2018高考一轮复习统计概率专题
2018版高考数学文人教A版大一轮复习配套课件:第十章
至少有 1 个白球和全是黑球不同时发生,且一定有一个
发生.∴②中两事件是对立事件.
答案 B
1 3.(2016· 天津卷)甲、乙两人下棋,两人下成和棋的概率是2, 1 甲获胜的概率是3,则甲不输的概率为( ) 5 2 1 1 A.6 B.5 C.6 D.3
解析 设“两人下成和棋”为事件 A,“甲获胜”为事
①A 与 D 为对立事件;②B 与 C 是互斥事件;③C 与 E 是对
立事件;④P(C∪E)=1;⑤P(B)=P(C).
解析
当取出的 2 个球中一黄一白时,B 与 C 都发生,②不
偶,至少有一个奇数(偶数)是求解的关键,必要时可把所有 试验结果写出来,看所求事件包含哪些试验结果,从而断
定所给事件的关系.
(2)准确把握互斥事件与对立事件的概念. ①互斥事件是不可能同时发生的事件,但可以同时不发生. ②对立事件是特殊的互斥事件,特殊在对立的两个事件不 可能都不发生,即有且仅有一个发生.
定义 符号表示
如果事件A发生,则事件B一定发生, 包含 事件A(或称事件 _____( B⊇A 或A⊆B) 包含关系 这时称事件B______ A包含于事件B) A=B _______
相等关系
并事件(和 事件)
若B⊇A且A⊇B
若某事件发生当且仅当事件A发生或
事件B发生,称此事件为事件A与事 A∪B(或A+B) 并事件 或和事件) 件B的_______(
• 第4讲
随机事件的概率
最新考纲
1.了解随机事件发生的不确定性和频率的稳定性,
了解概率的意义以及频率与概率的区别; 2.了解两个互斥事件
的概率加法公式.
知识梳理
1.频率与概率 (1)在相同的条件 S 下重复 n 次试验,观察某一事件 A 是否 出现, 称 n 次试验中事件 A 出现的次数 nA 为事件 A 出现的
(完整word版)2018年高考数学总复习概率及其计算
第十三章概率与统计本章知识结构图第一节 概率及其计算考纲解读1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。
2.了解两个互斥事件的概率的加法公式。
3.掌握古典概型及其概率计算公式。
4.了解随机数的意义,能运用模拟方法估计概率。
5.了解几何概型的意义。
命题趋势探究1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。
2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。
知识点精讲一、必然事件、不可能事件、随机事件在一定条件下:①必然要发生的事件叫必然事件; ②一定不发生的事件叫不可能事件;③可能发生也可能不发生的事件叫随机事件。
二、概率在相同条件下,做次重复实验,事件A 发生次,测得A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A 的概率,记作。
对于必然事件A ,;对于不可能事件A ,=0.三、基本事件和基本事件空间在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间。
四、两个基本概型的概率公式1、古典概型条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同()(A)=()A card P A card =Ω包含基本事件数基本事件总数2、几何概型条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为Aμ.()P A =AμμΩ。
五、互斥事件的概率1、互斥事件在一次实验中不能同时发生的事件称为互斥事件。
事件A 与事件B 互斥,则()()()P A B P A P B =+ 。
2、对立事件事件A,B 互斥,且其中必有一个发生,称事件A,B 对立,记作B A =或A B =。
()()1P A p A =- 。
3、互斥事件与对立事件的联系对立事件必是互斥事件,即“事件A ,B 对立”是”事件A ,B 互斥“的充分不必要条件。
2018-2019届高三数学(文)一轮复习课件:第9章 统计、统计案例、概率 第3节
中a,b是待定数. n n xi- x yi- y xiyi-n x y i=1 ∧ i=1 = , b= n n 2 2 2 x - n x x - x i i i=1 i=1 ∧ ∧ a= y -b x .
(3)回归分析
②如果 k≥k0,就推断“X 与 Y 有关系”,这种推断犯错误 的概率不超过 P(K2≥k0);否则,就认为在犯错误的概率不超过 P(K2≥k0)的前提下不能推断“X 与 Y 有关系”.
质疑探究 2∶k2≥3.841 和 k2≥6.635 分别说明了什么问题?
提示:独立性检验得出的结论带有概率性质,只能说结论 成立的概率有多大,而不能完全肯定一个结论,因此才出现了 临界值,3.841 和 6.635 就是两个常用的临界值,一般认为当 k2≥3.841 时, 则有 95%的把握说事件 A 与 B 有关; 当 k2≥6.635 时,则有 99%的把握说事件 A 与 B 有关.
[ 答案] B
2.下面是 2×2 列联表: y1 x1 x2 总计 a 22 b y2 21 25 46 ) B.52,50 D.74,52 总计 73 47 120
则表中 a,b 的值分别为( A.94,72 C.52,74
[ 解析] 选 C.
[ 答案]
∵a+21=73, ∴a=52, 又 a+22=b, ∴b=74. 故
近,就称这两个变量之间具有线性相关关系,这条直线叫做回 归直线. (2)回归方程 ①最小二乘法:求回归直线使得样本数据的点到回归直线
距离的平方和 最小的方法叫做最小二乘法. 的________________
∧
∧
∧
②回归方程:方程 y =bx+a是两个具有线性相关关系的变 量的一组数据(x1,y1),(x2,y2),…,(xn,yn)的回归方程,其
2018版高考数学一轮总温习 高考大题冲关系列6 概率与统计的综合问题讲义 理
2×
(
3 4
×23×34
×13+
34×23×
14×23
)
=16404=152
,P(X
=6)=34×
2 3
×34×23=13464=14.
可得随机变量 X 的分布列为
所以数学期望 E(X)=0×1144+1×752+2×12454+3×112 +4×152+6×14=263.
-冲关策略- 解决此类题目的关键是将实际问题转化为数学问题,正确 理解随机变量取每一个值所表示的具体事件,求得该事件 发生的概率.
以频率估计概率得 T 的分布列为
从而 E(T)=25×0.2+30×0.3 +35×0.4 +40×0.1= 32(分钟).
(2)设 T1,T2 分别表示往、返所需时间,T1,T2 的取值 相互独立,且与 T 的分布列相同.设事件 A 表示“刘教授 共用时间不超过 120 分钟”,由于讲座时间为 50 分钟,所 以事件 A 对应于“刘教授在路途中的时间不超过 70 分钟”.
大题冲关系列六
概率与统计的综合问题 命题动向:通过对近五年的高考试题分析,在高考的解 答题中,对概率与随机变量及其分布相结合的综合问题的考 查既是热点又是重点,并且常常与统计相结合,设计成包含 概率计算、概率分布表、随机变量的数学期望与方差、统计 图表的识别等知识为主的综合题.以考生比较熟悉的实际应 用问题为载体,考查学生应用基础知识和基本方法分析问题 和解决问题的能力.
(1)求 N 和[30,35)这组的参加者人数 N1;
(2)已知[30,35)和[35,40)这两组各有 2 名数学教师,现从 这两个组中各选取 2 人担任接待工作,设两组的选择互不影 响,求两组选出的人中都至少有 1 名数学教师的概率?
