七年级数学上册动点问题专项练习
人教版七年级上册数学期末动点问题训练题(含简单答案)
人教版七年级上册数学期末动点问题训练题(1)求点C对应的数.(1)若点P为的中点,直接写出点PAB(1)M、N两点间的距离为,点P表示的数是 (用含(2)经过多少秒时点P与点N的距离为4个单位长度?(1)______,______,并在数轴上标出=a b =(1)写出数轴上点表示的数是__________,点(1)写出点B 表示的数;(2)如图1,当点A 、B 位于原点O 的同侧时,动点P 、Q 分别从点时相向而行,动点P 的速度是动点Q 的速度的2倍,4秒后两动点相遇,当动点达点5时,运动停止.在整个运动过程中,当时,求点(3)如图2,当点A 、B 位于原点O 的异侧时,动点P 、Q 分别从点A B 3PQ =(1)数轴上点对应的数是 ,点(1)化简:;(1)写出数轴上点B 表示的数 ;B 2a b a b a ++--MP=NP= (1)若点在线段上运动,当时,;P AB7(1)a的值为______,b的值为______c的值为(2)点P是数轴上A,C两点间的一个点,当数.同时出发,求:①当点P 运动多少秒时,点P与点Q 重合?②当点P 运动多少秒时,点P 与点Q 之间的距离为3个单位长度?16.如图,点A ,B 是数轴上两点,点A 表示的数为,A ,B 两点之间的距离为20,动点P 、Q 分别从A 、B 出发,点P 以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是_______;(2)若点P ,Q 同时出发,t 为何值时,这两点相遇?(3)若点P ,Q 同时出发,t 为何值时,点P 和点Q 刚好相距5个单位长度?17.如图,已知数轴上点表示的数为12,是数轴上位于点左侧一点,且,动点从点出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点表示的数是______,点表示的数是______(用含的代数式表示);(2)若为线段的中点,为线段的中点,在点运动的过程中,线段的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点从点处出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问点运动多少秒时与点相距4个单位长度?18.如图,点,,在数轴上表示的数分别为,,,是最大的负整数,,.16-()0t t >A B A 32AB =P A t B P t M AP N BP P MN t Q B P Q P Q A B C a b c a 11AB =2AC =参考答案:。
初一上数学动点题专练
选题数轴上,点A从原点出发,每秒向右移动2个单位,同时点B从-5出发,每秒向左移动1个单位,经过t秒后,A、B两点相距:A. 3t + 5B. 2t - 5C. t + 5D. 5t + 5(正确答案)在直角坐标系中,点P从(0,0)出发,每秒向上移动1个单位,同时点Q从(4,0)出发,每秒向左移动2个单位,当PQ与x轴平行时,点P的纵坐标为:A. 1B. 2(正确答案)C. 3D. 4一条长为10cm的线段AB,点P从A端出发,每秒向右移动1cm,同时点Q从B端出发,每秒向左移动2cm,经过t秒后,PQ的长度为:A. 10 - tB. 10 - 2tC. 10 - 3t(正确答案)D. 10 + t在数轴上,点M从-3出发,每秒向右移动1个单位,点N从2出发,每秒向左移动2个单位,经过多少秒,M、N两点相遇?A. 1秒B. 2秒C. 3秒D. 5秒(正确答案)题目:在直角坐标系中,点A从(1,1)出发,每秒向右移动1个单位,点B从(4,4)出发,每秒向下移动2个单位,当AB与y轴平行时,点A的横坐标为:A. 2B. 3C. 4(正确答案)D. 5数轴上,点C从-2出发,每秒向右移动3个单位,点D从3出发,每秒向左移动1个单位,经过t秒后,C、D两点之间的距离为2,则t的值为:A. 1或2B. 2或3C. 1或3(正确答案)D. 2或4一条长为8cm的线段EF,点E从左端出发,每秒向右移动1cm,同时点F从右端出发,每秒向左移动3cm,经过t秒后,EF的长度变为2cm,则t的值为:A. 1sB. 1.5sC. 2s(正确答案)D. 3s在直角坐标系中,动点R从(2,0)出发,每秒向上移动1个单位,动点S从(0,3)出发,每秒向右移动1个单位,经过t秒后,RS的长度达到最小值,此时t的值为:A. 1B. 2C. 3(正确答案)D. 4数轴上,点G从1出发,每秒向右移动2个单位,点H从-4出发,每秒向左移动1个单位,则经过多少秒,G、H两点之间的距离为10?A. 2秒B. 3秒(正确答案)C. 4秒D. 5秒。
人教版七年级上册数学期末动点问题专题训练(含答案)
② 为何值时,
19. , 两点在数轴上的位置如图所示,其中点 对应的有理数为 ,点 对应的有理数为4.动点 从点 出发,以每秒4个单位长度的速度沿数轴正方向运动,设运动时间为 秒( ).
(1)当 时,点 表示的有理数为______; ______ (填>,<,=);
(2)若点M以每秒4个单位的速度从A点出发,点N以每秒3个单位的速度运动从B点出发,设点M、N同时出发,运动时间为t秒,试探究:经过多少秒时,点M、N两点间的距离为5个单位?
18.如图,已知点 , , 是数轴上三点,点 对应的数为 , , .
(1)求点 , 对应的数;
(2)动点 , 同时从 , 出发,分别以每秒 个单位和 个单位的速度沿数轴正方向运动, 为 的中点, 在 上,且 ,设运动时间为 。
A. 秒B. 秒C.3秒或7秒D. 秒或 秒
3.如图,已知数轴上点A表示的数为a,点B表示的数为b,(a﹣10)2+|b+6|=0.动点P从点A出发,以每秒8个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.若点P、Q同时出发,当P、Q两点相距4个单位长度时,t的值为( )
14.如图,数轴上的点 和点 分别表示 和 ,点 是线段 上一动点.点 沿 以每秒 个单位的速度往返运动 次, 是线段 的中点,设点 运动时间为 秒( 不超过 秒).若点 在运动过程中,当 = 时,则运动时间 的值为________.
15.如图,一动点的初始位置位于数轴上的原点,现对该动点做如下移动:第1次从原点向右移动1个单位长度至 点,第2次从 点向左移动3个单位长度至 点,第3次从 点向右移动6个单位长度至 点,第4次从 点向左移动9个单位长度至 点,…依此类推,移动2020次后该动点在数轴上表示的的数为______.
