固体物理包括答案.doc

合集下载

奥鹏东师 固体物理练习题答案.doc

奥鹏东师 固体物理练习题答案.doc

《固体物理》练习题一答案一、填空题(本题共5小题,每小题3分,共15分) 1. ( 六角 )( 6 )2. ( 夫伦克尔缺陷和肖脱基缺陷 )。

3.( 费米面 ),( 费米能级 )。

4.( 面心立方 ). 5.( 6). 6.二、简答题(本题共3小题,每小题5分,共15分)1.有人说“晶体的内能就是晶体的结合能”,对吗?请解释。

答:不对。

自由粒子结合成晶体过程中释放出的能量或者把晶体拆散成一个个自由粒子所需要的能量称为晶体结合能。

而晶体的内能是指原子的动能加原子间的相互作用势能之和。

0K 时,原子还存在零点振动能。

但零点振动能与原子间的相互势能的绝对值相比小得多,所以在0K 时原子间的相互势能的绝对值近似等于晶体的结合能。

2.请解释什么是布洛赫电子和布洛赫波。

答:布洛赫电子亦称“晶体电子”。

晶体是由许多原子按周期性排列所构成,故晶体中电子受到周期性原子势场作用,其波函数被晶格周期势场调制,变成由周期函数所调制的平面波,称为布洛赫波。

3.试解释本征半导体与绝缘体能带结构的基本特征。

解:在低温下,本征半导体的能带与绝缘体的能带结构相同,但本征半导体的禁带较窄,禁带宽度通常在2个电子伏特以下。

由于禁带窄,本征半导体禁带下满带顶电子可以借助热激发,跃迁到禁带上面空带的底部,使满带不满,空带不空,二者都对导电有贡献。

4、答:原子电负性的差别大的形成离子晶体,差别小的易形成分子晶体。

5、答:晶体中的一种线缺陷。

主要形成机制是滑移,位错线运动方向与滑移方向相同,好似晶体中嵌入半个原于平面,在原子平面的中断处就是一个刃位错。

小角晶界可以看作是一系列刃位错的组合。

6、答:对于导体材料,晶体能带中除了满带外,存在不满带,其价电子能带是不满带。

对于本征半导体,晶体能带中除了满带外,就是空带,而且,最高的满带与最低的空带之间的禁带宽度较较窄。

满带电子是不导电的,而不满带电子可以导电,导体之所以能导电,是因为存在不满带。

固体物理学基础知识训练题及其参考答案

固体物理学基础知识训练题及其参考答案

《固体物理》基础知识训练题与其参考答案说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。

第一章作业1:1.固体物理的研究对象有那些?答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。

2.晶体与非晶体原子排列各有什么特点?答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。

非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。

3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。

有那些单质晶体分别属于以上三类。

答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。

常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。

面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。

常见的面心立方晶体有:Cu, Ag, Au, Al等。

六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。

常见的六角密排晶体有:Be,Mg,Zn,Cd等。

4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。

答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格;金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格;Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。

固体物理期末考试题及答案

固体物理期末考试题及答案

固体物理期末考试题及答案一、选择题(每题2分,共20分)1. 晶体中原子排列的周期性结构被称为:A. 晶格B. 晶胞C. 晶面D. 晶向答案:A2. 描述固体中电子行为的基本理论是:A. 经典力学B. 量子力学C. 相对论D. 电磁学答案:B3. 以下哪项不是固体物理中的晶体缺陷:A. 点缺陷B. 线缺陷C. 面缺陷D. 体缺陷答案:D4. 固体物理中,晶格振动的量子称为:A. 声子B. 光子C. 电子D. 空穴答案:A5. 以下哪个不是固体的电子能带结构:A. 价带B. 导带C. 禁带D. 散射带答案:D二、简答题(每题10分,共30分)6. 解释什么是晶格常数,并举例说明。

晶格常数是晶体中最小重复单元的尺寸,通常用来描述晶体的周期性结构。

例如,立方晶系的晶格常数a是指立方体的边长。

7. 简述能带理论的基本概念。

能带理论是量子力学在固体物理中的应用,它描述了固体中电子的能量分布。

在固体中,电子的能量不是连续的,而是分成一系列的能带。

价带是电子能量较低的区域,导带是电子能量较高的区域,而禁带是两带之间的能量区域,电子不能存在。

8. 什么是费米能级,它在固体物理中有什么意义?费米能级是固体中电子的最高占据能级,它与温度有关,但与电子的化学势相等。

在绝对零度时,费米能级位于导带的底部,它决定了固体的导电性质。

三、计算题(每题15分,共30分)9. 假设一个一维单原子链的原子质量为m,相邻原子之间的弹簧常数为k。

求该链的声子频率。

解:一维单原子链的声子频率可以通过下面的公式计算:\[ \omega = 2 \sqrt{\frac{k}{m}} \]10. 给定一个半导体的电子亲和能为Ea,工作温度为T,求该半导体在该温度下的费米-狄拉克分布函数。