(完整版)2018年高考统计与概率专题
2018年高考统计与概率专题(全国卷1文)2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B(全国卷1理)2.如图,正方形ABCD 内的图形来自中国古代的太极图。
正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π4【考点】:几何概型【思路】:几何概型的面积问题,=P 基本事件所包含的面积总面积.【解析】:()21212=82r S P S r ππ==,故而选B 。
(全国卷2理)6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种(全国卷2文)6。
如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90πB 。
63πC 。
42π D.36π【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B 。
(天津卷)文(3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫。
从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为(A)45(B)35(C)25(D)15(全国卷2文)11.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C。
2018版高考数学(理)一轮复习文档:第十一章统计与概率11.2含解析
1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距与组数.(3)将数据分组.(4)列频率分布表.(5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.3.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数.4.标准差和方差(1)标准差是样本数据到平均数的一种平均距离.(2)标准差:s=错误!。
(3)方差:s2=错误![(x1-错误!)2+(x2-错误!)2+…+(x n-错误!)2](x n是样本数据,n是样本容量,错误!是样本平均数).【知识拓展】1.频率分布直方图的特点(1)频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示错误!,频率=组距×频率组距。
(2)频率分布直方图中各小长方形的面积之和为1,因为在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比.(3)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观.2.平均数、方差的公式推广(1)若数据x1,x2,…,x n的平均数为错误!,那么mx1+a,mx2+a,mx3+a,…,mx n+a的平均数是m错误!+a.(2)数据x1,x2,…,x n的方差为s2。
①数据x1+a,x2+a,…,x n+a的方差也为s2;②数据ax1,ax2,…,ax n的方差为a2s2.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √)(2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( ×)(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.(√)(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.(×)(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( √)(6)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.(×)1。
(完整word版)2018年高考数学总复习概率及其计算
第十三章概率与统计本章知识结构图统计概率第一节概率及其计算考纲解读1. 了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。
2. 了解两个互斥事件的概率的加法公式。
3. 掌握古典概型及其概率计算公式。
4. 了解随机数的意义,能运用模拟方法估计概率。
5. 了解几何概型的意义。
命题趋势探究1. 本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。
2. 命题设置以两种概型的概率计算及运用互斥、 对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。
知识点精讲一、 必然事件、不可能事件、随机事件在一定条件下:① 必然要发生的事件叫必然事件; ② 一定不发生的事件叫不可能事件; ③ 可能发生也可能不发生的事件叫随机事件。
二、 概率在相同条件下,做次重复实验,事件 A 发生次,测得 A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动, 随着的增加,摆动幅度越来越小,这时就把这个常数叫 做A 的概率,记作。
对于必然事件A,;对于不可能事件 A, =0.三、 基本事件和基本事件空间在一次实验中,不可能再分的事件称为基本事件, 所有基本事件组成的集合称为基本事件空间。
四、 两个基本概型的概率公式1、古典概型条件:1、基本事件空间含有限个基本事件2、每个基本事件发生的可能性相同P AA 包含基本事件数 =card (A) 基本事件总数=card ()2、几何概型条件:每个事件都可以看作某几何区域的子集A ,A 的几何度量(长度、面积、体积或时间)记为五、互斥事件的概率1互斥事件在一次实验中不能同时发生的事件称为互斥事件。
事件A与事件B互斥,则P AUB P A P B2、对立事件事件A,B互斥,且其中必有一个发生,称事件A,B对立,记作B A或A B。
P A 1 p A。
3、互斥事件与对立事件的联系对立事件必是互斥事件,即“事件A, B对立”是”事件 A B互斥“的充分不必要条件。
2018届高考数学一轮复习专题六概率与统计课件文
【标准解答】 (1)当 x≤19 时,y=3 800; 当 x>19 时,y=3 800+500(x-19)=500x-5 700, 所以 y 与 x 的函数解析式为
y=350800x0-,5
70ቤተ መጻሕፍቲ ባይዱ,
x≤19, x>19
(x∈N).(4 分)
(2)由柱状图知,需更换的零件数不大于 18 的频率为 0.46,不
记 x 表示 1 台机器在三年使用期内需更换的易损零件数,y 表示 1 台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同 时购买的易损零件数.
(1)若 n=19,求 y 与 x 的函数解析式; (2)若要求“需更换的易损零件数不大于 n”的频率不小于 0.5, 求 n 的最小值; (3)假设这 100 台机器在购机的同时每台都购买 19 个易损零件, 或每台都购买 20 个易损零件,分别计算这 100 台机器在购买易损零 件上所需费用的平均数,以此作为决策依据,购买 1 台机器的同时 应购买 19 个还是 20 个易损零件?
• 三、听英语课要注重实践
• 英语课老师往往讲得不太多,在大部分的时间里,进行的师生之间、学生之间的大量语言实践练习。因此,要上好英语课,就应积极参加语言实践活 动,珍惜课堂上的每一个练习机会。
2019/8/2
最新中小学教学课件
16
thank
you!
2019/8/2
最新中小学教学课件
17
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。
• 一、听理科课重在理解基本概念和规律
• 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解, 同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。
2018届高考数学一轮复习专题六概率与统计课时作业含解析文
概率与统计1.(2017·晋中模拟)某校学生参加了“铅球”和“立定跳远”两个科目的体能测试,每个科目的成绩分为A ,B ,C ,D ,E 五个等级,该校某班学生两科目测试成绩的数据统计如图所示,其中“铅球”科目的成绩为E 的学生有8人.(1)求该班学生中“立定跳远”科目的成绩为A 的人数;(2)已知该班学生中恰有2人的两科成绩等级均为A ,在至少有一科成绩等级为A 的学生中,随机抽取2人进行访谈,求这2人的两科成绩等级均为A 的概率.解:(1)因为“铅球”科目的成绩等级为E 的学生有8人,所以该班有8÷0.2=40人,所以该班学生中“立定跳远”科目的成绩等级为A 的人数为40×(1-0.375-0.375-0.15-0.025)=40×0.075=3.(2)由题意可知,至少有一科成绩等级为A 的有4人,其中恰有2人的两科成绩等级均为A ,另2人只有一个科目成绩等级为A .设这4人为甲、乙、丙、丁,其中甲、乙是两科成绩等级都是A 的同学,则在至少有一科成绩等级为A 的学生中,随机抽取2人进行访谈,基本事件空间为Ω={(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁)},一共有6个基本事件.设“随机抽取2人进行访谈,这2人的两科成绩等级均为A ”为事件M ,所以事件M 中包含的基本事件有1个,为(甲,乙),则P (M )=16.2.(2017·贵州七校联考)从某校高三年级学生中抽取40名学生,将他们高中学业水平考试的数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图的频率分布直方图.(1)若该校高三年级有640人,试估计这次学业水平考试的数学成绩不低于60分的人数及相应的平均分(平均分保留到百分位);(2)若从[40,50)与[90,100]这两个分数段内的学生中随机选取2名学生,求这2名学生成绩之差的绝对值不大于10的概率.解:(1)由于图中所有小矩形的面积之和等于1,所以10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.根据频率分布直方图,成绩不低于60分的频率为1-10×(0.005+0.01)=0.85.由于高三年级共有学生640人,可估计该校高三年级数学成绩不低于60分的人数为640×0.85=544.可估计不低于60分的学生数学成绩的平均分为+0.3×75+0.25×85+544≈77.94.