加氢反应器及催化裂化反应器介绍

合集下载

加氢裂化工艺流程介绍

加氢裂化工艺流程介绍

加氢裂化工艺流程介绍加氢裂化是石油乙烯生产的关键工艺,其流程是将石油馏分通过加氢反应和裂化反应,生产出石油乙烯。

本文将介绍加氢裂化的工艺流程和主要设备,希望对读者有所帮助。

1. 加氢裂化工艺概述加氢裂化是一种炼油工艺,通过在高温和高压下将石油馏分进行加氢反应和裂化反应,生成乙烷、丙烷和石油乙烯等烃类产品。

加氢裂化工艺主要包括前处理、裂化反应和产品分离净化等环节。

工艺流程较为复杂,但对于石油乙烯的生产至关重要。

加氢裂化工艺流程通常包括下列几个主要步骤:(1) 前处理:石油馏分经过预热后,先经过脱硫反应器,在脱硫反应器中去除硫化氢等有毒物质。

然后经过再次预热,进入催化剂床,去除烯烃和芳烃等不稳定化合物。

(2) 加氢反应:在经过前处理的石油馏分中,通过加氢反应将烯烃和芳烃等不饱和化合物进行饱和处理。

加氢反应通常在高压条件下进行,常见的催化剂有镍、钼和钨等金属。

(3) 裂化反应:加氢后的石油馏分进入裂化反应器进行裂化反应,将分子较大的烃类化合物裂解成更小的分子。

裂化反应通常在高温高压下进行,裂化催化剂一般为酸性物质,如氯化铝等。

(4) 产品分离净化:裂化后的产物进入分离净化系统,经过减压冷却后进入分馏塔,将乙烷、丙烷和石油乙烯等产物进行分离,然后进行净化处理,得到符合工艺要求的产品。

加氢裂化工艺包含多种设备,下面将介绍加氢反应器、裂化反应器和分离净化系统等主要设备。

(1) 加氢反应器:加氢反应器是加氢裂化工艺中的关键设备之一,其作用是通过加氢反应将石油馏分中的不饱和化合物进行加氢饱和处理。

加氢反应器通常采用固定床反应器或流化床反应器,具有高压高温的操作条件。

(3) 分离净化系统:分离净化系统是加氢裂化工艺中的最后一个环节,其作用是将裂化产物进行分离和净化处理,得到符合工艺要求的产品。

分离净化系统通常包括减压冷却装置、分离塔、回流泵和净化装置等设备。

加氢裂化工艺具有高效、经济、环保等优点,但也存在一些不足之处。

加氢反应器介绍

加氢反应器介绍

冷氢管 催化剂卸料管 冷氢箱上挡板盘
冷氢箱下挡板盘 冷氢箱筛板盘
7. 出口收集器
出口收集器是个帽状部件,顶部有圆孔,侧壁有长孔,覆盖不锈 钢网。其作用主要是阻止反应器底部的瓷球从出口漏出,并导出流体。
反应器底部的出口收集器,用于支撑下部的催化剂床层,减小床 层的压降和改善反应物料的分配。出口收集器与下端封头接触的下沿 开有数个缺口,供停工时排液用。
6. 冷氢箱
冷氢箱实为混合箱和预分配盘的组合体。它是加氢反应器内的热 反应物与冷氢气进行混合及热量交换的场所。其作用是将上层流下来 的反应产物与冷氢管注入的冷氢在箱内进行充分混合,以吸收反应热, 降低反应物温度,满足下一催化剂床层的反应要求,避免反应器超温。
冷氢箱的第一层为挡板盘,挡板上开有节流孔。由冷氢管出来的 冷氢与上一床层反应后的油气在挡板盘上先预混合,然后由节流孔进 入冷氢箱。进入冷氢箱的冷氢气和上层下来的热油气经过反复折流混 合,就流向冷氢箱的第二层——筛板盘,筛板盘,在筛板盘上再次折 流强化混合效果,然后在作分配。筛板盘下有时还有一层泡帽分配盘 对预分配后的油气再作最终的分配。
反应器内设置有入口扩散器、 积垢篮、卸料管、催化剂支撑盘、 出口捕集器、气液反应物流分配盘、 冷氢箱、熱电偶保护管和出口收集 器等反应器内构件。
1. 入口扩散器
来自反应器入口的介质首先经过入口扩散器, 在上部锥形体整流后,经上下两挡板的两层 孔的节流、碰撞后被扩散到整个反应器截面 上。
其主要作用为:一是将进入的介质扩散到反 应器的整个截面上;二是消除气、液介质对 顶分配盘的垂直冲击,为分配盘的稳定工作 创造条件;三是通过扰动,促使气液两相混 合
高温氢腐蚀有两种形式:一是表面脱碳;二是内部脱碳。 表面脱碳不产生裂纹,在这点上与钢材暴露在空气、氧气或二氧 化碳等一些气体中所产生的脱碳相似,表面脱碳的影响—般很轻,其 钢材的强度和硬度局部有所下降而延性提高。 内部脱碳是由于氢扩散侵入到钢中发生反应生成了甲烷,而甲烷 又不能扩散出钢外,就聚集于晶界空穴和夹杂物附近,形成了很高的 局部应力,使钢产生龟裂、裂纹或鼓包,其力学性能发生显著的劣化。

加氢反应器

加氢反应器

加氢反应器1. 简介加氢反应器是一种常见的化工设备,主要用于加氢反应过程,将原料与氢气在催化剂的存在下,通过一系列的化学反应将原料转化为目标产物。

加氢反应器广泛应用于石油化工、化学工程、能源和环境等领域。

2. 加氢反应原理加氢反应是指在高温高压条件下,将原料与氢气反应,通过催化剂的作用将原料分子中的氧、硫、氮等杂质元素除去,使其转化为更纯净的化合物。

常见的催化剂有镍、钼、铂等。

加氢反应的反应原理如下:A + H2 -> B其中,A为原料,H2为氢气,B为产物。

在催化剂的存在下,原料分子中的氧、硫、氮等杂质元素被氢气还原,形成更纯净的产物。

3. 加氢反应器的结构加氢反应器的结构主要包括反应器本体、加热器、冷却器、混合器、储氢罐等组成部分。

3.1 反应器本体反应器本体是加氢反应器的核心部分,主要用于容纳催化剂和反应物,提供反应的空间。

常见的反应器本体材料有不锈钢、合金钢等,能够承受高温高压的反应条件。

3.2 加热器加热器用于提供反应器所需的加热能量,使反应器内的反应物达到适宜的反应温度。

加热器常采用电加热、蒸汽加热等方式。

3.3 冷却器冷却器用于控制反应器内部的温度,避免反应过热。

冷却器通常采用水冷却或空气冷却方式。

3.4 混合器混合器用于将原料和氢气充分混合,提供更大的反应接触面积,加快反应速率。

3.5 储氢罐储氢罐用于储存和供应反应所需的氢气,保证反应器内氢气的供应充足和稳定。

4. 加氢反应器的应用加氢反应器在石油化工、化学工程、能源和环境等领域有广泛的应用。

4.1 石油化工在石油化工行业中,加氢反应器被广泛用于炼油、裂解和重整等工艺过程中。

通过加氢反应,可以将原油中的硫化物、氮化物、挥发性有机物等杂质去除,得到更纯净的燃料和化工产品。

4.2 化学工程在化学工程中,加氢反应器常用于催化加氢、催化还原等反应过程。

通过加氢反应,可以将有机物转化为更稳定、更活性的化合物,提高反应的选择性和产率。

加氢催化剂、加氢反应器基础知识

加氢催化剂、加氢反应器基础知识

加氢催化剂、加氢反应器基础知识概述加氢精制催化剂是由活性组分、助剂和载体组成的。

其作用是加氢脱除硫、氮、氧和重金属以及多环芳烃加氢饱和。

该过程原料的分子结构变化不大,,根据各种需要,伴随有加氢裂化反应,但转化深度不深,转化率一般在10%左右。

加氢精制催化剂需要加氢和氢解双功能,而氢解所需的酸度要求不高。

工作原理催化加氢的机理(改变反应途径,降低活化能):吸附在催化剂上的氢分子生成活泼的氢原子与被催化剂削弱了键的烯、炔加成。

(1)双键碳原子上烷基越多,氢化热越低,烯烃越稳定:R2C=CR2 > R2C=CHR > R2C=CH2 > RCH=CH2 > CH2=CH2(2)反式异构体比顺式稳定(3)乙炔氢化热为-313.8kJ·mol-1,比乙烯的两倍(-274.4kJ·mol-1)大,故乙炔稳定性小于乙烯。

应用在Pt、Pd、Ni等催化剂存在下,烯烃和炔烃与氢进行加成反应,生成相应的烷烃,并放出热量,称为氢化热(heat of hydrogenation,1mol不饱和烃氢化时放出热量)。

催化加氢的机理(改变反应途径,降低活化能):吸附在催化剂上的氢分子生成活泼的氢原子与被催化剂削弱了键的烯、炔加成。

分类1、加氢裂化催化剂加氢裂化催化剂(hydrocracking catalyst)是石油炼制过程中,重油在360~450℃高温,15~18MPa高压下进行加氢裂化反应,转化成气体、汽油、喷气燃料、柴油等产品的加氢裂化过程使用的催化剂。

