线性规划的对偶与对偶单纯形法
《运筹学教程》(第三版)第二章 线性规划的对偶理论3-影子价格对偶单纯形法
第一步:求对偶问题的可行基 B ,列出单纯形表。 n n aij x j bi (i 1,, m) max z c j x j j 1 j 1 x j 0 ( j 1,, n) cj CB c1 c2 … cm 基 x1 x2 … xm cj - zj b b*1 b*2 … b*m c1 x1 1 0 … 0 0 … … … … … … cm xm 0 0 … 1 0 … … … … … cj xj a1j a2j … amj … … … … … cn xn a1n a2n … amn
cj CB 0 0
0 y4 1 0 0
0 y5 0 1 0
[ -6 ]
-2 -24
cj-zj
max w 15 y1 24 y2 5 y3 0 y4 0 y5
6 y2 y3 y4 2 y5 1 5 y1 2 y2 y3 y 0 15
min w 15 y1 24 y2 5 y3
6 y 2 y3 2 5 y1 2 y 2 y3 1 y 0 13
max w 15 y1 24 y2 5 y3 0 y4 0 y5
化标 准形
6 y2 y3 y4 2 y5 1 5 y1 2 y2 y3 y 0 15
影子价格(shadow price)
是反映资源最优使用效果的价格。 用微积分描述资源的影子价格,即当资源增加一个数量而得到目标函 数新的最大值时,目标函数最大值的增量与资源的增量的比值,就是目标 函数对约束条件(即资源)的一阶偏导数。 用线性规划方法求解资源最优利用时,即在解决如何使有限资源的总 产出最大的过程中,得出相应的极小值,其解就是对偶解,极小值作为对 资源的经济评价,表现为影子价格。 这种影子价格反映劳动产品、自然资源、劳动力的最优使用效果。 另外一种影子价格用于效用与费用分析。广泛地被用于投资项目和进 出口活动的经济评价。例如,把投资的影子价格理解为资本的边际生产率 与社会贴现率的比值时,用来评价一笔钱用于投资还是用于消费的利亏; 把外汇的影子价格理解为使市场供求均衡价格与官方到岸价格的比率,用 来评价用外汇购买商品的利亏,使有限外汇进口值最大。 因此,这种影子价格含有机会成本即替代比较的意思,一般人们称之 为广义的影子价格。
运筹学2对偶问题
运筹学2对偶问题运筹学教程运筹学Operations Research Chapter 2 对偶问题Dual Problem1. 线性规划的对偶模型Dual Model of LP2.对偶性质对偶性质3.对偶单纯形法对偶单纯形法4.灵敏度分析灵敏度分析Dual property Dual Simplex Method Sensitivity Analysis 运筹学教程§2.1线性规划的对偶模型线性规划的对偶模型Dual model of LPCh2 Dual Problem2022年11月26日星期五Page 2 of 19在线性规划问题中,存在一个有趣的问题,即每一个线性规划问题都伴随有另一个线性规划问题,称它为对偶线性规划问题。
【例2.1】某企业用四种资源生产三种产品,工艺系数、例资源限量及价值系数如下表:产品资源Ⅰ Ⅱ Ⅲ Ⅳ 每件产品利润9 5 8 7 100 8 4 3 6 80 6 7 2 4 70 500 450 300 550 A B C 资源限量建立总收益最大的数学模型。
运筹学教程§2.1线性规划的对偶模型线性规划的对偶模型Dualmodel of LPCh2 Dual Problem2022年11月26日星期五Page 3 of 19 设x1,x2,x3分别为产品A,B,C的产量,则线性规划数学模解型为:m Z = 100x + 80x + 70x ax1 2 39x1 + 8x2 + 6x3 ≤ 500 5x + 4x + 7x ≤ 450 2 3 1 8x1 + 3x2 + 2x3 ≤ 300 7x + 6x + 4x ≤ 550 2 3 1 x1, x2, x3 ≥ 0 现在从另一个角度来考虑企业的决策问题。
假如企业自己不生产产品,而将现有的资源转让或出租给其它企业,那么资源的转让价格是多少才合理?价格太高对方不愿意接受,价格太低本单位收益又太少。
用对偶单纯形法求对偶问题的最优解
用对偶单纯形法求对偶问题的最优解(共7页)-本页仅作为预览文档封面,使用时请删除本页-用对偶单纯形法求对偶问题的最优解摘要:在线性规划的应用中,人们发现一个线性规划问题往往伴随着与之配对的另一个线性规划问题.将其中一个称为原问题,另一个称为对偶问题.对偶理论深刻揭示了原问题与对偶问题的内在联系.由对偶问题引申出来的对偶解有着重要的经济意义.本文主要介绍了对偶问题的基本形式以及用对偶单纯形法求解对偶问题的最优解.关键词:线性规划;对偶问题;对偶单纯形Using Dual Simplex Method To Get The Optimal Solution Of TheDual ProblemAbstract:In the application of the linear programming, people find that a linear programming problem is often accompanied by another paired linear programming problem. One is called original problem. Another is called the dual problem. Duality theory reveals the internal relationsbetween the dual problem and the original problem. The solution of the dual problem is of a great economic significance. In this paper,we mainly discuss the basic form of the dual problem and how to use dual simplex method to get the optimal solution of the dual problem. Key words: linear programming;dual problem;dual simplex method1 引言首先我们先引出什么是线性规划中的对偶问题.任何一个求极大化的线性规划问题都有一个求极小化的线性规划问题与之对应,反之亦然,如果我们把其中一个叫原问题,则另一个就叫做它的对偶问题,并称这一对互相联系的两个问题为一对对偶问题.每个线性规划都有另一个线性规划(对偶问题)与它密切相关,对偶理论揭示了原问题与对偶问题的内在联系.下面将讨论线性规划的对偶问题的基本形式以及用对偶单纯形法求最优解.在一定条件下,对偶单纯形法与原始单纯形法相比有着显著的优点.2 对偶问题的形式对偶问题的形式主要包括对称形对偶问题[]3和非对称性对偶问题.