(2)成绩在[40,50)分数段内的人数为40×0.05=2,成绩在[90,100]分数段内的人数为40×0.1=4,若从这6名学生中随机抽取2人,则总的取法有15种,如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.则所取2名学生的数学成绩之差的绝对值不大于10的取法为7种,所以所求概率P=715.3.(2017·广东七校联考)甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5次预赛成绩记录如下:甲82 82 79 95 87乙95 75 80 90 85(1)用茎叶图表示这两组数据;(2)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(3)①若甲、乙两人的成绩的平均数与方差;②若现要从中选派一人参加数学竞赛,根据你的计算结果,你认为选派哪位学生参加合适?解:(1)作出茎叶图如下:(2)记甲被抽到的成绩为x ,乙被抽到的成绩为y ,用数对(x ,y )表示基本事件: (82,95),(82,75),(82,80),(82,90), (82,85),(82,95),(82,75),(82,80), (82,90),(82,85),(79,95),(79,75), (79,80),(79,90),(79,85),(95,95), (95,75),(95,80),(95,90),(95,85), (87,95),(87,75),(87,80),(87,90), (87,85),基本事件总数n =25.记“甲的成绩比乙高”为事件A ,事件A 包含基本事件:(82,75),(82,80),(82,75),(82,80),(79,75),(95,75),(95,80),(95,90),(95,85),(87,75),(87,80),(87,85),事件A 包含的基本事件数m =12,所以P (A )=m n =1225,所以甲的成绩比乙高的概率为1225.(3)①x 甲=15(70×1+80×3+90×1+9+2+2+7+5)=85,x 乙=15(70×1+80×2+90×2+5+0+5+0+5)=85,s 2甲=15[(79-85)2+(82-85)2+(82-85)2+(87-85)2+(95-85)2]=31.6,s 2乙=15[(75-85)2+(80-85)2+(85-85)2+(90-85)2+(95-85)2]=50,②因为x 甲=x 乙,s 2甲<s 2乙,所以甲的成绩较稳定,派甲参赛比较合适.4.为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天100颗种子浸泡后的发芽数,得到如下表格:的概率;(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另3天的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(参考数据:∑i =13xi y i=977,∑i =13x 2i =434)解:(1)m ,n 的所有取值情况有:(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),即基本事件总数为10.设“m ,n 均不小于25”为事件A ,则事件A 包含的基本事件为(25,30),(25,26),(30,26).所以P (A )=310,故事件A 的概率为310.(2)由数据,求得x =13(11+13+12)=12,y =13(25+30+26)=27,3x y =972.∑i =13x i y i =11×25+13×30+12×26=977,∑i =13x 2i =112+132+122=434,3x 2=432. 由公式,求得b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2=977-972434-432=52, a ^=y -b ^x =27-52×12=-3.所以y 关于x 的线性回归方程为y ^=52x -3.(3)当x =10时,y ^=52×10-3=22,|22-23|<2;同样,当x =8时,y ^=52×8-3=17,|17-16|<2.所以,该研究所得到的线性回归方程是可靠的.1.(2017·长沙模拟)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:(1));(2)在本次训练中,从两班中分别任选1名同学,比较2人的投中次数,求甲班同学投中次数高于乙班同学投中次数的概率.解:(1)两个班数据的平均值都为7, 甲班的方差s 21=-2+-25+-2+-2+-25=2,乙班的方差s 22=-2+-25+-2+-2+-25=145, 因为s 21<s 22,甲班的方差较小,所以甲班的成绩更稳定.(2)甲班1到5号记作a ,b ,c ,d ,e ,乙班1到5号记作1,2,3,4,5,从两班中分别任选1名同学,得到的基本样本空间为Ω={a 1,a 2,a 3,a 4,a 5,b 1,b 2,b 3,b 4,b 5,c 1,c 2,c 3,c 4,c 5,d 1,d 2,d 3,d 4,d 5,e 1,e 2,e 3,e 4,e 5},Ω由25个基本事件组成,将“甲班同学投中次数高于乙班同学投中次数”记作事件A ,则A ={a 1,b 1,c 1,d 1,d 2,d 4,d 5,e 1,e 4,e 5},A 由10个基本事件组成,所以甲班同学投中次数高于乙班同学投中次数的概率为P (A )=1025=25.2.(2017·洛阳统考)有2 000名网购者在11月11日当天于某购物网站进行网购消费(消费金额不超过1 000元),其中有女士1 100名,男士900名.该购物网站为优化营销策略,根据性别采用分层抽样的方法从这2 000名网购者中抽取200名进行分析,如下表.(消费金额单位:元)女士消费情况:男士消费情况:随机选出2名发放网购红包,求选出的2名网购者都是男士的概率;(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写下面2×2列联表,并回答能否在犯错误的概率不超过0.05的前提下认为“是否为‘网购达人’与性别有关?”附:K 2=a +bc +d a +cb +d,n =a +b +c +d .解:(1)依题意,女士应抽取110名,男士应抽取90名,故x =10,y =15.消费金额在[800,1 000](单位:元)的网购者共有15名,从中选出2名共有105种选法,若2名网购者都是男士,共有10种选法,所以选出的2名网购者都是男士的概率为10105=221.(2)列联表如下:K 2=110×90×60×140≈4.714.又4.714>3.841,故能在犯错误的概率不超过0.05的前提下认为“是否为‘网购达人’与性别有关”.。
2018全国高考数学统计与概率专题(附答案解析)
2018全国高考真题数学统计与概率专题(附答案解析)1.(全国卷I,文数、理数第3题.5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案:A2.(全国卷I,文数19题.12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,[)0.60.7,频数 1 3 2 4 9 26 5使用了节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,频数 1 5 13 10 16 5 (1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案解析】解:(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m 3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为11(0.0510.1530.2520.3540.4590.55260.655)0.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为21(0.0510.1550.25130.35100.45160.555)0.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水3(0.480.35)36547.45(m )-⨯=. 3.(全国卷I ,理数20题12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为()01p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()f p 的最大值点0p ; (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【答案解析】(1)20件产品中恰有2件不合格品的概率为221820()C (1)f p p p =-.因此 2182172172020()C [2(1)18(1)]2C (1)(110)f p p p p p p p p '=---=--.令()0f p '=,得0.1p =.当(0,0.1)p ∈时,()0f p '>;当(0.1,1)p ∈时,()0f p '<. 所以()f p 的最大值点为00.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)YB ,=+.X Y=⨯+,即402520225X Y所以(4025)4025490=+=+=.EX E Y EY(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于400EX>,故应该对余下的产品作检验.4.(全国卷Ⅱ,文数5题.5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6 B.0.5C.0.4D.0.3【答案】D5.(全国卷Ⅱ,文数、理数18题.12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型①:ˆ30.413.5y t=-+;根据2010年至2016年的数据(时间变量t的值依次为1,2,,7)建立模型②:ˆ9917.5=+.y t(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案解析】解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.6.