解:费米-狄拉克分布函数定义为:\[ f(E) = \frac{1}{e^{\frac{E-E_F}{kT}} + 1} \] 其中,E是电子的能量,E_F是费米能级,k是玻尔兹曼常数,T 是温度。

《固体物理》课后习题答案

《固体物理》课后习题答案

1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈0.52 体心立方3π/ 8 ≈0.68 面心立方2π/ 6 ≈0.74六方密排2π/ 6 ≈0.74 金刚石3π/16 ≈0.34解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。

证明:体心立方格子的基矢可以写为面心立方格子的基矢可以写为根据定义,体心立方晶格的倒格子基矢为同理与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。

注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。

根据定义,面心立方的倒格子基矢为同理而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。

证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为即为平面的法线根据定义,倒格子基矢为则倒格子原胞的体积为1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足其中a 为立方边长。

解:根据倒格子的特点,倒格子与晶面族(h, k,l)的面间距有如下关系因此只要先求出倒格,求出其大小即可。

因为倒格子基矢互相正交,因此其大小为则带入前边的关系式,即得晶面族的面间距。

1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。

若立方边长为a ,写出最近邻和次近邻的原子间距。

答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a ;面心立方晶格的最近邻原子数(配位数)为12,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a 。

固体物理答案

固体物理答案

(1)共价键结合的特点?共价结合为什么有“饱和性”和“方向性”?之答禄夫天创作饱和性和方向性饱和性:由于共价键只能由为配对的电子形成,故一个原子能与其他原子形成共价键的数目是有限制的。

N<4,有n个共价键;n>=4,有(8-n)个共价键。

其中n为电子数目。

方向性:一个院子与其他原子形成的各个共价键之间有确定的相对取向。

(2)如何理解电负性可用电离能加亲和能来表征?电离能:使原子失去一个电子所必须的能量其中A为第一电离能,电离能可表征原子对价电子束缚的强弱;亲和势能:中性原子获得电子成为-1价离子时放出的能量,其中B为释放的能量,也可以标明原子束缚价电子的能力,而电负性是用来暗示原子得失电子能力的物理量。

故电负性可用电离能加亲和势能来表征。

(3)引入玻恩-卡门条件的理由是什么?在求解原子运动方程是,将一维单原子晶格看做无限长来处理的。

这样所有的原子的位置都是等价的,每个原子的振动形式都是一样的。

而实际的晶体都是有限的,形成的键不是无穷长的,这样的链两头原子就不克不及用中间的原子的运动方程来描述。

波恩—卡门条件解决上述困难。

(4)温度一定,一个光学波的声子数目多呢,还是一个声学波的声子数目多?对同一振动模式,温度高时的声子数目多呢,还是温度低的声子数目多?温度一定,一个声学波的声子数目多。

对于同一个振动模式,温度高的声子数目多。

(5)长声学格波能否导致离子晶体的宏观极化?不克不及。

长声学波代表的是原胞的运动,正负离子相对位移为零。

(6)晶格比热理论中德拜(Debye)模型在低温下与实验符合的很好,物理原因是什么?爱因斯坦模型在低温下与实验存在偏差的根源是什么?在甚低温下,不但光学波得不到激发,而且声子能量较大的短声学波也未被激发,得到激发的只是声子能量较小的长声学格波。

