初三数学函数的知识点总结

合集下载

初三函数全部知识点总结

初三函数全部知识点总结

初三函数全部知识点总结一、函数的概念1. 函数的定义函数是一种对应关系,它把一个自变量的值对应到一个因变量的值上。

一般地,函数f(x)可以表示为y=f(x),其中x为自变量,y为因变量。

2. 自变量与因变量自变量是函数中独立变化的变量,通常用x表示;因变量是根据自变量的取值而定的变量,通常用y表示。

3. 定义域和值域定义域是自变量的所有可能取值的集合;值域是因变量的所有可能取值的集合。

4. 函数的图像函数的图像是函数在平面直角坐标系中的点的集合。

二、函数的表示方法1. 用一个通项公式表示函数函数f(x)有时可以用一个表达式y=f(x)表示。

2. 用函数的图像表示函数函数的图像是函数在平面直角坐标系中的点的集合。

三、常见函数及其性质1. 线性函数线性函数是具有形式y=kx的函数,其中k为常数。

2. 幂函数幂函数是具有形式y=ax^n的函数,其中a和n为常数。

3. 指数函数指数函数是具有形式y=a^x的函数,其中a为正数且不等于1。

4. 对数函数对数函数是指数函数的逆运算。

5. 三角函数三角函数包括正弦函数、余弦函数、正切函数等。

四、函数的性质1. 奇偶性如果对于函数f(x),有f(-x)=f(x),则称f(x)为偶函数;如果对于函数f(x),有f(-x)=-f(x),则称f(x)为奇函数。

2. 增减性如果函数f(x)在区间(a,b)上有f'(x)>0,那么f(x)在区间(a,b)上是增函数;如果函数f(x)在区间(a,b)上有f'(x)<0,那么f(x)在区间(a,b)上是减函数。

3. 最值和零点函数在定义域内可能有最大值、最小值和零点。

4. 对称性有关函数的图像可能有关于y轴对称、关于x轴对称、或者关于原点对称的性质。

五、函数的运算1. 基本函数的运算加减乘除四则运算和复合运算。

2. 复合函数复合函数是一个函数作为另一个函数的自变量而得到的函数。

3. 函数的反函数函数的反函数是满足f(f^(-1)(x))=x和f^(-1)(f(x))=x的函数。

2024年初三数学函数几何知识点总结(2篇)

2024年初三数学函数几何知识点总结(2篇)