加氢裂化过程在石油炼制过程属于二次加工过程,加工原料为重质馏分油,也可以是常压渣油和减压渣油,加氢裂化过程的主要特点是生产灵活性大,产品的分布可由操作条件来控制,可以生产汽油、低凝固点的喷气燃料和柴油,也可以大量生产尾油用作裂解原料或生产润滑油。

所得的产品稳定性好,但汽油的辛烷值不高,。

由于操作条件苛刻,设备投资和操作费用高,应用不如催化裂化广泛。

化工行业四大类产品分析

化工行业四大类产品分析

化工装备行业四大类产品分析我国化工装备经过20多年的努力,取得重大技术研制成果;但同国外相比,我国化工装备还有不少差距,主要是化工生产技术进步与设备技术开发脱节,重大设备的软件技术开发差距较大:设备技术开发跟不上工艺技术发展的速度,重工艺、轻设备的现象存在;基本上停留在模仿开发的阶段,开发具有自主知识产权的专有技术的能力弱;设备开发还不能做到专业化、系列化;设备设计和制造水平、设备质量和可靠性还有待进一步提高;随着化工工艺的进步和发展,对化工装备提出了更高要求,必须加大装备的开发力度,掌握装备的核心技术,形成一批具有自主知识产权的装备,做到性能先进、质量可靠、高效节能、经济安全,才能满足化学工业的发展需求;化工装备主要分为化工单元设备、化工非标专用设备、通用机械设备和仪器仪表四大类;各类发展情况如下:1.化工单元设备化工单元设备主要包括分离过滤设备、干燥蒸发设备、混合设备、搅拌设备、换热设备和挤压造粒设备等;1.1分离过滤设备过滤机:是利用多孔性过滤介质,截留液体与固体颗粒混合物中的固体颗粒,而实现固、液分离的设备;主要用于炼油厂进行油蜡分离的酮苯脱蜡转鼓真空过滤机和PTA装置真空转鼓过滤机;目前,转鼓真空过滤机国外正朝着大规格、高速率、高精度、全自动方向发展;国内是从意大利EIMCO公司引进的设计、制造技术,经消化吸收和改进,形成了一整套加工、组对、焊接工艺;相比之下,主要差距在于对市场发展、产品需求认识不够,创新能力低,对引进技术精髓消化较差; 离心机:离心分离机是利用离心力分离液体与固体颗粒或液体与液体的混合物中各组分的机械,又称离心机;主要有立式和卧式螺旋卸料沉降式离心机;国外离心机技术发展较快,而且实现了专业化和系列化;国内研制的El、式LWFl000一N型和LWFl050一N型离心机已分别用于7~10万吨/年高密度聚乙烯装置的悬浮液的分离,研制的LWl200x1980型离心机用于22.5万吨/年PTA浆液的脱水,离心机转鼓直径达到φ1200mm;但立式离心机还处于初步模仿阶段,与国外相比主要差距体现在设计技术、产品大型化和系列化上;1.2干燥蒸发设备干燥设备:是通过加热使物料中的湿分一般指水分或其他可挥发性液体成分汽化逸出,以获得规定湿含量的固体物料的机械设备;日本三井造船、月岛机械及德国FAUVET-GIREL的制造直径达φ4000mm以上;20万吨/年HDPE蒸汽管回转干燥机及40万吨/年TA装置蒸汽管回转干燥机已实现了国产化;差距主要表现在设备大型化方面,在即将建设的40~50万吨/年聚乙烯和聚丙烯装置以及60万吨/年聚酯装置的大型干燥机,国内有待开发;1.3混合设备混合设备是利用机械力和重力等,将两种或两种以上物料均匀混合起来的机械;分为气体和低粘度液体混合器、中高粘度液体和膏状物混合机械、热塑性物料混合机、粉状与粒状固体物料混合机械四大类;三菱电机最新推出FX2N-5A新型混合式转换器;国内混合设备技术方面有待加强;1.4换热设备换热设备是化工生产中重要的设备,几乎所有的工艺过程都有加热、冷却或冷凝过程,因此也是重要的节能设备;随着工业装置的大型化及高效化,国外换热器也趋于大型化,并向低温差、低压力损失方向发展;钣翅式换热器冷箱:冷箱主要应用于乙烯裂解、空气分离、天然气液化中,关键技术是设计技术和制造技术,美国s-W公司和德国林德公司等技术比较先进成熟;杭州制氧机厂引进美国的关键加工设备——大型真空钎焊炉,使冷箱的设计水平、制造能力趋近和达到了国际先进水平,在燕山、扬子、上海等乙烯改造中得到应用;国外已有9.0 MPa冷箱产品,国内尚不掌握高压冷箱的设计和制造技术,在分凝分馏技术方面差距较大;板壳式换热器:仅有法国Packinox公司一家可以生产用于催化重整与加氢装置,最大换热面积达8000 m2;国内开发的的最大传热面积为3000 m2,主要差距是研制的单片面积相同,但换热面积较小;1.5挤压造粒设备挤压造粒机:该设备可以把聚合物经过混炼、挤压、造粒等过程制造出聚烯烃粒料,以方便运输;国外只有德国WP公司、日本制钢所等为数不多的公司拥有设计、制造大型混炼造粒机组成套技术的能力,其主流向着双螺杆混炼造粒机组方向发展;我国开发速度较落后,目前开发研制的多为中小机型,ABS万吨级混炼挤出机经生产运行考核,主要技术指标已达到设计要求;目前大中型聚烯烃的生产装置挤压造粒机全部依靠进口;2.化工非标专用设备化工非标专用设备主要包括反应釜、塔、槽、罐和其他反应设备等;2.1釜大型聚合釜:国外带搅拌器反应釜技术比较成熟,可以根据不同物料和参数系列开发各种搅拌器结构形式;国内研制成功的最大聚合釜为7万吨/年高密度聚乙烯装置90m3聚合釜;10万吨/年聚酯反应器,已建立了酯化和缩聚各个过程的反应速率模型和过程模型,提出了工艺技术软件以及各反应器结构、传热要求,为仪征化纤研制的酯化反应器和缩聚反应器,已投入生产;与国外差距主要是搅拌器种类少、选型能力弱;2.2塔塔器在石化工艺过程中的作用主要是分馏、吸收、汽提、萃取、洗涤、回收、再生、脱水及气体净化和冷却等;常用的有板式塔和填料塔,国外塔器主要是在塔盘和填料技术上不断改进;我国近20年开发了许多性能优良的板式塔和填料塔,已在石化、炼油装置中得到了广泛应用,性能处于国际先进水平;其中具有代表性的主要有适宜于处理高液体通量的DT塔盘、适宜于处理高气体通量的旋流塔盘、具有高操作弹性及高效率的立体传质塔盘以及筛板一填料复合塔等;为洛阳和大庆500万吨/年的润滑油型炼油厂分别配置的大型板式塔型和大型填料塔型的减压塔直径达φ8400mm,由国内研制的φ10000mm大型精馏塔在即将投入使用;大化肥氨合成塔:国际上具有代表性的有凯洛格卧式合成塔、托普索立式合成塔、伍德立式合成塔以及布朗三台绝热式轴向合成塔;国内在消化吸收的基础上,在20万吨/年合成氨装置建设中首次设计制造采用单层锻造、直径为2.4米的厚壁外筒和双锥密封的氨合成塔,还没完全掌握其设计软件,也没有设计制造30万吨/年氨合成塔的经验;2.3其他反应设备反应设备是进行化学反应过程的“心脏”设备;其发展趋势各不相同,国际上向着由经验放大走向数学模拟放大,实现大型化、高效化、结构简单化、操作自动化,研究方法趋向综合化方向发展;催化裂化反应器:国内的制造技术基本上达到了国际先进水平,广泛应用于各个炼油厂;加氢反应器:国外著名的制造商有日本制钢所和神户制钢所等;国内正在为煤化工研制的锻焊加氢反应器外径5500mm,壁厚340mm,重量2040吨,是世界上最重的加氢反应器,其差距是我国创新能力差;连续重整四重叠反应器:美国UOP专利技术使得该反应器具有反应效率高、节省能源、占地面积小、节省投资等优点;国内已经掌握了其设计制造技术,内件安装指标完全达到UOP技术提出的要求;聚丙烯环管反应器:著名制造商为海蒙特公司,反应器的设计技术及软件逐渐成熟;20万吨/年聚丙烯环管反应器在国内已研制成功,并在上海石化得到推广应用;已掌握了环管反应器结构设计,建立了组合应力计算数学模型,解决了环管反应器工程放大技术问题,技术水平与国外相当;高压聚乙烯装置超高压管式反应器:国外掌握技术的有日本、德国、美国和荷兰等公司,国内通过消化吸收研制成功了3万吨/年和20万吨在消化吸收的基础上,在20万吨/年合成氨装置建设中首次设计制造采用单层锻造、直径为2.4米的厚壁外筒和双锥密封的氨合成塔,还没完全掌握其设计软件,也没有设计制造30万吨/年氨合成塔的经验;2.3其他反应设备反应设备是进行化学反应过程的“心脏”设备;其发展趋势各不相同,国际上向着由经验放大走向数学模拟放大,实现大型化、高效化、结构简单化、操作自动化,研究方法趋向综合化方向发展;催化裂化反应器:国内的制造技术基本上达到了国际先进水平,广泛应用于各个炼油厂;加氢反应器:国外著名的制造商有日本制钢所和神户制钢所等;国内正在为煤化工研制的锻焊加氢反应器外径5500mm,壁厚340mm,重量2040吨,是世界上最重的加氢反应器,其差距是我国创新能力差;连续重整四重叠反应器:美国UOP专利技术使得该反应器具有反应效率高、节省能源、占地面积小、节省投资等优点;国内已经掌握了其设计制造技术,内件安装指标完全达到UOP技术提出的要求;聚丙烯环管反应器:著名制造商为海蒙特公司,反应器的设计技术及软件逐渐成熟;20万吨/年聚丙烯环管反应器在国内已研制成功,并在上海石化得到推广应用;已掌握了环管反应器结构设计,建立了组合应力计算数学模型,解决了环管反应器工程放大技术问题,技术水平与国外相当;高压聚乙烯装置超高压管式反应器:国外掌握技术的有日本、德国、美国和荷兰等公司,国内通过消化吸收研制成功了3万吨/年和20万吨/年超高压管式反应器和冷却器;与国外相比,表现在工艺软件开发和设计技术存在较大差距;国内只有采用深孔钻的方法,材料利用率低;此外,尚无专用标准以及订货技术条件;3.