长声学格波即弹性波。

德拜模型只考虑弹性波对热容德贡献。

因此,在甚低温下,德拜模型与事实相符,自然与实验相符。

爱因斯坦模型过于简单,假设晶体中各原子都以相同的频率做振动,忽略了各格波对热容贡献的差别,依照爱因斯坦温度的定义可估计出爱因斯坦频率为光学支格波。

(参考资料)固体物理习题带答案

(参考资料)固体物理习题带答案

D E ( ) ,其中 , 表示沿 x , y , z 轴的分量,我们选取 x , y , z
沿立方晶体的三个立方轴的方向。
显然,一般地讲,如果把电场 E 和晶体同时转动, D 也将做相同转动,我们将以 D' 表示转
动后的矢量。
设 E 沿 y 轴,这时,上面一般表达式将归结为:Dx xyE, Dy yyE, Dz zy E 。现在
偏转一个角度 tg 。(2)当晶体发生体膨胀时,反射线将偏转角度
tg , 为体胀系数
3
解:(1)、布拉格衍射公式为 2d sin ,既然波长改变,则两边同时求导,有
2d cos ,将两式组合,则可得 tg 。
(2)、当晶体发生膨胀时,则为 d 改变,将布拉格衍射公式 2d sin 左右两边同时对 d
考虑把晶体和电场同时绕 y 轴转动 / 2 ,使 z 轴转到 x 轴, x 轴转到 z 轴, D 将做相同
转动,因此
D'x Dz zy E
D'y Dy yyE
D'z Dx xy E 但是,转动是以 E 方向为轴的,所以,实际上电场并未改变,同时,上述转动时立方晶体
的一个对称操作,所以转动前后晶体应没有任何差别,所以电位移矢量实际上应当不变,即
第一章:晶体结构 1. 证明:立方晶体中,晶向[hkl]垂直于晶面(hkl)。
证 明 : 晶 向 [hkl] 为 h1 k2 l3 , 其 倒 格 子 为
b1
2
a1
a2
a3
(a2 a3 )
b2
2
a1
a3 a1 (a2 a3)
b3
2
a1
a1
a2
(a2 a3)
。可以知道其倒格子矢量

固体物理参考答案(前七章)

固体物理参考答案(前七章)

固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。

固体物理课后习题答案

固体物理课后习题答案

(
)
⎞ 2π k⎟= −i + j + k 同理 ⎠ a
(
)
(
)
(
)
2π ⎧ ⎪b1 = a −i + j + k ⎪ 2π ⎪ i− j+k ⎨b 2 = a ⎪ 2π ⎪ ⎪b3 = a i + j − k ⎩
(
)
(
)
(
)
由此可得出面心立方格子的倒格子为一体心立方格子; 所以体心立方格子和面心立方格子互为正倒格子。 2.2 在六角晶系中,晶面常用四个指数(hkil)来表示,如图 所示,前三个指数表示晶面族中最靠近原点的晶面在互成 1200的 共面轴 a1 , a2 , a3 上的截距为
设两法线之间的夹角满足
K 1 i K 2 = K1 i K 2 cos γ
K 1iK 2 cos γ = = K1 i K 2 2π 2π (h1 i + k1 j + l1 k )i (h2 i + k2 j + l2 k ) a a 2π 2π 2π 2π (h1 i + k1 j + l1 k )i (h1 i + k1 j + l1 k ) i (h2 i + k2 j + l2 k )i (h2 i + k2 j + l2 k ) a a a a
a1 a2 a3 , , ,第四个指数表示该晶面 h k i
在六重轴c上的截距为
c 。证明: l
i = −(h + k )
并将下列用(hkl)表示的晶面改用(hkil)表示:
2
第一章 晶体的结构
( 001) , (133) , (110 ) , ( 323) , (100 ) , ( 010 ) , ( 213) .

大学固体物理试题及答案

大学固体物理试题及答案

大学固体物理试题及答案一、选择题(每题5分,共20分)1. 下列关于晶体结构的描述,错误的是:A. 晶体具有规则的几何外形B. 晶体内部的原子排列是无序的C. 晶体具有各向异性D. 晶体具有固定的熔点答案:B2. 固体物理中,描述电子在晶格中运动的方程是:A. 薛定谔方程B. 牛顿运动方程C. 麦克斯韦方程D. 热力学第一定律答案:A3. 固体中,电子能带的宽度与下列哪个因素有关?A. 电子的电荷B. 电子的质量C. 晶格的周期性D. 电子的自旋答案:C4. 金属导电的原因是:A. 金属内部存在自由电子B. 金属内部存在空穴C. 金属内部存在离子D. 金属内部存在分子答案:A二、填空题(每题5分,共20分)1. 晶体的周期性结构可以用_________来描述。