(全国卷Ⅱ,理数5题.5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6 B.0.5 C.0.4 D.0.3【答案】A7.(全国卷Ⅲ,文数5题.5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.7【答案】B8.(全国卷Ⅲ,文数、理数18题.12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m 和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++,2()0.0500.0100.0013.8416.63510.828P K kk≥.【答案解析】解:(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.学科%网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知7981802m +==. 列联表如下:超过m 不超过m第一种生产方式 15 5 第二种生产方式515(3)由于2240(151555)10 6.63520202020K ⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.9.(北京卷,文数17题,13分)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;学科*网(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【答案解析】(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000. 第四类电影中获得好评的电影部数是200×0.25=50, 故所求概率为500.0252000=. (Ⅱ)方法一:由题意知,样本中获得好评的电影部数是 140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51=372.故所求概率估计为37210.8142000-=. 方法二:设“随机选取1部电影,这部电影没有获得好评”为事件B .没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.由古典概型概率公式得16280.8142)00(0P B ==. (Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率. 10.(北京卷,理数17题,12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.【答案解析】解:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000, 第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为500.0252000=. (Ⅱ)设事件A 为“从第四类电影中随机选出的电影获得好评”, 事件B 为“从第五类电影中随机选出的电影获得好评”. 故所求概率为P (AB AB +)=P (AB )+P (AB )=P (A )(1–P (B ))+(1–P (A ))P (B ). 由题意知:P (A )估计为0.25,P (B )估计为0.2. 故所求概率估计为0.25×0.8+0.75×0.2=0.35. (Ⅲ)1D ξ>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ. 11.(天津卷,文数,15题,13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.【答案解析】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.满分13分. (Ⅰ)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i )解:从抽出的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.(ii )解:由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种. 所以,事件M 发生的概率为P (M )=521. 12.(天津卷,理数,16题,13分)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.【答案解析】本小题主要考查随机抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.学.科网(Ⅰ)解:由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i)解:随机变量X的所有可能取值为0,1,2,3.P(X=k)=34337C CCk k-⋅(k=0,1,2,3).所以,随机变量X的分布列为随机变量X的数学期望11218412 ()0123353535357E X=⨯+⨯+⨯+⨯=.(ii)解:设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=B∪C,且B与C互斥,由(i)知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=67.所以,事件A发生的概率为67.13.(江苏卷,3题,5分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为__________.【答案解析】答案:90解析:8989909191905++++=14.(浙江卷,7题,4分)设0<p<1,随机变量ξ的分布列是ξ0 1 2P12p-122p 则当p在(0,1)内增大时,A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小【答案】D第11 页共11 页。
【高三数学试题精选】2018届高考数学概率与统计复习考试题(有答案)
2018届高考数学概率与统计复习考试题(有答案)
5 专题六概率与统计
第一讲两个原理、二项式定理
一、选择题
1.从单词“equatin”中选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不
变)的不同排列共有 ( )
A.120个 B.480个 c.720个 D.840个
解析qu相连且顺序不变,看作一个整体,所以c36 A44=480(种).答案B
2.(2018 湖北)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,
每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、
乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方
案的种数是 ( )
A.54 B.90 c.126 D.152
解析由于五个人从事四项工作,而每项工作至少一人,那么每项工作至多两人,
因为甲、乙不会开车,所以只能先安排司机,分两类
(1)先从丙、丁、戊三人中任选一人开车;再从其余四人中任选两人作为一个元素同
其他两人从事其他三项工作,共有c13c24A33种.(2)先从丙、丁、戊三人中任选两人开
车;其余三人从事其他三项工作,共有c23A33种.所以,不同安排方案的种数是c13c24。
2018年高考数学(文理通用)一轮总复习(课件)学科素养培优系列(六)概率与统计 (共65张PPT)
值,有很多同学答题时都当成了一台机器需要的零件数.
(2)基本概念和公式掌握不到位:如在进行概率计算时, 不能正确写出各个概率的表达式,不能正确理解P(X≤n) 的含义.
(3)数学建模能力不强,生搬硬套:如用古典概型或超几
何分布的公式来进行本题的概率计算,第三小问中通过
计算X的均值来估计n的取值等.
的期望值,故应选n=19.
方法二:记Y表示两台机器在购买易损零件上所需的费 用(单位:元). 当n=19时,
EY=19×200×0.68+(19×200+500)×0.2+(19×200+2
统计、统计案例有关计算公式的熟记及准确运算是得
分的关键.如本题中d的计算公式,能够正确应用、准确 运算并写出相应步骤即可得分.
【对差大小与
患感冒人数多少之间的关系,他们分别到气象局与某医
院抄录了1至6月份每月10号的昼夜温差情况与因患感 冒而就诊的人数,得到如下资料
P(X=16)=P(A1)P(B1)=0.2×0.2=0.04,
P(X=17)=P(A1)P(B2)+P(A2)P(B1)=0.2×0.4+0.4×0.2=
0.16,P(X=18)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)=
0.2×0.2+0.4×0.4+0.2×0.2=0.24,
当n=19时,费用的期望为19×200+500×0.2+1 000×
0.08+1 500×0.04=4 040,………………………10分
当n=20时,费用的期望为20×200+500×0.08+1 000× 0.04=4 080. 所以应选用n=19.…………………………………12分
2018版高考数学一轮复习 第十一章 计数原理、概率、随机变量及其分布 课时跟踪检测62 理 新人教A版