2024年初三数学函数几何知识点总结函数是数学中的一个重要概念,也是初中数学的重点和难点之一。

在初三数学学习中,我们不仅需要对函数的概念进行深入理解,还需要掌握相关的函数性质、函数的图像和函数的应用等知识点。

除了函数,几何也是初中数学的核心内容之一,它包括了平面几何和立体几何两个方面。

下面,我将详细总结____年初三数学中的函数和几何知识点。

一、函数部分1. 函数的概念函数是描述两个变量之间关系的工具,它将一个自变量的值映射到一个因变量的值。

函数的定义域、值域、图像等概念需要进行理解和掌握。

2. 函数的性质函数的奇偶性、单调性、最值等性质是数学中研究函数的重要内容。

我们需要通过对函数的定义和图像的研究,来了解函数的性质和规律。

3. 函数的图像函数的图像是函数的可视化表示,通过绘制函数的图像,我们可以直观地了解函数的性质和特点。

掌握绘制函数的图像的方法和技巧是初三数学学习的重点。

4. 函数的应用函数的应用广泛存在于日常生活和实际问题中。

例如,利用函数的性质解决最值问题、经济问题、几何问题等,都需要我们灵活运用函数的知识。

二、几何部分1. 平面几何平面几何是研究平面图形性质和关系的分支,它包括了直线、角、三角形、四边形、圆等图形的性质和计算方法。

(1) 直线和角的性质:直线的性质包括平行线、垂直线等;角的性质包括相等角、邻补角、对顶角等。

(2) 三角形的性质:三角形是几何中的基本图形,其性质包括角的性质、边的性质和面的性质等。

特别地,特殊三角形(等腰三角形、等边三角形、直角三角形)的性质需要特别关注。

(3) 四边形的性质:四边形是包含四条边的图形,常见的四边形有矩形、正方形、菱形、平行四边形等。

不同四边形的性质和判定方法需要进行掌握。

(4) 圆的性质:圆是几何中的重要图形,它包括圆心角、弧、扇形、弓形等的性质和计算方法。

通过对圆的性质的研究,我们可以解决许多与圆相关的问题。

2. 立体几何立体几何是研究空间图形性质和关系的分支,它包括了球体、柱体、锥体、棱柱、棱锥等图形的性质和计算方法。

初三数学函数知识点归纳

初三数学函数知识点归纳

初三数学函数知识点归纳一、函数的概念1. 定义在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数。

2. 函数的表示方法解析法:用数学式子表示两个变量之间的函数关系,如。

列表法:通过列出自变量与函数的对应值来表示函数关系,例如,在研究正方形面积与边长的关系时,可列出时,;时,等表格。

图象法:用图象来表示函数关系,如一次函数的图象是一条直线。

二、一次函数1. 定义形如是常数,的函数叫做一次函数。

当时,叫做正比例函数,正比例函数是特殊的一次函数。

2. 一次函数的图象与性质图象:一次函数的图象是一条直线,叫做直线在轴上的截距。

当,时,图象经过一、二、三象限;当,时,图象经过一、三、四象限;当,时,图象经过一、二、四象限;当,时,图象经过二、三、四象限。

性质当时,随的增大而增大;当时,随的增大而减小。

3. 一次函数的解析式的确定通常采用待定系数法,设出函数解析式,根据已知条件列出关于、的方程组,解方程组求出、的值,从而确定函数解析式。

三、反比例函数1. 定义形如为常数,的函数叫做反比例函数。

2. 反比例函数的图象与性质图象:反比例函数的图象是双曲线。

当时,双曲线的两支分别位于第一、三象限,在每一象限内随的增大而减小;当时,双曲线的两支分别位于第二、四象限,在每一象限内随的增大而增大。

反比例函数图象关于原点对称,它的对称轴是直线和。

3. 反比例函数解析式的确定同样采用待定系数法,设,把已知点的坐标代入求出的值即可确定解析式。

四、二次函数1. 定义形如是常数,的函数叫做二次函数。

2. 二次函数的图象与性质图象:二次函数的图象是一条抛物线。

顶点坐标:。

对称轴:直线。

性质当时,抛物线开口向上,在对称轴左侧随的增大而减小,在对称轴右侧随的增大而增大,函数有最小值;当时,抛物线开口向下,在对称轴左侧随的增大而增大,在对称轴右侧随的增大而减小,函数有最大值。

初三数学的函数知识点总结

初三数学的函数知识点总结

初三数学的函数知识点总结一、函数的概念1. 函数的定义:函数是一种特殊的关系,即每一个自变量对应唯一的因变量,并且每一个可能的自变量都对应一个确定的因变量。

通俗地讲,函数就是一种“输入-输出”关系。

2. 自变量和因变量:在函数中,自变量是指可以独立变化的变量,通常用x来表示;而因变量则是函数的输出,通常用y来表示。

3. 函数的表达式:函数可以用数学公式或图象表示,通常表示为y=f(x),其中f(x)是函数,表示自变量x经过函数f所得的因变量y。

4. 定义域和值域:函数的定义域是所有可能的自变量值的集合,值域是所有可能的因变量值的集合。

5. 奇函数和偶函数:如果f(-x)=-f(x)成立,那么函数f(x)是奇函数;如果f(-x)=f(x)成立,那么函数f(x)是偶函数。

二、函数的表示方法1. 函数的图象:函数的图象是将自变量和因变量的所有可能取值通过直角坐标系的点连起来所得的图形。

2. 函数的映射图:函数的映射图是将函数值与自变量一一对应的有序对用点表示,并由这些点组成的图。

3. 函数的解析式:函数的解析式是用公式或方程表示的函数表达式,可以直接求出给定自变量时的因变量值。

4. 函数的等价变形:函数的等价变形是对函数进行代数运算、图象变换等操作得到的新函数。

三、函数的基本性质1. 函数的有界性:如果函数f(x)在某一区间内有界,则函数在这个区间内有最大值和最小值。

2. 函数的单调性:如果函数f(x)在某一区间内的导数始终大于0或小于0,则函数在这个区间内是递增或递减的。

3. 函数的奇偶性:奇函数具有对称中心为原点的对称图象,偶函数具有对称中心为y轴的对称图象。

4. 函数的周期性:如果函数f(x)满足f(x+T)=f(x),其中T为正常数,则函数具有周期T。

5. 函数的零点和极值:函数的零点是指使函数取零值的自变量值,而极值则是函数取得最大值或最小值的点。

6. 函数的单值性和多值性:一般情况下,函数对应一个自变量只能有一个因变量,因此是单值函数;但有些函数也可以对应一个自变量有多个因变量,这就是多值函数。

初中数学函数知识点总结

初中数学函数知识点总结

初中数学函数知识点总结数学函数是初中数学中的重要概念之一,它在解决各类实际问题、建立数学模型以及理解数学理论上都起着重要的作用。

本文将对初中数学中的函数知识点进行总结,包括函数的定义、函数的性质、函数的图像和应用等方面内容。

1. 函数的定义函数是一个有序数对的集合,其中每个自变量(输入)只对应一个因变量(输出)。

函数可以用符号表示为y = f(x),其中x为自变量,y为因变量,f为函数名。

函数的定义域是自变量的取值范围,值域是因变量的取值范围。

2. 函数的性质(1)奇偶性:一个函数是奇函数当且仅当满足f(-x) = -f(x),是偶函数当且仅当满足f(-x) = f(x)。

奇函数的图像关于原点对称,偶函数的图像关于y轴对称。

(2)单调性:一个函数在定义域上是递增的,当且仅当对于任意两个自变量x1和x2,如果x1 < x2,则f(x1) < f(x2);一个函数是递减的,当且仅当对于任意两个自变量x1和x2,如果x1 < x2,则f(x1) > f(x2)。