对称形对偶问题设原线性规划问题为Max1122...n nZ c x c x c x =+++()11112211211222221122...............0.1,2,...,n n n n m m mn n nj a x a x a x b a x a x a x b a x a x a x bx j n +++≤⎧⎪+++≤⎪⎪⎨⎪+++≤⎪≥=⎪⎩()则称下列线性规划问题 Max 1122...m m W b y b y b y =+++()11112211211222221122...............0.1,2,...,n n n n m m mn n nj a y a y a y c a y a y a y c a y a y a y cy j m +++≤⎧⎪+++≤⎪⎪⎨⎪+++≤⎪≥=⎪⎩()为其对偶问题,其中(1,2,...,)i y i m =称其为对偶变量,并称()和()式为一对对称型对偶问题.原始对偶问题()和对偶问题()之间的对应关系可以用表2-1表示.这个表从横向看是原始问题,从纵向看使对偶问题.用矩阵符号表示原始问题()和对偶问题()为 CX Z =max原问题 ⎩⎨⎧≥≤0X b AX ()Yb W =min对偶问题 ⎩⎨⎧≥≤0Y C YA () 其中()12,,...,m Y y y y =是一个行向量. 非对称对偶问题线性规划有时以非对称形式出现,那么如何从原始问题写出它的对偶问题,我们从一个具体的例子来说明这种非对称形式的线性规划问题的对偶问题的建立方法.例1 写出下列原始问题的对偶问题43214765max x x x x Z ++-=⎪⎪⎩⎪⎪⎨⎧=≥-≥++--≤-+--=--+)4,3,2,1(032417281473672432143214321j x x x x x x x x x x x x x j解: 第一约束不等式等价与下面两个不等式约束724321-≤--+x x x x 724321≤++--x x x x 第二个约束不等式照写147364321≤-+-x x x x 第三个不等式变成32417284321≤--+x x x x以 121123,,,y y y y 分别表示这四个不等式约束对应的对偶变量,则对偶问题为 32211131477min y y y y W +++-= ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥--+-≥-++--≥+--≥++-0,,,427746173225286322111322111322111322111322111y y y y y y y y y y y y y y y y y y y y令 12111y y y =-,则上式的对偶问题变为:3213147min y y y W ++-=12312312312323162852317647724,0,y y y y y y y y y y y y y y y ++≥⎧⎪-+≥-⎪⎪-+-≥⎨⎪---≥⎪≥⎪⎩无符号限制一般可以证明,若原问题中的某个变量无非负限制,则对偶问题中的相应约束为等式. 3 对偶单纯形法对偶问题求解具有重要的意义,有多种方法解决对偶问题.下面介绍用对偶单纯形法来解决线性规划的对偶问题.先介绍以下几个线性规划的基本概念[]6:基: 已知A 是约束条件的m n ⨯系数矩阵,其秩为m .若B 是A 中m m ⨯阶非奇异子矩阵(即可逆矩阵),则称B 是线性规划问题中的一个基.基向量:基B 中的一列即称为一个基向量.基B 中共有m 个基向量. 非基向量:在A 中除了基B 之外的一列则称之为基B 的非基向量. 基变量:与基向量相应的变量叫基变量,基变量有m 个.非基变量:与非基向量相应的变量叫非基变量,非基变量有n m -个. 由线性代数的知识知道,如果我们在约束方程组系数矩阵中找到一个基,令这个基的非基变量为零,再求解这个m 元线性方程组就可得到唯一的解了,这个解我们称之为线性规划的基本解.首先重新回顾一下单纯形法的基本思想,其迭代的基本思路是:先找出一个基可行解,判断其是否为最优解,如果不是,则转换到另一更优的基可行解,并使目标函数值不断优化,直到找到最优解为止.我们可以用另一种思路,使在单纯形法每次迭代的基本解都满足最优检验,但不一定满足非负约束,迭代时使不满足非负约束的变量个数逐步减少.当全部基变量都满足非负约束条件时,就得到了最优解,这种算法就是对偶单纯形法.因此,单纯形法是从一个可行解通过迭代转到另一个可行解,直到检验数满足最优条件为止.对偶单纯形法是从满足对偶可行性条件出发通过迭代逐步搜索出最优解.在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失.现把对偶单纯形法的基本步骤总结如下[3]:第一,把所给的线性规划问题转化为标准型;第二,找出一个初始正则基0B ,要求对应的单纯形表中的全部检验数0j σ≤,但“右边”列中允许有负数;第三,若“右边”列中各数均非负,则0B 已是最优基,于是,已求得最优解,计算终止.否则转为第四步;第四,换基:“右边”列中取值最小(即负的最多)的数所对应的变量为出基变量.计算最小比值θ.最小比值出现在末列,则该列所对应的变量即为进基变量,换基后得新基1B ,以出基变量的行和进基变量列交点处的元素为主元进行单纯形迭代,再转入第三步.下面用一个例子具体说明用对偶单纯形法求线性规划问题最优解的步骤: 例1 求解线性规划问题 min 12315511W y y y =++;1231231233225524,,0y y y y y y y y y ++≥⎧⎪++≥⎨⎪≥⎩添加松弛变量以后的标准型 min 12315511W y y y =++12341235123453225524,,,,0y y y y y y y y y y y y y ++-=⎧⎪++-=⎨⎪≥⎩ 将每个等式两边乘以-1,则上述问题转化为 min 12315511W y y y =++;12341235123453225524,,,,0y y y y y y y y y y y y y ---+=-⎧⎪---+=-⎨⎪≥⎩如果取()045,B Y y y =作为初试基变量,有如下初试单纯形表(表)由此可见,两个基变量45,y y 均取负值,所以,0B 所确定的基本解不是基可行解,从而也就不能用单纯形法求解.下面我们用一种新的方法对偶单纯形法求解此题,并通过例题来说明方法步骤.对偶单纯形法的基本思想:是保证检验数行全部非正的条件下,逐步使得“右边”一列各数变成非负.一旦“右边”一列各数均满足了非负条件(即可行性条件),则就获得最优解.现在,0B 不是可行基(称为正则基),为保证上述方法的实现,可按下面的方法确定出基变量和进基变量.出基变量的确定 可以取任意一个具有负值的基变量(一般可取最小的)为出基变量.在上例中,两个基变量()45,y y 都取负值,且45y =-最小,故 4y 为出基变量.现在考虑出基变量所对应的负所有元素 0ij a <,对每个这样的元素作比值jija σ',令 30min 0j ij j n ij ija a a σσθ≤≤⎧⎫⎪⎪'=≤=⎨⎬''⎪⎪⎩⎭ () 则 3x 为进基变量.