排列组合问题经典题型解析含答案
排列组合问题经典题型与通用方法(全面)
()A、60种B、48种C、36种D、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有()A、24种B、60种C、90种D、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
例11.现有1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?解析:老师在中间三个位置上选一个有13A 种,4名同学在其余4个位置上有44A 种方法;所以共有143472A A =种。
12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。
例12.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是()A、36种B、120种C、720种D、1440种(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?解析:(1)前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共66720A =种,选C .(2)解析:看成一排,某2个元素在前半段四个位置中选排2个,有24A 种,某1个元素排在后半段的四个位置中选一个有14A 种,其余5个元素任排5个位置上有55A 种,故共有1254455760A A A =种排法.16.圆排问题单排法:把n 个不同元素放在圆周n 个无编号位置上的排列,顺序(例如按顺时钟)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而无首位、末位之分,下列n 个普通排列:排列组合问题经典题型与通用方法1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.A ,B ,C ,D ,E 五人并排站成一排,如果A ,B 必须相邻且B 在A 的右边,则不同的排法有(一)排序问题12323411,,,;,,,,,;,,,n n n n a a a a a a a a a a a - 在圆排列中只算一种,因为旋转后可以重合,故认为相同,n 个元素的圆排列数有!n n 种.因此可将某个元素固定展成单排,其它的1n -元素全排列.例16.有5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法?解析:首先可让5位姐姐站成一圈,属圆排列有44A 种,然后在让插入其间,每位均可插入其姐姐的左边和右边,有2种方式,故不同的安排方式5242768⨯=种不同站法.说明:从n 个不同元素中取出m 个元素作圆形排列共有1m n A m 种不同排法.17.可重复的排列求幂法:允许重复排列问题的特点是以元素为研究对象,元素不受位置的约束,可逐一安排元素的位置,一般地n 个不同元素排在m 个不同位置的排列数有nm 种方法.例17.把6名实习生分配到7个车间实习共有多少种不同方法?解析:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.14.选排问题先取后排:从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先取后排法.例14.(1)四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?(2)9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同的分组方法?解析:先取四个球中二个为一组,另二组各一个球的方法有24C 种,再排:在四个盒中每次排3个有34A 种,故共有2344144C A =种.解析:先取男女运动员各2名,有2254C C 种,这四名运动员混和双打练习有22A 种排法,故共有222542120C C A =种.4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()A、6种B、9种C、11种D、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .22.全错位排列问题公式法:全错位排列问题(贺卡问题,信封问题)记住公式即可瑞士数学家欧拉按一般情况给出了一个递推公式:用A 、B 、C……表示写着n 位友人名字的信封,a 、b 、c……表示n 份相应的写好的信纸。
排列组合经典题型及解析
排列组合经典题型及解析1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60种 B 、48种 C 、36种 D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.`例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有( ) A 、24种 B 、60种 C 、90种 D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种, … 选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、4441284C C C 种 B 、44412843C C C 种C 、4431283C C A 种D 、444128433C C C A 种答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A 、480种B 、240种C 、120种D 、96种,答案:B .7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计. 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( ) A 、210种 B 、300种 C 、464种 D 、600种 ]解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A 个,1131131131343333323333,,,A A A A A A A A A A A 个,合并总计300个,选B. (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种 解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ⋃=+-⋂例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
排列组合专题各方法题型及其答案
排列组合题型总结一.直接法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。
二.例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?三.插空法当需排元素中有不能相邻的元素时,宜用插空法。
例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?四.捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。
例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?五.阁板法名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共多少种?六.平均分堆问题例6 6本不同的书平均分成三堆,有多少种不同的方法?七.染色问题例7 某城市中心广场建造一个花圃,花圃6分为个部分,现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种同一样颜色的话,不同的栽种方法有种(以数字作答).561432例八一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法?九.几何问题1.四面体的一个顶点位A,从其它顶点与各棱中点取3个点,使它们和点A在同一平面上,不同的取法有种?十.先选后排法例9 有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选派4人承担这三项任务,不同的选派方法有十一.用转换法解排列组合问题例10.某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种.十二.转化命题法例 11.圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少各?排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。
排列组合难题题型总结(含答案)
排列组合难题题型总结(含答案)一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重复排列问题求幂策略(住店法)解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解.例5.把6名实习生(元素)分配到7个车间(位置)实习,共有多少种不同的分法练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法?练习题:6颗颜色不同的钻石,可穿成几种钻石圈七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有(即有且只有!!)两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有 种 十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? (注意有9个空隙,6个隔板!) 练习题:10个相同的球装5个盒中,每盒至少一有多少装法? 2 .100x y z w +++=求这个方程组的自然数解的组数十一.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的 取法有多少种?练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的 抽法有多少种?十二.平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的 分组方法3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安 排2名,则不同的安排方案种数为______ 十三. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法? 练习题:1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有2. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法. (27) 本题还有如下分类标准:*以3个全能演员是否选上唱歌人员为标准 *以3个全能演员是否选上跳舞人员为标准 *以只会跳舞的2人是否选上跳舞人员为标准 都可经得到正确结果 十四.构造模型策略例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?(120) 十五.实际操作穷举策略例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法 练习题:1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种? (9)2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有 72种十六. 分解与合成策略例16. 30030能被多少个不同的偶数整除练习:正方体的8个顶点可连成多少对异面直线十七.化归策略例17. 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?练习题:某城市的街区由12个全等的矩形区组成其中实线表示马路,从A 走到B 的最短路径有多少种?十八.数字排序问题查字典策略例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是 十九.树图策略例19.3人相互传球,由甲开始发球,并作为第一次传球,经过5次传求后,球仍回到甲的手中,则不同的传球方式有______练习: 分别编有1,2,3,4,5号码的人与椅,其中i 号人不坐i 号椅(54321,,,,i )的不同坐法有多少种? 二十.复杂分类问题表格策略例20.有红、黄、兰色的球各5只,分别标有A 、B 、C 、D 、E 五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法参考答案例1.解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C54321BA然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:解:分两步完成.第一步选两葵花之外的花占据两端和中间的位置有A53=60种排法 第二步排其余的位置:有A44=24种排法 所以共有60×24=1440种排法. 二.相邻元素捆绑策略例2. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合常见题型及解答
A.70B.140C.280D.840 答案 :( A )
【例5】 将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( )
(A)30种 (B)90种 (C)180种 (D)270种
【解析】:把此问题当作一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯 种方法,所以满足条件的关灯方案有10种.
说明:一些不易理解的排列组合题,如果能转化为熟悉的模型如填空模型,排队模型,装盒模型可使问题容易解决.
