等差数列(小数数学-五年级奥数)

合集下载

等差数列(小数数学 五年级奥数)

等差数列(小数数学 五年级奥数)

等差数列知识与方法:像(1)1,2,3,4,5,…;(2)10,20,30,40,50,…从第2项起,每一项与它前一项的差等于同一个常数的数列,叫做等差数列。

这个常数叫做等差数列的公差,通常用字母d表示。

在等差数列a1,a2,a3,…a n中,它的公差是d,那么a2=a1+da3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3d…a n=a1+(n-1)×d(等差数列的通项公式)由此可见,等差数列从第2项起,每一项都等于第一项加上公差的若干倍,这个倍数等于这项的项数减1的差,利用它可以求出等差数列的任何一项。

例题1:求等差数列3,8,13,18......的第38项和第69项。

练习1:求等差数列1,4,7,10,13.....的第20项和第80项.练习2:超市工作人员在商品上依次编号,分别为4,8,12,16......,请问第34个商品上标注的是什么数字?第58个标注的是什么数字?例题2:36个小学生排成一排玩报数游戏,后一个同学报的数总比前一个同学多报8,已知最后一个同学报的数是286,第一个同学报的数是几?练习1:仓库里有一叠被编上号的书,共40本,已知每下面一本书比上面一本书的号码多5,最后一本书的编号是225,请问第一本书的编号是多少?练习2:幼儿园给小朋友们发玩具,共32个小朋友,每人一个,每个玩具上都有编号,已知最后一个小朋友玩具编号是98,每一个玩具的编号比后一个玩具的编号少3,问第一个小朋友上玩具编号是多少?例题3:等差数列4,12,20......,中的580是第几项?练习1:等差数列3,9,15,21.....中381是第几项?练习2:糖果生产商为机器编号,依次为7,13,19,25......。

问编号为433的机器是第几个?例题4:一批货箱上面的标号是按等差数列排列的。

第1项是3.6,第5项是12,求它的第2项.练习1:有一个等差数列的第1项是2.4,第7项是26.4,求它的第5项.练习2:有一排用等差数列编码的彩色小旗,第1面小旗上的号码为3.7,第8面小旗上的号码为38.7。

最新五年级奥数重难点:等差数列

最新五年级奥数重难点:等差数列

五年级奥数重难点:等差数列什么叫做等差数列?数列中每相邻两个数的差是一个固定值,这样的数列就是等差数列。

这个固定的差值叫做公差,数列中的第一项叫做首项,最后一项叫做末项,数字的个数叫做项数。

知识点一:等差数列求项数公式:项数=(末项-首项)÷公差+1【例1】求下列数列共有多少项?2,5,8,11,...,98,101边学边练:求下列数列共有多少项?①1,4,7,10,...,100 ②4,9,14,19,...,109知识点二:等差数列求末项公式:末项=首项+(项数-1)×公差【例2】等差数列2,7,12,17,22,···的第100项是多少?边学边练:1、有一列数:5,8,11,14,···它的第100项是多少?2、数列:3,8,13,18,···的第80项是多少?知识点三:等差数列求和①基本公式:等差数列和=(首项+末项)×项数÷2②特殊公式:等差数列和=中间项×项数【例3】计算1+2+3+4+…+78+79+80边学边练:1、计算:3+6+9+…+20012、计算:5+10+15+20+⋯ +190+195的和。

【例4】计算:(1+3+5+...+1997+1999)-(2+4+6+...+1996+1998)边学边练:1、计算:1+3+5+7+...+97+99+97+...+7+5+3+12、计算:1÷1999+2÷1999+3÷1999+...+1998÷1999+1999÷1999知识点四:在很多的问题中,通常都可以转化为等差数列来解决。

【例5】小王和小胡两人比赛赛跑,限时时间为10秒,谁跑的距离长谁就获胜,小王第一秒跑1米,以后每秒都比前一秒多跑0.1米,小胡自始至终每秒跑1.5米,谁能取胜?边学边练:1、四(2)班有45个同学矩形一词联欢会,同学们在一起一一握手,且每两人只能握一次,问同学们共握多少次手?2、阳光影视城的一个放映厅设置了20排座位,第一排有30个座位,往后每一排都比前一排多2个座位。

小学五年级奥数《等差数列题解》.doc

小学五年级奥数《等差数列题解》.doc

小学五年级奥数《等差数列题解》知识点:①等差数列的和 = (首项+末项)×项数÷2②项数 = (末项-首项)÷公差+1③公差 = 第二项-首项④等差数列的第n项 = 首项+(n-1)×公差⑤首项 = 末项-公差×(项数-1)⑥末项 =首项+公差×(项数-1)1、计算:1+3+5+7+……+95+97+99=(1+99)×50÷2=25002、求首项为5,末项为155,项数是51的等差数列的和。

(5+155)×51÷2=160×51÷2=80×51=40803、计算:(1+3+5+……+1997+1999)-(2+4+6+……+1996+1998)=(1+1999)×1000÷2-(2+1998)×999÷2=1000000-999000=10004、计算:1÷1999+2÷1999+3÷1999+……+1998÷1999+1999÷1999=【(1999+1)×1999÷2】÷1999=10005、有60个数,第一个数是7,从第二个数开始,后一个数总比前一个数多4。