通用机械设备化工通用机械设备主要包括化工用泵、气体压缩机和阀门等3.1化工泵泵是输送液体或使液体增压的机械;泵主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体;国际上石化用泵制造厂主要有瑞士苏尔寿公司、德国KSB公司、美国高斯公司等;石化用泵的生产技术比较成熟,规格品种多,标准化程度高,发展方向主要是大型化、高速化,机电一体化及泵产品成套化;特别是高温泵、低温和超低温泵、高速泵、精密计量泵、耐腐蚀泵、输送粘稠介质和带固体颗粒介质泵、屏蔽泵技术发展很快;国内生产制造厂家100多个,形成了100多个系列、2000多个品种泵类产品制造技术和生产装备,满足了石化生产的需要;与国外比较,国内石化用泵在设计理论、设计方法上比较落后,产品开发多采用仿制和类比的方法,缺乏理论根据和实验研究数据;加工装备和工艺水平比较落后,加工精度低,生产效率低;产品系列化和通用化程度不高,规格品种少;泵效率、质量和可靠性、密封性能、耐腐蚀性能等方面同国外相比还有较大差距,因此化工用泵还有较多进口;罗茨泵:目前我国国产罗茨泵按现行标准合格率在70%左右,如果与国际先进水平相比,综合性能差距更大些;主要表现在:轴封漏油严重,国产轴封经不起长期运转,漏油现象比较普遍;振动、噪声大;有的产品动平衡不好,也有的齿轮、轴承精度不够;依据行业标准,一些产品的零流量压缩比以及最大允许压差达不到标准要求,有的企业生产工艺装备落后,不能保证零部件的加工精度和装配精度;由于存在着以上的问题,表现为罗茨泵运行不可靠,故障率高;有的泵运转几个月就要维修,与德国L-H公司罗茨泵运行数年不必维修形成巨大反差;旋片泵:目前我国旋片泵的生产从设计水平到加工制造到性能质量都已趋向成熟;主要企业生产的产品质量比较稳定,外观质量有了明显的提高;过去长期存在的喷油、漏油问题近几年得到一定的控制,旋片材料性能得到改善,一定程度上增加了旋片泵的可靠性;国投南光有限公司生产的2XZ-8A直联旋片泵是近几年旋片泵产品中为数不多的新品种,从普速泵到高速泵,在技术水平上具有一定的突破,解决了高温高速运转条件下,零部件易老化、易磨损的难题;真空泵:目前我国真空泵设备品种齐全,质量水平稳步提高,基本上满足了国内市场的需求;中国入世后国际市场竞争日趋激烈,而我国的真空泵设备产品质量水平仍存在着很大的差距,亟待我们冷静思考,研究对策,争取在尽可能短的时间内赶上国际先进水平;滑阀泵:国产滑阀泵与国外产品相比仍然存在着较大的差距;主要表现为:噪声、振动大;如H-150滑阀泵,国内产品大多数要用地脚螺栓,否则由于振动,泵爬行严重;喷油、漏油;泵启动时喷油严重,运转后漏油,多数产品存在此问题;停泵返油严重,造成启动困难,使电机过载;稳定性、可靠性差,由于生产加工装备落后,不但生产效率低,且零部件的互换性差,影响了产品的稳定性和可靠性;高压泵:高压泵以高压甲胺泵和高压液氨泵为例;高压甲胺泵和高压液氨泵是尿素装置中遭受强腐蚀、技术难度最大的泵种;在中、小型尿素装置中多采用往复式柱塞结构,在大型尿素装置中常采用多级离心式和高速部分流式,近年来还出现往复式结构泵;往复式泵机组体积大,结构复杂,维修不方便,泵体容易出现疲劳开裂,但运转较可靠,效率较高;高速部分流泵采用二级径向叶轮, 转速高达14000多转/分,结构紧凑,运转也较平稳,但密封和磨损问题比较突出,不易解决;多级离心式泵则介于二者之间,其制造难度相对较低,密封结构较好,且较为可靠;对这三种结构形式的高压甲胺泵国内都进行过研制,在制造和保证使用方面已无多大问题,但目前产品主要还是依靠进口;料浆泵:料浆泵以磷酸料浆泵为例;磷酸料浆泵是磷肥生产过程中各种泵的泛称,是极具代表性的耐强腐蚀和抗磨损泵种;在磷肥工业发展的初期,常用的化工耐腐蚀泵,有的寿命只有一周,因此国内外泵业的专家在磷酸料浆泵的结构设计、材料试验、密封研究等方面进行了大量开发研究;在磷酸料浆泵的设计中,首先要解决的是耐腐蚀或腐蚀兼冲刷磨损问题;因此,对结构设计和泵壳与叶轮相互间的匹配应加以特殊考虑;国外磷酸料浆泵所用金属材料,是根据介质状况采用不同的系列;国内制造厂和研究单位也分别对各种材料进行腐蚀性能和抗磨损性能的研究,创造出自己的铁素体不锈钢、双相钢、奥氏体不锈钢等材料系列;国内有不少磷酸料浆泵专业制造厂,同时也有中科院、大学、设计院、研究院等参与科研开发,磷酸料浆泵的国产化问题现已基本解决;3.2阀门阀门是用以控制流体流量、压力和流向的装置;按用途分为一下7类:炼油装置用阀门;炼油装置需用的阀门大多是管道阀门,主要为闸阀、截止阀、止回阀、安全阀、球阀、蝶阀、疏水阀,其中,闸阀需量占阀门总数的80%左右阀门占装置总投资的3%~5%;化纤装置用阀门;化纤产品主要有涤纶、晴纶、维纶三大类;其需用的阀门的球阀、夹套阀夹套球阀、夹套闸阀、夹套截止阀;丙烯晴装置用阀门;该装置一般需用API标准生产的阀门,主要为闸阀、截止阀、止回阀、球阀、疏水阀、针型阀、旋塞阀,其中,闸阀占阀门总量的75%左右;合成氨装置用阀门;由于合成氨原和净化方法不同,其工艺流程不同,所需阀门的技术性能也不同;目前,国内合成氨装置主要需用闸阀、截止阀、止回阀、疏水阀、蝶阀、球阀、隔膜阀、调节阀、针型阀、安全阀、高温低温阀;其中,截止阀占装置用阀总数据的53.4%,闸阀占25.1%,疏水阀占7.7%,安全阀占2.4%,调节阀和离低温阀及其它占11.4%.乙烯装置用阀门;乙烯装置是石油化工的龙头装置,其需用阀门种类繁多;闸阀、截止阀、止回阀、升降杆式球阀占大多数,其中闸阀需居首;“十五”规划,全国还需建年产66万吨的乙烯装置6套,其阀门需求量可观;另外,大型乙烯和高压聚乙烯装置还需用超高温,越低温及超高压阀门系列产品;空分装置用阀门;“空分”即空气分离,该装置主要需用截止阀、安全阀、止回阀、调节阀、球阀、蝶阀、低温阀;聚丙烯装置用阀门;聚丙烯易是以丙烯为原料,经聚合而成的高分子化合物,该装置主要需用闸阀、截止阀、止回阀、针型阀、球阀、疏水阀;3.3管件管道/管件是用管子、管子联接件和阀门等联接成的用于输送气体液体或带固体颗粒的流体的装置;今后一个时期,管件重点将攻关、推广应用和超前研发43项管道技术,通过这些重点技术项目的实施,逐步形成油气输送技术、油气储存技术、管道工程技术、管道完整性评价及配套技术、油气管道运行管理与信息技术五大管道技术系列,以全面提升管道技术水平;这43项技术包括,需要集中力量攻克的瓶颈技术26项,推广应用的新技术10项和超前研究的储备技术7项;3.4工业炉工业炉是在工业生产中,利用燃料燃烧或电能转化的热量,将物料或工件加热的热工设备;根据化工生产中用途不同可分为加热炉、裂解炉、转化炉等;乙烯裂解炉:拥有该技术的公司主要有ABB、KBR、S&W、KTI 和Linde等,工艺技术向着高温、短停留时间和低烃分压的方向发展,以进一步提高选择性、降低投资等;从总体水平来看,我国裂解技术仍与世界水平有较大的差距,主要表现在装置规模小,原料消耗、能耗、生产成本高,装置运行周期短,控制水平低,技术重复引进,开发、创新步伐缓慢;转化炉和汽化炉:国外开发大型工业化装置的主要有美国凯洛格公司、英国帝国化学工程公司、丹麦托普索公司等;国内设计制造的20万吨/年以天然气为原料制合成氨装置中的转化炉,其中高温炉管、对流段高频焊翅片管首次由国内研制成功,但至今没有一套国产的30万吨/年转化炉用于工业装置;汽化炉国内还不能自行设计,水煤浆喷嘴多数依赖进口;废热锅炉:它是重要的节能设备,常用在乙烯裂解和合成氨装置中德国Borsig公司、美国Kellogg公司技术比较先进;国内重点进行了浮头式废热锅炉综合技术开发,同时还开展了其他形式转化气关键技术的试验研究,开发出了整体设计、薄管板应力有限元计算及分析、火管废热锅炉内循环数值计算及分析等大型程序,研制的第一台浮头式废热锅炉用于四川化工总厂20万吨/年合成氨装置,但尚未制造过30万吨/年转化气废热锅炉;3.5压缩机气体压缩机:气体压缩机是产生压力能和输送气体的关键设备,有透平式压缩机和往复式压缩机,主要有日本、美国、德国、意大利、瑞士等国家的设计和制造技术比较先进;长期以来国内自主开发或者引进后攻克了不少难关,有了重大突破;其中水平剖分式离心压缩机和轴流式压缩机接近国际同类产品的先进水平;离心式压缩机:国际上的发展方向是容量增大,开发高压、小流量、低噪音、高效率压缩机产品;国内生产企业达十多家,特别是沈阳鼓风机厂、上海鼓风机厂、陕西鼓风机厂等;国内离心压缩机高技术、高参数、高质量和特殊产品还不能满足需要,50%左右还要靠国外进口;另外在技术水平、质量、成套性上和国外还有差距,在设计制造大型气体压缩机上还没有成熟的经验;往复式压缩机:普遍采用撬装无基础、全罩低噪音设计,大大节约安装、基础和调试费用;国内的生产厂家有20多家,已形成L、D、DZ、H、M型等数十个压缩机系列、数百种产品,但大型往复压缩机还不能满足需要;4.仪器仪表仪器仪表是用以检出、测量、观察、计算各种物理量、物质成分、物性参数等的器具或设备;广义来说,仪器仪表也可具有自动控制、报警、信号传递和数据处理等功能;工业自动化仪表:重点发展基于现场总线技术的主控系统装置及智能化仪表、特种和专用自动化仪表;全面扩大服务领域,推进仪器仪表系统的数字化、智能化、网络化,完成自动化仪表从模拟技术向数字技术的转变,5年内数字仪表比例达到60%以上;加速具有自主知识产权的自动化软件的商品化;环保仪器仪表:重点发展大气环境、水环境的环保监测自动化控制系统产品,鉴于加强环保执法力度,加快环保建设步伐,加大环保建设投资、培育环保产业这一国民经济新增长点的需要,面对我国5000多个环境检测站和大量的城镇污水处理及企业废水处理这个巨大的市场,今后环保仪器仪表工业产品市场将有大幅度的增长;据有关方面不完全统计,1998年我国环保仪器仪表及监控系统产值约11.7亿元,到2005年将扩至42亿元达到20世纪90年代后期国际先进水平,国内市场占有率达到50%~60%,而到2010年将扩至110亿元,到2010年国内市场占有率达到70%以上;由此可见,其市场前景十分广阔;分析化学仪器:重点研究方向包括:一是高通量分析,即在单位时间内可分析测试大量的样品;二是极端条件分析,其中单分子单细胞分析与操纵为目前热门的课题;三是在线、实时、现场或原位分析,即从样品采集到数据输出,实现快速的或一条龙的分析;四是联用技术,即将两种或两种以上分析技术联接,互相补充,从而完成更复杂的分析任务;联用技术及联用仪器的组合方式,特别是三联甚至四联系统的出现,已成为现代分析仪器发展的重要方向;五是阵列技术,如果把联用分析技术看成计算机中的串行方法,那么阵列技术就等同于计算机中的并行运算方法;和计算机一样,阵列方法是大幅度提高分析速度或样。

