电路基础 第一章 电路和基尔霍夫定律
《电工电子学》第一章电路的基本概念与基本定律(课时).总结
![《电工电子学》第一章电路的基本概念与基本定律(课时).总结](https://img.taocdn.com/s3/m/70a28250fe4733687e21aad8.png)
1 1 1 1 R R1 R2 Rn
分流公式
+
i i1
R1
i2
R2
R2 i1 i R1 R2
R1 i2 i R1 R2
理想电流源的串联与并联:
IS1 IS2 IS3 IS
并联
IS= ISk
注意参考方向
IS= IS1+ IS2 - IS3
串联
电流相同的理想电流源才能串联,且每个恒流 源的端电压均由它本身及外电路共同决定。
想想
US
练练
在电路等效 的过程中,与理 想电流源相串联 的电压源不起作 用;与理想电压 源并联的电流源 不起作用。 is=is2-is1
KVL通常用于闭合回路,但也可推 广应用到任一不闭合的电路上。 例:列出下图的KVL方程
a + uab b - + us3 -
i1
+ us1 -
R1
i4
+ us2 -
i2
R2
uab us3 i3 R3 i2 R2 us 2 i1R1 us1
uab us3 i3 R3 i2 R2 us 2 i1R1 us1 0
导线 理想化 电源
I
电 池
灯 泡
+
_ 电源 E
R
U
理想化 元件
负载
今后我们分析的都是 电路模型,简称电路。
1-1电路中的物理量及其正方向
电路分析的主要任务在于分析求解电路物理 量,其中最基本的电路物理量就是电流、电 压和功率。
一、电流
电荷的定向移动形成电流。
电流的大小用电流强度表示,简称电流。
电流强度:单位时间内通过导体截面的电荷量。
电路分析基础第一章 电路模型和电路定律
![电路分析基础第一章 电路模型和电路定律](https://img.taocdn.com/s3/m/49f6c2fe9e31433239689395.png)
+
–
+
–
+
实际方向
实际方向
+
U >0
U<0
上页
下页
电压参考方向的两种表示方式
(1) 用正负极性表示
+
(2) 用双下标表示
U
A
UAB
B
UAB =UA- UB= -UBA
上页 下页
3. 关联参考方向 元件或支路的u,i 采用相同的参考方向称之为关联 采用相同的参考方向称之为 参考方向,即电流从电压的“+”极流入,从“-” 极流出该元件。反之,称为非关联参考方向。 极流出该元件
P6吸 = U 6 I 3 = (−3) × (−1) = 3W
上页 下页
注
对一完整的电路,发出的功率=吸收的功率
3. 电能(W ,w)
在电压、电流一致参考方向下,在t0到t的时间内 该部分电路吸收的能量为
w(t0 , t ) = ∫ p (τ ) dτ = ∫ u (τ )i (τ ) dτ
t0 t0
电源 Sourse
灯 Lamp
RS US 电路模型
R
Circuit Models 干电池 Battery
上 页 下 页
电路理论中研究的是 理想电路元件构成的电路(模型)。
电路模型,不仅能够反映实际电路及 其器件的基本物理规律,而且能够对 其进行数学描述。这就是电路理论把 电路模型作为分析研究对象的实质所 在。
干电池 Battery 电路理论中,“电路”与“网络”这两个术语可通用。“网络” 的含义较为广泛,可引申至非电情况。
例:手电筒电路
开关 灯泡
10BASE-T wall plate
电路分析基础第1章 电路的基本概念与定律
![电路分析基础第1章 电路的基本概念与定律](https://img.taocdn.com/s3/m/e599222955270722192ef7de.png)
第1章电路的基本概念和定律 (1) (2)按选定的参考方向分析电路,求解电流。若计算结 果为正(i>0),说明电流的参考方向与实际方向相同;若计 算结果为负值(i<0),说明电流的参考方向与实际方向相反, 如图1-3 (3)若没有设定参考方向,则电流的正、负没有意义。 在电路中,元件的电流参考方向可用箭头表示,如图14所示;在文字叙述时可用电流符号加双字母构成的下标表 示,如iab,它表示电流由a流向b,并有iab=-ib方向与实际方向的关系
16
第1章电路的基本概念和定律
图1-4 电流参考方向的表示
17
第1章电路的基本概念和定律 【例1-1】 图1-5中,1、2、3三个方框表示三个元件或 电路,箭头表示电流的参考方向,i1、i2、i3表示电路中的电 流。说明当i1=i2=i3=1A和当i1=i2=i3=-1A时各电路电流 的真实方向。 解 (1)当电流大小均为1A时,由于电流大于零,故其真 实方向与参考方向相同。即i2真实方向由c流向d;i3真实方 向由f流向e;而i1由于没有参考方向而无法确定其实际方向。
6
第1章电路的基本概念和定律 为了便于对电路进行分析与计算,对复杂的实际问题进 行研究,在理论分析中常常把实际电路中的各种设备和电路 元(器)件用能够表征电路主要电磁性质的理想化的电路元件 来表示。例如,电阻具有消耗电能的特性,我们就可以将具 有这一特性的电灯、电炉等用电器都用电阻来代替,虽然这 种替代会带来一定的误差,但在一定条件下是可以忽略的。 在实际工程问题中,若需要更精密地做研究时,可再考虑由
