人教版中考数学压轴题 易错题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、中考数学压轴题
1.对于平面内的点M 和点N ,给出如下定义:点P 为平面内的一点,若点P 使得PMN 是以M ∠为顶角且M ∠小于90°的等腰三角形,则称点P 是点M 关于点N 的锐角等腰点P .如图,点P 是点M 关于点N 的锐角等腰点.在平面直角坐标系xOy 中,点O 是坐标原点.
(1)已知点(2,0)A ,在点123(0,2),(1,3),(1,3)P P P -,4(2,2)P -中,是点O 关于点A 的锐角等腰点的是___________.
(2)已知点(3,0)A ,点C 在直线2y x b =+上,若点C 是点O 关于点A 的锐角等腰点,求实数b 的取值范围.
(3)点D 是x 轴上的动点,(,0),(2,0)D t E t -,点(,)F m n 是以D 为圆心,2为半径的圆上一个动点,且满足0n ≥.直线24y x =-+与x 轴和y 轴分别交于点H K ,,若线段HK 上存在点E 关于点F 的锐角等腰点,请直接写出t 的取值范围.
2.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45
B =,点O 是边B
C 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作
∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .
(1)当点E 为边AB 的中点时,求DF 的长;
(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;
(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.
3.综合与实践
4A 纸是我们学习工作最常用的纸张之一, 2,我们定义:长宽之比是2的矩形纸片称为“标准纸”.
操作判断:
()1如图1所示,矩形纸片2()ABCD AD AB =是一张“标准纸”,将纸片折叠一次,使点
B 与D 重合,再展开,折痕EF 交AD 边于点,E 交B
C 边于点F ,若1,AB =求CF 的长,
()2如图2,在()1的基础上,连接,BD 折痕EF 交BD 于点O ,连接,BE 判断四边形BFDE 的形状,并说明理由.
探究发现:
()3如图3所示,在(1)和(2)的基础上,展开纸片后,将纸片再折叠一次,使点A 与点C 重合,再展开,痕MN 交AD 边于点M ,BC 交边于点,N 交BD 也是点O .然后将四边形ENFM 剪下,探究纸片ENFM 是否为“标准纸”,说明理由.
4.如图,在等边ABC ∆中,延长AB 至点D ,延长AC 交BD 的中垂线于点E ,连接BE ,DE .
(1)如图1,若310DE =,23BC =CE 的长;
(2)如图2,连接CD 交BE 于点M ,在CE 上取一点F ,连接DF 交BE 于点N ,且DF CD =,求证:12
AB EF =;
(3)在(2)的条件下,若45AED ∠=︒直接写出线段BD ,EF ,ED 的等量关系
5.如图①,四边形ABCD 中,//,90AB CD ADC ∠=︒.
(1)动点M 从A 出发,以每秒1个单位的速度沿路线A B C D →→→运动到点D 停止,设运动时间为a ,AMD ∆的面积为,S S 关于a 的函数图象如图②所示,求AD CD 、的长.
(2)如图③动点P 从点A 出发,以每秒2个单位的速度沿路线A D C →→运动到点C 停止,同时,动点Q 从点C 出发,以每秒5个单位的速度沿路线C D A →→运动到点A 停止,设运动时间为t ,当Q 点运动到AD 边上时,连接CP CQ PQ 、、,当CPQ ∆的面积为8时,求t 的值.
6.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .
(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;
(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由;
②若12,(33)2
ADH a S ==+,求sin GAB ∠的值.
7.如图,在ABC ∆中,14AB =,45B ∠=︒,4tan 3A =,点D 为AB 中点.动点P 从点D 出发,沿DA 方向以每秒1个单位长度的速度向终点A 运动,点P 关于点D 对称点为点Q ,以PQ 为边向上作正方形PQMN .设点P 的运动时间为t 秒.
(1)当t =_______秒时,点N 落在AC 边上.
(2)设正方形PQMN 与ABC ∆重叠部分面积为S ,当点N 在ABC ∆内部时,求S 关于t 的函数关系式.
(3)当正方形PQMN 的对角线所在直线将ABC ∆的分为面积相等的两部分时,直接写出t 的值.
8.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C .
(1)求抛物线的解析式;
(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32
MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.
9.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx+c 的图象与x 轴交于A (﹣3,0)、B (2,0)两点,与y 轴交于点C (0,3).
(1)求抛物线的解析式;
(2)点E (m ,2)是直线AC 上方的抛物线上一点,连接EA 、EB 、EC ,EB 与y 轴交于D .