(3)周期性:一个函数具有周期T,当且仅当对于任意自变量x,有f(x + T)= f(x)。

如正弦函数和余弦函数都是周期函数。

3. 函数的图像(1)线性函数:线性函数的图像是一条直线,表示为y = kx + b,其中k为斜率,b为截距。

(2)二次函数:二次函数的图像是一个抛物线,表示为y = ax^2 + bx + c,其中a决定了抛物线的开口方向,b决定了抛物线的位置,c为抛物线与y轴的交点。

(3)指数函数:指数函数的图像是递增的曲线,表示为y = a^x,其中a大于0且不等于1。

(4)对数函数:对数函数的图像是递增的曲线,表示为y = loga(x),其中a大于0且不等于1。

4. 函数的应用函数在现实生活中有着广泛的应用,以下是一些常见的函数应用:(1)速度函数:速度是距离对时间的比值,可以用速度函数来描述运动的变化。

初中数学函数知识点归纳

初中数学函数知识点归纳

初中数学函数知识点归纳初中数学中的函数知识点主要包括函数的定义、函数的性质、函数的表示方法、函数之间的关系以及函数的应用等内容。

下面我将对这些知识点进行归纳总结。

一、函数的定义:1.自变量和因变量:函数是一种数与数之间的对应关系,其中自变量是输入的数值,因变量是输出的数值。

2.值域:函数的值域是所有可能输出的数值的集合,通常用符号D表示。

3.定义域:函数的定义域是所有可能输入的数值的集合,通常用符号R表示。

二、函数的性质:1.奇偶性:函数f(x)的性质与其自变量的奇偶性有关,如果f(-x)=f(x),则函数是偶函数;如果f(-x)=-f(x),则函数是奇函数。

2.单调性:函数在一些定义域上的增减性,可以分为递增和递减。

3.周期性:函数在一些定义域上的输出数值存在重复规律,称为函数的周期性。

三、函数的表示方法:1.函数表:通过给定自变量的数值,得出相应的因变量的数值。

2.函数图像:将函数的自变量和因变量分别作为x轴和y轴坐标,画出函数的图像。

3.函数公式:通过表示自变量与因变量之间关系的数学式子来表示函数。

四、函数之间的关系:1.复合函数:若函数f(x)的值域是另一个函数g(x)的定义域,则通过将f(x)的输出作为g(x)的输入,得到的新函数称为复合函数。

2.反函数:若函数f(x)的一些值对应唯一的自变量,且该自变量对应的值也能唯一地确定f(x)的值,则称函数f(x)具有反函数,记作f^(-1)(x)。

3.逆函数:若函数f(x)的自变量与因变量对换,得到新的函数g(x),则称g(x)为函数f(x)的逆函数,记作g(x)=f^(-1)(x)。

五、函数的应用:1.函数的模型:可以用函数来表示一些实际问题中的关系,如速度函数、利润函数等。

2.函数的最值:通过求函数的最大值和最小值,可以解决许多优化问题。

3.函数的图像在坐标系中的位置和形状:通过观察函数的图像,可以判断其基本形状、范围、特征点等。

六、常见的函数类型:1. 一次函数:f(x) = kx + b,其中k和b为常数,其图像为一条直线。

初中数学函数知识点归纳

初中数学函数知识点归纳

初中数学函数知识点归纳初中数学中,函数是一个重要的概念。

在学习函数时,主要包括函数的定义、函数的基本性质、函数的图像以及函数的应用等方面的内容。

一、函数的定义在初中数学中,函数通常被理解为一种数学关系。

具体地说,如果存在一个规则,它能够将一个数集的每个元素与另一个数集的唯一元素相对应,那么我们就称这个规则为函数。

数集的每个元素称为自变量,相对应的元素称为函数值或因变量。

例如,y=2x就是一个函数的表示方式,其中y是因变量,x是自变量。

这个函数的规则是将自变量x乘以2得到对应的y值。

二、函数的基本性质1.定义域和值域:函数的定义域指的是自变量的取值范围,而值域指的是因变量的取值范围。

定义域和值域的确定可以通过函数的解析式,也可以通过函数的图像来确定。

2.单调性:函数的单调性是指函数在一些区间内是递增还是递减。

对于递增的函数,当自变量增加时,因变量也增加;对于递减的函数,当自变量增加时,因变量减少。

3.奇偶性:奇函数和偶函数是函数的一种分类。

当函数满足f(-x)=-f(x)时,我们称这个函数为奇函数;当函数满足f(-x)=f(x)时,我们称这个函数为偶函数。

4.对称轴:对于偶函数,它的图像关于y轴对称;对于奇函数,它的图像关于原点对称。

因此,对称轴就是y轴或者原点。

5.零点:函数的零点指的是函数取0的自变量值,也叫做函数的根。

