支持向量机非线性回归通用MATLAB源码

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

支持向量机非线性回归通用MA TLAB源码

支持向量机和BP神经网络都可以用来做非线性回归拟合,但它们的原理是不相同的,支持向量机基于结构风险最小化理论,普遍认为其泛化能力要比神经网络的强。大量仿真证实,支持向量机的泛化能力强于BP网络,而且能避免神经网络的固有缺陷——训练结果不稳定。本源码可以用于线性回归、非线性回归、非线性函数拟合、数据建模、预测、分类等多种应用场合,GreenSim团队推荐您使用。

function [Alpha1,Alpha2,Alpha,Flag,B]=SVMNR(X,Y,Epsilon,C,TKF,Para1,Para2)

%%

% SVMNR.m

% Support Vector Machine for Nonlinear Regression

% All rights reserved

%%

% 支持向量机非线性回归通用程序

% GreenSim团队原创作品,转载请注明

% GreenSim团队长期从事算法设计、代写程序等业务

% 欢迎访问GreenSim——算法仿真团队→/greensim

% 程序功能:

% 使用支持向量机进行非线性回归,得到非线性函数y=f(x1,x2,…,xn)的支持向量解析式,% 求解二次规划时调用了优化工具箱的quadprog函数。本函数在程序入口处对数据进行了% [-1,1]的归一化处理,所以计算得到的回归解析式的系数是针对归一化数据的,仿真测

% 试需使用与本函数配套的Regression函数。

% 主要参考文献:

% 朱国强,刘士荣等.支持向量机及其在函数逼近中的应用.华东理工大学学报

% 输入参数列表

% X 输入样本原始数据,n×l的矩阵,n为变量个数,l为样本个数

% Y 输出样本原始数据,1×l的矩阵,l为样本个数

% Epsilon ε不敏感损失函数的参数,Epsilon越大,支持向量越少

% C 惩罚系数,C过大或过小,泛化能力变差

% TKF Type of Kernel Function 核函数类型

% TKF=1 线性核函数,注意:使用线性核函数,将进行支持向量机的线性回归

% TKF=2 多项式核函数

% TKF=3 径向基核函数

% TKF=4 指数核函数

% TKF=5 Sigmoid核函数

% TKF=任意其它值,自定义核函数

% Para1 核函数中的第一个参数

% Para2 核函数中的第二个参数

% 注:关于核函数参数的定义请见Regression.m和SVMNR.m内部的定义

% 输出参数列表

% Alpha1 α系数

% Alpha2 α*系数

% Alpha 支持向量的加权系数(α-α*)向量

% Flag 1×l标记,0对应非支持向量,1对应边界支持向量,2对应标准支持向量% B 回归方程中的常数项

%--------------------------------------------------------------------------

%%

%-----------------------数据归一化处理--------------------------------------

nntwarn off

X=premnmx(X);

Y=premnmx(Y);

%%

%%

%-----------------------核函数参数初始化------------------------------------

switch TKF

case 1

%线性核函数K=sum(x.*y)

%没有需要定义的参数

case 2

%多项式核函数K=(sum(x.*y)+c)^p

c=Para1;%c=0.1;

p=Para2;%p=2;

case 3

%径向基核函数K=exp(-(norm(x-y))^2/(2*sigma^2))

sigma=Para1;%sigma=6;

case 4

%指数核函数K=exp(-norm(x-y)/(2*sigma^2))

sigma=Para1;%sigma=3;

case 5

%Sigmoid核函数K=1/(1+exp(-v*sum(x.*y)+c))

v=Para1;%v=0.5;

c=Para2;%c=0;

otherwise

%自定义核函数,需由用户自行在函数内部修改,注意要同时修改好几处!

%暂时定义为K=exp(-(sum((x-y).^2)/(2*sigma^2)))

sigma=Para1;%sigma=8;

end

%%

%%

%-----------------------构造K矩阵-------------------------------------------

l=size(X,2);

K=zeros(l,l);%K矩阵初始化

for i=1:l

for j=1:l

x=X(:,i);

y=X(:,j);

switch TKF%根据核函数的类型,使用相应的核函数构造K矩阵

case 1

K(i,j)=sum(x.*y);

case 2

K(i,j)=(sum(x.*y)+c)^p;

case 3

K(i,j)=exp(-(norm(x-y))^2/(2*sigma^2));

case 4

K(i,j)=exp(-norm(x-y)/(2*sigma^2));

case 5

K(i,j)=1/(1+exp(-v*sum(x.*y)+c));

otherwise

K(i,j)=exp(-(sum((x-y).^2)/(2*sigma^2)));

end

end

end

%%

%%

%------------构造二次规划模型的参数H,Ft,Aeq,Beq,lb,ub------------------------

%支持向量机非线性回归,回归函数的系数,要通过求解一个二次规划模型得以确定Ft=[Epsilon*ones(1,l)-Y,Epsilon*ones(1,l)+Y];

Aeq=[ones(1,l),-ones(1,l)];

Beq=0;

ub=C*ones(2*l,1);

%%

%%

%--------------调用优化工具箱quadprog函数求解二次规划------------------------

OPT=optimset;

rgeScale='off';

OPT.Display='off';

%%

%%

%------------------------整理输出回归方程的系数------------------------------

Alpha1=(Gamma(1:l,1))';

Alpha2=(Gamma((l+1):end,1))';

Alpha=Alpha1-Alpha2;

Flag=2*ones(1,l);

%%

%%

%---------------------------支持向量的分类----------------------------------

Err=0.000000000001;

for i=1:l

AA=Alpha1(i);

BB=Alpha2(i);

相关文档
最新文档