20
第1章电路的基本概念和定律
1.2.2 1. 一般情况下,导体中的电荷无规则的自由运动不能形成
在匀强电场中,正电荷Q在电场力的作用下,由a点移
电路基础-电压源和电流源-受控源-基尔霍夫定律
![电路基础-电压源和电流源-受控源-基尔霍夫定律](https://img.taocdn.com/s3/m/19f79ade960590c69fc37638.png)
电路基础-电压源和电流源-受控源-基尔霍夫定律————————————————————————————————作者:————————————————————————————————日期:2第一章电路模型和基尔霍夫定律3讲授板书1、掌握电压源、电流源的概念、用法及特性;2、熟悉受控源的用法;3、掌握基尔霍夫定律的应用。
1、电压源、电流源用法及特性2、基尔霍夫定律的应用受控源的概念及用法1. 组织教学 5分钟3. 讲授新课70分钟1)电压源及电流源25 2)受控源15 3)基尔霍夫定律302. 复习旧课5分钟电路元件特性4.巩固新课5分钟5.布置作业5分钟34一、学时:2二、班级:06电气工程(本)/06数控技术(本)三、教学内容:[讲授新课]:第一章电路模型和电路定律(电压源和电流源的概念及特点受控源的概念及分类基尔霍夫定律)§1-8电源元件(independent source)1. 理想电压源1)定义:其两端电压总能保持定值或一定的时间函数,且电压值与流过它的电流i 无关的元件叫理想电压源。
2)电路符号3)理想电压源的电压、电流关系(1)电源两端电压由电源本身决定,与外电路无关;与流经它的电流方向、大小无关。
(2)通过电压源的电流由电源及外电路共同决定。
伏安关系曲线如下图示:实际电流源可由稳流电子设备产生,如晶体管的集电极电流与负载无关;光电池在一定光线照射下光电池被激发产生一定值的电流等。
4)电压源的功率在电压、电流的非关联参考方向下;P = us i56物理意义:电流(正电荷 )由低电位向高电位移动,外力克服电场力作功电源发出功率。
例1-3图示电路,当电阻R 在0~∞之间变化时,求电流的变化范围和电压源发出的功率的变化。
解:(1)当电阻为R 时,流经电压源的电流为: 电源发出的功率为:表明当电阻由小变大,电流则由大变小,电源发出的功率也由大变小。
(2)当,则(3)当,则由此例可以看出:理想电压源的电流随外部电路变化。
电工学 电路基础简明教程 第1章
![电工学 电路基础简明教程 第1章](https://img.taocdn.com/s3/m/2eab6cc58bd63186bcebbc6b.png)
第一章 电路的基本概念与定律
功 率 的 计 算 1) u、i取关联参考方向
2) u、i取非关联参考方向 p吸 =- u i 例 U = 5V, I = - 1A i + u –
+
u
i
p吸 = u i
例 U = 5V, I = - 1A
–
P吸= UI = 5× (-1) = -5 W p吸< 0 ,说明元件实际发出功率 5W
第一章 电路的基本概念与定律
单位时间内电流做的功称为电功率,用“P ”表示: UIt W P = t = t = UI 国际单位制 U :V,I:A,电功率P用瓦特W。 用电器铭牌数据上的电压、电流值称额定值, 所谓额定值是指用电器长期、安全工作条件下的最 高限值,一般在出厂时标定。其中额定电功率反映 了用电器在额定条件下能量转换的本领。
第一章 电路的基本概念与定律
例、 右下图电路,若已知元件吸收功率为-20W, U I + 电压U=5V,求电流I。
元件
解: 由图可知UI为关联参考方向,因此: P -20 I= -4A U = 5 = 例、右下图电路,若已知元件中电流为I=-100A, 电压U=10V,求电功率P,并说明元件是电源 还是负载。 解:由图可知UI为非关联参考方向,因此: P = UI = 10×(-100) = 1000W 元件吸收正功率,说明元件是负载
+
U E
RL
_
b
–
电位V是相对于参考点的电压。参考点的 电位:Vb=0;a点电位: Va=E-IR0=IR
第一章 电路的基本概念与定律
为描述和表征电荷与元件间能量交换的规模及 大小,引入电路物理量电压、电位和电动势。 Wa-Wb 电压的定义式为: Uab = q 电位的定义式为: Va = 电动势的定义式为: 单位换算: Wa-W0 q 三者定义式 的形式相同 因此它们的 单位相同
第1章基尔霍夫定律与电路元件1.电流、电压及参考方向2.电功率与电能3
![第1章基尔霍夫定律与电路元件1.电流、电压及参考方向2.电功率与电能3](https://img.taocdn.com/s3/m/b67c94713169a4517723a37b.png)
_
u
+
i (b)非关联参考方向
注意:
不论假设成关联还是非关联参考方向,如果p>0,则 为吸收功率;如果p<0,则为发出功率。
示例:
a
i
u
b
A
(a)
a
i
u b A
(b)
若(a)中的电压 u=-10V,i=2A, 求 A 的功率; 若(b)中的电压 u=10V,i=2A, 求 A 的功率。
解:(a)中电压、电流取为关联参考方向,功率为
1.5
电阻元件