完整版)七年级上期末动点问题专题(附答案)
完整版)七年级上期末动点问题专题(附答案)1.已知数轴上点A对应的数为a,点B对应的数为b,且满足|2b-6|+(a+1)^2=0,定义AB的长度为|a-b|。
1) 求线段AB的长度。
解:由定义可得,AB的长度为|a-b|。
2) 设点P在数轴上的坐标为x,且满足PA-PB=2,求x的值。
解:由题意得,PA-PB=|a-x|-|b-x|=2,分成两种情况讨论:当a>b时,有a-x-b+x=2,即a-b=2,解得x=a-1.当a<b时,有b-x-a+x=2,即b-a=2,解得x=b-1.综上所述,x的取值为a-1或b-1.3) 设M、N分别为PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM-PN|的值不变。
解:由题意得,M、N的坐标分别为[(a+x)/2,0]和[(b+x)/2,0],则① PM÷PN的值不变时,有|a-x|/|b-x|=|a-x0|/|b-x0|,其中x0是PM÷PN的值不变时的一个定值,化简得(a-x0)(b-x)=(b-x0)(a-x),即ax0-bx0=ax-bx0,解得x=(ax0-bx0+bx0)/2=a/2+b/2-x0/2.② |PM-PN|的值不变时,有[(a-x)/2-(b-x)/2]^2=K,其中K 是|PM-PN|的值不变时的一个定值,化简得(x-a+b)^2=4K,解得x=(a+b±2√K)/2.综上所述,当①成立时,x的取值为a/2+b/2-x0/2;当②成立时,x的取值为(a+b±2√K)/2.2.如图1,已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上的动点,其对应的数为x。
1) PA=|x-(-1)|=|x+1|,PB=|x-3|。
2) 若PA+PB=5,则有|x+1|+|x-3|=5,分成四种情况讨论:当x≤-1时,有-(x+1)-(x-3)=5,解得x=-2.当-1<x<3时,有-(x+1)+(x-3)=5,无解。
人教版七年级上册数学期末动点问题压轴题专题训练(含答案)
人教版七年级上册数学期末动点问题压轴题专题训练(1)则B点表示的数为;(1)______,______.(2)若动点P 、Q 分别从点A 、B 处同时向右移动,点P 的速度为(1)当点Q 到达点B 时,点P 对应的数为 ;=a b =(1)当秒时,两点在折线数轴上的和谐距离(2)当点都运动到折线段上时,(1)当动点P 在上时,把点P 到点A 的距离记为,则_______式表示);(2)当动点P 在上时,把点P 到点O 的距离记为,则_______2t =M N 、M N 、O B C --OA AP AP =OB OP OP =(3)若动点P 运动的终点是点C ,动点Q 运动的终点是点A,动点P 、Q 是否同时到达终点,请说明理由;(4)当点Q 在上时,Q 、B 两点在“折线数轴”上相距的长度与P 、O 两点在“折线数轴”上相距的长度相等时,t 的值为__________(直接写出结果).7.如图,数轴上点、、对应的数分别为、、,且、、使得与互为同类项.动点从点出发沿数轴以每秒5个单位的速度向右运动,当点运动到点之后立即以原速沿数轴向左运动,动点从点出发的同时动点从点出发沿数轴以每秒1个单位的速度向右运动.设运动的时间为秒,(1)填空:______,______,点在数轴上所表示的数为______(用含的代数式表示).(2)在整个运动过程中,与何时相遇?(3)若动点从点出发的同时动点也从点出发沿数轴向左运动,运动速度为每秒5个单位长度,是否存在非负数使得在一段时间内为定值,如果不存在,说明理由;如果存在,求出非负数.8.已知式子是关于的二次多项式,且二次项系数为,数轴上,两点所对应的数分别是和.(1)则______,______;,两点之间的距离为______;(2)有一动点从点出发第一次向左运动1个单位长度,然后在新的位置第二次向右运动2个单位长度,再在此位置第三次向左运动3个单位长度…,按照如此规律不断地左右运动,当运动到第2023次时,求点所对应的有理数;(3)若点以每秒3个单位长度的速度向左运动,同时点以每秒5个单位长度的速度向BC A B C a b c a b c 1212a b x y z --35c x y z P A P C P A Q B t =a b =Q t P Q P A M C n nQM PM +n 32(4)625M a x x x =++-+x b A B a b =a b =A B P A P A BAI(1)点A 表示的数为 ;点B 表示的数为 (1)数轴上点表示的数是 ;当点运动到(2)动点从点出发,以每秒2个单位长度的速度沿数轴向左匀速运动,B P Q B(1)a 的值为 ,b 的值为 ,(2)点P 是数轴上A 、C 两点间的一个点,当(1)线段的长为 ,点表示的数为 ;(2)若、、三个动点分别从,,三点同时出发,均沿数轴负方向运动,它们AC B P Q R A B C(1)写出数轴上点A表示的数与(1)点表示的有理数是 ,点表示的有理数是 ,点A C(1)两点之间的距离是 ;(1)点表示的数是_______;,A B B参考答案:。
七上数学动点问题专项训练
七上数学动点问题专项训练1.点A从原点出发向数轴负方向运动,同时,点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度。
已知,点B的速度比点A的速度快4个单位长度/秒。
(1)求出点A、B两点运动的速度,单位:单位长度/秒;(2)在数轴上标出A、B两点从原点出发3秒后的位置。
2.在一个600米的环形跑道上,点A、B两个加油站相距160米。
如果甲、乙两个人从不同的加油站同时同向出发,甲每秒跑4.5米,经过40秒之后,两个人相距多远?3.在一个300米的环形跑道上,甲和乙两名运动员同时从同一点出发,分别以每秒25米和每秒20米的速度相向而行。
当两人相遇时,跑了多少时间?4.在一个正方形的操场上,小明和小红两名同学同时从操场的一个顶点出发,沿着正方形的边开始跑步。
小明向北跑,小红向东跑,当小明跑到另一个顶点时,小红才跑了半圈。
问小明和小红各跑了多少路程?5.在一个直角坐标系中,A、B两点分别位于第四象限和第二象限。
已知A点的坐标为(-3a,4a),B点的坐标为(b,-9),且AB平行于x轴。
求A、B两点的坐标。
6.在一个长为12厘米,宽为4厘米的长方形中,有一个动点P从长方形的左上角开始,按逆时针方向绕着长方形边缘移动。
当点P再次回到起始位置时,所经过的路程是多少厘米?7.一个自行车队正在训练,第一名队员以每小时50千米的速度行驶。
当他行驶了8分钟后,第二名队员从后面追赶上来。
他需要多少时间才能追上第一名队员?8.一条长度为21厘米的线段AB,被分成三段,每段的长度分别为a、b、c(单位:厘米)。
已知a、b、c都是整数,且满足a+b>c的条件。
求出这三段线段的长度。
9.在一个边长为10厘米的正方形中,有一个动点P从A点(0,0)开始,按逆时针方向绕正方形边缘移动。
当点P再次回到起始位置时,所经过的路程是多少厘米?10.在一个长为6厘米,宽为4厘米的长方形中,有一个动点Q从长方形的右上角开始,按顺时针方向绕着长方形边缘移动。
七年级数学动点题50道
七年级数学动点题50道一、数轴上的动点问题(20道)1. 已知数轴上点A表示的数为 3,点B表示的数为1,点P以每秒2个单位长度的速度从点A出发向左运动,同时点Q以每秒3个单位长度的速度从点B出发向右运动,设运动时间为t秒。
(1)当t = 1时,求PQ的长度。
(2)求经过多少秒后,PQ = 5。
解析:(1)当t = 1时,点P表示的数为公式,点Q表示的数为公式。
所以公式。
(2)运动t秒后,点P表示的数为公式,点Q表示的数为公式。
则公式。
当公式时,即公式。
则公式或公式。
当公式时,公式,公式(舍去,因为时间不能为负)。
当公式时,公式,公式。
2. 数轴上点A对应的数为 2,点B对应的数为4,点C对应的数为x,若点C在点A、B之间,且公式,求x的值。
解析:因为点C在点A、B之间,公式,公式。
又因为公式,所以公式。
去括号得公式。
移项得公式。
合并同类项得公式。
解得公式。
3. 数轴上有A、B两点,A表示的数为 1,B表示的数为3,点P以每秒1个单位长度的速度从点A出发向右运动,设运动时间为t秒。
(1)当t为何值时,点P到点B的距离为2?(2)点Q以每秒2个单位长度的速度从点B出发向左运动,当公式时,求t的值。
解析:(1)点P表示的数为公式。
当点P到点B的距离为2时,公式。
则公式或公式。
解得公式或公式。
(2)点Q表示的数为公式,公式。
当公式时,公式。
即公式。
则公式或公式。
当公式时,公式,公式。
当公式时,公式,公式。
4. 数轴上点A表示的数为5,点B表示的数为 3,点M从点A出发,以每秒1个单位长度的速度向左运动,点N从点B出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒。
(1)求t秒后,点M表示的数和点N表示的数。
(2)当t为何值时,点M与点N相距4个单位长度?解析:(1)t秒后,点M表示的数为公式,点N表示的数为公式。
(2)当点M与点N相距4个单位长度时,公式。
则公式或公式。
当公式时,公式,公式。
当公式时,公式,公式。
七年级上册数学试卷动点
一、选择题(每题3分,共30分)1. 在平面直角坐标系中,点A(2,3)沿着直线y=x+1向右平移a个单位后,得到的点B的坐标为()。
A.(2+a,3)B.(3+a,2)C.(2+a,2)D.(3+a,3)2. 若点P(x,y)在直线y=2x+1上,那么点P到原点O的距离d=______。
3. 在平面直角坐标系中,点A(1,2),点B在直线y=3x+2上,且点A到点B的距离为3,那么点B的坐标是______。
4. 若点P在直线y=2x+3上,且点P到点Q(4,5)的距离为5,那么点P的坐标是______。
5. 在平面直角坐标系中,点A(2,3)关于直线y=x的对称点A'的坐标为______。
6. 若点P在第二象限,且点P到原点O的距离为5,那么点P的坐标形式为______。
7. 在平面直角坐标系中,点A(3,4),点B在直线y=2x-1上,若点A到点B的距离为5,那么点B的坐标是______。
8. 若点P在直线y=-x+1上,且点P到点Q(-2,3)的距离为4,那么点P的坐标是______。
9. 在平面直角坐标系中,点A(1,2),点B在直线y=-2x+5上,若点A到点B的距离为4,那么点B的坐标是______。
10. 若点P在直线y=3x+2上,且点P到点Q(-1,2)的距离为3,那么点P的坐标是______。
