淀粉塑料研究进展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得分:_______ 南京林业大学
研究生课程论文2013 ~2014 学年第二学期
课程号:73414
课程名称:生态环境科学
论文题目:热塑性淀粉材料的研究进展与应用
学科专业:材料学
学号:3130161
姓名:王礼建
任课教师:雷文
二○一四年五月
热塑性淀粉材料的研究进展与应用
王礼建
(南京林业大学理学院,江苏南京210037)
摘要:淀粉与其他生物降解聚合物相比,具有来源广泛,价格低廉,易生物降解的优点因而在生物降解塑料领域中具有重要的地位。本文介绍了淀粉的基本性质、塑化和塑化机理,以及增强体在热塑性淀粉中的应用现状和进展,并对市场应用现状和目前淀粉塑料存在的不足等方面进行了相关的分析。
关键字:淀粉塑料;塑化;增强;市场应用
Research progress and application of thermoplastic starch
materials
WANG Li-jian
(College of Science, Nanjing Forestry University, Nanjing 210037, China) Abstract: Starch has an important status in the biodegradable plastics’ area compared with other biodegradable polymer, because it has a lot of advantages such as a wide range of sources, low cost and easy to be broken down. In this thesis, introduces the basic properties of starch, plastic and plasticizing mechanism, as well as reinforcement application status and progress of the thermoplastic starch, and reinforcement application status and progress of the thermoplastic starch. Aspects of the application and the current status of the market and the presence of starch plastics were insufficient correlation analysis.
Key words: Starch plastics; plasticizers; enhanced; market applications
1 淀粉的基本性质
淀粉以葡萄糖为结构单元,分子链呈顺式结构,一般分为直链淀粉和支链淀粉两种。直链淀粉是以α-1,4-糖苷键连接D-吡喃葡萄糖单元所形成的直链高分子化合物,而支链淀粉是在淀粉链上以α-1,6-糖苷键连接侧链结构的高分子化合物,分子量通常要比直链淀粉的大很多。通常玉米淀粉中直链淀粉占28%,分子量大约为(0.3~3×106),占72%的支链淀粉分子量则可以达到数亿[1-2]。
淀粉是一种多羟基化合物,每个葡萄糖单元上均含有三个羟基。分子链通过羟基相互作用形成分子间和分子内氢键,因此淀粉具有很强的吸水性。淀粉与水
分子相互结合,从而形成颗粒状结构,因此淀粉具有亲水性,但不溶于水,从而大量存在于植物体中。
淀粉是一种高度结晶化合物,分子间的氢键作用力很强,淀粉的糖苷键在150℃时则开始发生断裂,因此其熔融温度要高于分解温度。
2 热塑性淀粉的塑化
2.1 热塑性淀粉的塑化机理
淀粉分子含大量羟基,分子间及分子内部氧键作用很强,对其直接加热,升至理论熔融温度之前,淀粉便开始分解,即淀粉颗粒内的平衡水因升温会而丢失,导致淀粉的分解(通常天然淀粉水分含量约为9%~12%)。淀粉的热塑性增塑就是使淀粉分子结构无序化,形成具有热塑性能的淀粉树脂。其机理就是在热力场、外力场和增塑剂的作用下,淀粉分子间和分子内氢键被增塑剂与淀粉之间较强的氢键作用所取代,淀粉分子活动能力得到提高,玻璃化转变温度降低。增塑剂的加入破坏了淀粉原有的结晶结构,使分子结构无序化,实现由晶态向非晶态的转变,从而使淀粉在分解前实现熔融,淀粉表现出热塑性[3]。
2.2 热塑性淀粉的塑化剂
塑化剂的作用是降低材料的熔体黏度,玻璃化转变温度及产品的弹性模量,但不改变被增塑材料基本的化学性质。被塑化的淀粉颗粒状结构变小(球晶尺寸变小)甚至消失,球晶结构受到破坏,只剩少数片晶分散于非晶态连续相中。同时,淀粉分子间和分子内的氧键作用被削弱破坏,分子链扩展力提高。淀粉在塑化过程中伴随有二级相变过程一玻璃化相变,淀粉的玻璃化转变温度降低,在分解前可实现微晶熔融,长链分子开始运动,分子间产生相对滑动,并由双螺旋构象变为无规线团构象,聚合物变得有粘性,柔韧,从而使淀粉具有热塑加工的可能性。
热塑性淀粉常用的塑化剂有:水,多元醇(丙三醇,乙二醇,丙二醇,山梨醇等),酰胺类(尿素,甲酰胺,乙酰胺等),高分子类(聚乙烯醇,聚乙二醇等)。
(1)水
水是淀粉加工中最常用的塑化剂。由于水的存在,使淀粉颗粒在加工过程中发生一系列不可逆转转变,通常将这些变化称为凝胶化或糊化。此时可观察到淀粉颗粒发生吸水,膨胀,无定形化,双折射等现象[4],使淀粉在高温高剪切条件下转变成热塑性淀粉。
Biliaderis [5]发现,淀粉的溶融温度依赖于水分的含量。一方面,水分的含量要能在淀粉降解前对结晶产生足够的破坏,另一方面,水分也不能过多,以免造成熔体粘度低和材料的低模量。另外,水分过低,加工过程中发生热降解,离模膨胀加剧。熊汉国[6-7]以水,丙三醇等小分子为塑化剂,发现塑化淀粉的结晶峰数急剧减少,说明淀粉结晶区被塑化剂破坏,淀粉中无定形成分增加,淀粉转变为具有热塑性的高分子材料。他认为水是淀粉最有效的塑化剂,其用量达淀粉质量的15wt%。而Mwootton和A.C.Eliasson认为:使小麦淀粉凝胶化的最小水分含量为33%左右[8]。
但是Loercks[9]认为,热塑性淀粉挤出过程中,若淀粉中水的质量分数≥5%,生成的是解体淀粉而非热塑性淀粉,解体淀粉的结构未完全破坏,材料变脆且无可伸缩性,不能用于制备降解塑料。Loerkcks以疏水性可生物降解聚合物(脂肪族,脂肪族聚醋与芳香族聚酷等)作塑化剂加入淀粉溶体,均勻混合并制成淀粉母料,发现疏水性可生物降解聚合物作为增塑剂,可避免在热塑性淀粉溶体中有