答案:晶格常数2. 能带理论中,电子在能带之间跃迁需要吸收或释放_________。

答案:光子3. 根据泡利不相容原理,一个原子轨道内最多可以容纳_________个电子。

答案:24. 半导体的导电性介于金属和绝缘体之间,其原因是半导体的_________较窄。

答案:能带间隙三、简答题(每题10分,共30分)1. 简要说明什么是费米能级,并解释其在固体物理中的重要性。

答案:费米能级是指在绝对零度时,电子占据的最高能级。

在固体物理中,费米能级是描述电子分布状态的重要参数,它决定了固体的导电性、磁性等物理性质。

2. 解释为什么金属在常温下具有良好的导电性。

答案:金属具有良好的导电性是因为其内部存在大量的自由电子,这些电子可以在电场作用下自由移动,形成电流。

3. 什么是超导现象?请简述其物理机制。

答案:超导现象是指某些材料在低于某一临界温度时,电阻突然降为零的现象。

其物理机制与电子之间的库珀对形成有关,这些库珀对在低温下能够无阻碍地流动,从而实现零电阻。

四、计算题(每题15分,共30分)1. 假设一个一维晶格,晶格常数为a,电子的有效质量为m*,求电子在第一能带的最低能级。

固体物理习题参考答案

固体物理习题参考答案

固体物理第一次习题参考答案1.如果将等体积球分别排成下列结构,设x 表示刚球所占体积与总体积之比,证明结构 x简单立方 0.526x π=≈体心立方 30.688x π=≈ 面心立方 20.746x π=≈ 六角密排 20.746x π=≈ 金刚石 30.3416x π=≈解:设钢球半径为r ,立方晶系晶格常数为a ,六角密排晶格常数为a,c 钢球体积为V 1,总体积为V 2(1)简单立方单胞含一个原子,a r =2 52.06343321≈==ππa r V V(2)体心立方取惯用单胞,含两个原子,r a 43= 68.0833423321≈=⋅=ππar V V (3)面心立方取惯用单胞,含4个原子,r a =2 74.0623443321≈=⋅=ππar V V (4)六角密排与面心立方同为密堆积结构,可预期二者具有相同的空间占有率 取图示单胞,含两个原子,a r =2 单胞高度a c 38=(见第2题) 74.062233422321≈=⋅⋅=ππc a r V V (5)金刚石取惯用单胞,含8个原子,r a 2341= 34.01633483321≈=⋅=ππar V V2.试证六方密排密堆积结构中128() 1.6333c a =≈解: 六角密排,如图示,4个原子构成正四面体222)2332(2a a c =⋅+⎪⎭⎫⎝⎛ ⇒ a c 38=3.证明:体心立方晶格的倒格子是面心立方,面心立方的倒格子是体心立方。

证:体心立方基矢取为⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=++-=-+=)(2)(2)(2321k j i a a k j i a a k j i a a其中a 为晶格常数其倒格子基矢,按定义)(2)(21111114212)(223321j i b j i a kj ia a a a b+=+=--⋅=⨯Ω=πππ)(2)(2132k j b a a b +=⨯Ω=π)(2)(2213k i b a a b +=⨯Ω=π可见,体心立方的倒格子是晶格常数为a b π4=的面心立方。

固体物理简答题及答案

固体物理简答题及答案

固体物理简答题及答案简答题1、原子结合成晶体时,原子的价电子产生重新分布,从而产生不同的结合力,分析离子性、共价性、金属性和范德瓦耳斯性结合力的特点。

答案:离子性结合:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。

当排斥力和吸引力相互平衡时,形成稳定的离子晶体;共价性结合:靠两个原子各贡献一个电子,形成所谓的共价键;金属性结合:组成晶体时每个原子的最外层电子为所有原子所共有,因此在结合成金属晶体时,失去了最外层(价)电子的原子实“沉浸”在由价电子组成的“电子云”中。

在这种情况下,电子云和原子实之间存在库仑作用,体积越小电子云密度越高,库仑相互作用的库仑能愈低,表现为原子聚合起来的作用。

XXX耳斯性结合:惰性元素最外层的电子为8个,具有球对称的稳定封闭结构。

但在某一瞬时由于正、负电中心不重合而使原子呈现出瞬时偶极矩,这就会使其它原子产生感应极矩。

非极性分子晶体就是依靠这瞬时偶极矩的互作用而结合的。

2.什么叫简正振动形式?简正振动数量、格波数量或格波振动形式数量是不是是一回事?答案:为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似.在简谐近似下,由N个原子构成的晶体的晶格振动,可等效成3N个独立的谐振子的振动.每个谐振子的振动模式称为简正振动模式,它对应着所有的原子都以该模式的频率做振动,它是晶格振动模式中最简单最基本的振动方式.原子的振动,或者说格波振动通常是这3N个简正振动模式的线形迭加.简正振动数目、格波数目或格波振动模式数目是一回事,这个数目等于晶体中所有原子的自由度数之和,即等于3N.3.长光学支格波与长声学支格波本质上有何差别?答案:长光学支格波的特征是每个原胞内的不同原子做相对振动,振动频率较高,它包含了晶格振动频率最高的振动模式.长声学支格波的特征是原胞内的不同原子没有相对位移,原胞做整体运动,振动频率较低,它包含了晶格振动频率最低的振动模式,波速是一常数.任何晶体都存在声学支格波,但简单晶格(非复式格子)晶体不存在光学支格波.4.长声学格波能否导致离子晶体的宏观极化?答案:长光学格波所以能导致离子晶体的宏观极化,其根源是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移.长声学格波的特点是,原胞内所有的原子没有相对位移.因此,长声学格波不能导致离子晶体的宏观极化.5.何谓极化声子?何谓电磁声子?答案:长光学纵波引起离子晶体中正负离子的相对位移,离子的相对位移产生出宏观极化电场,称长光学纵波声子为极化声子.由本教科书的(3.103)式可知,长光学横波与电磁场相耦合,使得它具有电磁性质,人们称长光学横波声子为电磁声子.6、什么是声子?答案:晶格振动的能量量子。