在表2-4中,基变量 4y 所在的行有三个ij a '取负值,其值分别为-3,-2,-2.它们对应的检验数分别为-15,-5,-11. 于是212155115min ,,3222a σθ---⎧⎫===⎨⎬---⎩⎭ 由此可知, 2y 为进基变量.主元素为 2ija '=-,对表2-1进行一次迭代便得表2-2,在表2-2的(1)中,基变量 3y 所取之值 2302b '=-<,故 3y 为出基变量.又21215561522min ,,711722a σθ⎧⎫--⎪⎪-===⎨⎬'-⎪⎪--⎩⎭故 3y 是进基变量;,主元为 2172a '=-.对(1)再作单纯形变换,得表3-1之(2).由于它的“右边”已列出全部非负,故它就是最优表.最优解为:137y '=,2137y '=, 3450y y y '''===;最优值 1107w '=.然而在有些问题中,我们很容易找到初始基本解,因此使用对偶单纯形法求解线性规划问题是有一定条件的,其条件是:(1) 单纯形表的b列中至少有一个负数.(2) 单纯形表中的基本解都满足最优性检验.对偶单纯形法与原始单纯形法相比有两个显著的优点:(1) 初始解可以是不可行解,当检验数都非正时,即可进行基的变换,这时不需要引入人工变量,因此简化了计算.(2) 对于变量个数多于约束方程个数的线性规划问题,采用对偶单纯形法计算量较少.因此对于变量较少、约束较多的线性规划问题,可以先将其转化为对偶问题,然后用对偶单纯形法求解.对变量多于约束条件的线性规划问题,用对偶单纯形法进行计算可以减少计算的工作量.因此对变量较少,而约束条件很多的线性规划问题,可先将此问题转化为对偶问题,然后用对偶单纯形法求解.用对偶单纯形法求解线性规划问题的标准型,要求初始单纯形表检验数行的检验数必须全部非正,若不能满足这一条件,则不能运用对偶单纯形法求解.对偶单纯形法的局限性主要是,对大多数线性规划问题来说,很难找到一个初始可行基,因此这种方法在求解线性规划问题时,很少单独应用.参考文献:[1] 吴祈宗.运筹学学习指导及习题集[M] .北京:机械工业出版社,2006.[2] 孙君曼,冯巧玲,孙慧君,等.线性规划中原问题与对偶问题转化方法探讨[J].郑州:工业学院学报(自然科学版),2001,16(2):44~46.[3] 何坚勇.运筹学基础.北京:清华大学出版社,2000.[4] 周汉良,范玉妹. 数学规划及其应用.北京:冶金工业出版社.[5] 陈宝林.最优化理论与算法(第二版) .北京:清华大学出版社,2005.[6] 张建中,许绍吉. 线性规划. 北京:科学出版社,1999.[7] 姚恩瑜,何勇,陈仕平.数学规划与组合优化.杭州:浙江大学出版社,2001.[8] 卢开澄.组合数学算法与分析.清华大学出版社, 1982.[9] Even. Shimon. Algzithmic Combinatorial. The Macmillan Company, New York, 1973.[10] J.P.Tremblay, R.Manohar.Discrete Mathematical Structures with Applications to Computer Science, 1980.[11] 李修睦.图论.华中工学院出版社, 1982.[12] Pranava R G.Essays on optimization and incentive contracts[C].Massachusetts Institute of Technology, Sloan School of Management: Operations Research Center, 2007: 57- 65.[13] Schechter,M.A Subgradient Duality Theorem,J.Math Anal Appl.,61(1977),850-855.[14] Maxims S A. Note on maximizing a submodular set function subject to knap sack constraint[J]. Operations Research Letters,2004, 32 (5) : 41 - 43.[15] Schechter,M.More on Subgradient Duality,J.,71(1979),251-262.[16] Nemhauser GL, Wolsey L A, Fisher M L.An analysis of approximations formaximizing submodular set functionsII[J].Math.Prog.Study, 1978, 8: 73 - 87.[17] SviridenkoM.A note on maximizing a submodular set function subject to knap sack contraint[J].Operations Research Letters,2004, 32: 41 - 43.[18] 卢开澄.图论及其应用.北京:清华大学出版社,1981.[19] 张干宗.线性规划(第二版).武汉:武汉大学出版社,2007.[20] 周维,杨鹏飞.运筹学.北京:科学出版社,2008.[21] 宁宣熙.运筹学实用教程(第二版).北京:科学出版社发行处,2009.。
用对偶单纯形法求解线性规划问题
用对偶单纯形法求解线性规划问题对偶单纯形法是一种常用于求解线性规划问题的方法。
它通过对原始线性规划问题进行对偶化,将原问题转化为对偶问题,并通过迭代的方式逐步优化,最终得到最优解。
本文将详细介绍对偶单纯形法的基本原理和步骤,并通过一个实例来演示其具体应用。
对偶单纯形法的基本原理是基于线性规划的对偶性理论。
根据对偶性理论,对于原始线性规划问题的最优解,一定存在一个对偶问题,其最优解与原问题的最优解相等。
因此,我们可以通过求解对偶问题来得到原问题的最优解。
对偶问题的形式如下:最大化 W = b'y约束条件为:A'y ≤ c其中,A是原始线性规划问题的约束矩阵,b是原始问题的目标函数系数矩阵,c是原始问题的约束条件矩阵,y是对偶问题的变量向量。
对偶单纯形法的步骤如下:步骤1: 初始化将原始线性规划问题转化为标准型,并初始化基变量和非基变量的初始解。
步骤2: 计算对偶变量值根据对偶问题的约束条件,计算对偶变量的初始值。
步骤3: 计算对偶目标函数值根据对偶问题的目标函数,计算初始的对偶目标函数值。
步骤4: 检验最优性判断当前解是否为最优解。
如果是,则终止算法;否则,进入下一步。
步骤5: 选择入基变量和出基变量根据当前解,选择一个入基变量和一个出基变量。
步骤6: 更新解通过列生成法或其他方法,更新当前解。
步骤7: 更新对偶变量和对偶目标函数值根据更新后的解,更新对偶变量和对偶目标函数值。
步骤8: 转至Step 4重复步骤4至步骤7,直到找到最优解。
下面以一个具体的线性规划问题为例来演示对偶单纯形法的应用。