二、填空题(每题4分,共20分)11. 在平面直角坐标系中,点A(2,3)沿直线y=x+1向左平移a个单位后,得到的点B的坐标是______。
12. 若点P在直线y=2x+1上,那么点P到原点O的距离d=______。
13. 在平面直角坐标系中,点A(1,2),点B在直线y=3x+2上,且点A到点B的距离为3,那么点B的坐标是______。
14. 若点P在直线y=-x+1上,且点P到点Q(4,5)的距离为5,那么点P的坐标是______。
15. 在平面直角坐标系中,点A(3,4),点B在直线y=2x-1上,若点A到点B 的距离为5,那么点B的坐标是______。
(完整版)初一上学期动点问题(含答案)
初一上学期动点问题练习1。
如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数 ,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5,BC=3,∵AC-BC=AB∴5-3=”14”解得:=7,∴点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:MN=MP-NP= AP-BP=(AP-BP)=AB="7"∴综上所述,线段MN的长度不发生变化,其值为7;2。
已知数轴上有A、B、C三点,分别表示有理数—26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1)PA=t,PC=36—t;(2)当16≤t≤24时PQ=t-3(t—16)=-2t+48,当24<t≤28时PQ=3(t-16)—t=2t—48,当28<t≤30时PQ=72—3(t—16)-t=120-4t,当30<t≤36时PQ=t—[72—3(t-16)]=4t-120.3。
七年级上册数轴上的动点压轴题专练
七年级上册数轴上的动点压轴题专练一、数轴上动点问题相关知识点回顾1. 数轴的三要素原点、正方向和单位长度。
在数轴上,数与点是一一对应的关系。
2. 两点间的距离公式设数轴上两点公式、公式所表示的数分别为公式、公式,则公式和公式两点间的距离公式。
例如,若公式表示公式,公式表示公式,则公式;若公式表示公式,公式表示公式,则公式。
3. 动点在数轴上的表示设动点公式从数轴上表示数公式的点出发,以速度公式沿数轴正方向运动,经过时间公式后,点公式所表示的数为公式;若沿数轴负方向运动,则点公式所表示的数为公式。
二、典型例题及解析1. 已知数轴上公式、公式两点对应的数分别为公式和公式,点公式为数轴上一动点,其对应的数为公式。
(1)若点公式到点公式、点公式的距离相等,求点公式对应的数。
解析:因为点公式到点公式、点公式的距离相等,根据两点间距离公式公式,公式。
又因为公式,所以公式。
当公式时,方程无解。
当公式时,公式,公式,解得公式。
所以点公式对应的数为公式。
(2)若点公式在点公式、点公式之间,且公式,求点公式对应的数。
解析:因为公式,公式,且公式,所以公式。
因为点公式在公式、公式之间,即公式,所以公式。
去括号得公式。
移项得公式。
合并同类项得公式,解得公式。
所以点公式对应的数为公式。
(3)点公式以每分钟公式个单位长度的速度从原点公式向左运动,同时点公式以每分钟公式个单位长度的速度向左运动,点公式以每分钟公式个单位长度的速度向左运动,设运动时间为公式分钟。
问公式为何值时,点公式到点公式、点公式的距离相等?解析:公式分钟后,点公式表示的数为公式,点公式表示的数为公式,点公式表示的数为公式。
根据公式,公式。
当公式时,即公式。
当公式时,公式,公式,解得公式。
当公式时,公式,公式,公式,解得公式。
2. 数轴上点公式表示的数为公式,点公式表示的数为公式。
(1)求线段公式的长。
解析:根据两点间距离公式公式。
(2)若点公式是线段公式的中点,则点公式表示的数为多少?解析:设点公式表示的数为公式,因为公式是公式中点,所以公式。
七年级数学上册 曲线上的动点问题专题训练
七年级数学上册曲线上的动点问题专题训练问题一:动点问题1. 在直角坐标系中,曲线y = 3x + 2上有一动点P(x, y)。
若点P到x轴的距离是5,求点P的坐标。
解析:由于点P到x轴的距离是5,我们可以得到以下关系式:y = 0 + 5 = 5。
将这个y值代入曲线方程y = 3x + 2中,可以得到3x + 2 = 5,解得x = 1。
因此,点P的坐标是(1, 5)。
2. 设点A(2, 5)和点B(-3, -4)在坐标平面上,动点P在直线AB 上,且AP = 2BP。
求点P的坐标。
解析:假设点P的坐标为(x, y)。
根据已知条件AP = 2BP,我们可以得到以下关系式:√((x - 2)^2 + (y - 5)^2) = 2√((x + 3)^2 + (y + 4)^2)。
将此方程化简并整理后,得到(x + 2)^2 + (y - 9)^2 = 4(x +3)^2 + 4(y + 4)^2。
进一步计算,可以得到3x^2 + 16y^2 + 2x - 149y+ 180 = 0。
因此,点P的坐标满足方程3x^2 + 16y^2 + 2x - 149y + 180 = 0。
问题二:曲线上的斜率1. 设曲线y = 2^x在点P(x, y)处的斜率为k,求k值。
解析:根据题意,我们需要求曲线y = 2^x在点P(x, y)处的斜率。
斜率可以通过求导得到,所以我们需要对曲线方程y = 2^x进行求导。
求导后的结果为dy/dx = 2^x * ln(2)。
将点P的坐标代入求导后的方程中,可以得到斜率k = 2^x * ln(2)。
2. 设曲线y = x^2 + 3x在点P(x, y)处的斜率为2,求点P的坐标。
解析:根据题意,我们需要求曲线y = x^2 + 3x在点P(x, y)处的坐标。
斜率为2说明曲线在该点的切线斜率为2。
切线斜率为2的点可以通过求导得到,所以我们需要对曲线方程y = x^2 + 3x进行求导。
七年级数学上册动点问题专项练习
七年级数学上册动点问题专项练习本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March七年级数学上册动点问题专项练习明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值.......,也即用右边的数减去左边的数的差。
即数轴上两点间的距离.......。
.......-.左边点表示的数......... = .右边点表示的数2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a-b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
基础题1.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点.(1)求动点A所走过的路程及A、C之间的距离.(2)若C表示的数为1,则点A表示的数为 .2.画个数轴,想一想(1)已知在数轴上表示3的点和表示8的点之间的距离为5个单位,有这样的关系5=8-3,那么在数轴上表示数4的点和表示-3的点之间的距离是________单位;(2)已知在数轴上到表示数-3的点和表示数5的点距离相等的点表示数1,有这样的关系1=-+,那么在数轴上到表示数a的点和表示数b的点之间距离相等的点表示的1(35)2数是__________________.(3)已知在数轴上表示数x的点到表示数-2的点的距离是到表示数6的点的距离的2倍,求数x.应用题1、已知数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时出发相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
部编数学七年级上册专题线段的动点综合问题大题专项训练(重难点培优)同步培优含答案
【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题4.7线段的动点综合问题大题专项训练(重难点培优)一、解答题(共30题)1.(2022·山东青岛·期末)如图,动点B在线段AD上,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B的运动时间为t秒(0≤t≤10).(1)当t=2时,①AB=________cm;②求线段CD的长度.(2)用含t的代数式表示运动过程中线段AB的长度.(2)点C在线段AM上,点D在线段BM上,C、D两点分别从M、B出发以a cm/s、b cm/s的速度沿直线BA运动,运动方向如箭头所示,其中a、b满足条件:|a―1|+|b―3|=0.(1)直接写出:a=____________,b=_____________;(2)若2cm<AM<4cm,当点C、D运动了3s,求AC+MD的值;AB,点N是直线AB上一点,且AN―BN=MN,求MN与AB的数量关(3)如图2,若AM=13系.D的左侧),且CD=2,E为BC的中点.(1)如图1,当AC=4时,求DE的长.(2)如图2,F为AD的中点.点C,D在线段AB上移动的过程中,线段EF的长度是否会发生变化,若会,请说明理由;若不会,请求出EF的长.按A一B一A的路径从点A出发,到达点B后又返回到点A停止,设运动时间为t(0≤t≤10)秒.(1)当t=6时,AC= .(2)用含t的式子表示线段AC的长;当0≤t≤5时,AC= ;当5<t≤10时,AC= .(3)M是AC的中点,N是BC的中点,在点C运动的过程中,MN的长度是否发生变化?若不变化,求出MN的长,【答案】(1)8(2)2t,20―2t;(3)MN的长度不变,长度为5【分析】(1)根据点C的运动速度和AB=10可得答案;(2)根据路程=速度×时间可求AC的长度;(3)分情况讨论,再根据线段中点的定义可得答案.(1)当t=6时,动点C运动了2×6=12个单位,∵AB=10,∴BC=2.∴AC=10―2=8.故答案为:8;(2)当0⩽t⩽5时,AC=2t;当5<t⩽10时,BC=2t―10∴AC=AB―BC=10―(2t―10)=20―2t.故答案为:2t,20―2t;是点C到点B的距离2倍,我们就称点C是[A,B]的美好点.例如;如图1,点A表示的数为―1,点B表示的数为2,表示1的点C到点A的距离是2,到点B的距离是1,那么点C是[A,B]的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是[A,B]的美好点,但点D是[B,A]的美好点.如图2,M,N为数轴上两点,点M所表示的数为―7,点N所表示的数为2.(1)点E,F,G表示的数分别是―3,6.5,11,其中是[M,N]美好点的是________;写出[N,M]美好点H所表示的数是___________.