求这60个数的和。

(1)末项为:7+4×(60-1)=7+4×59=7+236=243(2)60个数的和为:(7+243)×60÷2=250×60÷2=75006、数列3、8、13、18、……的第80项是多少?3+(80-1)×5=3+79×5=3+395=3987、求3+7+11+……+99=?①项数:(99-3)÷4+1=96÷4+1=25②和:(3+99)×25÷2=102×25÷2=12758、计算:1+3+5+7+9+11+13+9+7+5+3+1方法一:1+3+5+7+9+11+13+11+9+7+5+3+1=(1+13)×7÷2+(1+11)×6÷2=(1+13)7+15=49+36=85方法二:1=121+3+4=221+3+5=321+3+5+7=421+3+5+7+9=521+3+5+7+9+11=621+3+5+7+9+11+13=721+3+5+7+9+11+13+9+7+5+3+1=72+62=49+36=85赠送以下资料考试知识点技巧大全一、考试中途应饮葡萄糖水大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活动,大脑细胞活动需要大量能量。

等差数列(小数数学 五年级奥数)

等差数列(小数数学 五年级奥数)

等差数列知识与方法:像(1)1,2,3,4,5,…;(2)10,20,30,40,50,…从第2项起,每一项与它前一项的差等于同一个常数的数列,叫做等差数列。

这个常数叫做等差数列的公差,通常用字母d表示。

在等差数列a1,a2,a3,…a n中,它的公差是d,那么a2=a1+da3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3d…a n=a1+(n-1)×d(等差数列的通项公式)由此可见,等差数列从第2项起,每一项都等于第一项加上公差的若干倍,这个倍数等于这项的项数减1的差,利用它可以求出等差数列的任何一项。

例题1:求等差数列3,8,13,18......的第38项和第69项。

练习1:求等差数列1,4,7,10,13.....的第20项和第80项.练习2:超市工作人员在商品上依次编号,分别为4,8,12,16......,请问第34个商品上标注的是什么数字?第58个标注的是什么数字?例题2:36个小学生排成一排玩报数游戏,后一个同学报的数总比前一个同学多报8,已知最后一个同学报的数是286,第一个同学报的数是几?练习1:仓库里有一叠被编上号的书,共40本,已知每下面一本书比上面一本书的号码多5,最后一本书的编号是225,请问第一本书的编号是多少?练习2:幼儿园给小朋友们发玩具,共32个小朋友,每人一个,每个玩具上都有编号,已知最后一个小朋友玩具编号是98,每一个玩具的编号比后一个玩具的编号少3,问第一个小朋友上玩具编号是多少?例题3:等差数列4,12,20......,中的580是第几项?练习1:等差数列3,9,15,21.....中381是第几项?练习2:糖果生产商为机器编号,依次为7,13,19,25......。

问编号为433的机器是第几个?例题4:一批货箱上面的标号是按等差数列排列的。

第1项是3.6,第5项是12,求它的第2项.练习1:有一个等差数列的第1项是2.4,第7项是26.4,求它的第5项.练习2:有一排用等差数列编码的彩色小旗,第1面小旗上的号码为3.7,第8面小旗上的号码为38.7。