假设有以下线性规划问题:最大化 Z = 3x1 + 5x2约束条件为:2x1 + x2 ≤ 10x1 + 3x2 ≤ 15x1, x2 ≥ 0首先,将原始问题转化为标准型:最大化 Z = 3x1 + 5x2约束条件为:2x1 + x2 + s1 = 10x1 + 3x2 + s2 = 15x1, x2, s1, s2 ≥ 0初始化基变量和非基变量的初始解为:x1 = 0, x2 = 0, s1 = 10, s2 = 15根据对偶问题的约束条件,计算对偶变量的初始值:y1 = 0, y2 = 0根据对偶问题的目标函数,计算初始的对偶目标函数值:W = 0检验最优性,发现当前解不是最优解,需要进入下一步。
线性规划的对偶与对偶单纯形法
x1 x 2 x3 3 s.t . x1 4 x 2 7 x3 9 x 0, x 0, x 0 2 3 1
min Z c1 x1 c2 x2 cn xn
对 偶 问 题 的 定 义
a11 a12 a21 a22 s.t . a m1 a m 2 x1 , x2 , , xn
将最优解 y1 , y 2的值代入约束条件,得第3个约束为严格 不等式,由互补松弛性得 x3 0, 又由于 y1 , y 2的值均大于 零,因此原问题的两个约束条件应取等式,故有
3 x1 x2 x3 1 x1 2 x2 3 x3 2
求解后得到 x1 4/7, x2 5 / 7, 故原问题的最优解为 x ( x1 , x2 , x3 )T (4 / 7, 5 / 7, 0) T f min 23 / 7
max z b1 y1 b2 y2 bm y m
a11 y1 a21 y 2 am1 y m ( , )c1 a12 y1 a22 y 2 am 2 y m ( , )c2 a y a y a y (, )c 2n 2 mn m n 1n 1 y j 0(符号不限 , 或 0)i 1 ~ m
1616231381514141521232172152723215245211524min682680038100016100106000min682680038100016100106000261383161610031800012000380001500x2060160000523000051000021000005600x2013540至此右端项的所有分量都已非负当前的迭代点已是一个对偶可行的饿基本可行解因而也是最优解即最优解为相应的目标函数值为100540单纯形法是在基本可行解中寻找满足最优性条件简约价值系数非负的最优解对偶单纯形法则是在所有满足最优性条件简约价值系数非负的最优解中寻找满足可行的最优解单纯形法与对偶单纯形法对偶的经济解释1原始问题是利润最大化的生产计划问题称为m种资源的影子价格shadowprice原始和对偶问题都取得最优解时最大利润maxzmin3资源影子价格的性质影子价格越大说明这种资源越是相对紧缺影子价格越小说明这种资源相对不紧缺如果最优生产计划下某种资源有剩余这种资源的影子价格一定等于0种资源的边际利润4产品的机会成本机会成本表示减少一件产品所节省的资源可以增加的利润增加单位资源可以增加的利润减少一件产品可以节省的资源在利润最大化的生产计划中1边际利润大于0的资源没有剩余2有剩余的资源边际利润等于03安排生产的产品机会成本等于利润4机会成本大于利润的产品不安排生产
对偶与对偶单纯形法的应用
y1+2y2
≥50
y1 + y2+y3 ≥100
其中y1,y2,y3均≥0
其对偶问题是?
17
• Max z=50x1 +100x2 • x1 +x2 ≤300 • 2x1+x2 ≤400 • x2 ≤250 • x1,x2≥0
18
(二)若原问题为(弱对偶性定理) maxZ=CX AX ≤b X ≥0 其对偶问题为 Minw=Yb YA ≥C Y ≥0 若X为原问题任一可行解,Y为对偶问题任一 可行解,则必有CX ≤Yb
3}=-3;
确定进基变量:θ=min{δ/akj,akj<0}={-15/-5} 从而确定主元素akr,以此为中心做初等行变换。
39
对偶单纯性表2
ci
-12 -16 -15 0 0
CB B b y1 y2 y3 y4 y5
0 y4 -2 -2 -4 0 1 0
-15 y3 3/5 2/5 0 1 0 -1/5
9
记忆宝典: 1、Max——Min 2、C ——b
3、无约束等于0,个数m变n。 4、max就反正,min就正反。(约束条 件——变量)
10
示例:转化为对偶问题
mz a 3 x x 1 4 x 2 6 x 3
2 x1 3 x 2 6 x3 440 , 6 x1 4 x 2 x3 100 , 5 x1 3 x 2 x3 200 , x1 , x 2 , x3 0
δ -6 -16 0 0 -3
确定出基变量:bk=min{bi , bi<0}=min{15}=-15;
确定进基变量:θ=min{δ/akj,akj<0}={-6/-2, -16/-4}=3
应用运筹学基础:线性规划(4)-对偶与对偶单纯形法
应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。
引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。
现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。
但假如现在我们不⽣产产品,⽽是要把原料都卖掉。
设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。
对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。
第三章对偶单纯形法
··
≥ (c1,c2,…,cn)
y1,y2,…,ym≥0
m个变量,n个约束条件
2﹒约束条件全部为“=”的对偶
原问题:
max z=CX
max z=CX
max z=CX
AX=b
等价
AX≤b AX≥b
AX≤b 等价 -AX≤-b
X≥0
min ω=(Y1,Y2) A
(Y1,Y2) -A Y1,Y2≥0
b -b
承租
出让代价应不低于 用同等数量的资源 自己生产的利润。
厂家能接受的条件:
出 用同让6等代y数价2量应的不y资低3 源于 2 5 y自1 己生2产y2的利y润3。 1
收购方的意愿:
min w 15 y 24 y 5 y
1
2
3
Ⅰ
Ⅱ
D
设备A
0
设备B
6
调试工序
1
5 15时 2 24时 1 5时
利润(元) 2
x1 0, x2 , x3 0, x4无限制max变S量个数5n y1 约4束y方2 程个6数yn3
2、求下列问题的对偶问题 min Z 2x1 3x2 5x3 x4
4x1 x2 3x3 2x4 5
s.t
3x1 2x2 7x4 2x1 3x2 4x3
4 x4
6
s.t
3﹒约束条件为“≥”的对偶
原问题:
max z=CX
max z=CX
对
AX≥b
等价
-AX≤ - b
偶
X≥0 min ω=Yb
对偶 问题
X≥0
问
题
min ω=Y1 (- b)
YA ≥C Y≤0
令Y= - Y1
对偶单纯形法
y1, y2 0
Min w 2 y1 3y2
解:
先将原问题化为下列形式
s.t.