加氢催化剂、加氢反应器知识分享

加氢催化剂、加氢反应器知识分享

加氢催化剂、加氢反应器知识分享概述加氢精制催化剂是由活性组分、助剂和载体组成的。

其作用是加氢脱除硫、氮、氧和重金属以及多环芳烃加氢饱和。

该过程原料的分子结构变化不大,,根据各种需要,伴随有加氢裂化反应,但转化深度不深,转化率一般在10%左右。

加氢精制催化剂需要加氢和氢解双功能,而氢解所需的酸度要求不高。

工作原理催化加氢的机理(改变反应途径,降低活化能):吸附在催化剂上的氢分子生成活泼的氢原子与被催化剂削弱了键的烯、炔加成。

(1)双键碳原子上烷基越多,氢化热越低,烯烃越稳定:R2C=CR2 > R2C=CHR > R2C=CH2 > RCH=CH2 > CH2=CH2(2)反式异构体比顺式稳定(3)乙炔氢化热为-313.8kJ·mol-1,比乙烯的两倍(-274.4kJ·mol-1)大,故乙炔稳定性小于乙烯。

应用在Pt、Pd、Ni等催化剂存在下,烯烃和炔烃与氢进行加成反应,生成相应的烷烃,并放出热量,称为氢化热(heat of hydrogenation,1mol不饱和烃氢化时放出热量)。

催化加氢的机理(改变反应途径,降低活化能):吸附在催化剂上的氢分子生成活泼的氢原子与被催化剂削弱了键的烯、炔加成。

分类1、加氢裂化催化剂加氢裂化催化剂(hydrocracking catalyst)是石油炼制过程中,重油在360~450℃高温,15~18MPa高压下进行加氢裂化反应,转化成气体、汽油、喷气燃料、柴油等产品的加氢裂化过程使用的催化剂。

加氢裂化过程在石油炼制过程属于二次加工过程,加工原料为重质馏分油,也可以是常压渣油和减压渣油,加氢裂化过程的主要特点是生产灵活性大,产品的分布可由操作条件来控制,可以生产汽油、低凝固点的喷气燃料和柴油,也可以大量生产尾油用作裂解原料或生产润滑油。

所得的产品稳定性好,但汽油的辛烷值不高,。

由于操作条件苛刻,设备投资和操作费用高,应用不如催化裂化广泛。

加氢反应器介绍

加氢反应器介绍

在催化剂床层上面,采用分配盘是为了均布反应介质,改善其流动状况,实 现与催化剂的良好接触,进而达到径向和轴向的均匀分布。
反应器顶部分配盘
3. 积垢篮
由不同规格的不锈钢金属网和骨架构成的篮框,置于反应器上部催化剂床层的顶 部,可为反应物流提供更大的流通面积,在上部催化剂床层的顶部扑集更多的机 械杂质的沉积物,而又不致引起反应器压力降过快地增长;积垢篮框在反应器内 截面上呈等边三角形均匀排列,其内是空的(不装填催化剂或瓷球),安装好后 要须用不锈钢链将其穿连在一起,并牢固地拴在其上部分配盘地支撑梁上,不锈 钢金属链条要有足够地长度裕量(按床层高度下沉5%考虑),以便能适应催化剂 床层的下沉。
括循环氢与新氢气)混合后一起进入换热器与反应生成物换热至300℃
左右,然后进加热炉预热(另一种流程是原料油不进加热炉而只有循 环氢进加热炉预热,在炉出口与换热后的原料油混合,这种流程可以
减少炉管结焦),预热后从反应器顶部进入,在反应器内反应后由底
部排出,经与新鲜原料、循环氢换热后再进入空冷器冷却,冷凝下来 的油和不冷凝的油气和氢气进入高压分离器,油气分离,氢气从高压
4)应力的影响 在高温氢腐蚀中,应力的存在肯定会产生不利的影响。在高温氢 气中蠕变强度会下降。特别是由于二次应力(如热应力或由冷作加工所 引起的应力)的存在会加速高温氢腐蚀。
高温氢腐蚀的防止措施 高温高压氢环境下高温氢腐蚀的防止措施主要是选用耐高温氢腐 蚀的材料,工程设计上都是按照原称为“纳尔逊(Nelson)曲线”来选 择的。 尽量减少钢材中对高温氢腐蚀不利影响的杂质元素(Sn、Sb)。 制造及在役中返修补焊后必须进行焊后热处理。 操作中严防设备超温。 控制外加应力水平。
防止氢脆的若干对策 要防止氢脆损伤发生,主要应从结构设计上、制造过程中和生 产操作方面采取如下措施: (1)尽量减少应变幅度,这对于改善使用寿命很有帮助。 (2)尽量保持TP347堆焊金属或焊接金属有较高的延性。为此,一是 要控制TP347中δ—铁素体含量,以避免含量过多时在焊后最终热处理 过程转变成较多的相而产生脆性;二是对于前述那些易发生氢脆的部 位,应尽量省略TP347堆焊金属或焊接金属的焊后最终热处理,以提 高其延性。 (3)装置停工时冷却速度不应过快,且停工过程中应有使钢中吸藏的 氢能尽量释放出去的工艺过程,以减少器壁中的残留氢含量。 (4)尽量避免非计划紧急停工(紧急放空)。