固体物理学习题解答(完整版)

固体物理学习题解答(完整版)

《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。

从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a 那么,Rf Rb31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。

答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。

分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。

因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()o o a n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为(001)→(0001),(133)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(2(3)面心立方:6(4)六方密堆积:6(5)金刚石:。

固体物理总复习资料及答案..

固体物理总复习资料及答案..

固体物理总复习题一、填空题1.原胞是 的晶格重复单元。

对于布拉伐格子,原胞只包含 个原子。

2.在三维晶格中,对一定的波矢q ,有 支声学波, 支光学波。

3.电子在三维周期性晶格中波函数方程的解具有 形式,式中 在晶格平移下保持不变。

4.如果一些能量区域中,波动方程不存在具有布洛赫函数形式的解,这些能量区域称为 ;能带的表示有 、 、 三种图式。

5.按结构划分,晶体可分为 大晶系,共 布喇菲格子。

6.由完全相同的一种原子构成的格子,格子中只有一个原子,称为格子,由若干个布喇菲格子相套而成的格子,叫做 格子。

其原胞中有 以上的原子。

7.电子占据了一个能带中的所有的状态,称该能带为 ;没有任何电子占据的能带,称为 ;导带以下的第一满带,或者最上面的一个满带称为 ;最下面的一个空带称为 ;两个能带之间,不允许存在的能级宽度,称为 。

8.基本对称操作包括 , , 三种操作。

9.包含一个n 重转轴和n 个垂直的二重轴的点群叫 。

10.在晶体中,各原子都围绕其平衡位置做简谐振动,具有相同的位相和频率,是一种最简单的振动称为 。

11.具有晶格周期性势场中的电子,其波动方程为 。

12.在自由电子近似的模型中, 随位置变化小,当作 来处理。

13.晶体中的电子基本上围绕原子核运动,主要受到该原子场的作用,其他原子场的作用可当作 处理。

这是晶体中描述电子状态的模型。

14.固体可分为,,。

15.典型的晶格结构具有简立方结构,,,四种结构。

16.在自由电子模型中,由于周期势场的微扰,能量函数将在K= 处断开,能量的突变为。

17.在紧束缚近似中,由于微扰的作用,可以用原子轨道的线性组合来描述电子共有化运动的轨道称为,表达式为。

18.爱因斯坦模型建立的基础是认为所有的格波都以相同的振动,忽略了频率间的差别,没有考虑的色散关系。

19.固体物理学原胞原子都在,而结晶学原胞原子可以在顶点也可以在即存在于。

20.晶体的五种典型的结合形式是、、、、。

固体物理习题答案

固体物理习题答案

第四章 思考题
2、周期场是能带形成的必要条件吗? 答:周期场是由布洛赫函数描述的能带结构的必要条件。 布洛赫定理推导出周期场中单电子状态的一般属性(主要是能带 结构,参见图4.2-1 一维能带结构的表示图式),而晶格周期 势场是布洛赫定理的前提条件。 在晶体周期性结构(平移对称性)中,电子波函数 (k) 是布洛赫 函数,能量本征值和本征函数在 k 空间具有倒格矢反演和 周期性,电子波矢 k 是与平移对称性相联系的量子数 。 非晶态也具有相似的基本能带结构,即:导带、价带和禁带。 但非晶态的电子态与晶态比较有本质区别。非晶态不存在 周期性,因此 k 不再是具有类似特征的量子数。 非晶态能带中电子态分扩展态和局域态二类。扩展态的电子为 整个固体共有,可在整个固体内找到,在外场中运动类似 晶体中电子;局域态的电子基本局限在某一区域,状态波 函数只能在围绕某一不大的尺度内显著不为零,它们依靠 声子协助,进行跳跃式导电。
第一章 思考题
5、试画出体心立方和面心立方(100)、(110)、(111)面上格点的 分布图。 (100) (110) (111)
体心立方
面心立方
第一章 思考题
6、怎样判断一个体系对称性的高低?讨论对称性有何物理意义。 答: 一个物理体系对称性用其具有的对称操作集合来描述。一个体 系具有的对称操作越多,其对称性就越高。在数学上,基 本操作的集合构成 “群”,每个基本操作称为群的一个元 素。由于晶格周期性限制,描述晶体宏观对称性的“点群” 只有32种。描述晶体微观对称性的“空间群”只有230种。 一个物理体系,如知道其几何对称性,就可在一定程度上确定 它的某些物理性质。例如,若原子结构具有中心反演对称 性,则原子无固定偶极矩;若一个体系具有轴对称性,偶 极矩必在对称轴上;若有对称面,偶极矩必在对称面上。 由此可见,不必讨论体系结构细节,仅从体系的对称性,就可 对其物理性质作出某些判断。对称理论已成为定性和半定 量研究物理问题的重要方法。