将流过相同电流的两个端子称为一个端口(port),一般的电阻元件 是二端元件或单端口元件。
i N
+
元件N的VAR(端口电压
u
与端口电流的约束关系) 是研究的重点
-
实际电阻器示例
实际电阻器示例
R
R
R
R1 R2
R1
R2 电阻的符号
(a)
(b)
(c)
(d)
(e)
固定 电阻
可变二端 电阻
三端 电阻
为:在集中参数电路中,任一时刻流出(或流入)任一节点的支
路电流代数和等于零,即
i 0 ( ik 表示当前某一节
k
点的第 k 条支路电流)
规定: ik 参考方向为流出节点时, ik 前面取 “+”号; 流入节点时, ik 前面取“-”号。
i1 A i2
KCL的其它 表述
1、在集中参数电路中,任一时刻流出 (或流入)任一闭合边界 S 的支路电流代 数和等于零。
节点① : 节点②:
i1 i2 i3 0 i2 i5 i6 0
节点④:
i3 i4 0
电路基础黄学良
![电路基础黄学良](https://img.taocdn.com/s3/m/2e6c1c26a55177232f60ddccda38376baf1fe0c7.png)
1、 电功率:单位时间内电场力所做的功,即
p dw dt
u dw , i dq
dq
dt
p dw dw dq ui dt dq dt
功率的单位:W (瓦) 能量的单位: J (焦)
(Watt,瓦特) (Joule,焦耳)
当 u,i 的参考方向一致时,p表示元件吸收的功率;
当 u,i 的参考方向相反时,p表示元件发出的功率。
本书所说的电路均指非时变集中电路,而且又都是已完 成器件建模的实际电路的理想模型,重点为非时变集中线 性电路。
1.2 电路的主要物理量
电路中的主要物理量主要有:电流、电压、电荷、磁链、
电功率、电能等,相应的符号是i、 u 、q 、、p、w。
1.2.1 电流及其参考方向
1. 电流 (current):带电质点的运动形成电流。
电路模型:将实际电路中的元件由元件的模型(理想元件
及其组合)来代替,就可得到实际电路的电路模型。简称
电路。
*电路模型是由理想电路元件构成的。
例.
电 池
10BASE-T wall plate
开关 灯泡
导线
实际电路
电路模型(电路)
1.1.3 两条公理和一条假设
本书所论述的电路分析遵循两条公理和一条假设。
1.5 V Ubc= b–c c = b –Ubc= –1.5–1.5= –3 V
b
Uac= a–c = 0 –(–3)=3 V
1.5 V (2) 以b点为参考点,b=0
c
Uab= a–b a = a +Uab= 1.5 V
Ubc= b–c c = b –Ubc= –1.5 V
Uac= a–c = 1.5 –(–1.5) = 3 V
电工技术第一章 电路的基本概念和基本定律习题解答
![电工技术第一章 电路的基本概念和基本定律习题解答](https://img.taocdn.com/s3/m/3f869c6bd0d233d4b14e69f0.png)
第一章 电路的基本概念和基本定律本章是学习电工技术的理论基础,介绍了电路的基本概念和基本定律:主要包括电压、电流的参考方向、电路元件、电路模型、基尔霍夫定律和欧姆定律、功率和电位的计算等。
主要内容: 1.电路的基本概念(1)电路:电流流通的路径,是为了某种需要由电工设备或电路元件按一定方式组合而成的系统。
(2)电路的组成:电源、中间环节、负载。
(3)电路的作用:①电能的传输及转换;②信号的传递及处理。
2.电路元件及电路模型(1)电路元件:分为独立电源和受控电源两类。
①无源元件:电阻、电感、电容元件。
②有源元件:分为独立电源和受控电源两类。
(2)电路模型:由理想电路元件所组成反映实际电路主要特性的电路。
它是对实际电路电磁性质的科学抽象和概括。
采用电路模型来分析电路,不仅使计算过程大为简化,而且能更清晰地反映该电路的物理本质。
(3)电源模型的等效变换①电压源及电阻串联的电路在一定条件下可以转化为电流源及电阻并联的电路,两种电源之间的等效变换条件为:0R I U S S =或0R U I SS =②当两种电源互相变换之后,除电源本身之外的其它外电路,其电压和电流均保持及变换前完全相同,功率也保持不变。
3.电路的基本物理量、电流和电压的参考方向以及参考电位 (1)电路的基本物理量包括:电流、电压、电位以及电功率等。
(2)电流和电压的参考方向:为了进行电路分析和计算,引入参考方向的概念。
电流和电压的参考方向是人为任意规定的电流、电压的正方向。
当按参考方向来分析电路时,得出的电流、电压值可能为正,也可能为负。
正值表示所设电流、电压的参考方向及实际方向一致,负值则表示两者相反。
当一个元件或一段电路上的电流、电压参考方向一致时,称它们为关联参考方向。
一般来说,参考方向的假设完全可以是任意的。
但应注意:一个电路一旦假设了参考方向,在电路的整个分析过程中就不允许再作改动。
(3)参考电位:人为规定的电路种的零电位点。
电路基础-第1章 电路的基本概念
![电路基础-第1章 电路的基本概念](https://img.taocdn.com/s3/m/0b59f154a8956bec0975e3b2.png)
I
i