【例7】 3个人坐在一排8个椅子上,若每个人左右两边都有空位,则坐法的种数有多少种?
③若乙参加而甲不参加同理也有 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另两个城市有 种,共有 方法.所以共有不同的派遣方法总数为 种
【例10】 四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?
【解析】:先取四个球中二个为一组,另二组各一个球的方法有 种,再排:在四个盒中每次排3个有 种,故共有 种.
【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是
【解析】:除甲乙外,其余5个排列数为 种,再用甲乙去插6个空位有 种,不同的排法数是
【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(数字作答)
【解析】:
【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是
排列组合常见题型
一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个是底数,哪个是指数
排列组合常见题型及解题策略(详解)
排列组合常见题型及解题策略一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复, 把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类 问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同报名方法(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法【解析】:(1)43(2)34 (3)34【例2】 把6名实习生分配到7个车间实习共有多少种不同方法【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】 8名同学争夺3项冠军,获得冠军的可能性有( )A 、38B 、83C 、38AD 、38C【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的 结果。
所以选A 二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A 种【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432种, 其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A 种【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答)【解析】: 111789A A A =504【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是【解析】:不同排法的种数为5256A A =3600【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。
经典排列组合问题100题配超详细解析版
1.n N 且n 55,则乘积(55 n)(56 n)L (69 n) 等于A.55 nA B .69 n15A C.55 n15A D .69 n14A69 n【答案】 C【分析】依据摆列数的定义可知,(55 n)(56 n)L (69 n) 中最大的数为69-n, 最小的数为55-n ,那么可知下标的值为69-n, 共有69-n- (55-n )+1=15 个数,所以选择C2.某企业新招聘8 名职工,均匀分派给部下的甲、乙两个部门,此中两名英语翻译人员不能分在同一部门,此外三名电脑编程人员也不可以全分在同一部门,则不一样的分派方案共有()A. 24 种B. 36 种C. 38 种D. 108 种【答案】 B【分析】因为均匀分派给部下的甲、乙两个部门,此中两名英语翻译人员不可以分在同一部门,此外三名电脑编程人员也不可以全分在同一部门,那么特别元素优先考虑,分步来达成可知所有的分派方案有36 种,选B*3.n∈N,则(20-n )(21-n) ⋯⋯(100-n) 等于()A.80A B.100 n20A100nnC.81A D.100 n81 A20 n【答案】 C*【分析】因为依据摆列数公式可知n∈N,则(20-n )(21-n) ⋯⋯(100-n) 等于81A ,选C 100 n4.从0,4,6 中选两个数字, 从中选两个数字,构成无重复数字的四位数. 此中偶数的个数为()B. 96C. 36【答案】 B【分析】因为第一确立末端数为偶数,那么要分为两种状况来解,第一种,末端是0,那么3其余的有 A 5=60,第二种状况是末端是4,或许6,首位从 4 个人选一个,其余的再选2个摆列即可 4 3 3,共有96 种5.从6 名志愿者中选出 4 人分别从事翻译、导游、导购、保洁四项不一样的工作,若此中甲、乙两名志愿者不可以从事翻译工作,则选派方案共有()A. 280 种B. 240 种C. 180 种D. 96 种【答案】B【解析】依据题意,由摆列可得,从 6 名志愿者中选出 4 人分别从事四项不一样工作,有4A6 360 种不一样的状况,此中包含甲从事翻译工作有3A5 60 种,乙从事翻译工作的有3A5 60 种,若此中甲、乙两名增援者都不可以从事翻译工作,则选派方案共有360-60-60=240 种.6.如图,在∠AOB的两边上分别有A1、A2、A3、A4 和B1、B2、B3、B4、B5 共9 个点,连接线段A iB j(1≤i ≤4,1 ≤j ≤5),假如此中两条线段不订交,则称之为一对“友善线”,则图中共有()对“友善线”.A.60 B .62 C.72【答案】A【解析】在∠AOB的两边上分别取 A , A (i j), 和B p ,B q (p q) ,可得四边形A i A j B p B qi j中,恰有一对“友善线”( A B 和A j B q ),而在OA上取两点有i p2C 种方法,在OB 上取两5点有 2C 种方法,共有10 6 60对“友善线”.47.在某种信息传输过程中,用 4 个数字的一个摆列(数字同意重复)表示一个信息,不一样摆列表示不一样信息,若所用数字只有0 和1,则与信息0110 至多有两个对应地点上的数字同样的信息个数为()A.10 B.11 C.12 D.15【答案】B【解析】由题意知与信息0110 至多有两个对应地点上的数字同样的信息包含三类:第一类:与信息0110 有两个对应地点上的数字同样有C42=6(个)第二类:与信息0110 有一个对应地点上的数字同样的有C41=4 个,第三类:与信息0110 没有一个对应地点上的数字同样的有C4 =1,由分类计数原理知与信息0110 至多有两个对应地点数字同样的共有6+4+1=11 个8.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中起码有1门不同样的选法共有()A.6 种B.12 种C.30 种D.36 种【答案】C【解析】分有一门不相同和二门不相同两种情况,所以共有 2 1 1 2C4 C2C2 C4 30 9.从一个不透明的口袋中摸出红球的概率为1/5 ,已知袋中红球有 3 个,则袋中共有球的个数为() .A.5 个 B .8 个 C .10 个 D .15 个【答案】D【解析】由于从一个不透明的口袋中摸出红球的概率为1/5 ,而且袋中红球有 3 个,设袋中共有球的个数为n,则3 1 ,n 5 所以n 15.10.从编号为1,2,3,4 的四个不一样小球中取三个不一样的小球放入编号为1,2,3 的三个不一样盒子,每个盒子放一球,则1号球不放 1 号盒子且 3 号球不放 3 号盒子的放法总数为A.10 B.12 C .14 D .16【答案】 C解决,,要分类意知元素的限制条件比许多【分析】解:由题,从前一组为例,当选出的三个球是1、2、3 或1、3、4时1 号球在2 号盒子里, 2 号和3 号只有一种方法,1 号球在 3 号盒子里,2 号和3 号各有两种结果,选1、2、3时共有 3 种结果,选1、3、4时也有 3 种结果,,各有C2当选到1、2、4 或2、3、4时1A 2=4 种结果,2果,数原理获取共有3+3+4+4=14 种结和分步计由分类应选C.11..在实验室进行的一项物理实验中,要先后实行 6 个程序,此中程序A只好出此刻第一或最后一步,程序B和C 在实行时一定相邻,则实验次序的编排方法共有()A.34 种B.48 种C.96 种 D .144种【答案】 C题,数问【分析】解:此题是一个分步计刻第一步或最后一步,意知程序 A 只好出此∵由题1果∴从第一个地点和最后一个地点选一个地点把A摆列,有A2 =2 种结一定相邻,时∵程序 B 和C实行还有一个摆列,共有∴把 B 和C看做一个元素,同除 A 外的 3 个元素摆列,注意B和C之间A44A 2=48 种结果. 依据分步计数原理知共有2×48=96 种结果,2应选C.12.由两个1、两个2、一个3、一个4这六个数字构成6 位数,要求同样数字不可以相邻,则这样的 6 位数有A. 12 个B. 48 个C. 84 个D. 96 个【答案】 C依据同样数字不可以相邻【分析】解:因为先排雷1,2,3,4 而后将其与的元素插入进去,则意的 6 位数有84 个。
(完整版)排列组合练习试题和答案解析
一、排列与组合
1.从9人中选派2人参加某一活动,有多少种不同选法?