加氢反应器及催化裂化反应器介绍

加氢反应器及催化裂化反应器介绍

加氢反应器及催化裂化反应器介绍一、加氢反应器:加氢反应器本体一般由高压容器制成,以承受高温、高压条件下的反应。

加氢催化剂则是加氢反应的关键组成部分,选择合适的加氢催化剂可以实现高效的加氢反应。

常用的加氢催化剂有铜、镍、钴等金属催化剂和硫化物催化剂。

反应物进料系统将待加氢的原料输送到反应器中,同时也要考虑控制反应温度和压力。

氢气供应系统负责提供所需的氢气,冷却系统则用于在反应过程中控制反应温度,避免过热。

二、催化裂化反应器:催化裂化反应器是一种用于催化裂化反应的设备,催化裂化是指通过在高温、低压下将高沸点的石油馏分裂解为低沸点产品的过程。

催化裂化反应器通常由反应器本体、催化剂、原料进料系统、反应产物分离系统和废气处理系统等组成。

反应器本体一般由高温、高压的容器制成,用于承受裂化反应的压力和温度。

催化剂是催化裂化反应的核心,选择合适的催化剂可以提高反应效率和产品质量。

常见的催化剂有二氧化硅、氯化氢处理的沸石等。

原料进料系统用于将待裂化的石油馏分输送到反应器中,并且控制进料的流量和温度。

反应产物分离系统常包括分离器、冷凝器和分馏塔等设备,用于将产物中的气体、液体和固体分离,提取纯净的产品。

废气处理系统则是用于处理反应过程中产生的废气,以减少对环境的影响。

催化裂化反应器在石油炼制工艺中起到重要作用。

它可以将重质石油馏分裂解为轻质馏分,如汽油、柴油和液化石油气等,提高石油产品的附加值和利用率。

总结:加氢反应器和催化裂化反应器是石油化工领域常见的反应设备。

加氢反应器主要用于将不饱和化合物加氢饱和,提高产品质量;催化裂化反应器主要用于将高沸点的石油馏分裂解为低沸点产品,提高产品附加值。

了解这两种反应器的结构和工作原理对于研究和优化石油化工过程具有重要意义。

加氢反应器简介

加氢反应器简介

危险物质管理
对加氢反应器中使用的危 险物质进行严格管理,确 保储存和使用符合相关法 规和标准。
常见故障与排除
反应器压力异常
检查反应器压力表是否正常,确认压 力控制阀是否工作正常,如有问题及 时维修或更换。
催化剂失活
如催化剂失活,需及时更换催化剂, 并检查反应条件是否适宜,如温度、 压力、原料纯度等。
石油工业
石油加工
加氢反应器在石油工业中主要用 于将石油中的硫、氮等杂质去除 ,提高油品质量和清洁度。
燃料油生产
通过加氢反应器,可以生产低硫 、低氮的燃料油,满足环保要求 。
化学工业
合成氨
在合成氨工业中,加氢反应器用于将氮气和氢气合成氨气。
烯烃生产
加氢反应器在烯烃生产中用于将低碳烯烃转化为高碳烯烃。
加氢反应器简介
目录
CONTENTS
• 加氢反应器的基本概念 • 加氢反应器的应用领域 • 加氢反应器的操作原理 • 加氢反应器的设计与优化 • 加氢反应器的安全与维护 • 加氢反应器的未来发展与挑战
01 加氢反应器的基本概念
定义与功能
定义
加氢反应器是一种用于实现氢气与有 机化合物之间加氢反应的设备,广泛 应用于石油化工、煤化工等领域。
03 加氢反应器的操作原理
反应机理
氢气与有机物在催化剂的作用下 发生加成反应,将有机物中的不 饱和键转化为饱和键,生成新的
有机物。
加氢反应是一种还原反应,其中 氢气作为还原剂,将有机物中的
氧化态降低。
加氢反应的机理可以分为分子间 反应和分子内反应,具体取决于
有机物的结构和反应条件。
催化剂的作用
焊接工艺
焊接是加氢反应器制造中的关键环节,应采用高质量的焊接工艺和 材料,确保焊接接头的强度和密封性。

加氢反应器及催化裂化反应器介绍

加氢反应器及催化裂化反应器介绍
感谢观看
反应条件控制
利用新型合金和高性能陶瓷等材料,提高反应器的耐腐蚀性能和使用寿命。
高强度耐腐蚀材料
研发新型高温和高压材料,满足加氢反应器和催化裂化反应器在高温高压下的操作需求。
耐高温和高压材料
探索具有特殊功能的材料,如光催化材料、电催化材料等,为加氢和催化裂化过程提供新的解决方案。
功能材料
THANKS
石油化工
煤化工
环保领域
在煤化工领域,加氢反应器可用于煤焦油加氢、煤液化等过程,生产清洁燃料和化学品。
加氢反应器还可用于处理含硫、氮、氧等杂质的废弃物,实现环保减排。
03
02
01
优点
加氢反应器能够脱除原料油中的硫、氮、氧等杂质以及重金属元素,提高油品质量;能够生产高清洁油品,满足环保要求;具有较高的处理能力和较低的投资成本。
缺点
催化裂化反应器需要使用催化剂,且催化剂容易失活和中毒,需要定期更换或再生。此外,催化裂化技术还需要消耗大量的能量和原料,生产成本较高。
加氢反应器与催化裂化反应器的比较
CATALOGUE
03
加氢反应器的工作原理是通过加氢反应将原料中的有害物质转化为无害物质,而催化裂化反应器则是通过催化剂的作用将重质油转化为轻质油。
总结词
加氢反应器主要用于石油化工和煤化工领域,如煤制油、柴油加氢精制、润滑油加氢精制等。而催化裂化反应器则广泛应用于炼油工业,将重质油转化为轻质油、气体和焦炭等,是炼油工业中最重要的加工方法之一。
详细描述
总结词:加氢反应器的优点在于能够提高产品质量、减少环境污染,缺点是工艺复杂、投资成本高。催化裂化反应器的优点在于能够将重质油转化为轻质油,缺点是会产生较多的副产品和废弃物。
加氢反应器和催化裂化反应器的未来发展

加氢精制和加氢裂化介绍

加氢精制和加氢裂化介绍

加氢精制和加氢裂化介绍加氢精制和加氢裂化介绍一、加氢精制加氢精制主要用于油品精制,其目的是除掉油品中的硫、氮、氧杂原子及金属杂质,改善油品的使用性能。

由于重整工艺的发展,可提供大量的副产氢气,为发展加氢精制工艺创造了有利条件,因此加氢精制已成为炼油厂中广泛采用的加工过程,也正在取代其它类型的油品精制方法。

㈠加氢精制的主要反应加氢精制的主要反应有:1、加氢脱硫2、加氢脱氮3、加氢脱氧4、重质油加氢脱金属5、在各类烃中,环烷烃和烷烃很少发生反应,而大部分的烯烃与氢反应生成烷烃。

在加氢精制中,加氢脱硫比加氢脱氮反应容易进行,在几种杂原子化合物中含氮化合物的加氢反应最难进行。

例如,焦化柴油加氢精制时,当脱硫率达到90%的条件下,脱氮率仅为40%。

加氢精制产品的特点:质量好,包括安定性好,无腐蚀性,以及液体收率高等,这些都是由加氢精制反应本身所决定的。

㈡加氢精制工艺装置加氢精制的工艺流程因原料而异,但基本原理是相同的,如图3-10所示,包括反应系统、生成油换热、冷却、分离系统和循环氢系统三部分。

1、反应系统原料油与新氢、循环氢混合,并与反应产物换热后,以气液混相状态进入加热炉,加热至反应温度进入反应器。

反应器进料可以是气相(精制汽油时),也可以是气液混相(精制柴油时)。

反应器内的催化剂一般是分层填装,以利于注冷氢来控制反应温度(加氢精制是放热反应)。

循环氢与油料混合物通过每段催化剂床层进行加氢反应。

加氢反应器可以是一个,也可以是两个。

前者叫一段加氢法,后者叫两段加氢法。

两段加氢法适用于某些直馏煤油的精制,以生成高密度喷气燃料。

此时第一段主要是加氢精制,第二段是芳烃加氢饱和。

2、生成油换热、冷却、分离系统反应产物从反应器的底部出来,经过换热、冷却后进入高压分离器。

在冷却器前要向产物中注入高压洗涤水,以溶解反应生成的氨和部分硫化氢。

反应产物在高压分离器中进行油气分离,分出的气体是循环氢,其中除了主要成分氢外,还有少量的气态烃(不凝气)和未溶于水的硫化氢。

反应器的原理及应用

反应器的原理及应用

反应器的原理及应用1. 引言反应器是化学工程中一种非常重要的设备,广泛应用于化工生产中。

本文将介绍反应器的原理及应用,通过对反应器的介绍,帮助读者理解反应器的基本工作原理和常见应用场景。

2. 反应器的工作原理反应器是一种用于进行化学反应的设备,其工作原理是利用加热、冷却、搅拌等方式控制反应物质在反应过程中的温度、压力和混合程度。

下面将介绍几种常见的反应器工作原理:2.1 批量反应器批量反应器是最简单的一种反应器,其工作原理是将待反应的物质一次性加入反应器中进行反应。

其优点是操作简单,适用于小规模生产和实验室研究。

然而,由于无法连续供给反应物质,生产效率较低。

2.2 连续流动反应器连续流动反应器是一种持续供给反应物质并连续收集产物的反应器,其工作原理是通过分别将反应物质和催化剂以一定流速供给反应器,使反应在反应器内进行。

