土中掺入适量的石灰,并在最佳含水量下拌和均匀并压实,使石灰与土之间发生一系列的物理、化学作用,从而使土的性质发生根本变化。这些变化归纳起来分为四个方面,一是离子交换作用;二是结晶硬化作用;三是火山灰作用;四是碳酸化作用。

3.2作用原理

3.2.1 离子交换作用

土的微小颗粒一般都带有负电荷,表面吸附着一定数量的钠、氢、钾等低价阳离子(Na+、H+、K+)。石灰是一种强电解质,在土中加入石灰和水后,石灰在溶液中电离出来的钙离子(Ca2+)就与土中的钠、氢、钾离子产生离子交换作用。原来的钠、钾变成了钙土,土颗粒表面所吸附的离子由一价变成了二价,减少了土颗粒表面吸附水膜的厚度,使土粒相互之间更为接近,分子引力随着增加,许多单个土粒聚成小团粒,组成一个稳定结构。

3.2.2 结晶硬化作用

在石灰中只有一部分熟石灰Ca(OH)2进行了离子交换作用,绝大部分饱和Ca(OH)2自行结晶。熟石灰与水作用生成熟石灰结晶网格,其化学反应式为:

Ca(OH)2 +nH2O---Ca(OH)2·nH2O

3.2.3 火山灰作用

熟石灰的游离Ca与土中的活性SiO2和氧化铝Al2O3作用生成含水的硅酸钙和铝酸钙,其化学反应式为:

xCa(OH)2+SiO2+nH2O--xCaO·SiO2·(n+1)H2O

xCa(OH)2+A1203+nH2O—xCaO·Al2O3·(n+1)H2O

以上形成的熟石灰结晶网格及含水的硅酸钙和铝酸钙结晶都是胶凝物质,它们具有水硬性并能

在固体和水两相环境下发生硬化。这些胶凝物质在土微粒团的外围形成一层稳定保护膜,或填充颗粒空隙,而使颗粒间产生结合料,减小空隙与透水性,同时提高密实度。这是石灰土获得强度和水稳定性的基本原因,但这种作用比较缓慢。

3.2.4 碳酸化作用

在土中的Ca(OH)2与空气中的二氧化碳作用,其化学反应式为:Ca(OH)2+CO2--CaCO3+H2O Ca(OH)2是坚硬的结晶体,它和其他已生成的复杂盐类结合起来,从而大大提高了土的强度和整体性。

由于以上的各种反应,减弱了土的吸附水膜作用,促使土颗粒凝集和凝聚,形成团粒结构,从而降低土的塑性指数;石灰稳定土的最佳含水量随石灰剂量增加而增大,而最大干密度则随石灰剂量增加而减少;石灰的掺入能明显地提高土的侧限抗压强度及整体强度。

4 施工工艺流程

见图1。

5 操作要点

5.1施工前准备工作

5.1.1原材料的控制

(1)石灰。石灰质量应符合Ⅱ级或Ⅱ级以上石灰的各项技术指标要求,石灰应分批进场,做到既不影响施工进度,又不过多存放,应尽量缩短堆放时间,如存放时间稍长应予履盖,并采取封存措施,妥善保管。

石灰用插管式消解,通过流量控制消解石灰的用水量,既要保证石灰充分消解,水又不宜过多。消解好的石灰存放时间应为7~10天。消石灰采用机械过筛法,通过1㎝的筛孔。消石灰布撒前应满足不低于Ⅱ级消石灰的要求。

(2)粉煤灰。粉煤灰中SiO2、Al2O3和Fe2O3总含量应大于70%,烧失量不应超过20%,比表面积宜大于2500cm2/g(或90%通0.3mm筛孔,70%通过0.075mm筛孔)。对于湿粉煤灰其含水量应≤35%,含水量过大时,粉煤灰易凝聚成团,造成拌和困难。如进场含水量偏大,可采用打堆、翻晒等措施,降低含水量。

(3)土。宜采用塑料指数12~20的粘土(亚粘土),有机质含量>10%的土不得使用。

(4)水。牲畜饮用水的水源。

5.1.2二灰土各成份计量控制的方法

二灰土各成份计量控制的目的在于确保施工配合比与设计配合比吻合,保证达到规定的压实度和抗压强度。由于三种材料之间比重差异较大(石灰、粉煤灰比重2.1~2.2,素土则为2.6左右),比例的变异导致了密度值的变异。若片面的通过增加素土含量,减少粉煤灰的用量,则造成压实的假象。而一定配合比的二灰土的压实密度明显影响混合料的强度和耐久性,增加压实密度会改善强度和稳定性。

图1 石灰、粉煤灰稳定层(底)基层施工工

5.1.2.1 土计量控制方法

按配合比计算用土量,根据公式(1)计算土的虚厚。

h S=C S·h·ρd·m·K/K S·ρS·d·m

式中h S——压实度K S下土的厚度;

C S——土的比例;

H——二灰土的压实厚度;

ρd·m——二灰土的最大干密度;

K——二灰土需达到的压实度,K取95%;

ρS·d·m——土的最大干密度。

按用土比例及每车土量将素土按指定位置堆放,均匀卸在路槽顶面,用旋耕机将土块粉碎,并用推土机和平地机粗平,用轻型压路机稳压一遍,压实度宜控制在85%以上,将稳压后的土层作为计量的基础,检查布土厚度和含水量。

按虚厚控制高程(或在下承层上按试验段确定的松铺厚度设置一定间距的的木墩,进行厚度控制),用平地机平整至符合要求。

5.1.2.2 粉煤灰计量控制方法

根据二灰土的配合比,计算粉煤灰的重量

G F=C F·V·ρd·m·K·(1+ W F%)

式中G F——粉煤灰的重量;

C F——粉煤灰的比例;

V——二灰土的体积;

K——二灰土需达到的压实度;

ρd·m——二灰土的最大干密度;

W F——粉煤灰的含水量。

采用打格子的方法,并根据用量比例、运输工具及每单位粉煤灰的重量,确定每方格需要卸放多少单位的粉煤灰,用平地机摊铺均匀,然后用压路机稳压一遍后,测定其松铺厚度和含水量,用灌砂法确定粉煤的湿密度,计算出粉煤灰应铺的厚度,与实测的对比确定是否合格。

在试验段取得的松铺厚度的基础上,可采用按一定间距设置高度为松铺厚度的木墩进行厚度控制的方法,压路机稳压后,按厚度控制的木墩高度作为基准,采用平地机平整。

5.1.2.3 石灰计量控制方法

施工现场备消石灰,应过筛除去杂质,计算石灰的重量。

G C=C C·V·ρd·m·K·(1+ W C%)

式中G C——石灰的重量;

C C——石灰的比例;

V——二灰土的体积;

K——二灰土需达到的压实度,

ρd·m——二灰土的最大干密度;

W C——石灰的含水量。

布撒石灰采用机械运输,对每车石灰过地磅称量,人工布灰,保证灰量均匀。

5.2 施工工艺

5.2.1准备下承层

相关文档
最新文档