高一数学课本内容

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学课本容

第一章集合与简易逻辑

本章概述

1.教学要求

[1] 理解集合、子集、交集、并集、补集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.

[2]掌握简单的含绝对值不等式、简单的高次不等式、分式不等式的解法;熟练掌握一元二次不等式的解法.

[3]理解逻辑联结词"或"、"且"、"非"的含义;理解四种命题及其相互关系;掌握充要条件.

2.重点难点

重点:有关集合的基本概念;一元二次不等式的解法及简单应用;逻辑联结词"或"、"且"、"非" 与充要条件.

难点:有关集合的各个概念的涵义以及这些概念相互之间的区别与联系;"四个二次"之间的关系;对一些代数命题真假的判断.

3. 教学设想

利用实例帮助学生正确掌握集合的基本概念;突出一种数学方法--元素分析法;渗透两种数学思想--数形结合思想与分类讨论思想;掌握三种数学语言--文字语言、符号语言、图形语言的转译.

1.1 集合(2课时)

目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。

教学重点:集合的基本概念及表示方法

教学难点:运用集合的两种常用表示方法--列举法与描述法,正确表示一些简单的集合

教学过程:

第一课时

一、引言:(实例)用到过的"正数的集合"、"负数的集合"、"不等式2x-1>3的解集"

如:几何中,圆是到定点的距离等于定长的点的集合。

集合与元素:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

指出:"集合"如点、直线、平面一样是不定义概念。

二、集合的表示:

用大括号表示集合 { ... }

如:{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}

用拉丁字母表示集合

如:A={我校的篮球队员} ,B={1,2,3,4,5}

常用数集及其记法:

1.非负整数集(即自然数集) 记作:N

2.正整数集 N*或 N+

3.整数集 Z

4.有理数集 Q

5.实数集 R

集合的三要素: 1。元素的确定性; 2。元素的互异性; 3。元素的无序性

三、关于"属于"的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A 记作 a?A ,相反,a不属于集A 记作 a?A (或aA) 例:见P4-5中例

四、练习 P5 略

五、集合的表示方法:列举法与描述法

1. 列举法:把集合中的元素一一列举出来。

例:由方程x2-1=0的解集;例;所有大于0且小于10的奇数组成的集合。

2. 描述法:用确定的条件表示某些对象是否属于这个集合的方法。

①文字语言描述法:例{斜三角形}再见P6 ○2符号语言描述法:例不等式x-3>2的解集图形语言描述法(不等式的解集、用图形体现"属于","不属于" )。

3. 用图形表示集合(韦恩图法) P6略

六、集合的分类

1.有限集

2.无限集

七、小结:概念、符号、分类、表示法

八、作业 P7习题1.1

1.1 第二教时

一、复习:(结合提问)

1.集合的概念含集合三要素

2.集合的表示、符号、常用数集、列举法、描述法

3.集合的分类:有限集、无限集、空集、单元集、二元集

4.关于"属于"的概念

二、例题

例一用适当的方法表示下列集合:(符号语言的互译,用适当的方法表示集合)

1. 平方后仍等于原数的数集

解:{x|x2=x}={0,1}

2. 不等式x2-x-6<0的整数解集

解:{x?Z| x2-x-6<0}={x?Z| -2

3. 方程4x2+9y2-4x+12y+5=0的解集

解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1/2,-2/3)} 4. 使函数有意义的实数x的集合

解:{x|x2+x-6?0}={x|x?2且x?3,x?R}

例二、下列表达是否正确,说明理由.

1.Z={全体实数}

2.R={实数集}={R}

3.{(1,2)}={1,2}

4.{1,2}={2,1}

例三、设集合试判断a与集合B的关系.

例四、已知

例五、已知集合,若A中元素至多只有一个,求m的取值围.

三、作业《教材精析精练》 P5智能达标训练

1.2子集、全集、补集

教学目的:通过本小节的学习,使学生达到以下要求:

(1)了解集合的包含、相等关系的意义; (2)理解子集、真子集的概念;

(3)理解补集的概念; (4)了解全集的意义.

教学重点与难点:本小节的重点是子集、补集的概念,难点是弄清元素与子集、属于与包含之间的区别。

教学过程:

第一课时

一提出问题:集合与集合之间的关系.

存在着两种关系:"包含"与"相等"两种关系.

二 "包含"关系-子集

1. 实例: A={1,2,3} B={1,2,3,4,5} 引导观察.

结论: 对于两个集合A和B,如果集合A的任何一个元素都是集合B的元素,则说:集合A包含于集合B,或集合B包含集合A,记作A?B (或B?A);也说: 集合A是集合B的子集.

2. 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A?B (或B?A)

注意: ?也可写成?;?也可写成?;í也可写成ì;?也可写成?。

3. 规定: 空集是任何集合的子集 . φ?A

三 "相等"关系

1. 实例:设 A={x|x2-1=0} B={-1,1} "元素相同"

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即: A=B

2. ①任何一个集合是它本身的子集。 A?A

②真子集:如果A?B ,且A? B那就说集合A是集合B的真子集,记作

③空集是任何非空集合的真子集。

④如果 A?B, B?C ,那么 A?C

同样;如果 A?B, B?C ,那么 A?C

相关文档
最新文档