2 y1 y1
y1 y2 y3 4 3y2 y4 6 y2 y5 3
y1, y2 , y3, y4 , y5 0
对偶单纯形法举例(例2-2) 则第一个基为B1=(P3,P4,P5)=I 基变量为y3,y4,y5 第一个对偶可行基对应的单纯形表如下
5
-w 8 -15 0 -1 -4 0
对偶单纯形法举例(例1-4)
T(B2) XB b Y1 Y2 Y3 Y4 Y5 Y2 1/3 0 1 1/6 -1/6 0
Y -1/3 -5 0
5
-w 8 -15 0
-2/3 -1/3 1 -1 -4 0
T(B3)
Y2 1/4 -5/4 1 Y3 1/2 15/2 0 -w 17/2 -15/2 0
5
w 0 -2 -3 0 0 0
Y3 -2 -5/3 0 Y2 2 1/3 1 Y5 -1 -2/3 0
1 -1/3 -1/3 0 -1/3 -1/3 0 -1/3 2/3
w 6 -1 0 0 -1 -1
对偶单纯形法举例(例3-1)
例3:用对偶单纯形法解下列线性规划
Min w x1 x2
3x1 x2 x3 1
s.t.
x1 x2 2x1 2x2
x4 2 x5 4
x j 0 j 1,2,3,4,5
解: 取B1=(P3,P4,P5)=I
为对偶可行基
因此其对应的单纯形表如下
对偶单纯形法举例(例3-2)
T(B1)
x1 x2 x3 x4
x5
x3 -1 3 -1 1 0 0
x4 -2 -1 1 0 1
线性规划的解法
线性规划的解法线性规划是现代数学中的一种重要分支,它是研究如何在一定约束条件下优化某种目标函数的一种数学方法。
在现实生活中,许多问题都可以用线性规划求解。
如在生产中,如何安排产品的产量才能最大化利润;在运输中,如何安排不同的运输方式最大程度降低成本等等。
线性规划的解法有多种,下面我们就来对其进行详细的介绍。
1. 单纯形法单纯形法是线性规划中最重要的求解方法之一,它是由Dantzig于1947年提出的。
单纯形法的基本思路是从某一个初始解出发,通过挑选非基变量,使得目标函数值逐步减少,直到得到一个最优解。
单纯形法的求解过程需要确定初始解和逐步迭代优化的过程,所以其求解复杂度较高,但是在实际中仍有广泛应用。
2. 对偶线性规划法对偶线性规划法是一种将线性规划问题转化为另一个线性规划问题来求解的方法。
这种方法的主要优势是,它可以用于求解某些无法用单纯形法求解的问题,如某些非线性规划问题。
对偶线性规划法的基本思路是将原问题通过拉格朗日对偶性转化为对偶问题,然后求解对偶问题,最终得到原问题的最优解。
3. 内点法内点法是一种由Nesterov和Nemirovsky于1984年提出的方法,它是一种不需要寻找可行起点的高效的线性规划求解方法。
内点法的基本思路是通过不断向可行域的内部靠近的方式来求解线性规划问题。
内点法的求解过程需要实现某些特殊的算法技术,其求解效率高,可以解决一些规模较大、约束条件复杂的线性规划问题。
4. 分枝定界法分枝定界法是一种通过逐步将线性规划问题分解成子问题来求解的方法。
这种方法的基本思路是,在求解一个较大的线性规划问题时,将其分解成若干个较小的子问题,并在每个子问题中求解线性规划问题,在不断逐步求解的过程中不断缩小问题的规模,最终得到问题的最优解。
总之,不同的线性规划解法各有千秋,根据实际问题的需要来选择合适的求解方法是非常重要的。
希望本文能够对您有所帮助。
第三章线性规划的对偶定理
特点:
1. max min 2.限定向量b 价值向量C
其它形式 的对偶
?
(资源向量)
3.一个约束 一个变量。
4. max z的LP约束“ ” min z 的
LP是“ ”的约束。
5.变量都是非负限制。
二、原问题与对偶问题的数学模型
❖ 1.对称形式的对偶
当原问题对偶问题只含有不等式约束
时,称为对称形式的对偶。
根据对称形式的对偶模型,可直接 写出上述问题的对偶问题:
b max w (Y 1,Y 2 ) -b
(Y
1,Y
2
)
A A
C
Y1 0 ,Y2 0
max w (Y 1 Y 2 ) b
(Y
1
Y
2
)
A
C
Y 1 0, Y 2 0
令 Y Y,1 Y得2对偶问题为:
max w Yb
❖ (3)若原问题可行,但其目标函数值无 界,则对偶问题无可行解。
❖ (4)若对偶问题可行,但其目标函数值 无界,则原问题无可行解。
❖ (5)若原问题有可行解而其对偶问题无 可行解,则原问题目标函数值无界。
❖ (6)对偶问题有可行解而其原问题无可 行解,则对偶问题的目标函数值无界。
CX Yb
原问题
设备A 设备B 调试工序
产品Ⅰ 产品Ⅱ
0
5
6
2
1
1
利润(元) 2
1
D
15时 24时 5时
x 设 Ⅰ产量––––– 1
x Ⅱ产量––––– 2
如何安排生产, 使获利最多?
max z 2 x1 x2
s.t.
5x2 15
6 x1 2 x2 24
运筹学第2章-线性规划的对偶理论
Ma例x:Z ( 2第x一1 章3例x22)
2 x1 2 x2 12
当原问题和对偶问题都取得最优解时,这 一对线性规划对应的目标函数值是相等的:
Zmax=Wmin
二、原问题和对偶问题的关系
1、对称形式的对偶关系
(1)定义:若原问题是
MaxZ c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn b1
s.t.a21
x1
a22
二、 手工进行灵敏度分析的基本原则 1、在最优表格的基础上进行; 2、尽量减少附加计算工作量;
5y3 3
,y
2
3
0
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时, 那么上述的价格系统能保证不亏本又最富 有竞争力(包工及原材料的总价格最低)
内,使得产品的总利润最大 。
MaxZ 2x1 3x 2
2x1 2x2 12
s.t.54xx12
16 15
x1, x 2 0
它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力:
MinW 12y1 16y2 15y3
2y1 4y2
2
s.t.2y1y,1y
y1, y2, , ym 0
第2章线性规划讲义的对偶问题
称CBB-1为单纯形乘子
19
二、对偶问题的基本性质
1. 对称性
2. 弱对偶性
推论:
(1)原问题任一可行解的目标函数值是其对偶问题目标函数 值的下界;反之对偶问题任一可行解的目标函数值是其 原问题目标函数值的上界。
(2)如原问题有可行解且目标函数值无界,则其对偶问题无 可行解;反之对偶问题有可行解且目标函数值无界,则 其原问题无可行解。
35
三、分析cj的变化 线性规划目标函数中变量系数cj的变化仅仅影响到检验 数,所以将cj的变化直接反映到最终单纯形表中,只可 能出现表2-9中的第一、二两种情况。
例5:在美佳公司例子中, (1) 若家电Ⅰ的利润降至1.5元/件, 而家电Ⅱ的利润增 至2元/件, 美佳公司最优生产计划有何变化? (2) 若家电Ⅰ的利润不变, 而家电Ⅱ的利润在什么范围 内变化时, 该公司的最优生产计划不发生变化。
28
练习: 用对偶单纯形法求解下述LP问题:
min w x1 4x2 3x4 x1 2x2 x3 x4 3
st. 2x1 x2 4x3 x4 2 xi 0(i 1,2,3,4)
29
min z cx
注: 若LP问题的标准形式为:
Ax b
st
.