2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?
3.现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是
4.有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有
A.9种B.12种C.15种D.18种
5.将7只相同的小球全部放入4个不同盒子,每盒至少1球的方法有多少种?
6.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法有多少种?
由分类计数原理得,不同的三角形共有5+20+10=35个.
12.从5部不同的影片中选出4部,在3个影院放映,每个影院至少放映一部,每部影片只放映一场,共有种不同的放映方法(用数字作答)。
五、元素与位置——位置分析
1.7人争夺5项冠军,结果有多少种情况?
2. 75600有多少个正约数?有多少个奇约数?
(2)甲乙必须站两端,丙站中间,有多少种不同排法?
2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?
3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是
A.3761 B.4175 C.5132 D.6157
4.设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有
(完整版)排列组合习题_[含详细答案解析]
圆梦教育中心排列组合专项训练1.题1 (方法对比,二星) 题面:(1)有5个插班生要分配给3所学校,每校至少分到一个,有多少种不同的分配方法?(2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法? 解析:“名额无差别”——相同元素问题 (法1)每所学校各分一个名额后,还有2个名额待分配,可将名额分给2所学校、1所学校,共两类:2133C C +(种) (法2——挡板法)相邻名额间共4个空隙,插入2个挡板,共:246C =(种) 注意:“挡板法”可用于解决待分配的元素无差别,且每个位置至少分配一个元素的问题.(位置有差别,元素无差别)同类题一 题面:有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 答案:69C 详解:因为10个名额没有差别,把它们排成一排。
相邻名额之间形成9个空隙。
在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。
同类题二题面:求方程X+Y+Z=10的正整数解的个数。
答案:36. 详解:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x 、y 、z之值, 故解的个数为C 92=36(个)。
2.题2 (插空法,三星)题面:某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种. 答案:60,48同类题一题面:6男4女站成一排,任何2名女生都不相邻有多少种排法?答案:A 66·A 47种.详解: 任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 47种不同排法.同类题二 题面:有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A .36种B .48种C .72种D .96种答案:C.详解:恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A 33A 24=72种排法,故选C.3.题3 (插空法,三星)题面:5个男生到一排12个座位上就座,两个之间至少隔一个空位.1]没有坐人的7个位子先摆好,[2](法1——插空)每个男生占一个位子,插入7个位子所成的8个空当中,有:58A =6720种排法.(法2)[1]5个男生先排好:55A ;[2]每个男生加上相邻的一个座位,共去掉9个位置,当作5个排好的元素,共有6个空,剩下的3个元素往里插空,每个空可以插1个、2个、3个元素,共有:3216662C C C ++种,综上:有55A (3216662C C C ++)=6720种.同类题一题面:文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添两个小品节目,则不同的排列方法有多少种? 答案:30。
cxy排列组合经典例题解析
排列组合问题经典题型与通用方法解析版1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法有( )A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有( )A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( )A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种 D 、444128433C C C A 种答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计. 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A 个,1131131131343333323333,,,A A A A A A A A A A A 个,合并总计300个,选B.(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种? 解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种. 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ⋃=+-⋂例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
排列组合题型全归纳 专题13 捆绑法模型(解析版)
专题13捆绑法模型【方法技巧与总结】捆绑法:解决“相邻”问题用“捆绑法”,就是将n 个不同的元素排成一排,其中k 个元素排在相邻位置上,求不同的排法种数的步骤:①先将这k 个元素“捆绑”在一起,看成一个整体;②把这个整体当作一个元素与其他元素一起排列,其排列方法有11+-+-k n k n A 种排法;③然后“松绑”,即将“捆绑”在一起的元素内部进行排列,其排列方法有kk A 种;④根据分步乘法计数原理,符合条件的排法有11+-+-k n k n A k k A 种.【典型例题】例1.(2023秋·广东揭阳·高三统考期末)已知甲、乙两个家庭排成一列测核酸,甲家庭是一对夫妻带1个小孩,乙家庭是一对夫妻带2个小孩.现要求2位父亲位于队伍的两端,3个小孩要排在一起,则不同的排队方式的种数为()A .288B .144C .72D .36【答案】C【解析】方法1:2位父亲的排队方式种数为22A ,2位母亲的排队方式种数为22A ,3个小孩的排队方式种数为33A ,将3个小孩当成一个整体,放进父母的中间共有13A 种排队方式,所以不同的排队方式种数为22312233A A A A 72=.