课时跟踪检测(六十二)[高考基础题型得分练]1.二项式(x +1)n (n ∈N *)的展开式中,x 2的系数为15,则n =( ) A .7 B .6 C .5 D .4答案:B解析:(x +1)n=(1+x )n,(1+x )n的通项为T r +1=C r n x r,令r =2,则C 2n =15,即n (n -1)=30.又n >0,得n =6.2.设n 为正整数,⎝⎛⎭⎪⎫x -1x x 2n展开式中存在常数项,则n 的一个可能取值为( )A .16B .10C .4D .2答案:B解析:⎝ ⎛⎭⎪⎫x -1x x 2n 展开式的通项公式为T k +1=C k 2n x 2n -k ⎝ ⎛⎭⎪⎫-1x x k =C k 2n (-1)kx4n -5k2 . 令4n -5k 2=0,得k =4n5,∴n 可取10. 3.(1+x )8(1+y )4的展开式中,x 2y 2的系数是( ) A .56 B .84 C .112 D .168答案:D解析:(1+x )8的展开式中x 2的系数为C 28,(1+y )4的展开式中y 2的系数为C 24,所以x 2y 2的系数为C 28C 24=168.4.[2017·福建连城县三中高三理上期中]x +13xn的各项系数之和大于8,小于32,则展开式中系数最大的项是( )A .63x B.4xC .4x 6x D.4x或4x 6x答案:A解析:由题设令x =1可得各项系数的之和为2n,即8<2n<32,解之得n =4,因此系数最大的项也就是二项式系数最大的项,故中间一项的系数最大,即T 2+1=C 24(x )213x2=63x ,故选A.5.在(x -1)4的展开式中,x 的系数为( ) A .6 B .-6 C .4 D .-4答案:A解析:T r +1=C r 4·(x )4-r·(-1)r,令r =2,则C 24(-1)2=6.6.[2017·江西赣州寻乌中学高三上月考二]设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,那么a 0+a 2+a 4a 1+a 3的值为( )A .-122121B .-6160C .-244241D .-1答案:B解析:当x =1时,1=a 0+a 1+a 2+a 3+a 4+a 5; 当x =-1时,35=a 0-a 1+a 2-a 3+a 4-a 5, ∴a 0+a 2+a 4=122,a 1+a 3=-120, ∴a 0+a 2+a 4a 1+a 3=-6160,故选B.7.[2017·江西八校联考]若(1+x )(1-2x )7=a 0+a 1x +a 2x 2+…+a 8x 8,则a 1+a 2+…+a 7的值是( )A .-2B .-3C .125D .-131答案:C解析:令x =1,则a 0+a 1+a 2+…+a 8=-2, 又a 0=C 07(-2)0=1,a 8=C 77(-2)7=-128, 所以a 1+a 2+…+a 7=-2-1-(-128)=125. 8.在⎝ ⎛⎭⎪⎫x -14x 6的展开式中,x 2的系数为________.答案:1516解析:通项为T r +1=C r 6x 6-r⎝ ⎛⎭⎪⎫-14x r =C r 6⎝ ⎛⎭⎪⎫-14r x 6-2r . 令6-2r =2,得r =2, ∴x 2的系数为C 26⎝ ⎛⎭⎪⎫-142=1516.9.[2017·河南八校三联]⎝ ⎛⎭⎪⎫x +12x n 的展开式中第五项和第六项的二项式系数最大,则第四项为________.答案:212解析:由已知条件第五项和第六项二项式系数最大,得n =9, ∴⎝ ⎛⎭⎪⎫x +12x 9展开式的第四项为T 4=C 39·(x )6·⎝ ⎛⎭⎪⎫12x 3=212.10.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.答案:10解析:不妨设1+x =t ,则x =t -1,因此有(t -1)5=a 0+a 1t +a 2t 2+a 3t 3+a 4t 4+a 5t 5, 则a 3=C 25(-1)2=10.11.[2017·云南玉溪一中月考]已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =________.答案:-1解析:因为(1+ax )(1+x )5的展开式中,含x 2的项为C 25x 2+a C 15x 2=(C 25+a C 15)x 2,所以C 25+a C 15=5,解得a =-1.[冲刺名校能力提升练]1.[2017·山东济南模拟](x +2)2(1-x )5中x 7的系数与常数项之差的绝对值为( ) A .5 B .3 C .2 D .0答案:A解析:常数项为C 22×22×C 05=4,x 7的系数为C 02×C 55(-1)5=-1,因此x 7的系数与常数项之差的绝对值为5.2.设a ≠0,n 是大于1的自然数,⎝⎛⎭⎪⎫1+x a n的展开式为a 0+a 1x +a 2x 2+…+a n x n.若点A i (i ,a i )(i =0,1,2)的位置如图所示,则a =( )A .2B .3C .4D .5答案:B解析:由题意知,A 0(0,1),A 1(1,3),A 2(2,4). 故a 0=1,a 1=3,a 2=4.又⎝ ⎛⎭⎪⎫1+x a n 的通项公式T r +1=C r n ⎝ ⎛⎭⎪⎫x a r(r =0,1,2,…,n ),故C 1n a =3,C 2n a 2=4,解得a =3.3.若(2+x +x 2)⎝ ⎛⎭⎪⎫1-1x 3的展开式中的常数项为a ,则⎠⎛0a (3x 2-1)d x =________.答案:6解析:∵⎝ ⎛⎭⎪⎫1-1x 3=1-3x +3x 2-1x3,∴(2+x +x 2)⎝ ⎛⎭⎪⎫1-1x 3的展开式中的常数项为a =2×1+1×(-3)+1×3=2.故⎠⎛0a (3x 2-1)d x =(x 3-x ) ⎪⎪⎪20=6.4.[2017·湖南师大附中高三上月考三]若(1+2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 1+a 3+a 5=________.答案:122解析:令x =1可得a 0+a 1+a 2+a 3+a 4+a 5=243,令x =-1可得a 0-a 1+a 2-a 3+a 4-a 5=-1,以上两式两边相减,可得2(a 1+a 3+a 5)=244, 即a 1+a 3+a 5=122.5.若⎝⎛⎭⎪⎪⎫x +124x n 展开式中前三项的系数成等差数列,求:(1)展开式中x 的所有有理项; (2)展开式中系数最大的项.解:易求得展开式前三项的系数为1,12C 1n ,14C 2n .据题意得,2×12C 1n =1+14C 2n ,解得n =8.(1)设展开式的通项为T r +1,则T r +1=C r 8(x )8-r ⎝ ⎛⎭⎪⎪⎫124x r=⎝ ⎛⎭⎪⎫12r C r 8x 16-3r4 ,∴r 为4的倍数. 又0≤r ≤8,∴r =0,4,8.故有理项为T 1=⎝ ⎛⎭⎪⎫120C 08x 16-3×04 =x 4,T 5=⎝ ⎛⎭⎪⎫124C 48x16-3×44 =358x , T 9=⎝ ⎛⎭⎪⎫128C 88x 16-3×84 =1256x 2.(2)设展开式中T r +1项的系数最大,则⎝ ⎛⎭⎪⎫12r C r 8≥⎝ ⎛⎭⎪⎫12r +1C r +18且⎝ ⎛⎭⎪⎫12r C r 8≥⎝ ⎛⎭⎪⎫12r -1C r -18,解得r =2或r =3.故展开式中系数最大的项为T 3=⎝ ⎛⎭⎪⎫122C 28x 16-3×24 =7x52 ,T 4=⎝ ⎛⎭⎪⎫123C 38x16-3×34 =7x 74 . 6.已知f (x )=(1+x )m +(1+2x )n (m ,n ∈N *)的展开式中x 的系数为11. (1)求x 2的系数取最小值时n 的值;(2)当x 2的系数取得最小值时,求f (x )展开式中x 的奇次幂项的系数之和. 解:(1)由已知得,C 1m +2C 1n =11, ∴m +2n =11,x 2的系数为C 2m +22C 2n =m m -2+2n (n -1)=m 2-m2+(11-m )⎝⎛⎭⎪⎫11-m 2-1=⎝⎛⎭⎪⎫m -2142+35116.∵m ∈N *,∴m =5时,x 2的系数取得最小值22,此时n =3. (2)由(1)知,当x 2的系数取得最小值时,m =5,n =3. ∴f (x )=(1+x )5+(1+2x )3. 设这时f (x )的展开式为f (x )=a 0+a 1x +a 2x 2+…+a 5x 5,令x =1,a 0+a 1+a 2+a 3+a 4+a 5=25+33=59, 令x =-1,a 0-a 1+a 2-a 3+a 4-a 5=-1, 两式相减,得2(a 1+a 3+a 5)=60, 故展开式中x 的奇次幂项的系数之和为30.。
2018版高考数学大一轮复习专题11概率与统计课件
考点60 随机事件及其概率
考法2 求互斥事件、对立事件的概率
经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下: 0 1 2 3 4 等候人数 5人及5人以上 0.1 0.16 0.3 0.3 0.1 0.04 概率 求:(1)至多2人排队等候的概率; (2)至少3人排队等候的概率. 【题眼】 根据互斥事件,第(1)问可转化为等候的人数为0人、1人和2人的概率和; 第(2)问可转化为等候的人数为3人、4人和5人及5人以上的概率和,或转化为 其对立事件“至多2人排队等候”.
考点60 随机事件及其概率
考法2 求互斥事件、对立事件的概率
经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下: 0 1 2 3 4 等候人数 5人及5人以上 0.1 0.16 0.3 0.3 0.1 0.04 概率 求:(1)至多2人排队等候的概率; (2)至少3人排队等候的概率. 【解】记“0人排队等候”为事件A,“1人排队等候”为事件B,“2人排队 等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5 人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F互斥. (1)记“至多2人排队等候”为事件G,则G=A∪B∪C, 所以P(G)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56. (2)方法一:记“至少3人排队等候”为事件H,则H=D∪E∪F, 所以P(H)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44. 方法二:记“至少3人排队等候”为事件H,则其对立事件为事件G, 所以P(H)=1-P(G)=0.44.
将所求事件分解为彼此互斥的事件的和 利用公式分别计算这些事件的概率 运用互斥事件的概率求和公式计算概率
判断是否适合用间接法 计算对立事件的概率 运用公式P(A)=1-P(A)求解
2018届高考数学理人教A版福建专用一轮课件:高考大题
(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,
^
������ =
������=1
∑ (������������ -������)(������������ -������)
������=1
∑ (������������ -������)
7
2
=
14 =0.5,������ 28
-9题型一 题型二 题型三 题型四 题型五 题型六
(1)根据折线图中的数据,完成表格:
年
份
2013 2014 2015 2016 1 2 3 4
年份代号 x PM2.5 指数 y
(2)建立y关于x的线性回归方程; (3)在当前治理空气污染的力度下,预测该市2017年11月份的 PM2.5指数的平均值.
^
^
������ =0.5×9+2.3=6.8, 故预测该地区 2017 年农村居民家庭人均纯收入为 6.8 千元.