固体物理考试要点及部分答案

固体物理考试要点及部分答案

名词解释1、什么是简单晶格和复式晶格?答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。

复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。

5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。

答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。

24、引入玻恩卡门条件的理由是什么?答:(1)方便于求解原子运动方程.由本教科书的(3.4)式可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.(2)与实验结果吻合得较好.对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N个原子构成的的原子链, 硬性假定的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(参见本教科书§3.2与§3.4).玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.固体物理复习要点名词解释1、基元、布拉伐格子、简单格子。

2、基矢、原胞3、晶列、晶面4、声子5、布洛赫定理(Bloch定理)6、能带能隙、晶向及其标志、空穴7、紧束缚近似、格波、色散关系8、近自由近似9、振动模、10、施主,N型半导体、受主,P型半导体11、本征光吸收;本征吸收边12、导带;价带;费米面简单回答题1、倒格子是怎样定义的?为什么要引入倒格子这一概念?2、如果将等体积的刚球分别排成简单立方、体心立方、面心立方结构,则刚球所占体积与总体积之比分别是多少?3、在讨论晶格振动时,常用到Einstein模型和Debye模型,这两种模型的主要区别是什么?以及这两种模型的局限性在哪里?6、叙述晶格周期性的两种表述方式。

黄昆固体物理习题解答-完整版

黄昆固体物理习题解答-完整版

⎜⎝ε31 ε32 ε33 ⎟⎠ ⎜⎝ − ε31 ε32 ε33 ⎟⎠
⎜⎝ 0 ε32 ε33 ⎟⎠
⎜⎛ ε11 + 3ε 22
− 3ε11 + 3ε 22 − 3ε 23 ⎟⎞

⎜⎛ ε11 ⎜0 ⎜⎝ 0
0 ε 22 ε 32
0 ⎟⎞
⎜ ⎜
ε 23 ⎟ = ⎜ −
ε33 ⎟⎠
⎜ ⎜
⎜⎝
44
3ε11 + 3ε 22
《固体物理》习题解答
第一章 习 题
1.1 如果将等体积球分别排列下列结构,设x表示刚球所占体积与总体积之比,证明
结构 简单立方(书P2, 图1-2) 体心立方(书P3, 图1-3)
面心立方(书P3, 图1-7)
六方密排(书P4, 图1-6)
金刚石(书P5, 图1-8)
x
π / 6 ≈ 0.52 3π / 8 ≈ 0.68
最后,感谢各位虫友一直以来对小木虫物理版的支持!同时也希望,今后能 后更多的虫友来加入物理版,把这里建成大家交流的乐园!
zt978031 2010 年 4 月 7 日
目录
第一章 习 题··························· 1 第二章 习 题··························· 6 第三章 习 题···························10 第五章 习 题···························31 第六章 习 题···························36 第七章 习 题···························42
倒格子基矢 b1
=

a2 × a3 a1 ⋅ a2 × a3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《固体物理学》习题解答( 仅供参考)参加编辑学生柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章)指导教师黄新堂华中师范大学物理科学与技术学院2003 级2006 年 6 月第一章晶体结构1.氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为 a。

解:氯化钠与金刚石型结构都是复式格子。

氯化钠的基元为一个 Na+和一个 Cl -组成的正负离子对。

金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。

由于 NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:a1 ak) ( j2a2 a(k i) 2a3 a( i j) 2相应的晶胞基矢都为:a a i ,b a j,c a k.2.六角密集结构可取四个原胞基矢a ,a , a 与 a ,如图所示。

试写出O A A 、1234 1 3A1 A3 B3 B1、 A2 B2 B5 A5、 A1 A2 A3 A4 A5 A6这四个晶面所属晶面族的晶面指数h k l m 。