奥数等差数列

奥数等差数列

第七讲等差数列(1)1; 2; 3; 4; 5; 6; 7; 8;(2)2: 4; 6: 8; 10: 12; 14; 16;—(3)1; 4; 9: 16: 25; 36; 49;…上面三组数都是数列.数列中称为项;第一个数叫第一项:又叫首项;第二个数叫第二项……以此类推;最后一个数叫做这个数列的末项.项的个数叫做项数.一个数列中;如果从第二项起;每一项与它前面一项的差都相等;这样的数列叫等差数列. 后项与前项的差叫做这个等差数列的公差.如等差数列:4; 7; 10; 13: 16; 19: 22; 25; 28.首项是4;末项是28:共差是3.这一讲我们学习有关等差数列的知识.例题与方法例1、在等差数列1; 5: 9: 13: 17;…;401中401是第几项?例2、100个小朋友排成一排报数;每后一个同学报的数都比前一个同学报的数多3;小明站在第一个位置:小宏站在最后一个位置.已知小宏报的数是300;小明报的数是几?例3、有一堆粗细均匀的圆木;堆成梯形:最上面的一层有5根圆木:每向下一层增加一根;一共堆了28层.最下面一层有多少根?例4、1+2+3+4+5+6+-+97+98+99+100二?例5、求100以内所有被5除余10的自然数的和.例6、小王和小胡两个人赛跑;限定时间为10秒;谁跑的距离长谁就获胜.小王第一秒跑1米;以后每秒都比以前一秒多跑0.1米;小胡自始至终每秒跑1.5米;谁能取胜?练习与思考(每题10分;共100分.)1.数列4; 7: 10; ......... 295: 298中298是第几项?2.蜗牛每小时都比前一小时多爬0. 1米:第10小时蜗牛爬了1. 9米:第一小时蜗牛爬多少米?3.在树立俄;10: 13: 16;…中;907是第几个数?第907个数是多少?4.求自然数中所有三位数的和.5.求所有除以4余1的两位数的和.6.0. 1+0. 3+0. 58. +0. 7+0. 9+0 11+0 13+0 15+-0 99 的和是多少?7.梯子最高一级宽32厘米;最底一级宽110厘米;中间还有6级:各级的宽度成等差数列;中间一级宽多少厘米?8.有12个数组成等差数列;第六项与第七项的和是12:求这12个数的和.9.一个物体从高空落下;已知第一秒下落距离是4. 9米;以后每秒落下的距离是都比前一秒多9. 8米50秒后物体落地.求物体最初距地面的高度.10.求下面数字方阵中所有数的和.1; 2: 3;•••; 98; 99; 1002; 3: 4;…99; 100; 1013; 4: 5;…;100; 101: 102100, 101, 102, -197, 198, 199第八讲找规律你能找出下面各数列暴烈的规律吗?请在括号内填上合适的数》(1)8; 15; 22; ( ); 36;•••;(2)17; 1; 15;1: 13; 1; ( ); ( );9;1;•••;(3)45; 1; 43;3: 41; 5; ( );( );37; 9;•••;(4)1; 2; 4; 8: 16; ( ); 64;•••;(5)10; 20; 21:42; 43; ( );( );174; 175;•••;(6) 1 ; 2; 3; 5:8: 13; 21 ;( );55.(7)1; 2; 3; 2: 3; 4; 3: 4; 5; 4; 5; 6; 6; 7;…从第一个数算起;前100个数的和是多少?练习与思考(第1题30分:其余每题10分:共100分.)(1)找规律;在括号内填上合适的数.(2)1,3,9,27, ( ),243;(3)2, 7, 12, 17,22, ( ), ( ),37;(4)1,3, 2,4, 3, ( ),4;(5)0,3,8, 15, 24, ( ) ,.48;(6)6, 3, 8, 5, 10, 7, 12,9, ( ), 11;(7)2, 3, 5, ( ), ( ), 17, 23;(8)81,64, ( ); 36; ( ); 16; 9: 4; 1;(9)1; 8; 9; 17; 26; ( ); 69;(10)4; 11; 18; 25; ( ); 39; 46;2.一串数按下面规律排列:1; 3: 5; 2; 4: 6; 3: 5; 7; 4: 6; 8; 5; 7; 9;…从第一个数算起;前100个数的和是多少?3.有一串黑白相间的珠子(如下图);第100个黑珠前面一共有多少个白珠?在平面中任意作100条直线;这些直线最多能形成多少个交点?5. 在平面中任意作20条直线;这些直线最多可把这个平面分成多少个部分?序! 12315算51+12+33+51+72+<序! 6789• • •算53+111+132+153+17• • •根据上面的规律;第40个序号的算式是什么?算式T+103 ”的序号上多少?7.小正方形的边长是1厘米;依次作出下面这些图形.rFh-k rfzii_* cE二二二壬已知第一幅图的周长是10厘米.(1)36个正方形组成的图形的周长是多少厘米?(2)周长是70厘米的图形;由多少个正方形组成?4.己知第一幅图的周长是10厘米.(1)36个正方形组成的图形的周厂是多少厘米?(2)周长是70厘米的图形;由多少个正方形组成?8 在方格纸上画折线(如本讲例4图);小方格的边长是1:图中的1; 2; 3; 4;…分别表示折线扩大第1: 2: 3; 4;…段.求折线中第100段的长度.长度是30的是第几段?能力测试(一)一、填空题(每空3分;工39分).1.在下面的括号里按照规律填上适当的数字.(1)1;2: 3; 4; 8:16:(); 64;128.(2)5;10; 15; 20;25: ( ); 35;40.(3)4;7:10: 13; 16;( ): 22; 25.(4)1; 1 :2; 3; 5:8; 13;21 ;()(5)1024:512; 256: ( ):64: 32: 16; 8: 4.(6)2;5:11: 20: 32;( ): 65; 86.(7)1;3:2; 4; 3: 5;( ): 6: 5.(8)1; 4; 9; 16; 25; ( ); 49; 64.1.9个人9天共读书1620页;平均1个人1天共读书()页;照这样计算;5个同学5天读书()页.2.如果平均1个同学1天植树()棵:那么;3个同学4天共植树120棵.3.买3只足球和9只篮球共用了570元;买9只足球和27只篮球要用()元.二、计算题(每小题5分;共10分).1.2+4+6+8+10+ - +22+24+262.1+2+3+4+5+6+ …+1996+1997+1998三、应用题(第1〜4题10其余每题10分;第5题11分;共51分).1.李老师将一叠练习本分给第一组的同学;如果每人分7本;还多7本.如果每人分9:那么有一个同学译本也分不到.第一组有多少同学?这叠练习本一共有多少本?2.一只小船在河中逆流航行176千米:用了11小时.一知水流速度是每小时4千米;这只小船返回原处要用多少小时?3.4只篮球和8只足球共买560元;6只篮球和3只足球共买390元.问:一只篮球和一只足球各买多少元?4.有10元钞票与5元钞票共128张:其中10元比5元多260元.两种面额的钞票各是多少张?5.下面是一种特殊数列的求和方法.要求数列2; 4; 8; 16; 32: 64; - : 1024; 2048的和;方法如下:S = 2+4+8+16+32+64+ …+1024+204822S = 4+8+16+32+64+ …+1024+2048+4096用下面的式子减去上面的式子;就得到S =4096 - 2 = 4094即数列2: 4; 8; 16; 32: 64;…;1024; 2048 的和是4094.仔细阅读上面的求和方法;然后利用这种方法求卜面数列的和.1: 3: 9; 27; 81: 243;…;177147: 531441.。