连续流动反应器由于可以连续供给反应物质,生产效率较高,适用于大规模生产。

2.3 催化反应器催化反应器是通过添加催化剂来提高反应速率的反应器,其工作原理是将催化剂与反应物质一起放入反应器中进行反应。

催化反应器由于催化剂的作用,可以在较低的温度和压力下进行反应,节省能源和提高反应效率。

3. 反应器的应用反应器在化工生产中有着广泛的应用,下面将列举几个常见的应用场景。

3.1 石油炼制在石油炼制过程中,反应器用于各种催化反应、裂化反应、加氢反应等。

例如,催化裂化反应器用于将重质石油馏分转化为轻质石油产品,加氢反应器用于将硫化氢等有害物质转化为无害物质。

反应器在石油炼制中起到了非常重要的作用。

3.2 化学品生产在化学品生产中,反应器用于各种有机合成反应、聚合反应等。

例如,聚乙烯反应器用于合成聚乙烯,硝化反应器用于合成硝酸等。

反应器不仅可以提高产品的纯度和产量,还可以控制反应物质的选择性。

3.3 生物工程在生物工程领域,反应器用于培养微生物、细胞培养、酶反应等。

例如,发酵反应器用于培养微生物产生乙醇、酸等产物,细胞培养反应器用于培养动物细胞合成蛋白质。

加氢反应器及催化裂化反应器介绍

加氢反应器及催化裂化反应器介绍

煤化工
在煤化工领域,加氢反应 器用于煤制油、煤制气等 过程中,提高产品质量和 产量。
精细化工
加氢反应器在精细化工领 域也有应用,如合成香料 、医药中间体等。
催化裂化反应器的应用
重油轻质化
催化裂化反应器可将重质 油转化为轻质油,提高油 品的使用价值。
ห้องสมุดไป่ตู้生产高辛烷值汽油
通过催化裂化反应,可以 生产出高辛烷值的汽油, 满足日益严格的环保要求 。
反应过程
原料油和空气在催化剂床层中发生催化裂化反应,生成轻 质油和裂化气。反应过程中产生的热量通过取热装置移走 。
催化剂再生
催化剂在反应过程中会逐渐失活,需要进行再生处理。再 生过程通常包括烧焦、氧化等步骤,使催化剂恢复活性并 循环使用。
04
CHAPTER
加氢反应器和催化裂化反应 器的比较
原理比较
加氢反应器及催化裂化反应器 介绍
汇报人:XX
目录
CONTENTS
• 引言 • 加氢反应器概述 • 催化裂化反应器概述 • 加氢反应器和催化裂化反应器的比较 • 加氢反应器和催化裂化反应器的应用 • 加氢反应器和催化裂化反应器的发展趋势 • 结论与建议
01
CHAPTER
引言
目的和背景
介绍加氢反应器和催 化裂化反应器的基本 概念、原理、特点及 应用。
THANKS
谢谢
催化裂化反应器
优点包括原料适应性强、轻质油 收率高、操作灵活等;缺点包括 产品质量相对较差、催化剂消耗 量大、设备磨损严重等。
05
CHAPTER
加氢反应器和催化裂化反应 器的应用
加氢反应器的应用
01
02
03
石油加工
加氢反应器在石油加工中 广泛应用,主要用于提高 油品质量、降低硫含量、 改善颜色等。

加氢反应器简介ppt课件

加氢反应器简介ppt课件

反应器细部结构的改进
* 裙座结构的改进
LPEC @ 2004 中 国 石 化 集 团 洛 阳 石 油 化 工 工 程公 司
反应器细部结构的改进
* 增设热箱
LPEC @ 2004 中国石化集团洛阳石油化工工程公司
反应器内件型式及作用
反应器内件设计性能的优劣将与催化剂性 能一道体现出所采用加氢工艺的先进性。
加氢反应器使用中的保护
开停工时必须严格执行操作手册的要求。为防止形 成较大的热应力,推荐开工和停工时的升温和降温 速度分别不要超过25℃~30℃/h和25℃/h。
要尽量避免非计划性的开停工。这对保护反应器和 减轻其堆焊层的氢致剥离都是有效的。
当反应器安装或停工检验而打开顶部人孔时,一定 要设置合适的防护措施,防止雨水飘入器内。
箱 起冷却作用的冷氢充分混合,
收;
而又将具有均匀温度的气液 混合物再均匀分配到下部的 催化剂床层上。
冷氢盘和喷射盘的安装水 平度,包括制造公差、荷载 作用下的挠度等在内,可按
±6mm控制。再分配盘的
要求与气液分配盘同。
T
急冷氢 急冷氢 急冷氢
T出
T入
第一床层 第二床层 第三床层 第四床层
加氢装
置反应过
3.
更换这种分配盘后,床层径向温差不到
5℃,催化剂相对活性提高了250%。这些都
表明要最大化利用高活性催化剂的性能,需要
有好的反应器内构件。
国内外加氢反应器内构件技术的发展
1.
TOPSOE公司的反应器内构件技术
2. Topsoe公司又开发出汽举式(Vapor-Lift)
分配盘
3.
分配器间距越小,滴点数越多,预示着液体
加氢反应器大型化

加氢反应器及催化裂化反应器介绍

加氢反应器及催化裂化反应器介绍

固定床反应器:
床层内固体催化剂处于静 止状态。
特点:催化剂不宜磨损, 催化剂在不失活情况下可 长期使用。
主要适于加工固体杂质、 油溶性金属含量少的油品
移动床反应器:
生产过程中催化剂连 续或间断移动加入或 卸出反应器。
主要适于加工有较高 金属有机化合物及沥 青质的渣油原料,可 避免床层堵塞及催化剂失活问题。
加氢反应器 及催化裂化 反应器介绍
一.加氢反应器
加氢反应器是各类加氢工艺的关键设备 加氢过程分类: 1.加氢处理(进料分子基本无变化,使烯烃饱和及脱硫) 2.加氢精制(约≤10%原料分子降低分子量) 3.加氢裂化(有≥10%原料分子转化为小分子)
加氢反应器分类(按照工艺流程及结构分类) 1. 固定床反应器 2. 移动床反应器 3. 流化床反应器 固定床反应器使用最为广泛(气液并流下流式)
(2)尽量保持TP347堆焊金属或焊接金属有较高的延性。为此,一是 要控制TP347中δ—铁素体含量,以避免含量过多时在焊后最终热处理 过程转变成较多的相而产生脆性;二是对于前述那些易发生氢脆的部 位,应尽量省略TP347堆焊金属或焊接金属的焊后最终热处理,以提 高其延性。
(3)装置停工时冷却速度不应过快,且停工过程中应有使钢中吸藏的 氢能尽量释放出去的工艺过程,以减少器壁中的残留氢含量。
流化床反应器:
原料油及氢气自反应 器下部进入通过催化 剂床层,使催化剂流 化并被流体托起。
主要也适于加工有较 高金属有机化合物、 沥青质及固体杂质的 渣油原料。
按反应器使用状态分类: 使用状态下高温介质是否与器壁接触,分为冷壁结构
及热壁结构。
冷壁反应器
热壁反应器
冷热壁结构反应器特征及应用
按反应器本体结构分类: 分为单层结构、多层结构。单层结构包括钢板卷焊及

加氢反应器介绍 ppt课件

加氢反应器介绍  ppt课件
冷氢加入系统的作用和要求是: 均匀、稳定地供给足够的冷氢量; 必须使冷氢与热反应物充分混合,在进入下一床层时有一 均匀的温度和物料分布。 冷氢管按形式分直插式、树枝状形式和环形结构。 对于直径较小的反应器,采用结构简单便于安装的直插式 结构即可。 对于直径较大的反应器,直插式冷氢管打入的冷氢与上层 反应后的油气混合效果就不好,直接影响了冷氢箱的再混合效 果。这时就应采用树枝状或环形结构。
2. 分配盘
目前,国内加氢反应器所使用的反应物流分配器,按其作用原理大致可分为溢流 式和抽吸喷射式两类;反应物流分配盘应不漏液,安装后须进行测漏试验,即在 分配盘上充水至100mm高,在5分钟内其液位下降高度,以不大于5mm为合格;分配 盘安装的水平度要求,对于喷射式的分配器,包括制造公差和在载荷作用下的绕 度在内,其分配盘的水平度应控制为±5mm~±6mm;对于溢流式的分配器,其分配 盘安装的水平度要求更严格一些。
按反应器本体结构分类: 分为单层结构、多层结构。单层结构包括钢板卷焊及
锻焊结构;多层结构一般有绕带式及热套式。
煅焊 结构 反应 器制 造过 程
加氢过程由于存在有气、液、 固三相的放热反应,欲使反应进料 (气、液两相)与催化剂(固相) 充分、均匀、有效地接触,加氢反 应器设计有多个催化剂床层,在每 个床层的顶部都设置有分配盘,并 在两个床层之间设有温控结构(冷 氢箱),以确保加氢装置的安全平 稳生产和延长催化剂的使用寿命。
床层的下沉。
4. 催化剂支撑盘
催化剂支撑盘由T形大梁、格栅和丝网组成。大梁的两边搭在反应器 器壁的凸台上,而格栅则放在大梁和凸台上。格栅上平铺一层粗不锈钢丝 网,和一层细不锈钢丝网,上面就可以装填磁球和催化剂了。
催化剂支撑大梁和格栅要有足够的高温强度和刚度。即在420℃高温 下弯曲变形也很小,且具有一定的抗腐蚀性能。因此,大梁、格栅和丝网 的材质均为不锈钢。在设计中应考虑催化剂支撑盘上催化剂和磁球的重量、 催化剂支撑盘本身的重量、床层压力降和操作液重等载荷,经过计算得出 支撑大梁和格栅的结构尺寸。