-8题型一 题型二 题型三 题型四 题型五 题型六
对点训练1(2016昆明三模)PM2.5是指空气中直径小于或等于2.5 微米的颗粒物,它对人体健康和大气环境质量的影响都很大.2012 年2月,中国发布了《环境空气质量标准》,开始大力治理空气污染, 用x=1,2,3,4,5依次表示2013年到2017年这五年的年份代号,用y表示 每年11月份的PM2.5指数的平均值(单位:μg/m3).已知某市2013年到 2016年每年11月份PM2.5指数的平均值的折线43;3.6+4.4+4.8+5.2+5.9)=4.3, 7
������ =1
1 (1+2+3+4+5+6+7)=4,������ 7
2018版高考数学(理)一轮复习文档:第十一章统计与概率11.1含解析
1.简单随机抽样(1)定义:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样方法有两种--抽签法和随机数法.2.系统抽样的步骤一般地,假设要从容量为N的总体中抽取容量为n的样本.(1)先将总体的N个个体编号;(2)确定分段间隔k,对编号进行分段.当错误!(n是样本容量)是整数时,取k=错误!;(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.3.分层抽样(1)定义:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围:当总体由差异明显的几个部分组成时,往往选用分层抽样的方法.【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)简单随机抽样是一种不放回抽样.(√)(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( ×)(3)抽签法中,先抽的人抽中的可能性大.(×)(4)系统抽样在第1段抽样时采用简单随机抽样.( √)(5)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.(×)(6)分层抽样中,每个个体被抽到的可能性与层数及分层有关.(×)1.(教材改编)某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为()A.33,34,33 B.25,56,19C.20,40,30 D.30,50,20答案B解析因为125∶280∶95=25∶56∶19,所以抽取人数分别为25,56,19.2.(2015·四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A.抽签法B.系统抽样法C.分层抽样法D.随机数法答案C解析根据年级不同产生差异及按人数比例抽取易知应为分层抽样法.3.(1)某学校为了了解2016年高考数学学科的考试成绩,在高考后对1 200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ.简单随机抽样法Ⅱ。
2018年高考数学分类汇编专题十计数原理统计概率
《2018年高考数学分类汇编》第十篇:计数原理、统计、概率一、选择题1.【2018全国一卷3】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.【2018全国一卷10】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为IIIII .在整个图形中随机取一点,此点取自I ,II ,IIIII 的概率分别记为p 1,p 2,p 3,则 A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 33.【2018全国二卷8】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .B .C .D .4.【2018全国三卷5】的展开式中的系数为30723=+112114115118522x x ⎛⎫+ ⎪⎝⎭4xA .10B .20C .40D .805.【2018全国三卷8】某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则A .0.7B .0.6C .0.4D .0.36.【2018浙江卷7】设0<p <1,随机变量ξ的分布列是ξ 012P则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小二、填空题1.【2018全国一卷15】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)2.【2018天津卷10】在5(2x x-的展开式中,2x 的系数为 .3.【2018江苏卷3.】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .4.【2018江苏卷6】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .5.【2018浙江卷14】二项式831()2x x的展开式的常数项是___________. 6.【2018浙江卷16】16.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数p X 2.4DX =()()46P X P X =<=p =字,一共可以组成___________个没有重复数字的四位数.(用数字作答)7.【2018上海卷3】在7)1(x +的二项展开式中,2x 项的系数为 .(结果用数值表示) 8.【2018上海卷9】9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示) 三、解答题1.【2018全国一卷20】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p .(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?2.【2018全国二卷18】下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; y y t t 1217,,…,ˆ30.413.5y t =-+t 127,,…,ˆ9917.5yt =+(2)你认为用哪个模型得到的预测值更可靠?并说明理由.3.【2018全国三卷18】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017高考一轮复习统计概率专题一.解答题(共16小题)1.(2016?山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.2.(2016?天津)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.3.(2016?河北区三模)集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为,,,且每个电子元件能否正常工作相互独立,若三个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需费用为100元.(Ⅰ)求集成电路E需要维修的概率;(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的费用,求X的分布列和期望.4.(2016?唐山一模)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,方案一:每满200元减50元:方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、1个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款半价7折8折原价(Ⅰ)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;(Ⅱ)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算5.(2016?武汉校级模拟)某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.(1)若直方图中后四组的频数成等差数列,试估计全年级视力在以下的人数;(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到右表中数据,根据表中的数据,年级名次1~50951~1000是否近视近视4132不近视918能否在犯错的概率不超过的前提下认为视力与学习成绩有关系(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50的学生人数为X,求X的分布列和数学期望.附:P(K2≥k)k.6.(2016?海南校级模拟)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,记其质量指标为k,当k≥85时,产品为一级品;当75≤k<85时,产品为二级品;当70≤k<75时,产品为三级品.现用两种新配方(分别称为A配方和B配方)做实验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(以下均视频率为概率)A配方的频数分布表 B配方的频数分布表指标值分组[75,80)[80,85)[85,90)[90,95)指标值分组[75,80)[80,85)[85,90)[90,95)[75,80)频数10304020频数510154030(1)若从B配方产品中有放回地随机抽取3件,记“抽出的B配方产品中至少1件二级品”为事件C,求事件C的概率P(C);(2)若两种新产品的利润率与质量指标值k满足如下关系:y=(其中<t<),从长期来看,投资哪种配方的产品平均利润率较大7.(2016?兴庆区校级二模)袋中装有围棋黑色和白色棋子共7枚,从中任取2枚棋子都是白色的概率为.现有甲、乙两人从袋中轮流摸取一枚棋子.甲先摸,乙后取,然后甲再取,…,取后均不放回,直到有一人取到白棋即终止.每枚棋子在每一次被摸出的机会都是等可能的.用X表示取棋子终止时所需的取棋子的次数.(1)求随机变量X的概率分布列和数学期望E(X);(2)求甲取到白球的概率.8.(2016?海口模拟)汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:A型车出租天数1234567车辆数51030351532B型车出租天数1234567车辆数1420201615105( I)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率;(Ⅱ)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.9.