方法2:2位父亲的排队方式种数为22A ,将3个小孩当成一个整体与2位母亲的排队方式种数为33A ,3个小孩的排队方式种数为33A ,所以不同的排队方式种数为323233A A A 72=.故选:C.例2.(2023春·广东·高三统考开学考试)某学校为了丰富同学们的寒假生活,寒假期间给同学们安排了6场线上讲座,其中讲座A 只能安排在第一或最后一场,讲座B 和C 必须相邻,问不同的安排方法共有()A .34种B .56种C .96种D .144种【答案】C【解析】 由题意知讲座A 只能安排在第一或最后一场,∴有12A 2=种结果, 讲座B 和C 必须相邻,∴共有4242A A 48=种结果,根据分步计数原理知共有24896⨯=种结果.故选:C .例3.(2023秋·重庆·高三统考学业考试)某球队6名队员站成一排拍照留念,要求队员A 和B 不相邻且均与队员C 相邻,则不同的排法共有()A .12种B .24种C .36种D .48种【答案】D【解析】因为队员A 和B 不相邻且均与队员C 相邻,所以队员C 站在队员A 和B 的中间,故将队员,,A B C 看作个整体,其内部共有22A 种排法,而这个整体与其他3名队员进行排列,则有44A 种排法,所以不同的排法共有2424A A 21432148=⨯⨯⨯⨯⨯=种.故选:D.例4.(2023·全国·高三专题练习)现有6家商户预租赁某夜市的6个相邻的推位,其中3家商户开特色小吃店,2家商户开文创产品店,一家商户开新奇玩具店,夜市管理部门要求特色小吃店必须都相邻,且文创产品店不相邻,则不同的排法总数为()A .48B .72C .144D .96【答案】B【解析】先把3家小吃店捆绑全排共有33A 6=种排法,再把小吃店与玩具店全排共有22A 2=种排法,然后把2家文创店插空全排共有23A 6=种排法,所以共有6×2×6=72种故选:B.例5.(2023春·四川泸州·高三四川省泸县第四中学校考开学考试)2022年2月4日北京冬奥会顺利开幕.在开幕式当晚,周明约李亮一家一起观看.周明一家四口相邻而坐,李亮一家四口也相邻而坐,已知他们两家人的8个座位连在一起(在同一排且一人一座),且周明与李亮也相邻而坐,则他们不同的坐法有()A .432种B .72种C .1152种D .144种【答案】B【解析】依题意周明与李亮坐中间两个位置,则有22A 2=种坐法,此时周明家其余3人有33A 6=种坐法,同理李亮家其余3人有33A 6=种坐法,所以他们不同的坐法有233233A A A 72⋅⋅=种.故选:B例6.(2023·全国·高三专题练习)志愿服务是全员核酸检测工作的重要基础和保障,某核酸检测站点需要连续六天有志愿者参加服务,每天只需要一名志愿者,现有甲、乙、丙、丁、戊、己6名志愿者,计划依次安排到该站点参加服务,要求甲不安排第一天,乙和丙在相邻两天参加服务,则不同的安排方案共有()A .72种B .81种C .144种D .192种【答案】D【解析】若乙和丙在相邻两天参加服务,不同的排法种数为2525A A 240=,若乙和丙在相邻两天且甲安排在第一天参加服务,不同的排法种数为2424A A 48=,由间接法可知,满足条件的排法种数为24048192-=种.故选:D.例7.(2023·全国·高三专题练习)3名男生,2名女生站成一排照相,则2名女生相邻且都不站在最左端的不同的站法共有()A .72种B .64种C .48种D .36种【答案】D【解析】将2名女生捆绑在一起,故2名女生相邻有22A 种站法,又2名女生都不站在最左端,故有13A 种站法,剩下3个位置,站3名男生有33A 种站法,故不同的站法共有213233A A A 36=种.故选:D.例8.(2023·全国·高三专题练习)“学习强国”学习平台设有“看党史”“听原著”等多个栏目.假设在这些栏目中,周一“看党史”栏目更新了3篇文章,“听原著”栏目更新了4个音频.一位学习者准备从更新的这7项内容中随机选取2篇文章和2个音频进行学习,则这2篇文章学习顺序相邻的学法有()A .216种B .108种C .72种D .54种【答案】A【解析】第一步从3篇文章中选2篇全排列,共有23A 种方法,第二步从4个音频中选2个,共有24C 种方法,第三步将2篇文章捆绑,再与已选取的2个音频进行全排列,共33A 种方法,故所求的总方法数为223343216A C A =(种).故选:A .例9.(2023春·山东烟台·高三校考开学考试)我国古代将“礼、乐、射、御、书、数”合称“六艺”.某校国学社团计划开展“六艺”讲座活动,要求活动当天每艺安排一节,连排6节,且“数”必须排在第3节,“射”和“御”相邻,则不同的安排顺序共有()A .12种B .24种C .36种D .48种【答案】C【解析】分析可知“数”排在第3节,且“射”和“御”相邻时,有223A 种排法,再将“礼”、“乐”、“书”安排在剩下的3节,有33A 种排法,所以不同的安排顺序共有2323336A A =(种).故选:C .例10.(2023·全国·高三专题练习)甲、乙、丙、丁、戊五位同学站成一排照相,其中要求甲和乙必须相邻,且丙不能排最左端,则不同的排法共有A .12种B .24种C .36种D .48种【答案】C【解析】由题意,把甲乙看成一个元素,甲乙、丁,戊的排列共有323212A A ⋅=种不同的排法,又由丙不能排最左端,利用“插空法”可得丙只有3种方式,由分步计数原理可得,不同的排法共有12336⨯=种,故选C .例11.(2023·上海·高三专题练习)2014年3月8日,马航370MH 航班客机从吉隆坡飞往北京途中失联,随后多国加入搜救行动,同时启动水下黑匣子的搜寻,主要通过水机器人和娃人等手段搜寻黑匣子.现有3个水下机器人A ,B ,C 和2个蛙人a ,b ,各安排一次搜寻任务,搜寻时每次只能安排1个水下机器人或1个蛙人下水,其中C 不能安排在第一个下水,A 和a 必须相邻安排,则不同的搜寻方式有()A .24种B .36种C .48种D .60种【答案】B【解析】A 和a 捆绑,相当于4个,先排第一位,则方法数有213233A C A 36⋅⋅=种,故选:B.例12.(2023·甘肃·模拟预测)某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A .504种B .960种C .1008种D .1108种【答案】C【解析】若丙排10月1日,共有5252240A A ⋅=,若丁排10月7日,共有5252240A A ⋅=,若丙排1日且丁排7日共有424248A A ⋅=,若不考虑丙,丁的条件限制,共有62621440A A ⋅=,∴共有1440240240481008--+=(种).考点:1、分步计数原理;2、排列组合.例13.(2023春·陕西榆林·高二校考期中)A ,B ,C ,D 四人并排站成一排,如果A 与B 相邻,那么不同的排法共有()A .24种B .12种C .48种D .36种【答案】B【解析】先安排A ,B ,共有22A 种方法;再把他们看作一整体,与其他人一起安排,共有33A 种方法;所以不同的排法共有2323A A 12=种.故选:B.例14.(2023秋·河南南阳·高二校考阶段练习)甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端、丙和丁相邻的不同排列方式有()A .24种B .36种C .48种D .144种【答案】A【解析】将丙和丁看作一个整体,有22A 2=种方法;将乙、戊和丙丁的整体首先安排到两端,则有23A 6=种方法,再安排甲和剩余的人,有22A 2=种方法;根据分步乘法计数原理可得不同的排列方式有:26224⨯⨯=种.