当它向外电路提供电流时,它的端电压U总是小于US , 电流越大端电压U 越小。
31
实际电流源模型
BUCT
一个实际电流源,可用一个电流为 iS 的理想电流源和一个 内电导 Gs 并联的模型来表征其特性。Gs: 电源内电导,一般很小。 iS
Gs i I + u U _
U
iS=IS时,其外特性曲线如下:
#对于25W的灯泡,则电流 I=P/U=25/220=0.114A; #对于1000W的电炉子,则电流 I=P/U=1000/220=4.55A;
26
二、 理想电流源:
光电池、光电管 iS
BUCT
电源输出电流为iS,其值与此电源的端电压u 无关。
电路符号:
特点: (a) 电源电流由电源本身决定,与外电路无关;
第一章 电路的基本概念 ( basic concepts of circuit )
重点:
1.电流和电压的参考方向
2. 电路元件特性
BUCT
3. 基尔霍夫定律
1
第一章 电路的基本概念
1.1 电路和电路模型 1.2 电路的基本物理量 1.3 电功率和电能量 1.4 无源二端元件 1.5 有源二端元件 1.6 受控源 1.7 运算放大器 1.8 基尔霍夫定律
1、等效电压源和等效电流源
电压源的串并联
串联: n个电压源的串联,可以用一个电压源等效替代。
例:
+ 12V _ _
º + 9V_ º
º
3V
+
º
28
电流源的串并联 并联:n个电流源的并联可以用一个电流源等效替代。 º iS1 iS2 iSk º iS º º
第1章 电路的基本知识
![第1章 电路的基本知识](https://img.taocdn.com/s3/m/c00a8e66ddccda38376baf35.png)
图1-17
非关联 放出功率
关联 吸收功率
电工电子技术基础
对于直流电或正弦交流电,电阻所吸收的功率可以写为
P IU U
2
I R
2
R
Байду номын сангаас
(1-7)
电功率P也可表述为:单位时间内电流所做的功,单位是 瓦(W),或KW、mW、μ W等。 二.电功〔电能) 定义为:电流通过负载所做的功,与电功率的关系为:
电工电子技术基础
例1-1 指出 图1-6 ( a ), ( b)中电流的真实方向,电流参考方向 已用箭头表示在图上。
a
i 2A a
b
a
图1-6
i 3 A b
b
解:
(a) 电流i为正值,说明实际电流方向与参考方向一致, 电流的真实方向为由a到b;
(b) 电流i为负值,说明实际方向与参考方向相反, 电流的真实方向为由b到a。
+
-
图1-4 电工电子技术基础
② 电流的参考方向
在较复杂的电路中,某支路ab其实际电流方 向在求解前往往很难判断.但描述电路元件性质 和连接方式规律的公式的列写都与电流的方向
有关。
电工电子技术基础
为此在进行分析之前,我们必须给各支路的电流 一个假定的正方向用箭头表示,称为电流的参考方向, 也称为假定方向。
储存的电场能
t
ui d t
0
u
Cu d u
1 2
Cu
2
0
C 是储能元件
电工电子技术基础
§ 1.5 电压源与电流源
一个电源可以用两种模型来表示。用电压的形式 表示称为电压源,用电流的形式表示称为电流源。
电路基础
![电路基础](https://img.taocdn.com/s3/m/f0828d65011ca300a6c390bb.png)
目录第一部分电阻电路分析第一章电路的基本概念和定律1-1电路和电路模型1-2电路的基本物理量1-3基尔霍夫定律1-4电阻元件1-5独立电压源和独立电流源1-6两类约束和电路方程1-7支路电流法1-8分压电路和分流电路第二章线性电阻电路分析2-1 电阻单口网络2-2 店主的星形联接与三角形联接2-3 网孔分析法2-4 节点分析法2-5 含受控源的电路分析第三章网络定理3-1 叠加定理3-2 戴维南定理3-3 诺顿定理和含源单口的等效电路3-4 最大功率传输定理3-5 替代定理第四章多段元件和双口网络4-1 理想变压器4-2 运算放大器的电路模型4-3 含运放的电阻电路分析4-4 双口网络的电压电流关系4-5 双口网络参数的计算4-6 互易双口和互易定理4-7 含双口网络的电路分析第五章简单非线性电阻电路分析5-1 非线性电阻元件5-2 非线性电阻的串联和并联5-3 简单非线性电阻电路的分析5-4 小信号分析第二部分动态电路分析第六章动态电路的时域分析6-1 电容元件与电感元件6-2 一阶电路的零输入响应6-3 一阶电路的零状态响应6-4 一阶电路的全响应6-5 三要素6-6 阶跃响应和冲激响应6-7 RLC串联电路的零输入响应第七章正玄稳态电路的相量分析7-1 正玄电压和电流7-2 相量法的基本概念7-3 两类约束的相量形式7-4 阻抗和导纳7-5 串并联电路分析7-6 一般电路分析7-7 正玄稳态电路的功率7-8 最大功率传输定理7-9 三相电路7-10正玄稳态响应的叠加第八章网络函数和频率特性8-1网络函数8-2 RC电路的频率特性8-3 谐振电路8-4 谐振电路的频率特性第九章含偶和电感的电路分析9-1 耦合电感的电压电流关系9-2 耦合电感的串联与并联9-3 耦合电感的去耦等效电路9-4 空心变压器电路的分析9-5 耦合电感与理想变压器的关系第三部分磁路和铁心线圈电路第十章磁路的铁心线圈电路10-1 磁场的基本物理量和主要定律10-2 磁铁物质的磁化曲线10-3 磁路和磁路定律10-4 恒定磁通磁路的计算10-5 交变磁通下的磁损耗和波形畸形10-6 铁心线圈的电路模型10-7 铁心变压器的电路模型第一部分电阻电路分析第一章电路的基本概念和定律介绍:电路的基本概念和基本变量阐述:集总参数电路的基本定律---基尔霍夫定律定义:三种常用的电路元件---电阻、独立电压源、独立电流源讨论:集总参数电路中,电压和电流必须满足的两种约束1-1电路和电路模型一、电路电路的作用:1.