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,点P恰好为M和N的美好点?【答案】(1)G,―4或―16(2)1.5或3或9【分析】(1)根据美好点的定义即可求解;(2)根据美好点的定义,分三种情况分别确定P点的位置,进而可确定t的值.【详解】(1)解:根据题意得∶EM=(―3)―(―7)=4,EN=2―(―3)=5,此时EM≠2EN,故点E不是[M,N]美好点;FM=6.5―(―7)=13.5,FN=6.5―2=4.5,此时FM≠2FN,故点F不是[M,N]美好点;GM=11―(―7)=18,GN=11―2=9,且二次项系数为b,数轴上两点A,B对应的数分别为a,b.(1)a=___________,b=___________,线段AB=___________;BC,点M为AB的中点,求MC的长;(2)若数轴上有一点C,使得AC=32(3)有一动点G从点A出发,以1个单位每秒的速度向终点B运动,同时动点H从点B出发,以5个单位每秒的速度在数轴上作同向运动,设运动时间为t秒(t<30),点D为线段GB的6GB,在G,H的运动过程中,求中点,点F为线段DH的中点,点E在线段GB上且GE=13DE+DF的值.BC,AB=30,∵AC=32∴AC=18,BC,AB=30,∵AC=32∴AC=90,y满足|x―5|+(y―4)2=0,一动点P从A出发以每秒1米的速度沿着A→D→C→B运动,另一动点Q从B出发以每秒2米的速度沿B→C→D→A运动,P,Q同时出发,运动时间为t.(1)x=______________,y=______________.(2)当t=4.5时,求△APQ的面积;(3)当P,Q都在DC上,且PQ距离为1时,求t的值P从点A出发,以每秒1cm的速度沿折线A→B→C运动,到点C停止;同时动点Q从点B 出发,以每秒2cm的速度在B、C间作往复运动,当点P到达终点C时,点Q也随之停止运动.设点P运动的时间是x(秒),△APC的面积是S(cm2)(S>0).(1)点Q共运动______秒.(2)当点P沿折线A→B→C运动时,用含x的代数式表示线段BP(BP>0)的长.(3)用含x的代数式表示S.(4)当P、Q两点相遇时,直接写出x的值.【答案】(1)169.(2022·全国·七年级课时练习)如图,在直线l上顺次取A、B、C三点,已知AB=20,BC =80,点M、N分别从A、B两点同时出发向点C运动.当其中一动点到达C点时,M、N 同时停止运动.已知点M的速度为每秒2个单位长度,点N速度为每秒1个单位长度,设运动时间为t秒.(1)用含t的代数式表示线段AM的长度为________;(2)当t为何值时,M、N两点重合?(3)若点Р为AM中点,点Q为BN中点.问:是否存在时间t,使PQ长度为5?若存在,请说明理由.故存在时间t,使PQ长度为5,此时t的值为30或50.【点睛】本题考查与线段有关的动点问题,线段的和与差,与线段中点有关的计算以及解一AB.数轴上的三个点,且A,B两点表示的数互为相反数,AB=12,AC=13(1)点A表示的数是______;(2)若点P从点B出发沿着数轴以每秒2个单位的速度向左运动,则经过______秒时,点C 恰好是BP的中点;(3)若点Q从点A出发沿着数轴以每秒1个单位的速度向右运动,线段QB的中点为M,当MC=2QB时,则点Q运动了多少秒?请说明理由.点A表示的数为a,B表示的数为b,且a、b满足(a―10)2+|b+6|=0.动点P从点A出发,以每秒8个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点A表示的数是____________,点B表示的数是______,点P表示的数是____________(用含t的式子表示);(2)当点P在点B的左侧运动时,M、N分别是PA、PB的中点,求PM-PN的值(3)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,点P运动多少秒时P、Q两点相距4个单位长度?∴(10-8t)-(-6-4t)=±4,解得:t=3或5.【点睛】本题主要考查数轴上两点间的距离,一元一次方程的应用,用代数式表示出两点间的距离公式,是解题的关键.12.(江苏省南通市崇川区南通田家炳中学2020-2021学年七年级上学期12月月考数学试题)(1)如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,求线段MN的长度;(2)在(1)的条件下,动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?(理解新知)如图①,点M在线段AB上,图中共有三条线段AB、AM和BM,若其中有一条线段的长度是另外一条线段长度的2倍,则称点M是线段AB的“奇妙点”,(1)线段的中点这条线段的“奇妙点”(填“是”或“不是”)(2)(初步应用)如图②,若CD=24cm,点N是线段CD的“奇妙点”,则CN=cm;(3)(解决问题)如图③,已知AB=24cm,动点P从点A出发,以2cm/s速度沿AB向点B匀速移动,点Q 从点B出发,以3cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止.设移动的时间为t,请求出为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的“奇妙点”.试题)【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=2,求AB的长;(2)在(1)的条件下,若点D也是图①中线段AB的圆周率点(不同于点C),试求出线段BD的长,并判断AC与BD的数量关系;【解决问题】(3)如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动性的滚动1周,该点到达C的位置,求点C 所表示的数;若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数(答案保留π).如图①,点M在线段AB上,图中共有三条线段AB、AM和BM,若其中有一条线段的长度是另外一条线段长度的2倍,则称点M是线段AB的“奇点”.(1)线段的中点______这条线段的“奇点”(填“是”或“不是”)【初步应用】(2)如图②,若CD=18cm,点N是线段CD的奇点,则CN=______cm;【解决问题】(3)如图③,已知AB=15cm动点P从点A出发,以1cm/s速度沿AB向点B匀速移动:点Q 从点B出发,以2m/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t,请直接写出t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的奇点?目给出的条件,找出合适的等量关系列出方程,再求解.16.(湖北省省直辖县级行政单位潜江市2021-2022学年七年级期末数学试题)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A、B两点之间的距离AB=|a﹣b|.线.段AB的中点表示的数为a b2如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t秒(t>0).(1)填空:①A、B两点之间的距离AB= ,线段AB的中点表示的数为 .②用含t的代数式表示:t秒后,点P表示的数为 ;点Q表示的数为 .③当t= 时,P、Q两点相遇,相遇点所表示的数为 .AB.(2)当t为何值时,PQ=12(3)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.题)如图,点A、B、C在数轴上对应的数分别是―12、b、c,且b、c满足(b―9)2+|c―20| =0,动点P从点A出发以2单位/秒的速度向右运动,同时点Q从点C出发,以1个单位/秒速度向左运动,O、B两点之间为“变速区”,规则为从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速,从点B运动到点O期间速度变为原来的3倍,之后立刻恢复原速,设运动时间为t秒.(1)b=____,c=____,A、C两点间的距离为____个单位;(2)①若动点P从A出发运动至点C时,求t的值;②当P、Q两点相遇时,求相遇点在数轴上所对应的数;(3)当t=___时,P、Q两点到点B的距离相等.则有AB=21,AP=2t,PB=21-2t,BC=11,BQ=11-t∵BP=BQ,∴21―2t=11―t,解得:t=10(不符合题意,舍去);②当6<t≤11时,如图所示:∵点P的速度为1单位/秒,Q速度不变,∴PB=21―[12+(t―6)×1]=15―t,BQ=11-t,∵PB=BQ,∴15―t=11―t,方程无解;③当点Q的速度变为3单位/秒时,即11<t≤14,如图所示:∴PB=15-t,BQ=CQ―CB=BQ=3(t―11)=3t―33,∵PB=BQ,∴15―t=3t―33,解得t=12,④当点Q和点P都过了“变速区”,即t>15,如图所示:∴PB=2(t―15)=2t―30,BQ=OQ+OB=1×(t―14)+9=t―5,∵PB=BQ,∴2t―30=t―5,解得:t=25;综上所述:当t=12或25时,点P、Q到点B的距离相等;故答案为12或25.【点睛】本题主要考查数轴上的动点问题及线段的和差、一元一次方程的解法,熟练掌握数轴上的动点问题及线段的和差、一元一次方程的解法是解题的关键.18.(江苏省无锡市省锡中实验学校2020-2021学年七年级上学期期中数学试题)数轴是一个非常重要的数学工具,它是“数形结合”的基础.若点P为数轴上一动点,点P对应的数记为a,请你利用数轴解决以下问题:(1)若点P与表示有理数2的点的距离是3个单位长度,则a的值为.(2)若数轴上表示数a的点位于-5与2之间,则|a-2|+|a+5|=.(3)代数式|a+4|+|a-5|+|a-1| +|a+3|的最小值是.(4)已知点M、N在数轴上,点M对应的数是-1,点N对应的数是3,令点P在点N左侧运动,在点P、M、N中,若其中一点与其他两个点的距离恰好满足3倍的数量关系,请直接写出此时点P所表示的数.原式=5-(-4)+[1-(-3)]= 9+4= 13;(4)①当P在M左侧时,当PM = 3MN时,P1=-13当PN= 3PM时,P2=-3;轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数是 ;(2)数轴上存在点P到点A、点B的距离之和为10,则x= ;(3)若将数轴折叠,使﹣1与3表示的点重合,则﹣3表示的点与数 表示的点重合;(4)若数轴上M、N两点之间的距离为2021(M在N的左侧),且M、N两点经过(3)折叠后互相重合,则M,N两点表示的数分别是:M: ,N: .