故选:A.例15.(2023春·黑龙江哈尔滨·高二哈尔滨市阿城区第一中学校校联考期末)五一期间,李阳的父母带着李阳和李阳的妹妹,一家4人去五台山游玩,他们在入口处站成一排拍照留影,若李阳的父母相邻,则这4人不同的站法种数是()A .24B .12C .8D .6【解析】若要求李阳的父母相邻,他的父母先站好有22A 种方法,然后将其看成一个人再与李阳以及李阳的妹妹站成一排有33A 种排法,所以共有2323A A 12=种不同的站法.故选:B.例16.(2023秋·湖北孝感·高三校联考阶段练习)随着北京冬奥会的开幕,吉祥物“冰墩墩”火遍国内外,现有3个完全相同的“冰墩墩”,甲、乙、丙、丁4位运动员要与这3个“冰墩墩”站成一排拍照留念,则有且只有2个“冰墩墩”相邻的排队方法数为()A .240B .480C .1440D .2880【答案】B【解析】因为3个“冰墩墩”完全相同,将其中2个“冰墩墩”捆绑,记为元素a ,另外1个“冰墩墩”记为元素b ,先将甲、乙、丙、丁4位运动员全排,然后将a 、b 元素插入这4位运动员所形成的空中,且a 、b 元素不相邻,则不同的排法种数为4245A A 480=.故选:B.例17.(2023秋·宁夏石嘴山·高三石嘴山市第三中学校考期末)五声音阶是中国古乐基本音阶,故有成语“五音不全”,中国古乐中的五声音阶依次为:宫、商、角、徽、羽,把这五个音阶排成一列,形成一个的音序,若微、羽两音阶相邻且在宫音阶之后,则可排成不同的音序的种数为___________.(用数字作答).【答案】24【解析】先将徵、羽两音阶相邻捆绑在一起有22A ,然后与宫、商、角进行全排有44A ,考虑到顺序问题,则可排成不同的音序的种数为242422A A 24A =.故答案为:24.例18.(2023·全国·高三专题练习)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为_______.【答案】1296【解析】将每家人看作一个整体排座有33A 种情况,3个家庭所有成员内部的排序为333333A A A ⋅⋅种情况,所以总的情况有()433A 1296=种坐法.故答案为:1296.例19.(2023·全国·高三专题练习)中国书法一般分为篆书、隶书、行书、楷书和草书这5种字体,其中篆书分大篆和小篆,隶书分古隶和汉隶,草书分章草、今草和狂草,行书分行草和行楷,楷书分魏碑和唐楷.为了弘扬传统文化,某书法协会采用楷书、隶书和草书3种字体书写6个福字,其中隶书字体的福字分别用古隶和汉隶书写,草书字体的福字分别用章草、今草和狂草书写,楷书字体的福字用唐楷书写.将这6个福字排成一排,要求相同类型字体的福字相邻,则不同的排法种数为___________种.【解析】分别将隶书、草书、楷书当作整体,排法总数为33A 6=,隶书内部顺序22A 2=,草书内部顺序33A 6=,故方法总数为323323A A A 72=种.故答案为:72.例20.(2023秋·陕西咸阳·高三武功县普集高级中学校考阶段练习)当前新冠肺炎疫情形势依然严峻,防控新冠肺炎疫情需常态化,某校从含甲、乙、丙在内的7名行政人员中选取6人负责每周周一至周六的疫情防控工作(周日学校放假),每人各负责1天,其中甲、乙、丙3人必被选中.若甲与乙需安排在相邻的两天,乙与丙不安排在相邻的两天,且丙不排周一,则不同的安排方法有___种.【答案】600【解析】以全集U 表示“甲与乙需安排在相邻的两天”,集合A 表示“乙与丙安排在相邻的两天”,集合B 表示“丙安排在周一”,如下图所示:要选6人负责每周周一至周六的疫情防控工作,则只需从除甲、乙、丙以外的4人中再抽取3人,全集U 表示的排法中,将甲、乙两人捆绑,则()325425C A A 960n U ==,集合A 表示的排法中,将甲、乙、丙三人捆绑,且乙在中间,则()324424C A A 192n A ==,集合B 表示的排法中,丙排在周一,将甲、乙两人捆绑,则()324424C A A 192n B ==,集合A B ⋂表示的排法中,丙排在周一,且将甲、乙、丙三人捆绑,且乙在中间,则()323423C A A 24n A B ⋂==,因此,满足条件的排法种数为()()()()960192224600n U n A n B n A B --+⋂=-⨯+=.故答案为:600.例21.(2023秋·广东江门·高三江门市棠下中学校联考期末)有唱歌、跳舞、小品、杂技、相声五个节目制成一个节目单,其中小品、相声不相邻且相声、跳舞相邻的节目单有______种.(结果用数字作答)【答案】36【解析】先考虑相声、跳舞相邻的情况,只需将相声、跳舞这两个节目进行捆绑,形成一个大元素,然后再将这个“大元素”与其它三个节目进行排序,共有2424A A 48=种排法.接下来考虑相声节目与小品、跳舞都相邻的情形,需将相声与小品、跳舞这三个节目进行捆绑,其中相声节目位于中间,然后将这个“大元素”与其它两个节目进行排序,此时共有2323A A 12=种排法.综上所述,由间接法可知,共有481236-=种不同的排法.故答案为:36.例22.(2023·重庆沙坪坝·重庆南开中学校考一模)春节文艺汇演中需要将A ,B ,C ,D ,E ,F 六个节目进行排序,若A ,B 两个节目必须相邻,且都不能排在3号位置,则不同的排序方式有__________种.【答案】144【解析】将A ,B 捆绑,先确定A ,B 的位置,有223A 种可能,再将剩余节目排序,有44A 种可能,所以不同的排序方式有24243144A A =(种).故答案为:144.例23.(2023春·上海徐汇·高二上海中学校考期中)已知七人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为__.【答案】576【解析】可以分步完成:①甲丁捆绑后排序有22P 212=⨯=种方法,②捆绑后的甲丁与另外的3人(不包含乙丙)排序,有44P 432124=⨯⨯⨯=种方法,③第②步完成后,有5个空位,去掉与甲相邻的1个空位,将乙丙用插空法排入四个空位中,有24P 4312=⨯=种方法.由分步乘法计数原理,共有22412576⨯⨯=种方法.故答案为:576.例24.(2023·全国·高三专题练习)2名老师和3名学生站成一排照相,则3名学生中有且仅有2人相邻的站法有________种.【答案】72【解析】第一步:先取两个学生捆绑,则有1232C A 6⋅=种;第二步:两名老师全排列,则有22A 2=种;第三步:两名老师有3个空,将两组学生安排在3个空中的两个,则有23A 6=种,则一共有66272⨯⨯=种.故答案为:72例25.(2023·全国·高三专题练习)甲乙丙丁戊5名同学排成一列,若甲不站在排头,乙和丙相邻,则不同的排列方法有______种.【答案】36【解析】1、将丁戊排成一排,有22A 种,2、把乙丙捆绑有22A 种,再插入丁戊所成排的3个空中有13C 种,3、在第2步成排的后3个空中任选一个空,将甲插入有13C 种,所以,不同排列方法数有22A 22A 13C 13C 36=种.故答案为:36。
排列组合题型全归纳 专题05 分堆问题(解析版)