求零点的方法有很多,例如用图像法、方程求解法等。

三、函数的图像1. 直线函数:直线函数的图像是一条直线。

其解析式通常为y = kx + b,其中k是斜率,表示直线的倾斜程度,b是截距,表示直线与y轴的交点。

2.常函数:常函数的图像是一条水平的直线。

它的解析式为y=c,其中c是常数。

3. 平方函数:平方函数的图像是一条抛物线。

其解析式通常为y = ax^2 + bx + c,其中a、b、c都是常数。

4.开方函数:开方函数是平方函数的反函数。

其图像是一条拋物線的一部分,始终在x轴的非负值上。

九年级数学--初中各种函数知识点总结

九年级数学--初中各种函数知识点总结

初中各种函数知识点陈述总结知识点一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注重:x轴和y轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当ba≠时,(a,b)和(b,a)是两个不同点的坐标。

知识点二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限0x⇔y,0>>点P(x,y)在第二象限0⇔yx<,0>点P(x,y)在第三象限0⇔yx,0<<点P(x,y)在第四象限0x⇔y,0<>2、坐标轴上的点的特征点P(x,y)在x轴上0⇔y,x为任意实数=点P(x,y)在y轴上0⇔x,y为任意实数=点P(x,y)既在x轴上,又在y轴上⇔x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x与y相等点P(x,y)在第二、四象限夹角平分线上⇔x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y 轴的直线上的各点的横坐标相同。

5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数6、点到坐标轴及原点的距离 点P (x ,y )到坐标轴及原点的距离: (1)点P (x ,y )到x 轴的距离等于y (2)点P (x ,y )到y 轴的距离等于x(3)点P (x ,y )到原点的距离等于22y x +知识点三、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

初三数学知识点全总结

初三数学知识点全总结

初三数学知识点全总结初三数学是初中数学学习的重要阶段,知识点繁多且复杂,需要我们认真梳理和掌握。

以下是对初三数学知识点的全面总结。

一、函数1、一次函数一次函数的表达式为 y = kx + b(k、b 为常数,k ≠ 0)。

当 b = 0 时,函数为正比例函数y =kx。

我们需要掌握一次函数的图像和性质,例如斜率 k 决定了函数图像的倾斜程度,k > 0 时函数单调递增,k <0 时函数单调递减。

同时,要能根据给定的条件求出函数的解析式,并解决与一次函数相关的实际问题。

2、反比例函数反比例函数的表达式为 y = k/x(k 为常数,k ≠ 0)。

反比例函数的图像是以原点为对称中心的两条曲线,当 k > 0 时,图像在一、三象限,在每个象限内 y 随 x 的增大而减小;当 k < 0 时,图像在二、四象限,在每个象限内 y 随 x 的增大而增大。

3、二次函数二次函数的一般式为 y = ax²+ bx + c(a ≠ 0),顶点式为 y =a(x h)²+ k,交点式为 y = a(x x₁)(x x₂)。

二次函数的图像是一条抛物线,对称轴为 x = b/2a,顶点坐标为(b/2a,(4ac b²)/4a)。

我们要学会求二次函数的解析式、顶点坐标、对称轴,掌握二次函数的图像和性质,并能利用二次函数解决最值问题和实际应用题。

二、几何图形1、圆圆的相关概念包括圆心、半径、直径、弧、弦、圆心角、圆周角等。

圆的性质有:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;直径所对的圆周角是直角;圆的切线垂直于过切点的半径等。

我们要掌握圆的周长和面积公式,以及弧长和扇形面积的计算方法,并能解决与圆有关的证明和计算问题。

2、相似三角形相似三角形的判定方法有:两角对应相等的两个三角形相似;两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似。