x
0
其对偶单纯形法的求解步骤确定换入基变量的原则如下:
目标函数求极小值时,约束方程均为≥
2
二、对称形式下对偶问题的一般形式
对称形式的LP问题(LP1):
M Z c 1 x a 1 c 2 x x 2 c n x n
a 1 x 1 1 a 1 x 2 2 a 1 n x n b 1 a 2 x 1 1 a 2 x 2 2 a 2 n x n b 2
对偶单纯形法详解课件
终止准则
算法终止的准则有多种,如达到预设的 最大迭代次数、解的变化小于预设阈值 等。
VS
终止判断
在每次迭代后,需要判断是否满足终止准 则,如果满足则算法终止,否则继续迭代 。
04 对偶单纯形法的优化策略
预处理技术
预处理技术
通过预处理,可以消除原问题中的冗 余约束,简化问题规模,提高求解效 率。
线性规划问题的转化
对偶单纯形法详解课 件
目录
CONTENTS
• 对偶单纯形法简介 • 对偶单纯形法的基本原理 • 对偶单纯形法的实现步骤 • 对偶单纯形法的优化策略 • 对偶单纯形法的案例分析 • 对偶单纯形法的展望与未来发展方向
01 对偶单纯形法简介
对偶问题的定义
对偶问题是指原问题的一个等价形式,其目标函数和约束条 件与原问题互为对偶。在优化问题中,对偶问题通常用于求 解原问题的最优解。
对偶单纯形法的应用场景
对偶单纯形法广泛应用于各种优化问题,如线性规划、整数规划、二次规划等。 它适用于求解大规模优化问题,并且具有较高的计算效率和精度。
在实际应用中,对偶单纯形法可以与其他优化算法结合使用,如梯度下降法、共 轭梯度法等,以提高求解效率和精度。同时,对偶单纯形法也可以用于解决一些 复杂的组合优化问题,如旅行商问题、背包问题等。
对偶问题的形式取决于原问题的类型和约束条件。例如,线 性规划的对偶问题就是将原问题的目标函数和约束条件进行 线性变换,得到一个新的优化问题。
对偶单纯形法的概念
对偶单纯形法是一种求解线性规划的方法,它利用对偶问 题的性质,通过迭代和交换变量的方式,逐步逼近最优解 。
在对偶单纯形法中,每次迭代都包括两个步骤:一是根据 对偶问题的最优解更新原问题的解;二是根据原问题的最 优解更新对偶问题的解。这两个步骤交替进行,直到达到 最优解或满足一定的停止准则。
单纯形解法与对偶解法
线性规划的单纯形解法 例:1212121max Z 432216005 2.52500.. 4000, 1,2i x x x x x x s t x x i =++≤⎧⎪+≤⎪⎨≤⎪⎪≥=⎩一、建立初始基本可行解标准化:1212312415max Z 4322 16005 2.5 2500.. 4000, 1,2,...,5i x x x x x x x x s t x x x i =+++=⎧⎪++=⎪⎨+=⎪⎪≥=⎩ 其中,x 3,x 4,x 5为松驰变量。
增广矩阵表示:2x 1+2x 2 1600Z=4005x 1+2.5x 212345 2 2 1 0 0 16005 2.5 0 1 0 2500 1 0 0 0 1 400x x x x x b ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦初始可行基:1 1 0 00 1 00 0 1B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦基变量可用非基变量表示成:3124125116002-225005 2.5400x x x x x x x x=-⎧⎪=--⎨⎪=-⎩ 令非基变量x 1=x 2=0,得初始可行解:X=[0,0,1600,2500,400],对应于可行域的O 点。
相应的Z 值为0二、解的最优性检验规划判断的方法是检查目标函数中是否还有正的系数。
Z=4x 1+3x 2+0 因此,如果将这两个非基变量中的任意一个变成基变量,也就是使该变量的取值由零变为正值,都有可能使目标函数值增加,因此原来的解不是最优解。
三、第一次迭代(基变换) 1.确定换入变量一般选取价值系数大的那个为入基变量。
这里选择x 1为入基变量。
2.确定换出变量确定入基变量,同时要确定换出变量,其原则是使得到的新的基本解同时是可行解。
分析如下:令x 2=0(x 2仍为非基变量),得:3141511600225005400x x x x x x=-⎧⎪=-⎨⎪=-⎩ 随着x 1的增加,x 3, x 4, x 5的值就会逐渐变小,但始终应保持非负。
单纯形法与对偶定理
单纯形法与对偶定理单纯形法⼀般oi 中遇到的线性规划问题都长这样⽐如某⼀些⽹络流问题,以及⼆分图最⼤权匹配啥的,结合对偶定理,可以有很多很强的结论以及⼀个最⼩费⽤流的线性规划式⼦现在考虑怎么做这类问题不妨先引⼊⼀个基变量(松弛变量)⽐如说现在的系数矩阵是⽐如说现在的系数矩阵是x 11x 12x 13x 14...x 1n +1x 21x 22x 23x 24...x 2n +1x 31x 32x 33x 34...x 3n +1x 41x 42x 43x 44...x 4n +1...x m 1x m 2x m 3x m 4...x mn +1对于第i ⾏x i ,n +1=b i −n∑j =1x i ,j ∗a i ,j 不妨将第x i ,k 表⽰出来x i ,k =x i ,n +1+∑j != k x i ,j ∗a i ,j −b i−a i ,k给你要最⼤化的式⼦带来的价值是这样可以吧x i ,n +1的值给去x i ,k ,这样的操作叫做转轴之后就可以⽤这个过程来时⽬标函数有最⼤值有⼀个例题吧很容易列出线性规划式⼦max :c 1∗x 1+c 2∗x 2+...+c n ∗x n a 11∗x 1+a 12∗x 2+...+a 1n ∗x n <=b 1..a m 1∗x 1+a m 2∗x 2+...+a mn ∗x n <=b m就是⼀个板⼦题#include<bits/stdc++.h>#define MAXN 500#define eps 1e-7typedef double ll;const ll inf = 1e18;using namespace std;int n,m;ll a[MAXN][MAXN];int id[MAXN];void out(){for(int i = 1 ; i <= n ; i++)printf("%.2f " , a[0][i]); puts("");for(int i = 1 ; i <= m ; i++){ for(int j = 1 ; j <= n ; j++){ printf("%.2f " , a[i][j]); }printf("%.2f " , a[i][0]); puts(""); }}void plot(int x , int y){ swap(id[x + n] , id[y]);double t = a[x][y]; a[x][y] = 1;for(int j = 0 ; j <= n ; j++)a[x][j] /= t; for(int