加氢反应器介绍

加氢反应器介绍

4.加氢反应器发展第四阶段的特点
第四代是开发了高强度Cr-Mo钢和添加v的改进型 Cr-Mo钢,这些新钢种即使在450 ℃以上的条件 下,也能具有较高的强度,并能长期连续运转,发 挥其良好的可靠性,使反应器技术进人一个新时代。 这个时期的特点:2.25Cr-1Mo钢反应器母材的J 系数100(%),回火脆化倾向性评定vTr54+2.5 AvTr54<+10℃;添加V的改进型Cr-Mo钢分为3Cr1Mo-V系列钢和2.25Cr-1 Mo-V系列钢,3Cr-1 MoV系列钢比2.25Cr-1Mo-V系列钢开发应用早5年, 但后者比前者的用途更广、发展前景更好。添加V 的改进型Cr-Mo钢与2.25Cr-1Mo钢相比有很多的优 点。因此第四代反应器主要是添加V的改进型Cr-Mo 钢加氢反应器的研制应用,所以称为更新期.
5. 对选材的建议
a)炼油工业的加氢反应器应优先考虑采用 F22因其单位重量价格最低。 b)应做详细的技术经济比较,包括运输费用 和其可行性。在炼油工业中若采用F22V或 F3V要详细核实与F22反应器总体重量相差的 百分数,而不仅是反应器壁厚相差的百分数, 然后再与价差相比。应当指出:目前我国的制 造技术水平可以对这三种材料的厚壁加氢反应 器实施分段交货,在现场拼焊对接质量完全可 以保证,不需要因运输的原因减轻重量而采用 F22V或F3V,或耗巨资改建加固道路和桥梁.
一:加氢反应器的四个发展阶段
早期的加氢反应多数是用高强度Cr-Mo钢钢板(少 数是用Cr-Mo锻件)为外层、以不锈钢复合钢板为 内层焊接成,这种结构不利于用超声进行在役设 备的检查,所以在1970年前后被内壁堆焊不锈 层的板和锻焊结构所代替,而且锻焊结构的反应 器的例逐年增多。随着炼油厂在役设备的定期检 查各种问题的出现及其不断的研究解决,设计研 单位对设备材料与结构不断做出改进,使设备断 向高温、高压、大型化、长寿命方向发展。目前 为止,加氢反应器制造按技术、质量和改过程, 可以划分为四个时代:第一代是引进期(19651972)、第二代是改良期(1973-1980)、第三代是 成熟期(1981-1987)、第四代是更新期(1988一现 在)。

加氢反应器介绍 ppt课件

加氢反应器介绍  ppt课件
冷氢加入系统的作用和要求是: 均匀、稳定地供给足够的冷氢量; 必须使冷氢与热反应物充分混合,在进入下一床层时有一 均匀的温度和物料分布。 冷氢管按形式分直插式、树枝状形式和环形结构。 对于直径较小的反应器,采用结构简单便于安装的直插式 结构即可。 对于直径较大的反应器,直插式冷氢管打入的冷氢与上层 反应后的油气混合效果就不好,直接影响了冷氢箱的再混合效 果。这时就应采用树枝状或环形结构。
冷氢管 催化剂卸料管 冷氢箱上挡板盘
冷氢箱下挡板盘 冷氢箱筛板盘
7. 出口收集器
出口收集器是个帽状部件,顶部有圆孔,侧壁有长孔,覆盖不锈 钢网。其作用主要是阻止反应器底部的瓷球从出口漏出,并导出流体。
反应器底部的出口收集器,用于支撑下部的催化剂床层,减小床 层的压降和改善反应物料的分配。出口收集器与下端封头接触的下沿 开有数个缺口,供停工时排液用。
氢脆的敏感性一般是随钢材的强度的提高而增加,钢的显微组织 对氢脆也有影响。钢材氢脆化的程度还与钢中的氢含量密切相关。强 度越高,只要吸收少量的氢,就可引起很严重的脆化。
对于操作在高温高压氢环境下的设备,在操作状态下,器壁中会 吸收一定量的氢。在停工的过程中,由于冷却速度太快,钢中的氢来 不及扩散出来,造成过饱和氢残留在器壁内,就可能在温度低于150℃ 时引起亚临界裂纹扩展,对设备的安全使用带来威胁。
在高温高压临氢设备中,特别是内表面堆焊有奥氏体不锈钢堆焊 层的加氧反应器曾发生过一些氢脆损伤的实例。其部位多发生在反应 器支持圈角焊缝上以及堆焊奥氏体小锈钢的梯形槽法兰密封面的槽底 拐角处。
防止氢脆的若干对策
要防止氢脆损伤发生,主要应从结构设计上、制造过程中和生 产操作方面采取如下措施:
(1)尽量减少应变幅度,这对于改善使用寿命很有帮助。

加氢、催化裂化反应器

加氢、催化裂化反应器

国内研究现状
我国在加氢、催化裂化反应器的 研究方面已取得一定成果,但与 国际先进水平相比,仍存在差距 ,如设备大型化、高效化和智能
化等方面有待提高。
国外研究现状
国际先进企业在加氢、催化裂化 反应器的研究方面处于领先地位 ,注重技术创新和设备优化,以 实现更高的经济效益和环保性能