相似三角形的性质有:对应边成比例,对应角相等;相似三角形的周长比等于相似比,面积比等于相似比的平方。

初三数学三角函数知识点归纳总结

初三数学三角函数知识点归纳总结

初三数学三角函数知识点归纳总结三角函数是数学中一个重要的概念,也是初三数学中的重点知识之一。

它们在几何、物理和工程学等领域有广泛的应用。

下面,我们将对初三数学中的三角函数知识点进行归纳总结。

1. 正弦函数正弦函数是三角函数中的一种,用sin表示。

在单位圆上,对于任意角度θ,点P(x, y)的坐标可以表示为P(θ, sinθ),其中y坐标即为sinθ的值。

正弦函数的值域为[-1, 1],定义域为所有实数。

2. 余弦函数余弦函数是三角函数中的另一种,用cos表示。

在单位圆上,对于任意角度θ,点P(x, y)的坐标可以表示为P(cosθ, θ),其中x坐标即为cosθ的值。

余弦函数的值域也为[-1, 1],定义域同样为所有实数。

3. 正切函数正切函数是三角函数中的一种,用tan表示。

正切函数可以表示为sinθ/cosθ,在θ=π/2+kπ(k为整数)的情况下,等于无穷大,即不存在定义。

正切函数的值域为所有实数,定义域除了θ=π/2+kπ之外的所有实数。

4. 反正弦函数反正弦函数是正弦函数的反函数,用arcsin表示。

在[-1, 1]的值域内,对于任意实数y,可以找到唯一的角度θ,使得sinθ=y,其中θ的范围在[-π/2, π/2]之间。

5. 反余弦函数反余弦函数是余弦函数的反函数,用arccos表示。

在[-1, 1]的值域内,对于任意实数x,可以找到唯一的角度θ,使得cosθ=x,其中θ的范围在[0, π]之间。

6. 反正切函数反正切函数是正切函数的反函数,用arctan表示。

在所有实数的定义域内,对于任意实数y,可以找到唯一的角度θ,使得tanθ=y,其中θ的范围在(-π/2, π/2)之间。

通过对上述知识点的了解,我们可以利用三角函数来解决一些有关角度和边长的问题。

在学习过程中,我们需要注意以下几个要点:1. 熟练掌握三角函数基本概念和符号表示,包括正弦函数、余弦函数和正切函数的定义、值域、定义域等。

初中数学函数知识点总结

初中数学函数知识点总结

初中数学函数知识点总结一、函数的定义及性质:1.函数的定义:函数是一个或多个自变量(输入)与一个因变量(输出)之间的对应关系。

2.函数的三要素:定义域、值域和对应关系。

3.函数的表示方法:函数表达式、函数图象和函数关系式。

4.函数的分类:一次函数、二次函数、反比例函数、指数函数、对数函数等。

5.确定函数的条件:给定函数的表达式、图象、关系式或特定点坐标等。

二、函数的运算法则:1.函数的和、差、积、商运算规则。

2.函数的复合运算规则。

3.函数的反函数及其性质。

4.函数的平移、翻折和伸缩等运算。

三、常见的函数类型及性质:1.一次函数(线性函数):(1)函数的定义:y = kx + b,k为斜率,b为截距。

(2)函数的图象:直线。

(3)性质:对称性、单调性、与坐标轴的交点。

2.二次函数:(1)函数的定义:y = ax^2 + bx + c,a不等于0。

(2)函数的图象:抛物线。

(3)性质:对称轴、顶点坐标、单调性、与坐标轴的交点、方程的根。

3.反比例函数:(1)函数的定义:y=k/x,k不等于0。

(2)函数的图象:双曲线的一支。

(3)性质:对称性、单调性、与坐标轴的交点。

4.指数函数:(1)函数的定义:y=a^x,a大于0且不等于1(2)函数的图象:以原点为中心对称的曲线。

(3)性质:单调性、与坐标轴的交点。

5.对数函数:(1)函数的定义:y = loga(x),a大于0且不等于1(2)函数的图象:一条斜率小于1的直线。

(3)性质:单调性、与坐标轴的交点。

四、函数的应用:1.函数在数学模型中的应用:解决实际问题时,可以建立函数模型进行分析和求解。

2.函数的最值问题:通过函数的图象或导数来确定函数的最大值、最小值。

3.函数的相关性分析:通过分析变量之间的函数关系,判断相关性并探究其影响因素。

4.函数的综合应用:如面积、体积、速度、加速度等问题的求解。

五、函数的图象与函数的性质:1.函数图象的绘制:根据函数的定义和性质,确定关键点,描绘出精确的函数图象。

初三数学二次函数知识点总结

初三数学二次函数知识点总结

初三数学二次函数知识点总结一、二次函数的基本形式1. 二次函数的一般形式二次函数的一般形式为:y=ax^2+bx+c,其中a、b、c是常数,且a≠0。

2. 二次函数的顶点二次函数y=ax^2+bx+c的图象是一个抛物线,抛物线的对称轴与x轴的交点称为顶点。

顶点的横坐标为:-b/2a; 纵坐标为:f(-b/2a)。

3. 二次函数的开口方向当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

4. 二次函数的轴线二次函数y=ax^2+bx+c的图象的对称轴,称为轴线,其方程为:x=-b/2a。

5. 二次函数的零点二次函数y=ax^2+bx+c的图象与x轴的交点,称为零点。

二次函数的零点可以用求根公式或配方法求得。

6. 二次函数的图象二次函数y=ax^2+bx+c的图象是一个抛物线,其形状由a的正负决定,a>0时开口向上,a<0时开口向下;顶点坐标由b,c的值决定。

二、二次函数的性质1. 判断二次函数图象开口方向的方法当二次函数为y=ax^2+bx+c时,通过判断a的正负来判断开口方向。