实现电能的传输和转换2.实现电信号传输、处理和存储实际电路:由电阻器、电容器、线圈、变压器、晶体管、运算放大器、传输线、电池、发电机和信号发生器等电气元件和设备连接而成的电路,称为实际电路根据实际电路的尺寸(d)与其工作型号的波长(λ)的关系,可将它们分为两大类:满足d《λ的电路称为集总参数电路,其特点是电路中任两端点的电压和流入任一器件端钮的电流是完全确定的,与器件的几何尺寸和空间位置无关。
第一章 电路分析基础
![第一章 电路分析基础](https://img.taocdn.com/s3/m/d03b8c93daef5ef7ba0d3ccd.png)
u0
u
电流源不能开路!
例1.10: 计算各元件的功率。
i
解:
2A
i iS 2 A
u 5V
产生
5V
u
_
满足:P(产)=P(吸)
+
+
_
P2 A iS u 2 5 10W
P5V uS i 5 2 10W
吸收
实际电流源 i
伏安特性:
iS
i
u i iS RS
色码电阻
色别 黑 数字 0 误差 棕 1 红 2 橙 3 黄 4 绿 5 蓝 6 紫 7 灰 8 白 9 金 银 本色 I II III 5 10 20
有效数值 ‘0’的个数 1 2 3 4 误差等级 7 5 0
±5 %
6 8 0 0 = 6.8K
±10 %
二. 电阻元件的特性
参考方向与真实方向的关系
a
I(DC) i
(AC)
b b
I1 I2 b b
计算 结果
>0 一致 <0 相反
例1.1: 如何表示1A的电流从a点流向b点。
a
解:
a
a
I1=1A
I2= -1A 电流表
4.电流的测量 电流表要串联接入
被测量支路
电流表
二.电压
1. 电压的大小和极性
(1) 电压大小: 单位正电荷从 a点移到 b 点所获得的能量 u(t)=dw/dq (2) 电压极性: 高电位指向低电位,即电 压降方向。 (3) 电压的单位: 伏特(V) 1V=1000mV 1mV=1000uV
5i1 +
u+
1
解:
电工学第一章电路的基础知识
![电工学第一章电路的基础知识](https://img.taocdn.com/s3/m/bf829ddb8bd63186bcebbc63.png)
例 1- 1- 2
电工学
某电路中的一段支路含有电源,如图1-1(a) 所示,支路电阻为R0 = 0.6Ω ,测得该电路的端电 压为230V,电路中的电流 I=5A,并有关系 U= E-R0I,试求: (1)此有源支路的电动势; (2)此有源支路在电路中是属于电源性质还是负载 性质? (3)写出功率平衡关系式。
R1
D
I4
+
+
R1 R 2 R3 US 2 R5 R5 R6 R7
R4 UDC
C
R6
I3
R3 R2
-
US1
+ UDA UCB
I5
R5 R7
23 6 = (8 4 ) 10 5 8 4 7 1
A
US2
UAB + -
= 6
B
武汉交通职业学院
1-4 理想电路元件及实际电源 的两种电路模型
武汉交通职业学院
举例 求图示电路中各点的电 位:VA、VB、V0 。
电流 I= 1mA
I
A 1K
电工学
2V
O 1K
B
解: 设 O为参考点, 即Vo=0V VA=UAO= 1×1= 1V VB=UBO = -1×1 = -1 V UAB= VA – VB = 2 V
解: 设 B为参考点, 即VB=0V VA= UAB= 1×2 = 2V VO= UOB = 1×1 = 1 V UAB= VA – VB = 2 V
有 源 电 路
I
+ U –
武汉交通职业学院
3.负载工作
开关闭合,接通电源与负载。
特征: E (1) I = R0 R
电路基础知识1
![电路基础知识1](https://img.taocdn.com/s3/m/f015fdf6ba0d4a7302763afe.png)
电路基础
令 G 1/R
G称为电导 电导的单位: S (西) (Siemens,西门子)
则 欧姆定律表示为 i G u . 线性电阻R是一个与电压和电流无关的常数。 伏安特性曲线:
u
R tg 电阻元件的伏安特性为 一条过原点的直线
O
i
电路基础
(2) 电阻的电压和电流的参考方向相反 i R u
在参考方向选定后,电流(或电压) 值才有正负之分。 对任何电路分析时都应先指定各处的 i , u 的参考方向。 例:
I
a
R
b
若 I = 5A ,则实际方向与参考方向一致, 若 I =-5A ,则实际方向与参考方向相反。
电路基础
R
5、关联参考方向: i
+
u
-
• 当电压的参考方向指定后,指定电流从标以电压参考 方向的“+”极性端流入,并从标“—”端流出,即电流
电路基础