解:(1).对于 O A1A3面,其在四个原胞基矢上的截矩分别为:1,1,1,1。

所以,其晶面2指数为 1121 。

(2).对于A1A3B3B1面,其在四个原胞基矢上的截矩分别为:1,1, 1 ,。

2所以,其晶面指数为1120 。

(3).对于A2B2B5A5面,其在四个原胞基矢上的截矩分别为:1,1,,。

1所以,其晶面指数为1100。

(4) .对于A1A2A3A4A5A6面,其在四个原胞基矢上的截矩分别为:,,,1。

所以,其晶面指数为0001 。

3.如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方:;体心立方:3;面心立方: 2 ;六角密集: 2 ;金刚石:6 8 6 63 。

16证明:由于晶格常数为 a,所以:(1).构成简立方时,最大球半径为R m a,每个原胞中占有一个原子,24 a 3V m a33 2 6V ma3 6(2).构成体心立方时,体对角线等于4倍的最大球半径,即:4R m 3a ,每个晶胞中占有两个原子,32V m4 3 3 32 a a3 4 82V m 3a3 8(3).构成面心立方时,面对角线等于4倍的最大球半径,即:4R m 2a ,每个晶胞占有4个原子,34V m4 2 2 3 4 a a3 4 64V m 2a3 6(4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高则正好是其原胞基矢 c 的长度的一半,由几何知识易知c 4 6R m。

原胞底面边长为2R m。

每个晶胞占有两个原子,322V m2 4 R m3 8 R m 3 ,3 3原胞的体积为: V2R m 24 6R m 8 2R m3sin 6032V m2V3 26(5).构成金刚石结构时, 1的体对角线长度等于两个最大球半径, 即:2R m3 a ,44每个晶胞包含 8 个原子,4 33 38V m83 38 aa168V m 3a 3164. 金刚石结构原子间的键间角与立方体的体对角线间的夹角相同, 试用矢量分析的方法证明这一夹角为 109 28 。

证明:如图所示,沿晶胞基矢的方向建立坐标系,并设晶格常数为1。

选择体对角线 AB 和 CD ,用坐标表示为 {1,1, 1}和 { 1,1,1} 。

所以 ,其夹角的余弦为:AB CD 1 cos3 AB CD arccos( 1)109 2835. 试求面心立方结构 (110) 和(111) 晶面族的原子数面密度,设晶格常数为 a 。

解:如图所示,面 ABCD 即 (110)面,面 CDE 即为 (111)面。

设该面心立方的晶格常数为 a ,则在 (110)面内选取只包含一个原子的面 AFGD ,其面积为 a2 a 2 a 2 ,所以其原子数面密223度为:1 22a2a22在 (111)面内选取只包含一个原子的面DHIG ,其面积为:(2a)2sin33 a2,2 4所以其原子数面密度为:1 4 3 a23 a2 346.若在面心立方结构的立方体心位置上也有一原子,试确定此结构的原胞,每个原胞内包含几个原子,设立方边长为 a。

解:这种体心立方结构中有五种不同的原子。

顶角、体心上的原子是两种不同的原子,另外,面心上的原子前后、上下、左右的原子两两一组,是互不相同的原子。

故此种结构共有五种不同的原子,整个面心立方就是一个原胞。

每个原胞中的原子数为:1 1(个)81 3 2 58 27.底心立方(立方顶角与上、下底心处有原子)、侧心立方(立方顶角与四个侧面的中心处有原子)与边心立方(立方顶角与十二条棱的中点有原子)各属何种布拉维格子?每个原胞包含几个原子?解:这三种结构都属于简立方结构,原胞包含的原子数分别为:底心立方:18 1 8侧心立方:18 1 4 3 8 2边心立方:18 1 12 4 8 48. 试证六角密集结构中c8 1.63a 34解:如图所示, ABC 分别表示六角密集结构中中间层的三个原子, D表示底面中心的原子。

DABC 构成 一个正四面体,为长为 a 。

面 ABC ,则 DODOc2DE3a, OE1 3 a3a ,且 DOOE23 2622则由勾股定理得, OD3 a3 a6a ,263c2OD 2 6 a , c2 681.633a 3 3第二章 晶体中的衍射1. 试证明面心立方与体心立方互为正倒格子。