如果a>0,则抛物线开口向上;如果a<0,则抛物线开口向下。

2. 二次函数的最值二次函数的最大值或最小值为y的极值,可以通过求导数或直接利用顶点的纵坐标得出。

最值的性质有:当a>0时,最值为最小值;当a<0时,最值为最大值。

3. 二次函数的零点二次函数的零点即二次方程ax^2+bx+c=0的实根。

根据求根公式或配方法可以求得二次函数的零点。

4. 二次函数的对称轴和顶点二次函数的对称轴即为x=-b/2a,顶点坐标为:(-b/2a, f(-b/2a))。

5. 二次函数的图象二次函数的图象是一个抛物线,通过对称轴和顶点坐标可以直接绘制出抛物线的图象。

三、二次函数的应用1. 求二次函数的最值通过求导数或者用顶点坐标的纵坐标来求得二次函数的最值。

2. 判断二次函数的零点和对称轴通过求根公式可以求得二次方程的零点,通过a、b的值求得对称轴。

初三数学函数几何知识点总结

初三数学函数几何知识点总结

初三数学函数几何知识点总结本文将从初三数学中的函数和几何两个方面,对一些重点和难点进行总结。

函数1. 基本概念函数是一种特殊的关系,它将一个自变量的集合中的每个元素和一个因变量的集合中的唯一元素相对应。

其中,自变量的集合称为定义域,因变量的集合称为值域。

一般用y=f(x)表示函数f,其中x是自变量,y是因变量。

2. 常见函数•线性函数:y=kx+b,图像为直线•平方函数:y=ax2,图像为开口向上或向下的抛物线•根号函数:$y=\\sqrt{x}$,图像为右开口的半个平面•倒数函数:$y=\\dfrac{1}{x}$,图像为一条过第二象限和第四象限的双曲线3. 函数的性质•奇偶性:当f(−x)=f(x)时,函数f(x)是偶函数;当f(−x)=−f(x)时,函数f(x)是奇函数。

•单调性:若在函数的定义域中,对于任意的x1<x2,都有f(x1)< f(x2)或f(x1)>f(x2),那么称该函数是递增函数和递减函数。

•周期性:若存在正常数T,对于函数的定义域内任意x,都有f(x+ T)=f(x),那么称该函数为周期函数。

4. 函数的应用•函数图像的绘制:画出函数的表格,再根据函数在定义域中的变化情况和与坐标轴的交点,描出函数的图像。

•函数的最值:求函数在定义域上的极值,需要先求出导数,再通过导数的零点判断极值的位置。

对于一些特殊函数,如二次函数,可直接根据函数的开口方向判断最值。

几何1. 基本概念•直线:在平面中经过两点的线段,无限延伸。

•射线:由一个端点和跟这个端点不重合的一个点确定的线段,只向一个方向上延伸。

•线段:两个端点之间的线段,有长度。

•角:用一个端点和两个射线(起始于这个端点)表示的图形,共有四种角度:直角、锐角、钝角和平角。

•三角形:有三条边和三个角的平面图形。

•直角三角形:有一个角为直角的三角形。

•等腰三角形:有两条边相等的三角形。

•等边三角形:三边相等的三角形。

初中数学函数知识点总结6篇

初中数学函数知识点总结6篇

初中数学函数知识点总结初中数学函数知识点总结6篇总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它可以帮助我们有寻找学习和工作中的规律,让我们抽出时间写写总结吧。

那么总结有什么格式呢?以下是小编整理的初中数学函数知识点总结,仅供参考,大家一起来看看吧。

初中数学函数知识点总结1课题3.5正比例函数、反比例函数、一次函数和二次函数教学目标1、掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质2、会用待定系数法确定函数的解析式教学重点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学难点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学方法讲练结合法教学过程(I)知识要点(见下表:)第三章第29页函数名称解析式图像正比例函数ykx(k0)0x反比例函数一次函数ykxb(k0)0x二次函数yax2bxc(a0)y0xy0xky (k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0图像过点(0,0)及(1,k)的直线双曲线,x轴、y轴是它的渐近线与直线ykx平行且过点(0,b)的直线抛物线定义域RxxR且xoyyR且yoRR4acb2a0时,y,4aR 值域R4acb2a0时,y,4aba0时,在-,上为增2a函数,在,-单调性k0时,在,0,k0时为增函数0,上为减函数k0时,为增函数b上为减函数2ak0时为减函数k0时,在,0,k0时,为减函数0,上为增函数ba0时,在-,上为减2a函数,在,-b上为增函数2a奇偶性奇函数奇函数b=0时奇函数b=0时偶函数a0且x-ymin最值无无无b时,2a24acb4ab时,2a24acb4aa0且x-ymax第三章第30页b24acb2注:二次函数yaxbxca(x (a0))a(xm)(xn)2a4abb4acb2对称轴x,顶点(,)2a2a4a2抛物线与x轴交点坐标(m,0),(n,0)(II)例题讲解例1、求满足下列条件的二次函数的解析式:(1)抛物线过点A (1,1),B(2,2),C(4,2)(2)抛物线的顶点为P(1,5)且过点Q(3,3)(3)抛物线对称轴是x2,它在x轴上截出的线段AB长为2且抛物线过点(1,7)。