专题05分堆问题【方法技巧与总结】分组问题(分成几堆,无序)有等分、不等分、部分等分之别.一般地,平均分成n堆(组)必须除以n n A;如果有m堆(组)元素个数相同,必须除以m m A.【典型例题】例1.(2023·全国·高三专题练习)某研究机构采访了“—带一路”沿线20国的青年,让他们用一个关键词表达对中国的印象,使用频率前12的关键词为高铁,移动支付,网购,共享单车、一带一路、无人机、大熊猫、广场舞、中华美食、长城、京剧、美丽乡村.其中使用频率排前4的关键词“高铁、移动支付、网购、共享单车”也成为了他们眼中的“新四大发明”.若将这12个关键词平均分成3组,且各组都包含“新四大发明”关键词.则不同的分法种数为()A.1680B.3360C.6720D.10080【答案】B【解析】先将4个“新四大发明”分成1,1,2三组,有11243222C C C6A=种不同的分法,再将余下的8个分成3,3,2三组,有33285222C C C280A=种不同的分法,最后配成三组,所以共有628023360⨯⨯=种不同的分法.故选:B.例2.(2023·全国·高三专题练习)贵阳一中体育节中,乒乓球球单打12强中有4个种子选手,将这12人平均分成3个组(每组4个人)、则4个种子选手恰好被分在同一组的分法有()A.21B.42C.35D.70【答案】C【解析】4个种子选手分在同一组,即剩下的8人平均分成2组,方法有448422C C35A=种,故选:C.例3.(2023·高二课时练习)把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法共有()A.4种B.5种C.6种D.7种【答案】A【解析】分类:三堆中“最多”的一堆为5个,其他两堆总和为5,每堆最至少1个,只有2种分法.三堆中“最多”的一堆为4个,其他两堆总和为6,每堆最至少1个,只有2种分法.三堆中“最多”的一堆为3个,那是不可能的.考点:本题主要考查分类计数原理的应用.例4.(2022春·福建泉州·高二校联考期中)在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处,那么不同的搜寻方案有()A .25种B .30种C .40种D .50种【答案】C【解析】就Grace 的实际参与情况进行分类计数:第一类,Grace 不参与该项任务,则满足题意的不同搜寻方案有1254C C 30=种:第二类,Grace 参与搜寻近处投掷点的食物,则满足题意的不同搜寻方案有25C 10=种,因此由加法计数原理得知,满足题意的不同搜寻方案有30+10=40(种),故选:C.例5.(2022春·山东淄博·高二山东省淄博第一中学校考期中)某市政府决定派遣6名干部分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少2人,则不同的派遣方案共有()A .360种B .90种C .50种D .180种【答案】C【解析】两组至少都是2人,则分组中两组的人数分别为3、3或2、4,两组的人数为2和4的方法数为1226C C 30=(种),两组的人数都是3的方法为36C 20=(种),则不同的派遣方案种数为302050+=(种).故选:C例6.(2022·全国·高二专题练习)将12个不同的物体分成3组,每组4个,则不同的分法种数为().A .34650B .5940C .495D .5775【答案】D【解析】不同的分法种数为444128433121110987651432143215775321C C C A ⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯==⨯⨯.故选:D.例7.(2022·全国·高二专题练习)某中学要给三个班级补发8套教具,先将其分成3堆,其中一堆4套,另两堆每堆2套,则不同的分堆方法种数为()A .422842C C CB .1238C C C .42284222C C C A D .42284233C C C A 【答案】C【解析】由条件可知,8套教具,分成4,2,2,共有42284222C C C A 种分法.故选:C .例8.(2022秋·福建厦门·高三厦门双十中学校考阶段练习)将6名同学分成两个学习小组,每组至少两人,则不同的分组方法共有___________种.【答案】25【解析】由题知,6人分为两组共有两种分法:(1)一组2人,一组4人:这种分法数为4262C C 15=种;(2)两组均为3人:这种分法数为3363C C 102!=种,所以,由分类加法原理可得共有25种分法.故答案为:25例9.(2022·高二课时练习)某亲子栏目中,节目组给6位小朋友布置一项搜寻空投食物的任务,已知:①食物投掷点有远、近两处;②由于小朋友甲年纪尚小,所以要么不参与该项任务,要么参与搜寻近处投掷点的食物,但不参与时另需1位小朋友在大本营陪同;③所有参与搜寻任务的小朋友被均匀分成两组,一组去远处,一组去近处.那么不同的搜寻方案共有______种.【答案】40【解析】若甲不参与任务,则需要先从剩下的5位小朋友中任意选出1位陪同,有15C 种选择,再从剩下的4位小朋友中选出2位搜寻远处,有24C 种选择,最后剩下的2位小朋友搜寻近处,因此搜寻方案有1254C C 30=(种);若甲参与任务,则其只能去近处,需要从剩下的5位小朋友中选出2位搜寻近处,有25C 种选择,剩下的3位小朋友去搜寻远处,因此搜寻方案有25C 10=(种).综上,搜寻方案共有30+10=40(种).故答案为:40.例10.(2022春·河北保定·高二校联考阶段练习)将11人分成4组,每组至少2人,则不同的分组方法种数为___________.【答案】56980【解析】依题意,将11人分成4组,可得各组的人数为2,2,2,5或2,2,3,4或2,3,3,3,故不同的分组方法种数为222522342333119751197411963323323C C C C C C C C C C C C A A A ++()1106331514056980=⨯++=.故答案为:56980.例11.(2022·全国·高三专题练习)8名学生平均分成两组,每组都围成一个个圆圈,有______种不同的围法.【答案】1260或()44284C C 32!!【解析】8名学生平均分成两组,有4484C C 2!种分组法,每组都围成一个圈,两个组有323(A )种围法,所以共有()()444422384843C C C C A =3126022=!!!种不同的围法.故答案为:1260或()44284C C 32!!.例12.(2022春·天津河西·高二天津市新华中学校考期中)10个人参加义务劳动,分成4组,各组分别为2人、2人、2人、4人,则不同的分组方案共有__________种(用数字作答).【答案】3150【解析】先从10人抽出4人,有410C 种方法,再将剩余的6人平均分为3组,有226433C CA 种分法,故共有224641033C CC 3150A ⨯=种分组方案,故答案为:3150例13.(2022·高二课时练习)6本不同的书平均分成3堆,每堆2本,共有______种分法.【答案】15【解析】先分三次取书,每次取两本,则应是222642C C C 种方法,但是这里出现了重复.不妨记6本书分别为A 、B 、C 、D 、E 、F ,若第一次取AB ,第二次取CD ,第三次EF ,该种分法记为(),,AB CD EF ,则222642C C C 种分法中还有(),,AB EF CD 、(),,CD AB EF 、(),,CD EF AB 、(),,EF AB CD 、(),,EF CD AB ,33A 种情况,而这33A 种情况,仅是AB 、CD 、EF 的顺序不同,因此只能作为一种分法,故满足题意的分法共有22264233C C C 15A =(种).