(2016?大连二模)甲、乙两名乒乓球运动员进行乒乓球单打比赛,根据以往比赛的胜负情况,每一局甲胜的概率为,乙胜的概率为,如果比赛采用“五局三胜制”(先胜三局者获胜,比赛结束).(1)求甲获得比赛胜利的概率;(2)设比赛结束时的局数为X,求随机变量X的分布列和数学期望.10.(2016?泰安二模)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集到的数据分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60)六组,并作出频率分布直方图(如图).将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.(1)请根据直方图中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”与性别有关课外体育不达标课外体育达标合计男60____________女____________110合计__________________(2)现按照“课外体育达标”与“课外体育不达标”进行分层抽样,抽取12人,再从这12名学生中随机抽取3人参加体育知识问卷调查,记“课外体育达标”的人数为ξ,求ξ得分布列和数学期望.附参考公式与数据:K2=P(K2≥k0)k011.(2016?辽宁校级模拟)语文成绩服从正态分布N(100,),数学成绩的频率分布直方图如图,如果成绩大于135的则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有x人,求x的分布列和数学期望.(附公式及表)若x~N(μ,σ2),则P(μ﹣σ<x≤μ+σ)=,P(μ﹣2σ<x≤μ+2σ)=.12.(2016?潮南区模拟)某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100]芯片甲81240328芯片乙71840296(I)试分别估计芯片甲,芯片乙为合格品的概率;(Ⅱ)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(I)的前提下,(i)记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列和数学期望;(ii)求生产5件芯片乙所获得的利润不少于140元的概率.13.(2016?石嘴山校级一模)在一次考试中,5名同学数学、物理成绩如表所示:学生A B C D E数学(x分)8991939597物理(y分)8789899293(1)根据表中数据,求物理分y对数学分x的回归方程:(2)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以X表示选中的同学中物理成绩高于90分的人数,求随机变量X的分布列及数学期望E(X).(附:回归方程中,,)14.(2016?重庆模拟)某火锅店为了了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:x258911y1210887(Ⅰ)求y关于x的回归方程=x+;(Ⅱ)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额.(Ⅲ)设该地1月份的日最低气温X~N(μ,δ2),其中μ近似为样本平均数,δ2近似为样本方差s2,求P(<X<)附:①回归方程=x+中,=,=﹣b.②≈,≈.若X~N(μ,δ2),则P(μ﹣δ<X<μ+δ)=,P(μ﹣2δ<X<μ+2δ)=.15.(2016春?抚州校级月考)西安世园会志愿者招骋正如火如荼进行着,甲、乙、丙三名大学生跃跃欲试,已知甲能被录用的概率为,甲、乙两人都不能被录用的概率为,乙、丙两人都能被录用的概率为.(1)乙、丙两人各自能被录用的概率;(2)求甲、乙、丙三人至少有两人能被录用的概率.16.(2016?东城区模拟)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ12345P商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.2017高考一轮复习统计概率专题参考答案与试题解析一.解答题(共16小题)1.(2016?山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.【分析】(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,进而可得答案;(II)由已知可得:“星队”两轮得分之和为X可能为:0,1,2,3,4,6,进而得到X的分布列和数学期望.【解答】解:(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,故概率P=++=++=,(II)“星队”两轮得分之和为X可能为:0,1,2,3,4,6,则P(X=0)==,P(X=1)=2×[+]=,P(X=2)=+++=,P(X=3)=2×=,P(X=4)=2×[+]=P(X=6)==故X的分布列如下图所示:X 012 3 4 6P∴数学期望EX=0×+1×+2×+3×+4×+6×==【点评】本题考查离散型随机变量的分布列和数学期望,属中档题.2.(2016?天津)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.【分析】(1)选出的2人参加义工活动次数之和为4为事件A,求出选出的2人参加义工活动次数之和的所有结果,即可求解概率.则P(A).(2)随机变量X的可能取值为0,1,2,3分别求出P(X=0),P(X=1),P(X=2),P(X=3)的值,由此能求出X的分布列和EX.【解答】解:(1)从10人中选出2人的选法共有=45种,事件A:参加次数的和为4,情况有:①1人参加1次,另1人参加3次,②2人都参加2次;共有+=15种,∴事件A发生概率:P==.(Ⅱ)X的可能取值为0,1,2.P(X=0)==P(X=1)==,P(X=2)==,∴X的分布列为:X012P∴EX=0×+1×+2×=1.【点评】本题考查离散型随机变量的分布列和数学期望,是中档题,在历年的高考中都是必考题型.解题时要认真审题,仔细解答,注意古典概型的灵活运用.3.(2016?河北区三模)集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为,,,且每个电子元件能否正常工作相互独立,若三个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需费用为100元.(Ⅰ)求集成电路E需要维修的概率;(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的费用,求X的分布列和期望.【分析】(Ⅰ)由条件利用相互独立事件的概率乘法公式求得3个元件都不能正常工作的概率P1的值,3个元件中的2个不能正常工作的概率P2的值,再把P1和P2相加,即得所求.(Ⅱ)设ξ为维修集成电路的个数,则ξ服从B(2,),求得P(X=100ξ)=P(ξ=k)的值,可得X的分布列,从而求得X的期望.【解答】解:(Ⅰ)三个电子元件能正常工作分别记为事件A,B,C,则P(A)=,P(B)=,P(C)=.依题意,集成电路E需要维修有两种情形:①3个元件都不能正常工作,概率为P1=P()=P()P()P()=××=.②3个元件中的2个不能正常工作,概率为P2=P(A)+P(B)+P(C)=++×=.所以,集成电路E需要维修的概率为P1+P2=+=.(Ⅱ)设ξ为维修集成电路的个数,则ξ服从B(2,),而X=100ξ,P(X=100ξ)=P(ξ=k)=??,k=0,1,2.X的分布列为:X0100200P∴EX=0×+100×+200×=.【点评】本题主要考查相互独立事件的概率乘法公式、互斥事件的概率加法公式,离散型随机变量的分布列,属于中档题.4.(2016?唐山一模)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,方案一:每满200元减50元:方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、1个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款半价7折8折原价(Ⅰ)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;(Ⅱ)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算【分析】(Ⅰ)先求出顾客获得半价优惠的概率,由此利用对立事件概率计算公式能求出两个顾客至少一个人获得半价优惠的概率.(Ⅱ)分别求出方案一和方案二和付款金额,由此能比较哪一种方案更划算.【解答】解:(Ⅰ)记顾客获得半价优惠为事件A,则P(A)==,两个顾客至少一个人获得半价优惠的概率:P=1﹣P()P()=1﹣(1﹣)2=.…(5分)(Ⅱ)若选择方案一,则付款金额为320﹣50=270元.若选择方案二,记付款金额为X元,则X可取160,224,256,320.P(X=160)=,P(X=224)==,P(X=256)==,P(X=320)==,则E(X)=160×+224×+256×+320×=240.∵270>240,∴第二种方案比较划算.…(12分)【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法及应用,是中档题,解题时要认真审题,注意对立事件概率计算公式的合理运用.5.(2016?武汉校级模拟)某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.(1)若直方图中后四组的频数成等差数列,试估计全年级视力在以下的人数;(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到右表中数据,根据表中的数据,年级名次1~50951~1000是否近视近视4132不近视918能否在犯错的概率不超过的前提下认为视力与学习成绩有关系(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50的学生人数为X,求X的分布列和数学期望.附:P(K2≥k)k.【分析】(1)设各组的频率为f i(i=1,2,3,4,5,6),由已知得后四组频数依次为27,24,21,18,由此能求出估计全年级视力在以下的人数.