【答案】(1)1;(2)﹣4或6;(3)5;(4)﹣1014.5,1016.5【分析】(1)根据题意可直接进行求解;(2)对点P的位置分情况讨论如下:①点P在点A左边,则有点P到点A的距离为3,进而求解即可;②点P在线段AB上,不符合题意,舍去;③点P在点B右边,则有点P到点B的距离为3,进而求解即可;(3)若将数轴折叠,使﹣1与3表示的点重合,则对折点对应的数值为1,然后根据题意进行求解即可;(4)若数轴上M、N两点之间的距离为2021(M在N的左侧),且M,N两点经过(3)折叠后互相重合,则对折点对应的数值为1,然后根据题意进行求解即可.【详解】解:(1)∵点P到点A、点B的距离相等,∴点P为线段AB的中点,∴点P对应的数为1;故答案为:1;(2)∵点P到点A、点B的距离之和为10,对点P的位置分情况讨论如下:①点P在点A左边,∵点P到点A、点B的距离之和为10,且线段AB的距离为4,∴点P到点A的距离为3,∴x=﹣4;②点P在线段AB上,不符合题意,舍去;③点P在点B右边,∵点P到点A、点B的距离之和为10,且线段AB的距离为4,∴点P到点B的距离为3,∴x=6;∴综上所述:x=﹣4或6;故答案为:﹣4或6;(3)若将数轴折叠,使﹣1与3表示的点重合,则对折点对应的数值为1,∵﹣3到1的距离为4,∴5到1的距离也为4,∴则﹣3表示的点与数5表示的点重合;故答案为:5;(4)若数轴上M、N两点之间的距离为2021(M在N的左侧),且M,N两点经过(3)折叠后互相重合,则对折点对应的数值为1,∴点M到1的距离为1015.5,∴M对应的数为﹣1014.5,∵点N到1的距离为1015.5,∴N点对应的数为1016.5.故答案为:﹣1014.5,1016.5.【点睛】本题主要考查数轴上的动点问题及线段中点,熟练掌握数轴上的动点问题及线段中点是解题的关键.20.(2022·山东聊城·七年级期末)如图,P是线段AB上一点,AB=12cm,C,D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为t.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP长;【答案】(1)4cm(2)4cm(3)4cm【分析】(1))根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,由此求得AP的值;(2)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,由此求得AP的值;(3)结合(1)、(2)进行解答;(1)解:依题意知,当t=1时,PC=1×1=1(cm),BD=2×1=2(cm),∴BD=2PC以每秒2个单位长度的速度沿射线AB运动,M为AP的中点,设P的运动时间为x秒.(1)P在线段AB上运动,当PB=2AM时,求x的值.(2)当P在线段AB上运动时,求(2BM―BP)的值.(3)如图2,当P在AB延长线上运动时,N为BP的中点,MN的长度是否发生变化?如不变,求出MN的长度.如变化,请说明理由.分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=11cm,当点C、D运动了1s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM= BM.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求2MN的值.3AB的速度从点A沿线段AC向点C运动;同时点Q以1cm/s从点C出发,在线段CB上做来回往返运动(即沿C→B→C→B→…运动),当点P运动到点C时,点P、Q都停止运动,设点P运动的时间为t秒.(1)当t=1时,PQ= cm;(2)当t为何值时,点C为线段PQ的中点?(3)若点M是线段CQ的中点,在整个运动过程中,是否存在某个时间段,使PM的长度保持不变?如果存在,求出PM的长度;如果不存在,请说明理由.走,数字越大,原点左侧则相反.于是,我们可以假设:若点P从原点出发,沿数轴的正方向以每秒3个单位长度的速度运动,则t秒后点P表示的数是0+3t;反之,若点P从原点出发,沿数轴的负方向以每秒2个单位长度的速度运动,则t秒后点P表示的数是0―2 t.【探究】已知数轴上A,B两点表示的数分别为a,b,且a,b分别为―4,8.(1)如图1,若点P和点Q分别从点A,B同时出发,都沿数轴的负方向运动,点P的运动速度为每秒2个单位长度,点Q的运动速度为每秒6个单位长度,设运动的时间为t秒.①t秒后,点P表示的数是_______,点Q表示的数是________;②当P,Q两点之间的距离为4时,则t的值为_______.(2)如图2,若点P从点A出发,沿数轴的正方向以每秒2个单位长度的速度运动,到点B时停止运动,M,N分别是线段AP,BP的中点,则在运动过程中,线段MN的长度是否为定值?若是,请直接写出线段MN的长度;若不是,请说明理由.25.(2022·浙江·七年级专题练习)如图,点C是线段AB上的一点,线段AC=8m,AB=2 BC.机器狗P从点A出发,以6m/s的速度向右运动,到达点B后立即以原来的速度返回;机械猫Q从点C出发,以2m/s的速度向右运动,设它们同时出发,运动时间为xs.当机器狗P与机械猫Q第二次相遇时,机器狗和机械猫同时停止运动.(1)BC=______m,AB=______m;(2)试通过计算说明:当x为何值时,机器狗P在点A与机械猫Q的中点处?(3)当x为何值时,机器狗和机械猫之间的距离PQ=2m?请直接写出x的值.以每秒2个单位长度的速度在直线AB上运动.M为AP的中点,N为BP的中点,设点P 的运动时间为t秒.(1)若点P在线段AB上的运动,当PM=10时,PN=;(2)若点P在射线AB上的运动,当PM=2PN时,求点P的运动时间t的值;(3)当点P在线段AB的反向延长线上运动时,线段AB、PM、PN有怎样的数量关系?请写出你的结论,并说明你的理由.b满足|a+2|+(b﹣10)2=0.(1)求线段AB的长;(2)线段CD在点A左侧沿数轴向右匀速运动,经过线段AB需要10秒,经过点O的时间是2秒,求CD的长度;(3)点E在数轴上对应的数为6,点F与点B重合.线段EF以每秒2个单位长度的速度向左运动,同时点P从点A左侧某处以每秒3个单位长度的速度向右运动,点G是线段BE的中点,点P与点E相遇t秒后与点G相遇.若在整个运动过程中,PE=kFG恒成立,求k 与t的值.字母的代数式表示运动后点表示的数及线段长度是解题关键.28.(2020·山西省运城市实验中学七年级期中)如图,点A、B、E和线段CD都在数轴上,点A、C、D、B、E起始位置所表示的数分别为―2、0、3、12、18;线段CD沿数轴的正方向以每秒2个单位长度的速度移动,当点D与点E重合时停止运动,移动时间为t秒.(1)当t=0时,AC的长为______,当t=3时,AC的长为______.(2)线段CD在运动过程中,用含有t的代数式表示AC的长为______.(3)当t=2时,BD的长为______,当t=5时,BD的长为______.(4)线段CD在运动过程中,求BD的长(用含有t的代数式表示)【答案】(1)2,8(2)2t+2(t≤7.5)(3)5,1(4)|2t―9|(t≤7.5)【分析】(1)根据路程=时间×速度,算出点C的位置,即可得AC的长;(2)先算出移动t秒后点C的位置,由题可知,当D与E重合,CD运动停止,即3+2t =18,解得t=7.5,即可得;(3)算出t=2时,点D的位置,即可得,算出t=5时,点D位置,即可得;(4)先算出移动t秒后,点D的位置,由(2)得t=7.5,CD运动停止,即可得.(1)解:当t=0时,CD未移动,则AC=|-2-0|=2,当t=3时,此时C位置的数为:0+3×2=6,则AC=|―2―6|=8.(2)解:移动t秒后点C位置的数为:0+2t=2t,由题可知,当D与E重合,CD运动停止,即3+2t=18解得t=7.5,则AC的长度为:AC=|―2―2t|=2t+2(t≤7.5).(3)解:当t=2时,D的位置的数为:3+2×2=7,则BD=|7-12|=5;当t=5时,D位置的数为:3+5×2=13,则BD =|13―12|=1.(4)解:移动t 秒后,D 位置的数为:3+2t ,由(2)得t =7.5, CD 运动停止,∴BD =|2t +3―12|=|2t ―9|(t ≤7.5).【点睛】本题考查了数轴上的动点,解题的关键是掌握绝对值和列代数式.29.(2022·全国·七年级课时练习)已知:如图1,M 是定长线段AB 上一定点,C ,D 两点分别从M ,B 出发以1cm/s ,3cm/s 的速度沿BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若AB =10cm ,当点C ,D 运动了2s ,求AC +MD 的值;(2)若点C ,D 运动时,总有MD =3AC ,试说明AM =14AB ;(3)如图2,已知AM =14AB ,N 是线段AB 所在直线AB 上一点,且AN ―BN =MN ,求MN AB 的值.∵AN―BN=MN,AN―AM=MN,1∵AN―BN=MN,AN―BN=AB,∴MN=AB,AN―BN≠MN,这种情况不可能,MN1AC:BC=5:2,DC:AB=1:4.点P从点A出发以4厘米/秒的速度沿射线AD向点C运动,点P到达点C所在位置后立即按照原路原速返回,到达点D所在位置后停止运动,点Q从点B出发以1厘米/秒的速度沿着射线BC的方向运动,点Q到达点D所在的位置后停止运动.点P和点Q同时出发,点Q运动的时间为t秒.(1)求线段AD的长度;(2)当点C恰好为PQ的中点时,求t的值;(3)当PQ=7厘米时,求t的值.。
(完整)七年级上册数学期末动点问题专题