故答案为:15.例14.(2023·全国·高二专题练习)6本不同的书,按照以下要求处理,各有几种分法?(1)一堆1本,一堆2本,一堆3本;(2)甲得1本,乙得2本,丙得3本;(3)一人得1本,一人得2本,一人得3本;(4)平均分给甲、乙、丙三人;(5)平均分成三堆.【解析】(1)先从6本书中任取1本,作为一堆,有16C 种取法,再从余下的5本书中任取2本,作为一堆,有25C 种取法,最后从余下的3本书中取3本作为一堆,有33C 种取法,故共有分法123653C C C 60=种.(2)由(1)知,分成三堆的方法有123653C C C 种,而每种分组方法仅对应一种分配方法,故甲得1本,乙得2本,丙得3本的分法亦为123653C C C 60=种.(3)由(1)知,分成三堆的方法有123653C C C 种,但每一种分组方法又有33A 种分配方法,故一人得1本,一人得2本,一人得3本的分法有12336533C C C A 360=种.(4)3个人一个一个地来取书,甲从6本不同的书中任取出2本的取法有26C 种,乙再从余下的4本书中取2本书,有24C 种取法,丙从余下的2本中取2本书,有22C 种取法,所以一共有222642C C C 90=种取法.(5)把6本不同的书分成三堆,每堆2本与把6本不同的书分给甲、乙、丙三人,每人2本的区别在于,后者相当于把6本不同的书平均分成三堆后,再把书分给甲、乙、丙三人,因此,设把6本不同的书,平均分成三堆的方法有x 种,那么把6本不同的书分给甲、乙、丙三人每人2本的分法就应有33A x 种,由(4)知,把6本不同的书分给甲、乙、丙三人,每人2本的方法有222642C C C 种.所以32223642A C C C x =,则22264233C C C 15A x ==.例15.(2022·全国·高三专题练习)已知有6本不同的书.分成三堆,每堆2本,有多少种不同的分堆方法?【解析】6本书平均分成3堆,所以不同的分堆方法的种数为222642336543××1C C C 2121==15A 321⨯⨯⨯⨯⨯⨯.故答案为:15.例16.(2022·全国·高三专题练习)已知有6本不同的书.分成三堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法?【解析】从6本书中,先取1本作为一堆,再从剩下的5本中取2本作为一堆,最后3本作为一堆,所以不同的分堆方法的种数为12365354C C C 616021⨯=⨯⨯=⨯.例17.(2022·全国·高三专题练习)现有6本不同的书,如果满足下列要求,分别求分法种数.(1)分成三组,一组3本,一组2本,一组1本;(2)分给三个人,一人3本,一人2本,一人1本;(3)平均分成三个组每组两本.【解析】(1)根据题意,第一组3本有36C 种分法,第二组2本有23C 种分法,第三组1本有1种分法,所以共有3263C C 160⨯=种分法.(2)根据题意,先将6本书分为1、2、3的三组,有3263C C 160⨯=种分法,再将分好的三组分给3人,有33A =6种情况,所以共有606360⨯=种分法.(3)根据题意,将6本书平均分为3组,有22264233C C C A =15种不同的分法.例18.(2022·全国·高三专题练习)已知有6本不同的书.(1)分成三堆,每堆2本,有多少种不同的分堆方法?(2)分成三堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法?【解析】(1)6本书平均分成3堆,所以不同的分堆方法的种数为222642336×54×3××1C C C 2×12×1==15A 3×2×1.(2)从6本书中,先取1本作为一堆,再从剩下的5本中取2本作为一堆,最后3本作为一堆,所以不同的分堆方法的种数为12365354C C C 616021⨯=⨯⨯=⨯.例19.(2022·全国·高三专题练习)设有99本不同的书(用排列数、组合数作答).(1)分给甲、乙、丙3人,一人得93本,另两人各得3本,共有多少种不同的分法?(2)分成3份,一份93本,另两份各3本,共有多少种不同的分法?【解析】(1)99本不同的书,分给甲、乙、丙3人,一人得93本,另两人各得3本,3人中,谁都有得到93本的可能,所以不同的分法共有933339963322C C C A C ⋅(种).(2)99本不同的书,分成3份,一份93本,另两份各3本,两份3本的有重复,所以不同的分法共有9333996322C C C )A ⋅(种).例20.(2022·全国·高三专题练习)6本不同的书,按照以下要求处理,各有几种分法?(1)平均分给甲、乙、丙三人;(2)平均分成三堆.【解析】(1)3个人一个一个地来取书,甲从6本不同的书中任取出2本的取法有26C 种,乙再从余下的4本书中取2本书,有24C 种取法,丙从余下的2本中取2本书,有22C 种取法,所以一共有222642C C C 90=种取法.(2)把6本不同的书分成三堆,每堆2本与把6本不同的书分给甲、乙、丙三人,每人2本的区别在于,后者相当于把6本不同的书平均分成三堆后,再把书分给甲、乙、丙三人,因此,设把6本不同的书,平均分成三堆的方法有x 种,那么把6本不同的书分给甲、乙、丙三人每人2本的分法就应有33A x 种,由(1)知,把6本不同的书分给甲、乙、丙三人,每人2本的方法有222642C C C 种.所以32223642A C C C x =,则22264233C C C 15A x ==.例21.(2022·全国·高三专题练习)某班有一个5男4女组成的社会实践调查小组,准备在暑假进行三项不同的社会实践,若不同的组合调查不同的项目算作不同的调查方式,求按下列要求进行组合时,有多少种不同的调查方式?(1)将9人分成人数分别为2人、3人、4人的三个组去进行社会实践;(2)将9人平均分成3个组去进行社会实践;(3)将9人平均分成每组既有男生又有女生的三个组去进行社会实践.【解析】(1)将9人按2:3:4分组,有234974C C C 种分组方法,再把各组分配到三个项目中去有33A 方法,由分步乘法计数原理得:23439743C C C A 7560=,所以不同的调查方式有7560.(2)从9人中任取3人去调查第一个项目,从余下6人中任取3人去调查第二个项目,最后3人去调查第三个项目,由分步乘法计数原理得:333963C C C 1680=,所以不同的调查方式有1680.(3)把4个女生按2:1:1分组,有24C 种分法,再从5个男生中任取1个到两个女生的一组,从余下4个男生中任取2人到1个女生的一组,最后2个男生到最后的1个女生组,分法种数为541222C C C ,将分得的三个小组分配到三个项目中去有33A 方法,由分步乘法计数原理得:5422122343C C C C A 1080 ,所以不同的调查方式有1080.。
排列组合典型题大全含答案
排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38B、83C、38A D、38C【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。