(2)求出K2,由此能求出在犯错误的概率不超过的前提下认为视力与学习成绩有关系.(Ⅲ)依题意9人中年级名次在1~50名和951~1000名分别有3人和6人,X可取0、1、2、3,分别求出相应在的概率,由此能求出X的分布列和X的数学期望.【解答】解:(1)设各组的频率为f i(i=1,2,3,4,5,6),由图可知,第一组有3人,第二组7人,第三组27人,…(1分)因为后四组的频数成等差数列,所以后四组频数依次为27,24,21,18…(2分)所以视力在以下的频率为:=,故全年级视力在以下的人数约为…(3分)(2)因此在犯错误的概率不超过的前提下认为视力与学习成绩有关系.…(6分)(Ⅲ)依题意9人中年级名次在1~50名和951~1000名分别有3人和6人,X可取0、1、2、3,…(7分),,,,∴X的分布列为:X0123P…(11分)X的数学期望…(12分)【点评】本题考查频率分布直方图的应用,考查离散型机随机变量概率分布列、数学期望的求法,是中档题,解题时要认真审题,注意排列组合的合理运用.6.(2016?海南校级模拟)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,记其质量指标为k,当k≥85时,产品为一级品;当75≤k<85时,产品为二级品;当70≤k<75时,产品为三级品.现用两种新配方(分别称为A配方和B配方)做实验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(以下均视频率为概率)A配方的频数分布表 B配方的频数分布表指标值分组[75,80)[80,85)[85,90)[90,95)指标值分组[75,80)[80,85)[85,90)[90,95)[75,80)频数10304020频数510154030(1)若从B配方产品中有放回地随机抽取3件,记“抽出的B配方产品中至少1件二级品”为事件C,求事件C的概率P(C);(2)若两种新产品的利润率与质量指标值k满足如下关系:y=(其中<t<),从长期来看,投资哪种配方的产品平均利润率较大【分析】(1)先求出P(抽中二级品)=,由此能求出事件C的概率P(C).(2)分别求出A的分布列,E(A)和B的分布列E(B),由此能求出从长期来看,投资哪种配方的产品平均利润率较大.【解答】解:(1)P(抽中二级品)=,P(没抽中二级品)=,P(C)=1﹣()3=.(3)A的分布列为:y t5t2P∴E(A)=+2t2B的分布列为:y t5t2t2P∴E(B)=+∵<t<,∴E(A)﹣E(B)=t(t﹣)>0,∴E(A)较大,投资A.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.7.(2016?兴庆区校级二模)袋中装有围棋黑色和白色棋子共7枚,从中任取2枚棋子都是白色的概率为.现有甲、乙两人从袋中轮流摸取一枚棋子.甲先摸,乙后取,然后甲再取,…,取后均不放回,直到有一人取到白棋即终止.每枚棋子在每一次被摸出的机会都是等可能的.用X表示取棋子终止时所需的取棋子的次数.(1)求随机变量X的概率分布列和数学期望E(X);(2)求甲取到白球的概率.【分析】(1)由已知先出白子个数,进而可得随机变量X的概率分布列和数学期望E(X);(2)记事件A=“甲取到白球”,则事件A包括以下三个互斥事件:A1=“甲第1次取球时取出白球”;A2=“甲第2次取球时取出白球”;A3=“甲第3次取球时取出白球”.利用互斥事件概率加法公式,可得:甲取到白球的概率.【解答】解:设袋中白球共有x个,则依题意知:=,即=,即 x2﹣x﹣6=0,解之得x=3,(x=﹣2舍去).…(1分)(1)袋中的7枚棋子3白4黑,随机变量X的所有可能取值是1,2,3,4,5.P(x=1)==,P(x=2)==,P(x=3)==,P(x=4)==,P(x=5)==,…(5分)(注:此段(4分)的分配是每错1个扣(1分),错到4个即不得分.)随机变量X的概率分布列为:X12345P所以E(X)=1×+2×+3×+4×+5×=2.…(6分)(2)记事件A=“甲取到白球”,则事件A包括以下三个互斥事件:A1=“甲第1次取球时取出白球”;A2=“甲第2次取球时取出白球”;A3=“甲第3次取球时取出白球”.依题意知:P(A1)==,P(A2)==,P(A3)==,…(9分)(注:此段(3分)的分配是每错1个扣(1分),错到3个即不得分.)所以,甲取到白球的概率为P(A)=P(A1)+P(A2)+P(A3)=…(10分)【点评】本题考查的知识点是古典概型的概率计算公式,随机变量的分布列和数学期望,互斥事件概率加法公式,难度中档.8.(2016?海口模拟)汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:A型车出租天数1234567车辆数51030351532B型车出租天数1234567车辆数1420201615105( I)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率;(Ⅱ)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.【分析】(Ⅰ)利用古典概型的概率计算公式即可得出;(Ⅱ)该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天分为以下三种情况:A型车1天B型车3天;A型车B型车都2天;A型车3天B型车1天,利用互斥事件和独立事件的概率计算公式即可得出;(Ⅱ)从数学期望和方差分析即可得出结论.【解答】解:( I)∵出租天数为3天的汽车A型车有30辆,B型车20辆.从中随机抽取一辆,这辆汽车是A型车的概率约为=.( II)设“事件A i表示一辆A型车在一周内出租天数恰好为i天”,“事件B j表示一辆B型车在一周内出租天数恰好为j天”,其中i,j=1,2, (7)则该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率为P(A1B3+A2B2+A3B1)=P(A1B3)+P(A2B2)+P(A3B1)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)==.该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率为.(Ⅲ)设X为A型车出租的天数,则X的分布列为X1234567P设Y为B型车出租的天数,则Y的分布列为Y1234567PE(X)=1×+2×+3×+4×+5×+6×+7×=.E(Y)=1×+2×+3×+4×+5×+6×+7×=.一辆A类型的出租车一个星期出租天数的平均值为天,B类车型一个星期出租天数的平均值为天.从出租天数的数据来看,A型车出租天数的方差大于B型车出租天数的方差,综合分析,选择A类型的出租车更加合理.【点评】上来掌握古典概型的概率计算公式、互斥事件和独立事件的概率计算公式、数学期望和方差的计算公式和意义是解题的关键.9.(2016?大连二模)甲、乙两名乒乓球运动员进行乒乓球单打比赛,根据以往比赛的胜负情况,每一局甲胜的概率为,乙胜的概率为,如果比赛采用“五局三胜制”(先胜三局者获胜,比赛结束).(1)求甲获得比赛胜利的概率;(2)设比赛结束时的局数为X,求随机变量X的分布列和数学期望.【分析】(1)甲获得比赛胜利包含三种情况:①甲连胜三局;②前三局甲两胜一负,第四局甲胜;③前四局甲两胜两负,第五局甲胜.由此能求出甲获得比赛胜利的概率.(2)由已知得X的可能取值为3,4,5,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解答】解:(1)甲获得比赛胜利包含三种情况:①甲连胜三局;②前三局甲两胜一负,第四局甲胜;③前四局甲两胜两负,第五局甲胜.∴甲获得比赛胜利的概率:p=++C()2()2×=.(2)由已知得X的可能取值为3,4,5,P(X=3)==,P(X=4)=+×=,P(X=5)=C()2()2×+C()2()2×=,∴随机变量X的分布列为:X 3 4 5P数学期望EX==.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用.10.(2016?泰安二模)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集到的数据分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60)六组,并作出频率分布直方图(如图).将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.(1)请根据直方图中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”与性别有关课外体育不达标课外体育达标合计男6030 90女90 20 110合计150 50 200(2)现按照“课外体育达标”与“课外体育不达标”进行分层抽样,抽取12人,再从这12名学生中随机抽取3人参加体育知识问卷调查,记“课外体育达标”的人数为ξ,求ξ得分布列和数学期望.附参考公式与数据:K2=P(K2≥k0)k0【分析】(1)由题意得“课外体育达标”人数为50,则不达标人数为150,由此列联表,求出K2=,从而得到在犯错误的概率不超过的前提下没有理由认为“课外体育达标”与性别有关.(2)由题意得在不达标学生中抽取的人数为9人,在达标学生中抽取人数为3人,则ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和E(ξ).【解答】解:(1)由题意得“课外体育达标”人数为:200×[(+)×10]=50,则不达标人数为150,∴列联表如下:课外体育不达标课外体育达标合计男603090女9020110合计15050200∴K2==,∴在犯错误的概率不超过的前提下没有理由认为“课外体育达标”与性别有关.(2)由题意得在不达标学生中抽取的人数为:12×=9人,在达标学生中抽取人数为:12×=3人,则ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为:ξ 0 1 2 3PE(ξ)==.【点评】本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求示,是中档题,解题时要认真审题,注意排列组合知识的合理运用.11.(2016?辽宁校级模拟)语文成绩服从正态分布N(100,),数学成绩的频率分布直方图如图,如果成绩大于135的则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有x人,求x的分布列和数学期望.(附公式及表)。