方法 1:5面心立方:a1 a( j k) 2a2 a(k i ) (1)2a3 a(i j) 2由正格子和倒格子的转换关系b1 2 (a2 a3 ) /b2 2 ( a3 a1) / ( 2)b3 2 ( a1 a2 ) /其中:a1 (a2 a3 ) 得:b 2 ( i j k)1 ab2 2 (i j k )(3)ab3 2 (i j k )a在体心立方中a1 a( i j k) 2a2 a(i j k)(4)2b3 a(i j k) 2由( 2)式可得b1 2 ( j k)aa2 2 ( k i)(5)aa3 2 (i j)a比较( 1)与( 5),(3)与( 4)便可得面心立方与体心立方互为正,倒格子。

方法 2:由方法一中的(1)可知正格子与倒格子之间存在如下关系:6a b2{1 i j , ji j iji j ib 1 2 ( i j k )a 由此可得面心立方的倒格子基矢:b 2 2 (i j k)ab 3 2 (i j k)ab 12 ( jk)a同理可得体心立方的倒格子基矢: a 22 (k i )aa2 (i j )3a比较可得面心立方和体心立方互为正倒格子。

2.a,b, c 为简单正交格子的基矢,试证明晶面族( h k l )的晶 面间距为d hkl [( h / a)2 (k / b) 2 (l / c) 2 ] 1/ 2解: aai ,b b j , cck ,由 p 19 (2.2.7) 知a (b c) abca * 2 (b c) / b *2 (c a) / c *2 ( a b) /可得:a *b*c *k h ha *kb *lc *2a2 i a 2jb2 kchi2 2 k jlkbc再由p 22 中 k h 和 d hkl 的关系: kh2 / d hkl 可得:7dhkl 2( a h ) 2 2 ( a h )2 ( b k ) 2 ( c l ) 2k h ( b k ) 2 ( c l ) 2 得证。

3.六角密集结构如取如下原胞基矢a a i 3a j, a2a i3a j,c ck1 2 2 2 2 试写出其倒格子基矢。

方法一:a1 (a2 c) a(i 3 j ) (ai3j ) ck 3 a2c 2 2 2 2b 2 (a2 c) / 2 (3i3 j )1 3ab2 2 (c a1 ) / 2 ( 3i 3 j ) 解得。

3ac' 2 (a a ) / 2 k1 2 c方法二:由正格子和倒格子之间的关系:aibj2ij可得:b11 2 ,b12 2 3, b13 0a 3ab21 2 2 3,b23 0 ,b21a 3ac' 31 0,c'32 0, c' 33 2cb 2 (a2 c) / 2 (3i3 j )1 3ab2 2 (c a1 ) / 2( 3i 3 j) 3ac' 2 (a1 a2 ) / 2 kc84. 如 X 射线沿简立方原胞的Oz 负方向入射,求证当22) 和 / a 2l /(k lcos(l 2 k 2 ) /( l 2 k 2 ) 时,衍射光线在 yz 平面上, 为衍射线和 Oz 轴的夹角。

证明:简立方的原胞的正格子基矢为:a 1 aia 2 a ja3a 3ak其倒格矢为:b2 i1ab 22 jab2 k,3ak h2 hi 2 k j 2 lka a a由图可知:sincos1 cos l 222l2k2将 2 2l 2 ,l22 代入a k lsin l 2 km k h22sin 得:2222 1/ 22 2lm (h kl )(l2k 2 )1/ 2am(h2k2l 2 )1/ 2(k2l 2 )1/ 2当 m=1, h 2 =0 时,上式可以成立当 h=0 时,kh 只有 k, j 分量,即 k 0 只有 k 分量,而 kk 0k h, k 亦只有 y ,9z 分量,即衍射光线在yz 平面上。

5. 设在氯化钠晶体中,位于立方晶胞的( 0 0 0),( 1/2 1/2 0),(1/2 0 1/2)与(0 1/2 1/2)诸点;而Cl位于( 1/2 1/2 1/2),(0 0 1/2),(0 1/2 0)与( 1/2 0 0)诸点。

试讨论衍射面指数和衍射强度的关系。

解:p25中的( 2. 4. 11)可知:2Imh, mk, ml f j cos2 (mhu j mkv j mlw j )j2f j sin 2 (mhu j mkv j mlw j )j对于氯化钠晶胞:Imh, mk, ml f f cos (mk mh) f cos (mk ml ) f cos (mh ml ) Na Na Na Naf cl cos (mk mh ml) f cl cos ml fcl cos mk f cl cos mh( 1)当衍射面指数全为偶数时,I 16( f Na f cl )2衍射强度最大,( 2)当衍射面指数全为奇数时,I 16( f Na f cl )2由于cl与 Na 具有不同的散射本领,使衍射指数全为奇数的衍射具有不为零但较低的强度。

相关文档
最新文档