初中数学函数知识点总结

初中数学函数知识点总结

初中数学函数知识点总结在初中数学中,函数是一个非常重要的知识点,它涉及到数学的各个方面,并且在实际生活中也有广泛的应用。

在本文中,我将总结一些初中数学中关于函数的知识点,希望对大家的学习有所帮助。

一、常见的函数类型1. 一次函数:一次函数是指具有形如y=ax+b的函数,其中a和b是常数,a不能为0。

一次函数的图像是一条直线,斜率为a,截距为b。

2. 二次函数:二次函数是指具有形如y=ax²+bx+c的函数,其中a、b和c是常数,a不能为0。

二次函数的图像是一条抛物线,开口方向取决于a的正负。

3. 平方函数:平方函数是指具有形如y=x²的函数。

平方函数的图像是一条抛物线,开口朝上。

4. 立方函数:立方函数是指具有形如y=x³的函数。

立方函数的图像呈现S型曲线。

5. 绝对值函数:绝对值函数是指具有形如y=|x|的函数。

绝对值函数的图像是一条V型曲线,关于y轴对称。

二、函数的性质1. 定义域和值域:函数的定义域是指所有可以作为函数自变量的数值的集合,而值域是指所有可能的函数值的集合。

2. 奇偶性:函数的奇偶性是指函数的对称性。

若对于任意x,有f(x)=f(-x),则函数是偶函数;若对于任意x,有f(x)=-f(-x),则函数是奇函数。

3. 单调性:函数的单调性是指函数的增减性质。

若对于定义域内的任意两个数x₁和x₂,当x₁<x₂时有f(x₁)<f(x₂),则函数是递增的;若对于定义域内的任意两个数x₁和x₂,当x₁<x₂时有f(x₁)>f(x₂),则函数是递减的。

4. 极值和最值:函数在定义域内达到的最大值和最小值称为函数的极值和最值。

三、函数的图像和方程1. 函数的图像:函数的图像可以通过绘制函数的各个点来得到。

为了更准确地绘制函数的图像,可以根据函数的性质和特点,分析关键点、拐点、零点等。

2. 函数的方程:已知函数的图像,可以通过观察图像的特点,得出函数的方程。

初三数学二次函数知识点总结

初三数学二次函数知识点总结

初三数学二次函数知识点总结一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,叫做二次函数。

其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。

需要注意的是,二次函数的二次项系数 a 不能为 0,如果 a = 0,那么就不是二次函数了。

二、二次函数的图像二次函数的图像是一条抛物线。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

抛物线的对称轴是直线 x = b / 2a 。

抛物线的顶点坐标为(b / 2a ,(4ac b²) / 4a)。

例如,对于二次函数 y = 2x² 4x + 1,其中 a = 2 > 0,抛物线开口向上,对称轴为 x =(-4) /(2×2) = 1,顶点坐标为(1,-1)。

三、二次函数的平移二次函数的平移遵循“上加下减,左加右减”的原则。

“上加下减”指的是在函数表达式后面直接加上或减去一个常数,影响抛物线的上下移动。

比如,将 y = x²向上平移 2 个单位,得到 y = x²+ 2;向下平移 3 个单位,得到 y = x² 3 。

“左加右减”指的是在自变量 x 上加上或减去一个常数,影响抛物线的左右移动。

例如,将 y =(x 1)²向左平移 2 个单位,得到 y =(x 1 + 2)²=(x + 1)²;向右平移 3 个单位,得到 y =(x 1 3)²=(x 4)²。

四、二次函数的最值当 a > 0 时,抛物线开口向上,函数有最小值,在顶点处取得,即y 最小值=(4ac b²) / 4a 。

当 a < 0 时,抛物线开口向下,函数有最大值,同样在顶点处取得,即 y 最大值=(4ac b²) / 4a 。

例如,对于二次函数 y = x²+ 2x 3,因为 a =-1 < 0,所以函数有最大值。

初三数学复习函数与方程知识点总结

初三数学复习函数与方程知识点总结

初三数学复习函数与方程知识点总结函数与方程是初中数学中的重要知识点,对于初三学生来说,掌握好这些知识点对于提高数学成绩至关重要。

下面是初三数学复习函数与方程知识点的总结。

一、函数的基本概念1. 定义:函数是一种特殊的关系,其中每个输入值(自变量)只对应一个输出值(因变量)。

2. 自变量和因变量:函数中自变量是输入的值,通常用x表示;因变量是对应的输出值,通常用f(x)或y表示。

3. 函数的表示方法:函数可以通过图像、表格、公式或文字描述来表示。

4. 定义域和值域:函数的定义域是自变量的取值范围,而值域是因变量的取值范围。

二、一次函数与二次函数1. 一次函数:a. 定义:一次函数是自变量的最高次数为1的多项式函数。

b. 表达式:一次函数的一般形式为:y = kx + b,其中k和b分别为常数,k称为斜率,决定了函数的增减趋势;b称为截距,决定了函数与y轴的交点位置。

c. 图像特征:一次函数的图像是一条直线,斜率为k,正值表示增加,负值表示减少。

2. 二次函数:a. 定义:二次函数是自变量的最高次数为2的多项式函数。

b. 表达式:二次函数的一般形式为:y = ax^2 + bx + c,其中a、b和c为常数,a决定了函数的开口方向和开口大小,正值表示开口向上,负值表示开口向下。