发展趋势
未来,加氢、催化裂化反应器将 朝着大型化、高效化、智能化和 绿色环保的方向发展,同时,新 型反应器和催化剂的开发也将成
04
CHAPTER
加氢、催化裂化反应器设计 与优化
设计原则与方法
安全性原则
确保反应器在高压、高温等极 端条件下的稳定运行,防止泄 漏和爆炸等危险情况的发生。
高效性原则
优化反应器的内部结构和流动 特性,提高反应效率和产物收 率,降低能耗和物耗。
经济性原则
在保证安全性和高效性的前提 下,尽量降低反应器的制造成 本和运行维护费用。
工业应用案例分享
案例一
某石化公司采用新型加氢反应器技术 ,成功提高了重质油品的加氢脱硫效 率,降低了硫含量,满足了环保要求 。
案例二
案例三
某化工企业利用加氢、催化裂化组合 技术,将劣质原料转化为高附加值的 化工产品,取得了显著的经济效益。
某炼油厂应用先进的催化裂化反应器 技术,实现了汽油的高辛烷值调和, 提高了汽油品质和市场竞争力。
国际合作与交流
加强与国际先进企业和研究机构的合作与交流,引进先进 技术和管理经验,提升我国加氢、催化裂化反应器的整体 水平和竞争力。
THANKS
谢谢
采用先进控制系统
引入先进的控制系统,实现反应器的 精确控制和自动调节,提高操作稳定 性和产物质量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
及热壁结构。
冷壁反应器
热壁反应器
冷热壁结构反应器特征及应用
按反应器本体结构分类:
分为单层结构、多层结构。单层结构包括钢板卷焊及
锻焊结构;多层结构一般有绕带式及热套式。
煅焊 结构 反应 器制 造过 程
加氢过程由于存在有气、液、 固三相的放热反应,欲使反应进料 (气、液两相)与催化剂(固相) 充分、均匀、有效地接触,加氢反 应器设计有多个催化剂床层,在每 个床层的顶部都设置有分配盘,并 在两个床层之间设有温控结构(冷 氢箱),以确保加氢装置的安全平 稳生产和延长催化剂的使用寿命。 反应器内设置有入口扩散器、 积垢篮、卸料管、催化剂支撑盘、 出口捕集器、气液反应物流分配盘、 冷氢箱、熱电偶保护管和出口收集 器等反应器内构件。
4)应力的影响 在高温氢腐蚀中,应力的存在肯定会产生不利的影响。在高温氢 气中蠕变强度会下降。特别是由于二次应力(如热应力或由冷作加工所 引起的应力)的存在会加速高温氢腐蚀。
高温氢腐蚀的防止措施 高温高压氢环境下高温氢腐蚀的防止措施主要是选用耐高温氢腐 蚀的材料,工程设计上都是按照原称为“纳尔逊(Nelson)曲线”来选 择的。 尽量减少钢材中对高温氢腐蚀不利影响的杂质元素(Sn、Sb)。 制造及在役中返修补焊后必须进行焊后热处理。 操作中严防设备超温。 控制外加应力水平。
4.连多硫酸引起的应力腐蚀开裂 应力腐蚀开裂是某一金属(钢材)在拉应力和特定的腐蚀介质共同 作用下所发生的脆性开裂现象。奥氏体不锈钢对于硫化物应力腐蚀开 裂是比较敏感的。连多硫酸(H2Sx06,x=3-6)引起的应力腐蚀开裂也 属于硫化物应力腐蚀开裂,一般为晶间裂纹。这种开裂与在高温运转 时由于碳化铬析出在晶界上,使晶界附近的铬浓度减少,形成贫铬区 有关。连多硫酸的形成是由于设备在含有高温硫化氢的气氛下操作时 生成了硫化亚铁,而当设备停止运转或停工检修时,它与出现的水分 和进入设备内的空气中的氧发生反应的结果。即: 3FeS+502----Fe2O3· FeO+3SO2 SO2+H20—---H2SO3 H2S03+1/202----H2S04 FeS十H2SO3——mH2SxO6十nFe’ FeS+H2S04一---FeSO4+H2S H2SO3十H2S-----mH2Sx06十nS FeS十H2Sx06一--FeSx06+H2S
2. 移动床反应器
3. 流化床反应器
固定床反应器使用最为广泛(气液并流下流式)
固定床反应器: 床层内固体催化剂处于静 止状态。
特点:催化剂不宜磨损,
催化剂在不失活情况下可 长期使用。 主要适于加工固体杂质、 油溶性金属含量少的油品
移动床反应器: 生产过程中催化剂连 续或间断移动加入或
卸出反应器。
6. 冷氢箱
冷氢箱实为混合箱和预分配盘的组合体。它是加氢反应器内的热 反应物与冷氢气进行混合及热量交换的场所。其作用是将上层流下来 的反应产物与冷氢管注入的冷氢在箱内进行充分混合,以吸收反应热, 降低反应物温度,满足下一催化剂床层的反应要求,避免反应器超温。 冷氢箱的第一层为挡板盘,挡板上开有节流孔。由冷氢管出来的 冷氢与上一床层反应后的油气在挡板盘上先预混合,然后由节流孔进 入冷氢箱。进入冷氢箱的冷氢气和上层下来的热油气经过反复折流混 合,就流向冷氢箱的第二层——筛板盘,筛板盘,在筛板盘上再次折 流强化混合效果,然后在作分配。筛板盘下有时还有一层泡帽分配盘 对预分配后的油气再作最终的分配。
8. 热电偶
为监视加氢放热反应引起床层温度升高及床层截面温度分布状况 而对操作温度进行监控。
加氢反应器常见损伤与对策
1.高温氢腐蚀
高温氢腐蚀是在高温高压条件下扩散侵入钢中的氢与不稳定的碳 化物发生化学反应,生成甲烷气泡(它包含甲烷的成核过程和成长), 即FeC+2H2一CH4+3Fe,并在晶间空穴和非金属夹杂部位聚集,引起钢 的强度、延性和韧性下降与劣化,同时发生晶间断裂。由于这种脆化 现象是发生化学反应的结果,所以它具有不可逆的性质,也称永久脆 化现象。 高温氢腐蚀有两种形式:一是表面脱碳;二是内部脱碳。 表面脱碳不产生裂纹,在这点上与钢材暴露在空气、氧气或二氧 化碳等一些气体中所产生的脱碳相似,表面脱碳的影响—般很轻,其 钢材的强度和硬度局部有所下降而延性提高。 内部脱碳是由于氢扩散侵入到钢中发生反应生成了甲烷,而甲烷 又不能扩散出钢外,就聚集于晶界空穴和夹杂物附近,形成了很高的 局部应力,使钢产生龟裂、裂纹或鼓包,其力学性能发生显著的劣化。
1. 入口扩散器
来自反应器入口的介质首先经过入口扩散器, 在上部锥形体整流后,经上下两挡板的两层 孔的节流、碰撞后被扩散到整个反应器截面 上。 其主要作用为:一是将进入的介质扩散到反 应器的整个截面上;二是消除气、液介质对 顶分配盘的垂直冲击,为分配盘的稳定工作 创造条件;三是通过扰动,促使气液两相混 合
冷氢管
催化剂卸料管
冷氢箱上挡板盘
冷氢箱下挡板盘
冷氢箱筛板盘
7. 出口收集器
出口收集器是个帽状部件,顶部有圆孔,侧壁有长孔,覆盖不锈 钢网。其作用主要是阻止反应器底部的瓷球从出口漏出,并导出流体。
反应器底部的出口收集器,用于支撑下部的催化剂床层,减小床 层的压降和改善反应物料的分配。出口收集器与下端封头接触的下沿 开有数个缺口,供停工时排液用。
2. 分配盘
目前,国内加氢反应器所使用的反应物流分配器,按其作用原理大致可分为溢流 式和抽吸喷射式两类;反应物流分配盘应不漏液,安装后须进行测漏试验,即在 分配盘上充水至100mm高,在5分钟内其液位下降高度,以不大于5mm为合格;分配 盘安装的水平度要求,对于喷射式的分配器,包括制造公差和在载荷作用下的绕 度在内,其分配盘的水平度应控制为±5mm~±6mm;对于溢流式的分配器,其分配 盘安装的水平度要求更严格一些。
2.氢脆 所谓氢脆,就是由于氢残留在钢中所引起的脆化现象。产生了氢 脆的钢材,其延伸率和断面收缩率显著下降。这是由于侵人钢中的原 子氢,使结晶的原子结合力变弱,或者作为分子状在晶界或夹杂物周 边上析出的结果。但是,在一定条件下,若能使氢较彻底地释放出来, 钢材的力学性能仍可得到恢复。这一特性与前面介绍的氢腐蚀截然不 同,所以氢脆是可逆的,也称作一次脆化现象。 氢脆的敏感性一般是随钢材的强度的提高而增加,钢的显微组织 对氢脆也有影响。钢材氢脆化的程度还与钢中的氢含量密切相关。强 度越高,只要吸收少量的氢,就可引起很严重的脆化。 对于操作在高温高压氢环境下的设备,在操作状态下,器壁中会 吸收一定量的氢。在停工的过程中,由于冷却速度太快,钢中的氢来 不及扩散出来,造成过饱和氢残留在器壁内,就可能在温度低于150℃ 时引起亚临界裂纹扩展,对设备的安全使用带来威胁。 在高温高压临氢设备中,特别是内表面堆焊有奥氏体不锈钢堆焊 层的加氧反应器曾发生过一些氢脆损伤的实例。其部位多发生在反应 器支持圈角焊缝上以及堆焊奥氏体小锈钢的梯形槽法兰密封面的槽底 拐角处。
4. 催化剂支撑盘
催化剂支撑盘由T形大梁、格栅和丝网组成。大梁的两边搭在反应器 器壁的凸台上,而格栅则放在大梁和凸台上。格栅上平铺一层粗不锈钢丝 网,和一层细不锈钢丝网,上面就可以装填磁球和催化剂了。 催化剂支撑大梁和格栅要有足够的高温强度和刚度。即在420℃高温 下弯曲变形也很小,且具有一定的抗腐蚀性能。因此,大梁、格栅和丝网 的材质均为不锈钢。在设计中应考虑催化剂支撑盘上催化剂和磁球的重量、 催化剂支撑盘本身的重量、床层压力降和操作液重等载荷,经过计算得出 支撑大梁和格栅的结构尺寸。
3.高温硫化氢的腐蚀
在加氢装置中,一般都会有硫化氢腐蚀介质存在。对于以碳钢 或低铬钢制的设备,在操作温度高于204℃,其腐蚀速度将随着温 度的升高而增加。特别是当硫化氢和氢共存的条件下,它比硫化氢 单独存在时产生的腐蚀还要更为剧烈和严重。氢在这种腐蚀过程中 起着催化剂的作用,加速了腐蚀的进展。 对于在硫化氢和氢共存条件下的材料选择,一是参考相似条件 的经验数据来预计材料的腐蚀率后确定;二是在无经验数据依据时 ,可根据柯珀(Couper)曲线来估算材料的腐蚀率。该曲线是美国腐 蚀工程师学会的一个专门小组通过大量的试验和生产数据经电子计 算机反复回归处理、关联后整理出来的。据验证按此曲线估算出来 的腐蚀率与工业装置的经验比较接近。对于不同铬含量(O%-9%) 的铬钢的腐蚀率,先按给定的硫化氢浓度和温度从图上求出碳钢的 腐蚀率,然后再乘以相应铬含量的系数 Fcr。加以修正后的值即是 。
在催化剂床层上面,采用分配盘是为了均布反应介质,改善其流动状况,实 现与催化剂的良好接触,进而达到径向和轴向的均匀分布。
反应器顶部分配盘
3. 积垢篮
由不同规格的不锈钢金属网和骨架构成的篮框,置于反应器上部催化剂床层的顶 部,可为反应物流提供更大的流通面积,在上部催化剂床层的顶部扑集更多的机 械杂质的沉积物,而又不致引起反应器压力降过快地增长;积垢篮框在反应器内 截面上呈等边三角形均匀排列,其内是空的(不装填催化剂或瓷球),安装好后 要须用不锈钢链将其穿连在一起,并牢固地拴在其上部分配盘地支撑梁上,不锈 钢金属链条要有足够地长度裕量(按床层高度下沉5%考虑),以便能适应催化剂 床层的下沉。
影响高温氢腐蚀的主要因素 1)温度、压力和暴露时间的影响 温度和压力对氢腐蚀的影响很大,温度越高或者压力越大发生高 温腐蚀的起始时间就越早。 2)合金元素和杂质元素的影响 在钢中凡是添加能形成很稳定碳化物的元素(如铬、钼、钒、钛、 钨等),就可使碳的活性降低,从而提高钢材抗高温氢腐蚀的能力。 在合金元素对抗氢腐蚀性能的影响中,元素的复合添加和各自添 加的效果不同。例如铬、钼的复合添加比两个儿素单独添加时可使抗 氢腐蚀性能进一步提高。在加氢高压设备中广泛地使用着铬-钼钢系, 其原因之一也在于此。 3)热处理的影响 钢的抗氢腐蚀性能,与钢的显微组织也有密切关系。对于淬火状 态,只需经很短时间加热就出现了氢腐蚀。但是一施行回火,且回火 温度越高,由于可形成稳定的碳化物,抗氢腐蚀性能就得到改善。另 外,对于在氢环境下使用的铬-钼钢设备,施行了焊后热处理同样具有 可提高抗氢腐蚀能力的效果。
相关文档
最新文档