(完整版)小学五年级奥数等差数列练习练习

(完整版)小学五年级奥数等差数列练习练习

(完整版)小学五年级奥数等差数列练习练习(完整版)小学五年级奥数等差数列练1. 问题描述小明是一名小学五年级的学生,他正在积极准备奥数比赛。

最近,他研究了等差数列的知识,并希望通过练来巩固所学的内容。

以下是一些小明需要解决的练题目。

2. 练题目2.1 简单等差数列计算已知一个等差数列的首项为 `a`,公差为 `d`,小明需要计算出数列的前 `n` 项和。

2.2 求等差数列中的某一项已知一个等差数列的首项为 `a`,公差为 `d`,小明需要找出数列中的第 `m` 项。

2.3 求等差数列的前 `n` 项已知一个等差数列的首项为 `a`,公差为 `d`,小明需要列出数列的前 `n` 项。

2.4 求等差数列的公差已知一个等差数列的首项为 `a`,前 `n` 项和为 `s`,小明需要求出数列的公差 `d`。

2.5 求等差数列的首项已知一个等差数列的公差为 `d`,前 `n` 项和为 `s`,小明需要求出数列的首项 `a`。

3. 解决方法对于上述的练题,小明可以采用以下方法来解决:- 简单等差数列计算:使用等差数列求和公式 `Sn = n * (2a + (n - 1) * d) / 2`,将给定的参数代入公式中,求得前 `n` 项的和。

- 求等差数列中的某一项:使用等差数列通项公式 `An = a + (m - 1) * d`,将给定的参数代入公式中,求得第 `m` 项的值。

- 求等差数列的前 `n` 项:利用等差数列的递推关系 `An = a + (n - 1) * d`,逐次计算出数列的前 `n` 项。

- 求等差数列的公差:使用等差数列求和公式 `Sn = n * (2a + (n - 1) * d) / 2`,将给定的参数代入公式中,并将已知的前 `n` 项和 `s`进行代入,得到一个关于 `d` 的一元一次方程,解方程求得公差 `d`。

- 求等差数列的首项:使用等差数列求和公式 `Sn = n * (2a + (n - 1) * d) / 2`,将给定的参数代入公式中,并将已知的前 `n` 项和 `s`进行代入,得到一个关于 `a` 的一元一次方程,解方程求得首项 `a`。

五年级《等差数列》奥数教案

五年级《等差数列》奥数教案

(五年级)备课教员:第十讲等差数列一、教学目标: 1. 了解等差数列,以及公差和通项公式的概念;能够利用通项公式求等差数列的首项、公差、项数和指定的项。

2.能判断一个数列是否等差数列,并能利用等差数列的基本知识来解决生活实际问题。

3. 通过等差数列的学习,培养学生观察和归纳总结的能力。

二、教学重点: 1. 了解等差数列的概念。

2. 利用等差数列的知识解决生活实际问题三、教学难点: 1. 能够通过给出等差数列的几个数求通项公式。

2. 灵活利用通项公式求等差数列的首项、公差、项数和指定的项。

四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(3分钟)师:在一次体育课上,体育老师让卡尔算出上体育课的同学有多少个?卡尔没有挨个去数,而是让大家站成了三排。

第二排比第一排多2人,第三排比第二排多2人。

【课件演示体育课的同学第一排有8个人,第二排有10个人,第三排有12个人】师:然后卡尔数了第二排的人数,很快就算出了总人数。

体育老师看到卡尔在这么短的时间就算出了人数,特意表扬了卡尔。

小朋友们,你们知道卡尔是怎么做到的吗?生:不知道。

师:那你们想掌握这个方法吗?生:想。

师:那好,今天我们就来学一学“等差数列”这一课,让我们也变得跟卡尔一样拥有智慧的大脑吧!【课件演示课题:等差数列】二、探索发现授课(40分钟)(一)知识导航(5分钟)【课件展示两个等差数列:(1)1,2,3,4,5,…(2)10,20,30,40,50,…】师:同学们,我们来找找看,这两组数有什么特点?生1:都是逐渐变大的数。

师:嗯,不错,还有吗?生2:相邻两个数的差相等。

师:对了,这是最重要的,这个同学眼睛很亮。

我们把这样有序的一组数叫做数列。

可以看到这两组数的每一项都比前面一项多一个常数,也就是说每 相邻两项的差值是相等的,我们把这样的数列叫做等差数列。

这个常数叫 作等差数列的公差,通常用字母d 表示。

在等差数列1a ,2a ,3a ,…,n a 中 它们的公差是d ,那么d a a +=12,d a d d a d a a 2)(1123+=++=+=, d a d d a d a a 3)2(1134+=++=+=,…由此可见,等差数列从第2项起,每 一项都等于第一项加上公差的若干倍,这个倍数等于这项的项数减1的差, 所以:d n a a n ⨯-+=)1(1。

小学五年级奥数等差数列练习题

小学五年级奥数等差数列练习题

【导语】等差数列是常见的⼀种,如果⼀个数列从第⼆项起,每⼀项与它的前⼀项的差等于同⼀个常数,这个数列就叫做等差数列,⽽这个常数叫做等差数列的公差,公差常⽤字母d表⽰。