c. 图像特征:二次函数的图像是一个抛物线,开口方向和开口大小由a决定,顶点坐标为(-b/2a, f(-b/2a))。

三、函数的性质1. 奇偶性:若对于定义域内任意x,有f(-x) = -f(x),则函数为奇函数;若对于定义域内任意x,有f(-x) = f(x),则函数为偶函数。

2. 单调性:若对于定义域内的任意两个数x1和x2,若x1<x2,则有f(x1)<f(x2),则函数为增函数;若x1<x2,则有f(x1)>f(x2),则函数为减函数。

3. 周期性:若存在正数T,使得对于定义域内任意x,有f(x+T) =f(x),则函数具有周期性。

初中数学函数知识点和常见题型总结

初中数学函数知识点和常见题型总结

函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。

函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。

函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。

换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。

一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(,k b 是常数,0k ≠) 2)反比例函数:函数xky =(k 是常数,0k ≠)叫做反比例函数。

注意:0x ≠ 3)二次函数:)0,,(2≠++=a c b a c bx ax y 是常数,, 2、点的坐标与函数的关系1)点的坐标用(),a b 表示,横坐标在前,纵坐标在后,中间有“,”分开。

平面内点的坐标是有序实数对,当b a ≠时,(),a b 和(),b a 是两个不同点的坐标。

2)点的坐标:从点向x 轴和y 轴引垂线,横纵坐标的绝对值对应相对应线段的长度。

3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。

3、函数的图像 1)一次函数一次函数by=的=的图像是经过点(0,b)的直线;正比例函数kxy+kx图像是经过原点(0,0)的直线。

2)反比例函数3)二次函数4、函数图像的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位二、常见题型:1、求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。

初中数学函数知识点总结(定义、性质和图像)

初中数学函数知识点总结(定义、性质和图像)

函数知识点总结(掌握函数的定义、性质和图像)平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特征:第一象限:(+,+) 第二象限:(-,+) 第三象限:(-,-) 第四象限:(+,-)3、坐标轴上点的坐标特征:x 轴上的点,y 为零;y 轴上的点,x 为零;原点的坐标为(0 , 0)。

4、点的对称特征:已知点P(m,n),关于x 轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y 轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号 5、平行于坐标轴的直线上的点的坐标特征:平行于x 轴的直线上的任意两点:纵坐标相等; 平行于y 轴的直线上的任意两点:横坐标相等。

6、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。

第二、四象限角平分线上的点横、纵坐标互为相反数。

7、点P (x,y )的几何意义:点P (x,y )到x 轴的距离为 |y|,点P (x,y )到y 轴的距离为 |x|。

点P (x,y )到坐标原点的距离为22y x +8、两点之间的距离:X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -= Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -=已知A ),(11y x 、B ),(22y x AB|=212212)()(y y x x -+-9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点,则:M=(212x x + , 212y y +) 10、点的平移特征: 在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y ); 将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y ); 将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b ); 将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学函数的知识点总结
☆内容提要☆
一、平面直角坐标系
1.各象限内点的坐标的特点
2.坐标轴上点的坐标的特点
3.关于坐标轴、原点对称的点的坐标的特点
4.坐标平面内点与有序实数对的对应关系
二、函数
1.表示方法:⑴解析法;⑵列表法;⑶图象法。

2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有
意义。

3.画函数图象:⑴列表;⑵描点;⑶连线。

三、几种特殊函数
(定义图象性质)
1.正比例函数
⑴定义:y=kx(k0)或y/x=k。

⑵图象:直线(过原点)
⑶性质:①k0,②k0,
2.一次函数
⑴定义:y=kx+b(k0)
⑵图象:直线过点(0,b)与y轴的交点和(-b/k,0)与x轴的交点。

⑶性质:①k0,②k0,
⑷图象的四种情况:
3.二次函数
⑴定义:
特殊地,都是二次函数。

⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。

用配方法变为,则顶点为(h,k);对称轴为直线x=h;a0时,开口向上;a0时,开口向下。

⑶性质:a0时,在对称轴左侧,右侧a0时,在对称轴左侧,右侧。

4.反比例函数
⑴定义:或xy=k(k0)。

⑵图象:双曲线(两支)用描点法画出。

⑶性质:①k0时,图象位于,y随x②k0时,图象位于,y随x
③两支曲线无限接近于坐标轴但永远不能到达坐标轴。

四、重要解题方法
1.用待定系数法求解析式(列方程[组]求解)。

对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。

如下图:
2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号。

五、应用举例(略)。

相关文档
最新文档