i = 0 ; i <= m ; i++){if(i == x || a[i][y] < eps)continue; t = a[i][y] , a[i][y] = 0;for(int j = 0 ; j <= n ; j++)a[i][j] -= a[x][j] * t; }}bool simplex(){for(int i = 1 ; i <= n ; i++)id[i] = i; int x = 0, y = 0; int cnt = 0; ll minl; while(1){x = y = 0 , minl = inf; cnt++;for(int i = 1 ; i <= n ; i++)if(a[0][i] > eps){x = i;break;} if(!x)break;for(int i = 1 ; i <= m ; i++)if(a[i][x] > eps && minl > a[i][0] / a[i][x])minl = a[i][0] / a[i][x] , y = i; if(!y) {puts("Unbounded"); return false;} plot(y , x); }return true;}int main(){while(scanf("%d%d",&n,&m) == 2){ memset(a , 0 ,sizeof(a));for(int i = 1 ; i <= n ; i++)cin>>a[0][i]; for(int i = 1 ; i <= m ; i++){for(int j = 1 ; j <= n ; j++)cin>>a[i][j]; cin>>a[i][0]; }simplex();printf("Nasa can spend %d taka.\n",(int)ceil(-a[0][0]*m)); }}对偶定理考虑⼀个基本的线性规划模型{}{max :c 1∗x 1+c 2∗x 2+...+c n ∗x n a 11∗x 1+a 12∗x 2+...+a 1n ∗x n <=b 1..a m 1∗x 1+a m 2∗x 2+...+a mn ∗x n <=b mx i >=0其系数矩阵为a 11a 12...a 1n a 21a 22...a 2n a 31a 32...a 3n..a m 1a m 2...a mn那么上⾯这个线性规划模型的对偶问题的系数矩阵为上述系数矩阵的转置矩阵a 11a 12...a 1n a 21a 22...a 2n a 31a 32...a 3n..a m 1a m 2...a mnT 即:a 11a 21...a m 1a 12a 22...a m 2a 13a 32...a m 3..a 1n a 2n ...a nm那么线性规划模型对偶过来就是max :b 1∗y 1+b 2∗y 2+...+b m ∗y m a 11∗x 1+a 21∗x 2+...+a m 1∗x n <=c 1..a 1n ∗y 1+a 2n ∗y 2+...+a nm ∗y m <=c my i >=0基本上⼤多数的线性规划模型都可以通过对x i 的转换化成标准形式不过还是应该列个表:并且注意:原问题有⽆界解等价于对偶问题⽆可⾏解但是对偶问题⽆可⾏解时,原问题可能为⽆界解或者⽆可⾏解线性规划在⽹络流中的应⽤全⼳模矩阵(任何⼀个⾏数列数相同的⼦矩阵的值都是+1/-1)有⼀个很好的性质,对于⼀个线性规划模型的系数矩阵是⼀个全⼳模矩阵,那么有每⼀个单纯形法的调整系数都应当为(-1,0,1)线性规划对偶性--->>可以通过很显然的式⼦推导推导出---->>(最⼤流 = 最⼩割)部分题⽬没有很显然的建图,⼀般是转线性规划,然后看⼀看是不是⼀个全⼳模矩阵,如果是,就可以使⽤⽹络流解决有⼀个可以判断是否是全⼳模矩阵的⽅法直接考虑差分,对于每⼀个约束 + 表⽰⼊,-表⽰出,直接建图,跑⼀个最⼩最⼩费⽤流就好了也可以直接对偶掉,做⼀个单纯形法线性规划与特殊的整数规划前40分可以直接dp 掉还有⼀道题Codeforces 375E,有O (n 3)的dp 做法,但是线性规划可以很快的做掉。
2、线性规划问题的对偶问题
3 y1 + y2 30
y 1, y 2 0
得到另外一个数学模型:
min s = 120 y1 + 50 y2
s.t. 4 y1 + 2y2 50 3 y1+ y2 30 (2.2)
y 1, y 2 0
模型(2.1)和模型(2.2) 既有区别又有 联系。联系在于它们都是关于家具 厂的模型并且使用相同的数据,区 别在于模型反映的实质内容是不同 的。模型(2.1)是站在家具厂经营者 立场追求销售收入最大,模型(2.2) 是则站在家具厂对手的立场追求所 付的租金最少。
max Z=2x1+3x2 s.t. 2x1+2x2 12 4x1 16 5x2 15 x1,x2 0
6 5 4 3 2 1 1 2 3 4 5 6 ① 2X+2y<=12 X=3 X=4
点(3,3)是最优解, z*=15 当A的资源变为13小 时,z*=16,说明A的边 际价格是1,即影子 价格是1。
约束条件右端项 目标函数变量的系数
目标函数变量的系数 约束条件右端项
• 例2-7:写出下列线性规划的对偶问题
min z=7x1+4x2-3x3 s.t. -4x1+2x2-6x3≤24 -3x1-6x2-4x3≥15 5x2+3x3=30 x1≤0,x2取值无约束,x3≥0
Max w=24y1+15y2+30y3
引入变量 y1 , y2’,y2” 写出对偶问题
max g = 5 y1+ 4y2’- 4y2” s.t. y1 +2y2’- 2y2” 2 y1 3 -y1 + y2’- y2” -5 y1, y2’,y2” 0
《运筹学》第二章 对偶问题和灵敏度分析jssk1
2.1 线性规划的对偶理论
解:写出该问题的对偶问题
min W 20 y1 20 y2 y1 2 y2 1 2y y 2 2 1 2 y1 3 y2 3 3 y 2 y 4 2 1 y1 , y2 0
根据互补松弛性,可得: X3*=4>0 则 2y1+3y2=3
s.t. AX ≤b X≥0 s.t. YA ≥ C Y≥0
2.1 线性规划的对偶理论
二、原问题和对偶问题的关系
1、原问题目标函数求最大值,对偶问题求最小值; 2、原问题目标函数的系数是对偶问题约束条件的右端项,原问 题中的右端项是对偶问题目标函数的系数; 3、原问题约束条件为“≤”,则在其对偶问题中决策变量为 “≥”;原问题中决策变量为“≥”,则在其对偶问题中的约束条 件为“≥”; 4、原问题中的约束条件个数等于它的对偶问题中的变量个数, 原问题中的变量个数等于它的对偶问题中的约束条件个数;
YA ≥ C
Y≥0
在单纯形法的每一步迭代中,目标函数取值 Z=CBB-1b+(CN-CBB-1N)XN ,当非基变量XN=0时有 Z=CBB-1b和检验数CN-CBB-1N中都有乘子Y=CBB-1, 那么Y的经济意义是什么?