七年级上期末动点问题专题1、已知数轴上两点A、B对应的数分别为-1、3,数轴上一动点P对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A,点B的距离相等.2、如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求OB-AP/EF的值.①3、甲、乙物体分别从相距70米的两处同时相向运动.甲第1分钟走2米,以后每分钟比前1分钟多走1米,乙每分钟走5米.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1米,乙继续每分钟走5米,那么开始运动几分钟后第二相遇?4、如图,线段AB=20cm.(1)点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以3厘米/秒运动,几秒钟后,P、Q两点相遇?如图,已知数轴上A、B两点所表示的数分别为-2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N为PB的中点,当点P在射线BA上运动时;MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.②③5.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1cm/s 、3cm/s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若AB=10cm ,当点C 、D 运动了2s ,求AC+MD 的值.(2)若点C 、D 运动时,总有MD=3AC ,直接填空:AM=________ AB .(3)在(2)的条件下,N 是直线AB 上一点,且AN -BN=MN ,求 MNAB 的值.6.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm/s 、2cm/s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD=2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ -BQ=PQ ,求 PQAB 的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有 CD=12AB ,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM -PN 的值不变;① MNAB 的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.7、已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B左侧,C在D左侧),若|m-2n|=-(6-n)2.(1)求线段AB、CD的长;(2)M、N分别为线段AC、BD的中点,若BC=4,求MN;(3)当CD运动到某一时刻时,D点与B点重合,P是线段AB延长线上任意一点,下列两个结论:① PA-PBPC 是定值;① PA+PBPC是定值,请选择正确的一个并加以证明.8、如图,已知数轴上A、B两点所表示的数分别为-2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合),M为PA的中点,N为PB的中点,当点P 在射线BA上运动时,线段MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.(3)若有理数a、b、c在数轴上的位置如图所示:且d=|a+b|-|-2-b|-|a-2c|-5,试求7(d+2c)2+2(d+2c)-5(d+2c)2-3(d+2c)的值.④⑤ 9、在长方形ABCD 中,AB=CD=10cm 、BC=AD=8cm ,动点P 从A 点出发,沿A①B①C①D 路线运动到D 停止;动点Q 从D 出发,沿D①C①B①A 路线运动到A 停止;若P 、Q 同时出发,点P 速度为1cm∕s ,点Q 速度为2cm∕s ,6s 后P 、Q 同时改变速度,点P 速度变为2cm∕s ,点Q 速度变为1cm∕s .(1)问P 点出发几秒后,P 、Q 两点相遇?(2)当Q 点出发几秒时,点P 点Q 在运动路线上相距的路程为25cm ?10、如图,点C 是线段AB 的中点,点D 、E 分别是线段AC 、CB 的中点.(1)若线段AB=10cm ,求线段AC 和线段DE 的长度;(2)若线段AB=a ,求线段DE 的长度.(3)若甲、乙两点分别从点A 、D 同时出发,沿AB 方向向右运动,若甲、乙两点同时到达B 点,请你写出一组符合条件的甲、乙两点运动的速度.。
七年级上册动点问题题库
1、在数轴上,点A表示-3,点B表示5,若点P从点A出发,以每秒2个单位长度的速度向右移动,同时点Q从点B出发,以每秒1个单位长度的速度向左移动,设移动时间为t 秒,则当t为何值时,PQ = 4?()A. 1秒B. 2秒C. 3秒D. 4秒(答案)C2、一条长为8cm的线段AB,点C从A出发,以2cm/s的速度沿线段AB向B运动,点D同时从B出发,以1cm/s的速度沿线段BA向A运动,设运动时间为t秒((0≤t≤4),则当t为何值时,CD = 3cm?()A. 1秒B. 2秒C. 3秒D. 5秒(答案)A3、在直角坐标系中,点A坐标为(0, 4),点B坐标为(4, 0),若点P从原点O出发,以每秒1个单位的速度沿x轴正方向移动,同时点Q从A出发,以每秒2个单位的速度沿AB向B移动,设移动时间为t秒,则当t为何值时,PQ与OB垂直?()A. 1秒B. 1.5秒C. 2秒D. 2.5秒(答案)C4、在数轴上,点M表示-2,点N表示6,点P从M出发,以每秒3个单位的速度向右移动,点Q同时从N出发,以每秒1个单位的速度向左移动,设移动时间为t秒,则MN的中点与PQ的中点重合时,t的值为()A. 1秒B. 1.5秒C. 2秒D. 2.5秒(答案)C5、在一条直线上,点E表示-10,点F表示12,点G从E出发,以每秒3个单位的速度向右移动,点H同时从F出发,以每秒2个单位的速度向左移动,设移动时间为t秒,则EG与FH相遇时,t的值为()A. 2秒B. 4秒C. 6秒D. 8秒(答案)B6、在直角坐标系中,点K坐标为(2, 0),点L坐标为(0, 6),点M从K出发,以每秒1个单位的速度沿x轴正方向移动,点N同时从L出发,以每秒2个单位的速度沿y轴负方向移动,设移动时间为t秒,则当MN与x轴平行时,t的值为()A. 1秒B. 2秒C. 3秒D. 4秒(答案)C7、在数轴上,点R表示-4,点S表示8,点T从R出发,以每秒2个单位的速度向右移动,点U同时从S出发,以每秒3个单位的速度向左移动,设移动时间为t秒,则RT与SU相遇的点到原点的距离为()A. 2B. 4C. 6D. 8(答案)A8、在直角坐标系中,点X坐标为(3, 0),点Y坐标为(0, 9),点Z从X出发,以每秒2个单位的速度沿x轴负方向移动,点W同时从Y出发,以每秒3个单位的速度沿y轴负方向移动,设移动时间为t秒,则当ZW与x轴垂直时,ZW的长度为()A. 3B. 4C. 5D. 6(答案)D。
人教版2024七年级数学上册专项练习专项3数轴动点问题(原卷版)
专项3数轴动点问题1.已知数轴上有A、B、C 三点,分别对应有理数-26、-10、10,动点P 从B 出发,以每秒1个单位的速度向终点C 移动,同时,动点Q 从A 出发,以每秒3个单位的速度向终点C 移动,设点P 的移动时间为t 秒.(1)当t=5秒时,数轴上点P 对应的数为,点Q 对应的数为;P、Q 两点间的距离为.(2)用含t 的代数式表示数轴上点P 对应的数为.(3)在点P 运动到C 点的过程中(点Q 运动到C 点后停止运动),请用含t 的代数式表示P、Q 两点间的距离.2.已知数轴上A,B 两点表示的数分别为4-,8.如图,若点P 和点Q 分别从点A,B 同时出发,都沿数轴的负方向运动,点P 的运动速度为每秒2个单位长度,点Q 的运动速度为每秒6个单位长度,设运动的时间为t 秒.(1)运动2秒时P,Q 两点对应的数分别为______,______;(2)运动t 秒时P,Q 两点对应的数分别为______,______;(用含t 的代数式表示)(3)当P,Q 两点相遇时,求点P 在数轴上对应的数;(4)当P,Q 两点之间的距离为4时,求t 的值.3.已知多项式()32102053a x x x ++-+是关于x 的二次多项式,且二次项系数为b,数轴上两点A,B 对应的数分别为a,b.(1)a =,b =,线段AB =;(2)若数轴上有一点C,使得32AC BC =,点M 为AB 的中点,求MC 的长;(3)有一动点G从点A出发,以3个单位每秒的速度向右方向运动,同时动点H从点B出发,以1个单位每秒的速度在数轴上作同方向运动,设运动时间为t秒(10t<),点D为线段GB的中点,点F为线段DH的中点,点E在线段GB上且13GE BG=,在G,H的运动过程中,求DE DF+的值.(用含t的代数式表示)4.定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.如图2,M,N为数轴上两点,点M所表示的数为-7,点N所表示的数为2(1)点E,F,G表示的数分别是3-,6.5,11,其中是【M,N】美好点的是______;写出【N,M】美好点H所表示的数是______.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?。
七年级上册数学数轴动点问题
七年级上册数学数轴动点问题一、数轴动点问题题目。
1. 已知数轴上点A表示的数为 -2,点B表示的数为6,点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动;同时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动。
设运动时间为t秒。
- 当t = 2时,求PQ的长度。
- 当PQ = (1)/(2)AB时,求t的值。
- 在点P、Q运动的过程中,是否存在某一时刻t,使得点P是线段BQ的中点?若存在,求出t的值;若不存在,请说明理由。
解析:- 当t = 2时,点P表示的数为-2 + 1×2=0,点Q表示的数为6-2×2 = 2,则PQ=|0 - 2|= 2。
- AB=|-2 - 6| = 8,PQ=|(-2+t)-(6 - 2t)|=|3t - 8|,当PQ=(1)/(2)AB = 4时,即|3t-8| = 4,则3t-8 = 4或3t - 8=-4,解得t = 4或t=(4)/(3)。
- 若点P是线段BQ的中点,则BP = PQ,点P表示的数为-2+t,点Q表示的数为6-2t,BP=|(-2 + t)-6|=| t-8|,PQ=|(-2+t)-(6 - 2t)|=|3t - 8|,所以| t - 8|=|3t - 8|,即t-8=3t - 8(无解)或t - 8=-(3t - 8),解得t=(8)/(2)=4。
2. 数轴上点A对应的数为 -1,点B对应的数为3,点C对应的数为5,点P在数轴上对应的数为x。
- 若点P到点A、点B的距离相等,求x的值。
- 若PA + PB = PC,求x的值。
- 设点P在点A左侧,点M从点P出发,以每秒1个单位长度的速度向点A运动;同时点N从点A出发,以每秒2个单位长度的速度向点B运动,设运动时间为t 秒。
当点M与点N之间的距离为1个单位长度时,求t的值。