1.5 电容元件 (capacitor)
1、电容器
+ + + + ++ ++ +q
– – – – –q
-- --
线性定常电容元件:任何时刻,电容元件极板上的电 荷q与电流 u 成正比。
2、电路符号
C
电路基础
3. 元件特性 与电容有关两个变量: C, q i 对于线性电容,有: q =Cu
(1) i的大小与 u 的变化率成正比,与 u 的大小无关;
(2) 电容在直流电路中相当于开路,有隔直作用; (3) 电容元件是一种记忆元件; (4) 当 u,i为关联方向时,i= Cdu/dt;
u,i为非关联方向时,i= –Cdu/dt 。
第一章 电路的基本概念和基本定律
![第一章 电路的基本概念和基本定律](https://img.taocdn.com/s3/m/ee9f8c6eeff9aef8951e0615.png)
第一章电路的基本概念和基本定律电路的基本概念和基尔霍夫定律是电工技术和电子技术的基础。
§1-1 电路中的物理现象和电路模型一、实际电路电路:由电气器件或设备,按一定方式连接起来,完成能量的传输、转换或信息的处理、传递。
组成:电源、负载和中间环节。
日光灯实际电路二、理想电路元件、电路模型实际电路的分析方法:用仪器仪表对实际电路进行测量,把实际电路抽象为电路模型,用电路理论进行分析、计算。
1、理想电路元件实际的电路是由一些按需要起不同作用的元件或旗舰所组成,如发电机、变压器、电动机、电池、电阻器等,它们的电磁性质是很复杂的。
例如:一个白炽灯在有电流通过时,如下图所示:为了便于分析与计算实际电路,在一定条件下常忽略实际部件的次要因素而突出其主要电磁性质,把它看成理想电路元件。
2、电路模型将实际电路中的元件用理想电路元件表示、连接,称为实际电路的电路模型。
如下图所示:U S三、电路的分类1、分布参数电路电路本身的几何尺寸相对于工作波长不可忽略的电路。
2、集中参数电路如果电路本身的几何尺寸l相对于电路的工作频率所对应的波长λ小的多,则在分析电路时可以忽略元件和电路本身几何尺寸。
例如:工作频率为50Hz,波长λ=6000km,所以在工频情况下,多数电路满足l<<λ,可以认为是集中参数电路。
集中参数电路分为:线性电路(元件参数为常数)★非线性电路(元件参数不为常数)§1-2电路中的基本物理量一、电流及电流的参考方向1、电流:带电粒子或电荷在电场力作用下的定向运动形成的电流。
dtdqi =(单位时间内通过某一截面的电荷量) 电流的单位:A (安培)、kA (千安)、mA(毫安)、μA (微安)A 10A 1 , A 10mA 1 , A 10kA 1-633===-μ2、电流的参考方向电流的实际方向:正电荷运动的方向或负电荷运动的反方向(客观存在) 电流的参考方向:任意假定。
实际方向(2A )(参考方向与实际方向相同)A)2( 0=>i i 实际方向(2A )(参考方向与实际方向相反)A)2( 0-=<i i二、电压、电位及电压的参考方向1、电位(物理中的电势)电场力把单位正电荷从一点移到参考点所做的功。
电路分析基础第一章
![电路分析基础第一章](https://img.taocdn.com/s3/m/ff03e886bceb19e8b8f6bad3.png)
I =-2A
在求解电路中的电流时,应该首先选定电流的 参考方向(正方向),然后根据假设的电流方向进 行分析求解。 若求得I > 0,则电流的实际方向与参考方向一致 若求得I < 0,则电流的实际方向与参考方向相反
二、受控源的类型
电压控制电压源(VCVS) 电压控制电流源(VCCS) 电流控制电压源(CCVS); 电流控制电流源(CCCS)
三、受控源的符号
+ u1 + + u1 -
u1
-
+
u1
-
电压控制电压源
电压控制电流源
i1
i1
-
i1
gi1
电流控制电压源
电流控制电流源
1-4 基尔霍夫定律
在电路理论中,电路元件的电压、电流受自身伏安关系的 约束。当各元件联接成一个电路以后,电路中的电压、电流除 了必须满足元件自身的约束方程以外,还必须同时满足电路结 构的约束。这种约束体现为基尔霍夫的两个定律,即基尔霍夫 电流定律(Kirchhoff’s Current Law),简写为KCL)和基尔 霍夫电压定理(Kirchhoff’s Voltage Law),简写为KVL。
1-2 电路的基本变量
1-2-1 电流
一、电流的定义
电荷的定向移动形成电流,电流的大小 用电流强度来描述,符号为I或i。电流强度 定义为电位时间流过导体横截面的电量,即
dq i dt
如果电流的大小方向随时间变化,称为交流电 流;若电流的大小方向不随时间变化,称为直流电 流。在这种情况下,通过导体横截面的电量Q与时间 t呈正比,即
i iS u / RS
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.1 支路、节点和回路
节点:三条或三条以上支路的联接点
R1 A R2
Us1
R3
Us2
B 节点A和节点B
36
1.3.1 支路、节点和回路
回路:由支路构成的闭合路径。 独立回路:回路中至少包含一条其他回路所不
包含的支路 独立回路具有相对性
只有两条独立回路
37
1.3.1 支路、节点和回路