以下是⽆忧考整理的《⼩学五年级奥数等差数列练习题》相关资料,希望帮助到您。

1.⼩学五年级奥数等差数列练习题 1、设数列{an}的⾸项a1=-7,且满⾜an+1=an+2(nN*),则a1+a2+…+a17=________. 解析:由题意得an+1-an=2, {an}是⼀个⾸项a1=-7,公差d=2的等差数列. a1+a2+…+a17=S17=17(-7)+171622=153. 答案:153 2、已知{an}是等差数列,a4+a6=6,其前5项和S5=10,则其公差为d=__________. 解析:a4+a6=a1+3d+a1+5d=6.① S5=5a1+125(5-1)d=10.②w 由①②得a1=1,d=12. 答案:12 3、设Sn是等差数列{an}的前n项和,a12=-8,S9=-9,则S16=________. 解析:由等差数列的性质知S9=9a5=-9,a5=-1. ⼜∵a5+a12=a1+a16=-9, S16=16a1+a162=8(a1+a16)=-72. 答案:-72 2.⼩学五年级奥数等差数列练习题 1、⼀个递增后项⽐前项⼤的等差数列公差是7,第28项⽐第73项________多或少______。

2、⼀个递减后项⽐前项⼩的等差数列公差是6,第46项⽐⾸项________多或少______。

3、⼀个递减后项⽐前项⼩的等差数列公差是7,第74项⽐第91项________多或少______。

4、⼀个递增后项⽐前项⼤的等差数列公差是8,⾸项⽐第73项________多或少______。

5、⼀个递增后项⽐前项⼤的等差数列公差是5,第55项⽐第37项________多或少______。

6、⼀个递增后项⽐前项⼤的等差数列公差是3,第28项⽐第53项________多或少______。

五年级奥数 等差数列求和二

五年级奥数    等差数列求和二

五年级奥数等差数列求和二五年级奥数 - 等差数列求和二简介本文档将探讨五年级奥数中的等差数列求和问题。

我们将重点讨论如何计算等差数列的和。

等差数列等差数列是由一系列数字组成的序列,其中每个数字与前一个数字的差固定。

例如,2,4,6,8,10 是一个等差数列,每个数字之间的差为2。

等差数列求和公式求解等差数列的和可以使用等差数列求和公式。

对于等差数列a1, a2, a3, ..., an,它们的和 Sn 可以通过以下公式计算:Sn = (a1 + an) * n / 2其中,a1 是等差数列的第一个数字,an 是等差数列的最后一个数字,n 是等差数列中数字的个数。

解题步骤使用等差数列求和公式求解等差数列的和的步骤如下:1. 确定等差数列的首项 a1 和公差 d(即等差数列中相邻两个数字的差)。

2. 确定等差数列的前 n 项和 Sn 的计算公式。

3. 将 a1、d 和 n 的值代入求和公式,计算得到 Sn。

例子假设有一个等差数列的首项为 a1 = 2,公差为 d = 3,要求计算该等差数列的前 5 项和 Sn。

根据求和公式,可以得到:Sn = (a1 + a5) * n / 2将 a1、d 和 n 的值代入公式,得到:Sn = (2 + (2 + (5-1)*3)) * 5 / 2计算结果为:Sn = (2 + 14) * 5 / 2 = 16 * 5 / 2 = 80 / 2 = 40所以,该等差数列的前 5 项和为 40。

总结等差数列求和是五年级奥数中的一个重要概念,通过使用等差数列求和公式,可以快速计算等差数列的和。

以上是关于等差数列求和问题的简要介绍和解题方法。

如果你有任何问题或需要进一步的解释,请随时联系我。

【奥数专题】精编人教版小学数学五年级上册等差数列(试题)含答案与解析

【奥数专题】精编人教版小学数学五年级上册等差数列(试题)含答案与解析

【奥数专题】精编人教版小学数学五年级上册等差数列(试题)含答案与解析奥数专题:精编人教版小学数学五年级上册等差数列(试题)含答案与解析题目一:计算:5, 10, 15, 20, ...第20项是多少?每相邻两项之差是多少?解析一:根据题目,我们可以观察到数列中的每一项相差5,说明这是一个等差数列。

首先,我们可以通过找规律来求解第20项。

观察前几项,我们看到第1项是5,第2项是10,第3项是15,可以发现每一项都是前一项加上5得到,如此往复。

我们可以写出通项公式An = A1 + (n-1)d ,其中An表示第n项,A1表示第1项,d表示公差。

代入题目中的数据:A1 = 5d = 5那么我们可以用公式计算第20项是多少:A20 = A1 + (20-1)dA20 = 5 + 19(5)A20 = 5 + 95A20 = 100所以第20项是100。

接下来我们来计算每相邻两项的差:d = A2 - A1d = 10 - 5d = 5所以每相邻两项之差是5。

题目二:在等差数列2, 5, 8, 11, ...中,求第n项的值,并计算前n项和。

解析二:根据题目,我们可以观察到数列中的每一项相差3,说明这是一个等差数列。

我们同样可以通过找规律来求解第n项。

观察前几项,我们看到第1项是2,第2项是5,第3项是8,可以发现每一项都是前一项加上3得到,如此往复。

我们可以写出通项公式An = A1 + (n-1)d ,其中An表示第n项,A1表示第1项,d表示公差。

代入题目中的数据:A1 = 2d = 3根据通项公式,第n项的值可以计算如下:An = A1 + (n-1)d接下来,我们计算前n项的和,可以利用求和公式Sn = (n/2)(A1 + An):Sn = (n/2)(A1 + An)= (n/2)(2 + A1 + (n-1)d)= (n/2)(2 + 2 + (n-1)3)= (n/2)(4 + 3n - 3)= (n/2)(3n + 1)现在我们可以根据题目来计算第n项的值和前n项的和。