解析:- 因为点P到点A、点B的距离相等,所以| x-(-1)|=| x - 3|,即x + 1=-(x - 3)或x+1=x - 3(无解),解得x = 1。
人教版七年级数学上册期末动点问题压轴题专题练习-带答案
人教版七年级数学上册期末动点问题压轴题专题练习-带答案学校:___________班级:___________姓名:___________考号:___________1.如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a,c满足︱a+3︱+︱c-5 ︱=0(1)a=,b=,c=.(2)如果点P表示的数为x,当P点到B、C两点的距离之和为8时,x=(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B 和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=,BC=.(用含t的代数式表示)(4)3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值。
2.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b-3)2=0.(1)则a=,b=;并将这两个数在数轴上所对应的点A,B表示出来;(2)数轴上在B点右边有一点C到A、B两点的距离和为11,若点C的数轴上所对应的数为x,求x的值;(3)若点A,点B同时沿数轴向正方向运动,点A运动的速度为2单位/秒,点B运动的速度为1单位/秒,若|AB|=4,求运动时间t的值.3.已知数轴上有A,B两点,分别代表-40,20,两只电子蚂蚁甲、乙分别从A,B两点同时出发,其中甲以1个单位长度/秒的速度向右运动,到达点B处时运动停止.乙以4个单位长度/秒的速度向左运动.(1)A,B两点间的距离为个单位长度;乙到达A点时一共运动了秒.(2)甲、乙在数轴上运动,经过多少秒相遇?(3)多少秒时,甲、乙相距10个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲、乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.4.如图,在数轴上点A表示数a,点B表示数b,点C表示数c,b是最小的正整数,且a、c满足|a+2|+(c−6)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得点A与点C重合,则数轴上折痕所表示的数为,点B与数表示的点重合,原点与数表示的点重合;(3)动点P、Q同时从原点出发,点P向负半轴运动,点Q向正半轴运动,点Q的速度是点P 速度的3倍,2秒钟后,点P到达点A.①点P的速度是每秒▲ 个单位长度,点Q的速度是每秒▲ 个单位长度;②经过几秒钟,点P与点Q相距12个单位长度.5.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,可以看到终点表示的数是-2.已知点A,B是数轴上的点,完成下列各题.(1)若点A表示数-2,将A点向右移动5个单位长度,那么终点B表示的数是,此时A,B两点间的距离是.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B;此时A,B两点间的距离是.(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B6.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b−3|=0;(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动:同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒)①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=3时,甲小球到原点的距离=;乙小球到原点的距离=②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.7.如图,已知点A、B、C是数轴上三点,O为原点.点C对应的数为3,BC=2,AB=6.(1)则点A对应的数是、点B对应的数是;(2)动点P、Q分别同时从A、C出发,分别以每秒8个单位和4个单位的速度沿数轴正方向运动.M在线段AP上,且AM=MP,N在线段CQ上,且CN=14CQ,设运动时间为t(t>0).①求点M、N对应的数(用含t的式子表示);②猜想MQ的长度是否与t无关为定值,若为定值请求出该定值,若不为定值请说明理由;③探究t为何值时,OM=2BN.8.数轴上点A表示的有理数为20,点B表示的有理数为﹣10,点P从点A出发以每秒5个单位长度的速度在数轴上往左运动,到达点B后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A停止,设运动时间为t(单位:秒).(1)当t=5时,点P表示的有理数为.(2)在点P往左运动的过程中,点P表示的有理数为(用含t的代数式表示).(3)当点P与原点距离5个单位长度时,t的值为.9.如图,A、B分别为数轴上的两点,A点对应的数为−20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?10.在数轴上,如果A点表示的数记为a,点B表示的数记为b,则A、B两点间的距离可以记作|a-b|或|b-a|,我们把数轴上两点的距离,用两点的大写字母表示,如:点A与点B之间的距离表示为AB.如图,在数轴上,点A,O,B表示的数为-10,0,12.(1)直接写出结果,OA=,AB=.(2)设点P在数轴上对应的数为x.①若点P为线段AB的中点,则x=.②若点P为线段AB上的一个动点,则|x+10|+|x-12|的化简结果是.(3)动点M从A出发,以每秒2个单位的速度沿数轴在A,B之间向右运动,同时动点N从B 出发,以每秒4个单位的速度沿数轴在A,B之间往返运动,当点M运动到B时,M和N两点停止运动.设运动时间为t秒,是否存在t值,使得OM=ON?若存在,请直接写出t值;若不存在,请说明理由.11.如图.数轴上A.B两点对应的有理数分别为-10和20.点P从点O出发.以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从点A出发,以每秒2个单位长度的速发沿数轴正方向运动.设运动时间为t秒。
七上动点训练题1
七上动点训练题1 1、A 、B 、C 三点在数轴上,点A 表示的数是-6,点B 在原点的右边且与点A 相距15个单位长度.(1)求出点B 表示的数,画一条数轴并在数轴上标出点A 和点B ;(2)若此数轴在一张纸上,将纸沿某一条直线对折,此时B 点与表示数-1的点刚好重合,折痕与数轴有一个交点D ,求点D 表示的数的相反数;(3)在数轴上有一点E ,点E 到点A 和点B 的距离之和为30,求点E 所表示的数;(4)A 、B 从初始位置分别以1单位长度/s 和2单位长度/s 同时向左运动,是否存在t 的值,使t 秒后点B 到原点的距离是点A 到原点距离相等?若存在请求出t 的值;若不存在,请说明理由.2、已知数轴上A 、B 两点对应的数分别为a 、b ,且.031=-++b a 点P 为数轴上一动点.(1)若点P 到点A 、点B 的距离相等,求点P 对应的有理数;(2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为3?若存在,请求出P 点所表示的有理数;若不存在,请说明理由.(3)当点P 以每秒1个单位长的速度从O 点向左运动时,点A 以每秒5个单位长的速度向左运动,点B 以每秒9个单位长的速度向左运动,它们同时出发,几秒钟后P 点、A 点、B 点这三个点中的两个点到另外一个点的距离相等?3、在数轴上有三个点A 、B 、C ,完成下列问题:(1)如图1,①将点B 向右移动六个单位长度到点D ,在数轴上表示出点D.②在数轴上找到点E ,使点E 为BA 的中点(E 到A 、B 两点的距离相等),并在数轴上标出点E 表示的数,直接写出CE 的长是图1(2)如图2,O 为原点,取OC 的中点M ,分OC 分为两段,记为第一次操作;取这两段OM 、CM 的中点分别为了N 1、N 2,将OC 分为4段,记为第二次操作,再取这4段的中点将OC 分为8段,记为第三次操作,第六次操作后,OC 之间共有多少个点?这些点所表示的数的和是多少?4、如图:数轴上的三个点A 、B 、C 分别表示数-3,2,0,点D 表示的数是x .(1)A 、C 两点的距离AC= ,A 、B 两点的距离AB= .(2)通过观察可以发现,数轴上的两点之间的距离与这两点表示数的差的绝对值有一定关系,按此关系,则AD= .(3)借助数轴分类讨论:当x 满足 条件时,23-++x x 取最小值 ;(4)填空:当x 满足条件: 时,232-++x x 取得最小值 ; 当x 满足条件: 时,221331-++x x 取得最小值 .5、已知在数轴上点A,点B表示的数分别是a,b,满足|a-12|+|b+15|=0.点P在数轴上从点A出发,以每秒2个单位长度的速度沿负方向运动,点Q同时在数轴上从点B出发,以每秒3个单位长度的速度沿正方向运动,设运动时间为t(单位:秒).(1)求a,b的值;(2)直接写出点P,点Q表示的数(用含t的式子表示);(3)如果两点重合,求t;(4)直接写出当PQ=30时,t的值;(5)OP能否等于3OQ,通过计算说明.6、已知数轴上点A对应的数为-20,点B对应的数为13,点C对应的数为16,点D对应的数为﹣13.(1)直接写出线段AB的长;(2)点A,B沿数轴同时出发相向匀速运动,点A的速度为6个单位每秒,点B的速度为2个单位每秒,若t秒时点A到原点的距离和点B到原点的距离相等,求t的值;(3)在(2)的条件下,点A,B从起始位置同时出发.当A点运动到点C时,迅速以原来的速度返回,到达出发点后,又折返向点C运动.B点运动至D点后停止运动,当B停止运动时点A也停止运动.求在此过程中,A,B两点同时到达的点在数轴上对应的数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册动点问题专项练习明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的芈莎孝矽级可似,也即用右边的数减去左边的数的差。
即毂軸上阿点回旳晅碍=有辿点孝不於舉7疋辺處孝不跑數。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a-b:向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