p(t) 0 ,表明元件确实吸收电能;反之表明元件确实释放电能。
电流和电压的参考方向为非关联选择时, p(t) 0,表明元件确 实释放电能;反之表明元件确实吸收电能。 。
28
1.2 电路参量应用
例1.2.1:如下图所示电路,已知电阻元件两 端电压,R 5 , A点电位高于B点电位,电 阻元件 u 3V ,试求元件R和电源的功率。
17
1.2 电路参量
1.2.1 电流及参考方向
电流定义:单位时间内流过元件的电荷量
q dq i lim
t0 t dt
国际单位制(SI)中,电量单位为库仑(大写C表示);时间 单位是秒(小写s表示);电流单位为安培,(大写A表示)
18
1.2 电路参量
电流参量特点:
即时性:电路中电流可随时间变化而变化 流向性:电流具有一定的流向 参考方向:电流方向可能无法预知,可先假定一个向
20
1.2.1 电流参量思考题
思考题:一般我们规定电流的实际方向为正 电荷移动的方向,在我们选定参考方向后, 计算元件的电流时,电流可能为正,也可能 为负,如果算得, i 1A ,是否说明该元件 电流的大小为-1?负号的真正意义是什么?
21
1.2 电路参量
1.2.2 电压及参考方向
电压的定义:根据电路元件上功能转化分析,正电 荷从A点移动到B点时,电场力所作的功:
应(输出)
9
1.1 实际电路和电路模型化
从功和能的角度观察电路
伴随电流在电路中流通,电路完成了电能 和其他形式的能(比如化学能、太阳能等) 的转化以及电能的传输、分配和储存过程。 电路可看成由电源、负载和联接导线三部 分组成,电源将其他能转化成电能供给电 路,负载吸收电能,而联接导线负责电能 的传输和分配。
回路Ⅰ: I1R1 I G RG I 2 R2 0
回路Ⅱ: I 3 R3 I G RG I 4 R4 0 回路Ⅲ: U s I 2 R2 I 4 R4 0
i3 i4 i2 i1 3A 1A 4A
43
1.3.2 基尔霍夫定律
2.基尔霍夫第二电流定律(KVL)
任一瞬间,沿电路中任一闭合回路的各支 路电压的代数和为零
u 0
符号选择规则:任意选定一个绕行回路的方向(叫做 绕行方向),当支路电压的参考方向(参考极性)与 回路的绕行方向一致时,该电压前面取“+”号,当 支路电压的参考方向(参考极性)与回路的绕行方向 相反时,该电压前面取“-”号。
13
1.1 实际电路和电路模型化
一个实际电路的模型化举例
电源的模型化:分清主次 考虑电源能够提供多大电动势,而不考虑 它的内部如何产生电动势。
电阻的模型化:集总 集总原件:实际电源内部存在电阻,且电 阻沿着整个电池分布。在电路模型中,我 们把它抽象为一个电阻,电阻特性集总在 一点上。
14
1.1 实际电路和电路模型化
电路模型 实际电路中电路元件模型化 将电路元件用模型来替代得到电路模型 电路模型的特点 电路元件的模型化是电路模型化的关键 模型化的电路元件是构成电路模型的最小单
元,它是在一定条件下抽象出来的足以反映 实际元件电磁性质的理想器件。
12
1.1 实际电路和电路模型化
一个实际电路的模型化举例
P 6 个支路,可以构成独立回路数 m p n 1 3
三个回路Ⅰ、Ⅱ和Ⅲ,绕行方向如图。
49
1.3.3 基尔霍夫定律应用举例
(1)结合节点,可以列出n-1=3个KCL方程:
I1 I2 I 0 I1 IG I3 0
I3 I4 I 0
(2)结合独立回路数m=3,可以列出3个KVL方程:
电路基础绪论
课程性质、任务 课程基本内容 电路基础课程的核心问题及其研究方法
1
课程性质、任务
本课程电工技术的一门基础课,在电子 技术的各个应用领域具有广泛的应用, 是电气和电子类专业的基础理论。通过 本课程学习,要求掌握电路的基本模型 及解决电路问题的基本规律,掌握电路 分析的基本理论,了解工程应用中的主 要问题,具备电路分析的实践应用能力。
本课程安排一定量的实验,实现理论与实验 结合,以加深电路基本理论的理解。
4
第1章 电路和基尔霍夫定律
5
1.1 实际电路和电路模型化
实际电路和电路模型比较
6
1.1 实际电路和电路模型化
1.1.1实际电路
设计实际电路为了实现某种特定功能 谐振电路、调制电路和放大电路等
实际电路一般由电路器件和联接导线组成, 它提供了电流流通的途径,具有传输电能、 信号处理、计算和自动化控制等功能。
P W t
注:计算没有考虑元件的实际做功过程,认为在时间内做功是均匀的。
27
1.2 电路参量
即时吸收电功率:
p(t) u(t)i(t)
在实际电路中,电路元件上的电压和电流一般随时变化,做功并
不均匀。即时功率 p(t) 与t 时刻的电压和电流密切相关。在电路
分析中,电流和电压都为代数量,它们的正负由实际方向与参考 方向的关系决定。上式推导前提是电流和电压的参考方向为关联 选择。
电路模型化要适当。
电路模型化的目的是简化实际电路的分析和设 计,模型建立适当,电路的分析和计算结果就会 较好的反映实际情况。判定一个模型是否可取, 取决于该模型的理论分析和计算结果是否在容差 范围之内。模型太复杂,会造成分析困难,计算 难度大;模型太简单,又会造成很大误差。 16
1.1 思考题
一个由金属导线缠成的线圈,如果两端分别接直流电源 和交流电源,线圈模型化时有何不同?