五年级奥数等差数列

五年级奥数等差数列
本资料通过举一反三的方式,深入剖析了等差数列在五年级奥数中的重要应用。首先,通过中项公式(首项+末项)÷2=等差中项,引出了等差数列的基本概念。接着,通过多个王牌例题,详细讲解了等差数列的求解方法。例如,在求解式。此外,还探讨了如何根据等差数列的性质求解实际问题,如36个小学生排成一排玩报数游戏的问题,通过设定等差数列并求解,得出了第一个同学报的数。同时,还通过货箱标号、游乐园智慧梯等实际问题,进一步加深了对等差数列应用的理解。这些例题不仅涵盖了等差数列的基本概念,还涉及了其在解决实际问题中的广泛应用,有助于提高学生的数学思维和解题能力。

五年级奥数—等差数列

五年级奥数—等差数列

第五讲等差数列
例1、求等差数列:1,12,23,34,…中的第20项和第100项。

练习:1、举一反三1第2题。

2、举一反三1第2题。

例2、一等差数列:2,5,8,11,14,17,…,问2006是否在此数列中?如果在,那么它是这个数列的第几项?练习:3、举一反三2第2题。

4、举一反三3第2题。

例3、某班同学按等差数列报数,第1个同学报的是3,第7个同学报的是21,求第10个同学报的是几?
练习:5、举一反三4第2题。

6、有一个等差数列的第3项是6,第5项是10,求其首项。

例4、将一条绳子剪断,最短的一段长20厘米,最长的一段长216厘米,剩下的还有13段,各段绳子的长度成等差数列,求最中间的那一段的长度。

练习:7、举一反三5第2题。

8、举一反三5第3题。

例5、计算606605604603602601987654321-++-+++-++-++-+
练习:9、计算:123499100994321++++++++++++
10、小明读一本书,第一天读3页,以后每天比前一天多读3页,25天便读完了这本书,问这本书有多少页?
作业:(1,2题必做,第3题选做)
1、有一个等差数列,首项是4,公差是5,求其第20项。

2、小红读一本小说,每天读的页数成等差数列。

已知她第3天读了15页,第7天读了31页,问:小红第一天读了多少页?
3、一个数列 ,159,127,
95,63,31,问其第100项是多少?。

等差数列五年级奥数练习题

等差数列五年级奥数练习题

等差数列五年级奥数练习题等差数列是数学中常见的一种序列形式,它的每一个元素与前一个元素之间具有相等的差值。

在五年级奥数练习题中,等差数列也是一个常见的考点。

下面我们将介绍几个与等差数列相关的五年级奥数练习题。

练习题一:已知等差数列的前四项依次是2,5,8,11,求这个等差数列的通项公式。

解析:我们可以观察到这个等差数列的公差是3,第一项是2。

根据等差数列的通项公式:an = a1 + (n-1)d,其中an表示第n项,a1表示第一项,d表示公差。

代入已知条件可得:an = 2 + (n-1)3。

简化后得到通项公式为:an = 3n-1。

练习题二:已知等差数列的前五项依次是1,4,7,10,13,求这个等差数列的第十项。

解析:我们可以观察到这个等差数列的公差是3,第一项是1。

根据等差数列的通项公式:an = a1 + (n-1)d,代入已知条件可得:a10 = 1 + (10-1)3。

简化后得到第十项为:a10 = 28。

练习题三:已知等差数列的第五项是13,公差是4,求这个等差数列的前十项的和。

解析:我们可以观察到这个等差数列的公差是4,第五项是13。

根据等差数列的求和公式:Sn = (n/2)(a1 + an),其中Sn表示前n项的和,a1表示第一项,an表示第n项。

代入已知条件可得:S10 = (10/2)(13 + a10)。

由于已知条件中只给出了第五项,我们需要根据公差和第五项求得第十项a10。

根据等差数列的通项公式:an = a1 + (n-1)d,代入已知条件可得:13 = a1 + (5-1)4。

解方程得到第一项a1为1。

将a1和公差d代入求和公式,得到S10 = (10/2)(13 + (1 + (10-1)4))/2。

简化后得到前十项的和为:S10 = 265。

练习题四:已知等差数列的前三项之和是12,公差是2,求这个等差数列的前十项的和。

解析:我们可以观察到这个等差数列的公差是2,前三项之和是12。

五年级《等差数列》奥数课件

五年级《等差数列》奥数课件
卡尔,你来帮老 师数数体育课来
了多少同学?
同学们排好队,第一排有八 人,第二排比第一排多两个, 第三排比第二排多两个。老
师,我知道了!
等差数列
知识导航
1,2,3,4,5,… 10,20,30,40,50,…
a1, a2 , a3 ,, an
公差
a2 a1 d
a3 a2 d (a1 d ) d a1 2d
正中间一级是第6项,a6 (a1 a11) 2
(150 60) 2
105 答:正中间一级的宽是105厘米。
练习四
梯子的最高一级宽30厘米,最低一级宽100厘米, 中间还有13级,各级的宽度成等差数列,求正中间 一级宽是多少?
把最高一级作为第1项,a1 30,
最低一级作为第15项,a15 100,
26.4 2.4 6d,d 4, a5 a1 4d 2.4 4 4 18.4
答:第5项是18.4。
例题四
游乐园的智慧梯最高一级宽60厘米,最低一级宽 150厘米,中间还有9级,各级的宽度成等差数列,求 正中间一级的宽。
把最高一级作为第1项,a1 60,
最低一级作为第11项,a11 150,
an a1 (n 1)d
通项公式
例题一
求等差数列3,8,13,18,…的第38项和第69项。
a1 3, d 8 3 5, an a1 (n 1)d
3(n1)5 5n2
a38 5 38 2 188 a69 5 69 2 343
答:第38项是188,第69项是343。
练习一
) 2 65
答:正中间一级的宽是65厘米。
例题五(选讲)
有一列数,0、1、2、3、4、……,粗心的阿派 在计算这列数的和时漏算了一个数,得出剩下的数 的和为199。你知道漏算的是哪个数吗?