基础题1.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点.(1)求动点A所走过的路程及A、C之间的距离.(2)若C表示的数为1,则点A表示的数为 __________.5B AOC2.画个数轴,想一想(1)已知在数轴上表示3的点和表示8的点之间的距离为5个单位,有这样的关系5=8-3,那么在数轴上表示数4的点和表示-3的点之间的距离是__________单位:(2)已知在数轴上到表示数-3的点和表示数5的点距离相等的点表示数1,有这样的关系1 = £(—3 + 5),那么在数轴上到表示数G的点和表示数b的点之间距离相等的点表示的数是(3)已知在数轴上表示数兀的点到表示数-2的点的距离是到表示数6的点的距离的2倍,求数X.应用题1、已知数轴上有A、B. C三点,分别代表一24, —10, 10,两只电子蚂蚁甲、乙分别从A、C两点同时出发相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位(2)若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇(3)在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗若能,求出相遇点;若不能,请说明理由。
2.动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后,两点相距20个单位长度.已知动点A、B的速度比为2 : 3 (速度单位:单位长度/秒).(I)求出两个动点运动的速度,并在数轴上标出A、B两点从原点岀发运动4秒时的位置:(2)若A、B两点从(1)中标出的位置同时出发,按原速度向数轴负方向运动,求几秒钟后原点恰好在两个动点的正中间:(2)当A、B两点从(1)中标岀的位置出发向数轴负方向运动时.另一动点C也同时从原点的位置出发向A 运动,当遇到A后立即返回向B点运动,遇到B后又立即返回向A运动,如此往返,直到B追上A时, C 立即停止运动•若点C 一直以10单位长度/秒的速度匀速运动,求点C 一共运动了多少个单位长度・3.如图,在射线OM上有三点A、B、C,满足OA=20cm, AB=60cm, BC=IOcm,点P从点0岀发,沿OH方向以lcm∕s的速度匀速运动,点Q从点C出发在线段Co上向点0匀速运动(点Q运动到点0时停止运动), 两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q的运动速度为3cπ√s,经过多长时间P、Q两点相距70cm.a~~⅛------------- W—M4.如图,在数轴上A点表示数a, B点表示数b, AB表示A点和B点之间的距离,且a、b满足0 + 2∣ + (b+%)2=O(1)求A、B两点之间的距离: F ’_____________________ 严 A(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数:°(3)若在原点0处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t (秒),①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间.A B------ V---------------------------------- V ----- >O5、ΔABC Φ,角C=90o , AC=6cm, BC=Scm,点Q 是线段BC 的中点,点P 从A 开始沿AC边向C以1厘米/秒速度移动,经过几秒钟,四边形APQB的面积是16平方厘米综合题1 •已知数轴上两点A、B对应的数分别为一1, 3,点P为数轴上一动点,其对应的数为x°⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5若存在,请求出X的值。
若不存在.请说明理由⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到 A B 点A、-------- - -------1 ---------------- -- --------- >点B的距离相等T 0 32.如图,已知A、B分别为数轴上两点,A点对应的数为一20, B点对应的数为100。
-20 IOO⑴求AB中点H对应的数:⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A 点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数:⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。
3.已知数轴上两点A、B对应的数分别为一1, 3,点P为数轴上一动点,其对应的数为X。
⑴若点P到点A、点B的距离相等,求点P对应的数:⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5若存在,请求岀X的值。
若不存在,请说明理由⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B 一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等4.已知数轴上A、B两点对应数分别为一2, 4, P为数轴上一动点,对应数为X。
⑴若P为线段AB的三等分点,求P点对应的数。
⑵数轴上是否存在P点,使P点到A、B距离和为10若存在,求出X的值:若不存在,请说明理由。
⑶若点A、点B和P点(P点在原点)同时向左运动。
它们的速度分别为1、2、1个单位长度/分钟, 则第几分钟时P为AB的中点5.如图,已知数轴上有三点A, B, C, AB=1∕2AC,点C对应的数是200⑴若Be二300,求点A对应的数;ABC(2)在(1)的条件下,动点P、Q分别从A、C两点同时岀发向左运动,同时动点R从A点岀发向右运动, 点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN (不考虑点R与点Q相遇之后的情形):(3)在(1)的条件下,若点E、D对应的数分别为-800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分別为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC-AM的值是否发生变化若不变,求其值;若不变,请说明理由・CF 2006.已知:b是最小的正整数,且a、b满足(C-5)2+1" + “1=0,请回答问题⑴ 请直接写出a、b、C的值。
(2) a、b、C所对应的点分別为A、B、C,点P为易动点,苴对应的数为x,点P在O到2之间运动时(即OSXS2时),请化简式子:∣x + lI-IX-l∣+2∣x + 5l (请写出化简过程)A B C• • ------------------- ------------- >(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t 的变化而改变若变化,请说明理由:若不变,请求其值。
---------- 1-- 1 --------------- ! ----- >A 0 B7.如图,已知数轴上A、B两点所表示的数分别对应为x、y,且x、y满足°+2广+卜‘一8| = 0(1)求线段AB的长;(2)若P为A、B两点之间的一点(点P不与A、B两点重合),H为PA的中点,N为PB的中点,当点P在线段AB上运动时,线段MN的长度是否发生改变若不变,请求出线段MN的长:若改变,请说明理由.(3)若有理数a、b、C在数轴上的位置如图所示:且d= I a+b I — I —2—b I — | a—2c I —5, ∙∙Il ∙∣.试求7(d+2c)2+2(d+2c)— 5(d+2c)2-3(d+2c)的值. b a A 0 CB8.已知多项式_5加咕2-6,含字母的项的系数为α,多项式的次数为常数项为C •且abc分别是点A,5C在数轴上对应的数。
(1)求UbC的值,并在数轴上标出AB.C(2)若甲、乙、丙三个动点分别从A.B.C三点同时出发沿着数轴负方向运动,它们的速度分别是单2 444位长度/秒),通过计算说明:当出发于秒时甲、乙、丙谁离原点最远(3)在数轴上C点左侧是否存在一点P,使P到A,B,C的距离和等于20若存在•请直接指岀点P对应的数:若不存在,请说明理由。
9.已知点A在数轴上对应的数为纭点B对应的数为b,且∣a+4 + (b-l)2=O. A、B之间的距禽记作IAB , 定义:IABl = Ia-b∣.(1)求线段AB的长I AB I;(2)设点P在数轴上对应的数为X,当PA - PB二3时,求X的值;⑶若点P在A的左侧,M. N分别是PA、PB的中点,当P在A的左侧移动时,下列两个结论:φ∣PM∣ +∣PN∣的值不变;②IPN-PMl的值不变,其中只有一个结论正确,请判断出正确结论,并求其值。
10.如图,点A从原点岀发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒)•(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置:(4分)(3)若A、B两点从(1)中的位置开始,仍以原来的速度冋时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间(4分)一12 -9-6 -3 0 3 6 9 1211、如图,有一个玩具火车放宜在数轴上,若将火车在数轴上水平移动,则当A点移动到B点时,B点所对应的数为12 ,当B点移动到A点时,A点所对应的数为3 (单位:单位长度)•(1) ______________________________ 由此可得玩具火车的长为个单位长度. - ↑ 1 --O 3 ABI3(2)现在你能“数轴”这个工具解决下而问题吗一天,小明去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢:你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢你能帮小明求出来吗(可使用你喜欢的方法)(3)在(1)的条件下数轴上放置与AB相同的玩具火车CD,使0与C重合,两列玩具火车分别从0、A 向右同时出发,已知CD火车速度个单位/秒,AB火车速度为1个单位/秒(两火车都可前后开动),问几秒两火车头A与C相距10个单位・EZI __ C=L(O)C D AB。