2.1 线性规划的对偶理论
Y=CBB-1=(y1,y2,…,ym),则得
Z CB B b Yb bi yi
2.1 线性规划的对偶理论
三、对偶问题的基本定理
1、对称性:对偶问题的对偶是原问题。
2、弱对偶定理:若X(0)是原问题的可行解,Y(0)是对偶 问题的可行解,则一定有CX(0) ≤ Y(0)b
max Z=CX 证明:设原问题是 AX ≤b X≥0
则对偶问题是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对 称 形 式 的 对 偶 问 题
对偶的定义
原始问题 min f(x)=CTX s.t. AX≥b X ≥0
min m CT A ≥ b
对偶问题 max z(y)=bTy s.t. ATy≤C y ≥0
max bT
n
AT m
≤ C
n
对偶问题的特点
(1)目标函数在一个问题中是求最大值在 另一问题中则为求最小值 (2)一个问题中目标函数的系数是另一个 问题中约束条件的右端项 (3)一个问题中的约束条件个数等于另一 个问题中的变量数 (4)原问题的约束系数矩阵与对偶问题的 约束系数矩阵互为转置矩阵
对偶问题对应表
原问题(对偶问题) 目标函数min 约束条件: m个
第i个约束类型为“≥” 第i个约束类型为“≤” 第i个约束类型为“=”
对偶问题(原问题) 目标函数max 变量数: m个
第i个变量≥0 第i个变量≤0 第i个变量是自由变量
变量数:n个
第j个变量≤ 0 第j个变量≥ 0 第j个变量是自由变量
1
B
1
C
1
拥有量
3
1
2
4
3
7
3
9
假设有客户提出要求,购买工厂所拥有的 工时和材料,为客户加工别的产品,由客 户支付工时费和材料费。那么工厂给工时 和材料制订的最低价格应是多少,才值得 出卖工时和材料 ?
A 工 时 材 料 单件利润
1 1
B
1 4
C
1 7
拥有量 3 9
2
3
3
•出卖资源获利应不少于生产产品的获利; 约束
≤
≥0
一般 线 性规 划 问题 的 对偶 问题
min f c1x1 c2 x2 cn xn
a11 x1 a12 x2 a1n xn (, )b1 a21 x1 a22 x2 a2 n xn (, )b2 a x a x a x (, )b mn n m m1 1 m 2 2 x j 0( 0, 或符号不限) j 1 ~ n
约束条件:n个
第j个约束类型为“≥” 第j个约束类型为“≤” 第j个约束类型为“=”
例 写出如下LP问题的对偶问题
min f x1 2x2 3x3
3 x1 2 x2 x3 6 4 x 2 x 3x 5 1 2 3 x1 3 x2 x3 9 , x3符号不限 x1 0, x2 0,
其他形式问题的对偶
min f=CTX s.t. AX≥b X
≥0
max z=bTY s.t. ATY≤C Y ≥0 max z=bTY s.t. ATY≤C Y :unr max z=bTY s.t. ATY≤C Y ≤0
min f=CTX s.t. AX=b X ≥0
min f=CTX s.t. AX b X
对偶原理
对偶问题概念:
任何一个线性规划问题都有一个与之相对应 的线性规划问题,如果前者称为原始问题,后者 就称为“对偶”问题。 对偶问题是对原问题从另一角度进行的描述 其最优解与原问题的最优解有着密切的联系,在 求得一个线性规划最优解的同时也就得到对偶线 性规划的最优解,反之亦然。 对偶理论就是研究线性规划及其对偶问题的 理论,是线性规划理论的重要内容之一。
问题的导出
A B
1
4
C
1
7
拥有量
工 时 材 料 单件利润
1
1
3
9
2
3
3
max Z 2 x1 3x2 3x3
x1 x2 x3 3 s.t. x1 4 x2 7 x3 9 x 0, x 0, x 0 2 3 1
A
工 时 材 料 单件利润
•价格应该尽量低,这样,才能有竞争力;
目标
•价格应该是非负的
A 工 时 材 料 单件利润
1 1 2
B
1 4 3
C
1 7 3
拥有量 3 9
用y1和y2分别表示工时和材料的出售价格 总利润最小 保证A产品利润 min W=3y1+9y2 y1+y2≥2
保证B产品利润
保证C产品利润
y1+4y2≥3
y1+7y2≥3
售价非负
y1≥0
y2≥0
A
工 时 材 料 单件利润
minW 3 y1 9 y2
y1 y 2 2 y 4y 3 1 2 s.t. y1 7 y 2 3 y1 0, y 2 0
1
B
1
C
1
拥有量
3
1
2
4
3
7
3
9
max Z 2 x1 3x2 3x3
max z b1 y1 b2 y2 bm ym
a11 y1 a21 y2 am1 ym (, )c1 a12 y1 a22 y2 am 2 ym (, )c2 a y a y a y (, )c mn m n 1n 1 2 n 2 y j 0(符号不限, 或 0)i 1 ~ m
a1n x1 b1 a2 n x2 b2 amn xn bm 0
max W b1 y1 b2 y2 bm ym
a11 a21 am1 y1 c1 a12 a22 am 2 y2 c2 s.t. a a2 n amn ym cn 1n y1 , y2 , , ym 0
x1 x2 x3 3 s.t. x1 4 x2 7 x3 9 x 0, x 0, x 0 2 3 1
min Z c1x1 c2 x2 cn xn
对 偶 问 题 的 定 义
a11 a12 a21 a22 s.t. a am 2 m1 x1 , x2 , , xn