五年级奥数:等差数列的差值

五年级奥数:等差数列的差值

五年级奥数:等差数列的差值
简介
等差数列是数学中非常基础且常见的一种数列。

在五年级的奥
数研究中,了解和掌握等差数列的差值对于解决问题非常重要。

等差数列的定义
等差数列是指数列中相邻两项之间的差值相等的数列。

可以表
示为:a,a + d,a + 2d,a + 3d,...
其中,a为首项,d为公差(差值)。

公式计算
在等差数列中,可以通过公式来计算各项之间的差值。

公式为:d = 第二项 - 第一项
实例解析
假设有一个等差数列:3,6,9,12,15,...
首项a = 3,公差d = 6 - 3 = 3
这个等差数列的差值为3。

总结
在奥数研究中,对于等差数列的差值的了解和掌握是十分重要的。

通过计算首项和第二项之间的差值,可以快速确定等差数列的公差。

在解决等差数列相关问题时,我们可以利用差值计算、递推关系和数学公式等方法。

这些基础知识和技巧能够帮助我们更好地理解和解决相关问题。

希望通过学习和实践,能够在五年级的奥数学习中更加熟练和灵活地运用等差数列的差值,提高数学能力。

五年级奥数小数的速算与巧算(等差数列)

五年级奥数小数的速算与巧算(等差数列)

五年级奥数培训---小数的速算与巧算班级:姓名:【知识概述】a),若干个数排成一列称为“数列”,数列中的每一个数称为一项,其中第一项称为首项(1最后一项称为末项(n a)。

从第二项开始,后项与前项之差都相等的数列称为“等差数列”,后项与前项之差称为公差(d),数列中的数的个数称为项数(n)。

对于等差数列,我们要熟练运用三个公式:通项公式:第n项=项数公式:项数=求和公式:和=例1 已知等差数列0.2,0.5,0.8,1.1,1.4,…。

(1)这个数列的第13项是多少?(2) 4.7是其中的第几项?1、有一列数0.1,0.5,0.9,1.3,1.7,…。

(1)它的第1000项数是多少?(2) 492.1是它的第几项?2、一只小虫沿着笔直的树干往上跳。

它每跳一次都能升高0.04米。

它从离地面0.1米处开始跳,如果把这一处称为小虫的第一次落脚点,那么它第100个落脚点正好是树梢。

这棵树高多少米?例2 如果一个等差数列的第4项为2.1,第6项为3.3,求它的第8项。

1、如果一个等差数列的第5项是11.9,第8项是16.1,求它的第11项是多少?2、在12.4和24.5之间插入10个数以后,使它们成为一个等差数列,插入的10个数中,最小的是几?最大的是几?例3 计算:0.3+0.7+1.1+…+9.9(1)计算:0.1+0.2+0.3+…+7.7+7.8 (2)计算:200-0.3-0.6-0.9―…―5.1-5.4例4 算式0.1+0.3, 0.3+0.6, 0.5+0.9,…是按一定规律排列的,求它的第2000个算式的和。

1、下面的算式是按一定的规律排列的:0.5+0.3,0.7+0.6,0.9+0.9,1.1+1.2,…,它的第1999个算式的结果是多少?2、小聪家在一条短胡同里,这条胡同的门牌号从1号开始,2号,3号,……,挨着号码编下去。

如果除小聪家外,其余各家的门牌号相加的和减去小聪家的门牌号码,恰好等于100。

五年级奥数等差数列求和题

五年级奥数等差数列求和题

五年级奥数等差数列求和题五年级学生学习奥数,掌握求和题的解题方法是很重要的。

本文将重点介绍求等差数列求和的方法。

首先,有关等差数列的求和问题,我们需要先了解一些基础知识。

等差数列是指公差为不变的数列,其中最重要的特点是每一项与它的前一项的差都是同一个常数。

求和的目的是确定等差数列的所有项的总和。

使用公式法求等差数列的和需要做到以下几点:1、求出首项和末项:我们可以确定等差数列的首项和末项,这是确定等差数列和的关键。

2、确定公差:我们可以通过前两项的差来确定公差。

3、计算项数:我们可以计算出该等差数列中有多少项。

4、计算和:有了首项、末项和公差之后,我们就可以用公式1计算出等差数列的和。

公式1:Sn = n/2 *(a1 + an)其中,Sn为等差数列的和,n为该等差数列的项数,a1为该等差数列的首项,an为该等差数列的末项。

在实际求和时,学生可以要求把题目中给出的等差数列的项数由少到多由大到小排列列出,以便更快地进行计算。

例如:从一个等差数列的第一项至第十七项的和是多少?此时,我们需要确定该等差数列的首项和末项,然后根据公式1计算出和:a1=1,an=17,n=17,Sn=17/2*(1+17)=153所以,从一个等差数列的第一项至第十七项的和为153。