支路、节点和回路关系
p m n 1
P:支路数;n:节点数;m:独立回路数
P=6;n=4;m=3
38
1.3.2 基尔霍夫定律
1.基尔霍夫第一电流定律(KCL)
任一瞬间,流入电路任一节点的电流等于 从该节点流出的电流。
另一种表述:
任一瞬间电路中流出任一节点的各支路电 流代数和为零。
i 0
39
为电流方向,这个假定的方向称为电流的参考方向。 参考方向的任意性:在电路分析中电流的参考方向可任
意选择,但一旦选定,在整个分析过程中就不能改变。 注意:参考方向不一定是电路元件上电流的真实方向。
19
1.2 电路参量
元件上的电流方向、电流参考方 向以及电流的大小关系
计算 i 0
计算 i 0
25
1.2.2 电压参量思考题
思考题:某电路元件两端参考极性“+”和 “-”的选择,是否是和电路中零电位比较 得出的?计算得出的实际极性是否是和电路 中零电位比较得出的?
26
1.2 电路参量
1.2.3 电功率、电能
功率和能量计算目的:提高能量传输效率和合理地 在电路中分配能量。
平均电功率:
两端电位的参考极性,“+”表示该端为高电位, “-”表示该端为低电位,电压的参考方向为“+” 指向“-”极性。 极性判断:计算结果为正,则真实极性与参考极性相 同;反之则真实极性与参考极性相反。
23
1.2 电路参量
参考极性的任意性:元件上电压的参考方向可任意选 取,且电压和电流的参考方向可以分别独立选取。
1.3.2 基尔霍夫定律
参考方向与电流代数表示
i1 i2 i3 i4 0
40
1.3.2 基尔霍夫定律
KCL应用:
例:桥式电路中 i1 1A , i2 2A ,求解图中电流 i3
解:对于节点a,由支路电流的参考方向和基尔霍夫电流定律得:
i3 i1 i2 0 求得: i3 1A (2A) 1A
10
1.1 实际电路和电路模型化
1.1.2 电路模型化
理论模型的特点
反映事物的主要问题
由模型得到的分析结果与实际测量进 行比较,二者误差应在要求的范围之 内
模型的建立存在着前提条件的限制,
要分清主次因素的影响,理论模型是
否合理最终要接受实践的检验。
11
1.1 实际电路和电路模型化
1.1.2 电路模型化
Wq qu AB q(u A uB )
uAB uA uB
即为A、B两点间电位差,也称为A点对B点的电压。
22
1.2 电路参量
电压参量特点:
电压为代数量:正值表示A点电位高于B点电位;负 值表示A点电位低于B点电位。
高低极性:元件两端的电位有高有低。 参考极性:通常用“+”、“-”符号分别表示元件
46
1.3.2 基尔霍夫定律
47
1.3.3 基尔霍夫定律应用举例
(n 1) m (n 1) ( p n 1) p
48
1.3.3 基尔霍夫定律应用举例
例: 惠斯登通电桥电路,这个电路可以用于测量电阻等, 试推导电桥中电流计、电源和各臂电阻的关系。
本例中共有 n 4 个节点,A、B、C和D;
2
课程基本内容
电路的模型化 电路参量及其满足的基本规律 各种电路的基本模型及其分析方法 实践应用
3
电路基础的核心问题及其研究方法
本课程的核心问题是电路基础理论的掌握。 特点是理论性强,概念多而抽象。
研究方法是理论联系实际,限于学时侧重于 基本概念和基本方法的掌握。
习题作业用于巩固课堂讲授内容,学生可通 过认真独立完成作业,加强理论分析能力, 并辅助理解相关的基本概念
29
1.2 电路参量应用