实际应用中,学生可以利用等差数列的求和法,更快地完成题目,提高解题速度。

除了计算等差数列和外,求和还可以用来计算等比数列的总和。

首先,等比数列是指公比为不变的数列,其中最重要的特点是每一项与它的前一项的比都是同一个常数。

求和的目的是确定等比数列的所有项的总和。

使用公式法求等比数列的和也需要以下几点:1、确定首项和末项:我们可以确定等比数列的首项和末项,这是确定等比数列和的关键。

2、确定公比:我们可以通过前两项的比来确定公比。

3、计算项数:我们可以计算出该等比数列中有多少项。

4、计算和:有了首项、末项和公比之后,我们就可以用公式2计算出等比数列的和。

五年级奥数:等差数列的递推关系

五年级奥数:等差数列的递推关系

五年级奥数:等差数列的递推关系五年级奥数: 等差数列的递推关系
介绍
本文档将介绍五年级奥数中关于等差数列的递推关系的基本概
念和方法。

等差数列是一种常见的数学序列,其中每个数值之间的
差值都相等。

等差数列的定义
等差数列是指一个数列中每个相邻项之间的差值都相等的数列。

这个差值被称为公差,通常用字母"d"来表示。

递推关系
等差数列中的递推关系可以用以下公式表示:
`a_{n} = a_{n-1} + d`
其中,`a_{n}`表示数列中的第n项,`a_{n-1}`表示数列中的第
n-1项,`d`表示公差。

找出递推关系的方法
找出等差数列的递推关系可以通过观察数列中的数字之间的差值来进行。

例如,我们可以计算相邻两项的差值,如果差值相等,则可以判断该数列是等差数列,并且找到了递推关系。

举例
以下是一个示例等差数列和它的递推关系:
数列: 2, 5, 8, 11, 14, ...
我们计算相邻两项的差值:
5 - 2 = 3
8 - 5 = 3
11 - 8 = 3
14 - 11 = 3
...
通过观察,我们可以发现每个差值都为3,因此这个数列是等差数列,递推关系为:
`a_{n} = a_{n-1} + 3`
总结
本文档介绍了五年级奥数中关于等差数列的递推关系的基本概念和方法。

了解和掌握等差数列的递推关系对于解决数学问题和应用数学很有帮助。

希望本文对您有所启发和帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列
知识与方法:
像(1)1,2,3,4,5,…;(2)10,20,30,40,50,…从第2项起,每一项与它前一项的差等于同一个常数的数列,叫做等差数列。

这个常数叫做等差数列的公差,通常用字母d表示。

在等差数列a1,a2,a3,…a n中,它的公差是d,那么a2=a1+d
a3=a2+d=(a1+d)+d=a1+2d
a4=a3+d=(a1+2d)+d=a1+3d

a n=a1+(n-1)×d(等差数列的通项公式)
由此可见,等差数列从第2项起,每一项都等于第一项加上公差的若干倍,这个倍数等于这项的项数减1的差,利用它可以求出等差数列的任何一项。

例题1:求等差数列3,8,13,18......的第38项和第69项。

练习1:求等差数列1,4,7,10,13.....的第20项和第80项.
练习2:超市工作人员在商品上依次编号,分别为4,8,12,16......,请问第34个商品上标注的是什么数字?第58个标注的是什么数字?
例题2:36个小学生排成一排玩报数游戏,后一个同学报的数总比前一个同学多报8,已知最后一个同学报的数是286,第一个同学报的数是几?
练习1:仓库里有一叠被编上号的书,共40本,已知每下面一本书比上面一本书的号码多5,最后一本书的编号是225,请问第一本书的编号是多少?
练习2:幼儿园给小朋友们发玩具,共32个小朋友,每人一个,每个玩具上都有编号,已知最后一个小朋友玩具编号是98,每一个玩具的编号比后一个玩具的编号少3,问第一个小朋友上玩具编号是多少?
例题3:等差数列4,12,20......,中的580是第几项?
练习1:等差数列3,9,15,21.....中381是第几项?
练习2:糖果生产商为机器编号,依次为7,13,19,25......。

问编号为433的机器是第几个?
例题4:一批货箱上面的标号是按等差数列排列的。

第1项是3.6,第5项是12,求它的第2项.
练习1:有一个等差数列的第1项是2.4,第7项是26.4,求它的第5项.
练习2:有一排用等差数列编码的彩色小旗,第1面小旗上的号码为3.7,第8面小旗上的号码为38.7。

你知道第7面小旗上的编号吗?
例题5:游乐园的智慧梯最高一级宽60cm,最低一级宽150cm,中间还有13级。

各级的宽度成等差数列,求正中一级的宽。

练习1:梯子的最高一级宽30cm,最低一级宽100cm,中间还有11级。

各级的宽成等差数列,正中一级的宽是多少厘米?
练习2:一个等差数列的第1项是4,中间还有11项。

最后一项是32,求中间的一项是几?
练习题
1.商店中推行打包促销活动。

每六个商品为一包,第一包中的商品的编号依次是3,6,9,12,15,18。

第二包中的编号21,24,27,30,33,36。

以此类推,请问第20包的第三个商品的编号是多少?
2.学校举办运动会共54个人参加,每个人都有参赛号码。

前一个的号码总是比后一个人的号码少4。

最后一个人的号码是215。

请问第一个人的号码是多少?
3.医院为病床编号,依次为8,14,20,26......问编号为284的病床是第几张?
4.一个等差数列的第1项是1.2,第8项是9.6,求它的第十项。

5.消费卡上积了35次分,最低一次41分,最高一次179分,中间还有33次,而且这些积分成等差数列,你知道最中间的一次积分是多少吗?。

相关文档
最新文档