所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种(B)20种(C)25种(D)32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的排法种数有【例1】,,,,A 种【解析】:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4424例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合常见题型及解题策略(详解).docx
排列组合常见题型及解题策略一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客” ,能重复的元素看作“店” ,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例 1】( 1)有 4 名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同报名方法(2)有 4 名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果(3)将 3 封不同的信投入 4 个不同的邮筒,则有多少种不同投法【解析】:(1)34( 2)43(3)43【例 2】把 6 名实习生分配到7 个车间实习共有多少种不同方法【解析】:完成此事共分 6 步,第一步;将第一名实习生分配到车间有7 种不同方案,第二步:将第二名实习生分配到车间也有7 种不同方案,依次类推,由分步计数原理知共有76种不同方案 .【例 3】 8 名同学争夺 3 项冠军,获得冠军的可能性有()A、83 B 、38 C 、A83 D 、C83【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8 名学生看作8 家“店”, 3 项冠军看作 3 个“客”,他们都可能住进任意一家“店”,每个“客”有 8 种可能,因此共有83种不同的结果。
所以选 A二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 .【例 1】A, B,C , D , E五人并排站成一排,如果A, B 必须相邻且B在A的右边,那么不同的排法种数有【解析】:把 A, B 视为一人,且 B 固定在 A 的右边,则本题相当于 4 人的全排列,A4424 种【例 2】(2009 四川卷理) 3 位男生和 3 位女生共 6 位同学站成一排,若男生甲不站两端, 3 位女生中有且只有两位女生相邻,则不同排法的种数是() A. 360 B.188 C. 216 D.96【解析】:间接法 6 位同学站成一排, 3 位女生中有且只有两位女生相邻的排法有,C32 A 22A 42 A 22 =432 种,其中男生甲站两端的有 A 12C32A 22 A 32A 22 =144 ,符合条件的排法故共有288三.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例 1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A55种,再用甲乙去插 6 个空位有A62种,不同的排法种数【解析】:除甲乙外,其余 5 个排列数是 A55 A623600 种【例 2】架上某有 6 本,新 3 本插去,要保持原有 6 本的序,有种不同的插法(具体数字作答)【解析】: A 17A18 A 91 =504【例 3】高三(一)班学要安排晚会的 4 各音目, 2 个舞蹈目和 1 个曲目的演出序,要求两个舞蹈目不排,不同排法的种数是【解析】:不同排法的种数 A55 A62=3600【例 4】某工程有 6 工程需要独完成,其中工程乙必在工程甲完成后才能行,工程丙必在工程乙完成后才能行,有工程丁必在工程丙完成后立即行。
(完整版)排列组合问题经典题型解析含答案.doc
排列组合问题经典题型与通用方法1. 相邻问题捆绑法 : 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 .例 1.A,B,C, D, E五人并排站成一排,如果A, B必须相邻且 B 在 A 的右边,则不同的排法有()A 、 60 种B 、 48 种 C、 36 种D、 24 种2. 相离问题插空排 : 元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例 2. 七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A 、 1440 种B 、 3600 种C 、 4820 种D 、 4800 种3. 定序问题缩倍法 : 在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 .例 3.A,B,C,D,E 五人并排站成一排, 如果 B 必须站在 A 的右边( A, B可以不相邻)那么不同的排法有 ()A 、 24 种B 、 60 种C 、 90 种 D、 120 种4. 标号排位问题分步法 : 把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成 .例 4. 将数字 1,2,3,4 填入标号为 1, 2,3,4 的四个方格里,每格填一个数,则每个方格的标号与所填 数字均不相同的填法有( ) A 、 6 种 B 、 9 种 C 、 11 种 D 、 23 种5. 有序分配问题逐分法 : 有序分配问题指把元素分成若干组,可用逐步下量分组法 . 例 5. ( 1)有甲乙丙三项任务,甲需 2 人承担,乙丙各需一人承担,从 10 人中选出 4 人承担这三项任务, 不同的选法种数是( ) A 、 1260 种 B 、 2025 种 C、 2520 种 D、 5040 种( 2) 12 名同学分别到三个不同的路口进行流量的调查,若每个路口4 人,则不同的分配方案有( )A 、 C 124C 84C 44 种B 、 3C 124C 84 C 44 种 C 、 C 124C 84 A 33 种 DC 124 C 84C 44、A 33种6. 全员分配问题分组法 :例 6. ( 1)4 名优秀学生全部保送到3 所学校去,每所学校至少去一名,则不同的保送方案有多少种?( 2)5 本不同的书,全部分给4 个学生,每个学生至少一本,不同的分法种数为()A 、 480 种B、 240 种C、120 种D、 96 种第 1 页 共 9 页7.名分配隔板法 :例 7: 10 个三好学生名分到7 个班,每个班至少一个名,有多少种不同分配方案?8. 限制条件的分配分法:例8. 某高校从某系的 10 名秀生中 4 人分到西部四城市参加中国西部开建,其中甲同学不到川,乙不到西宁,共有多少种不同派遣方案?9.多元分法:元素多,取出的情况也多种,可按果要求分成不相容的几情况分数再相加。
小学奥数思维训练-排列组合(经典透析)(通用,含答案)
保密★启用前小学奥数思维训练排列组合(经典透析)学校:___________姓名:___________班级:___________考号:___________一、解答题1.小明和小王从北京出发先到天津看海,然后再到上海东方明珠塔参观.从北京到天津可以坐火车或者坐公共汽车,坐火车有4种车次,坐公共汽车有3种车次;而从天津到上海可以坐火车,公共汽车,轮船或者飞机,火车有3种,汽车有5种,轮船有4种,飞机有2种.问小明和小王从北京到上海旅游一共有多少种走法?2.某公园有两个园门,一个东门,一个西门.若从东门入园,有两条道路通向龙凤亭,从龙凤亭有一条道路通向园中园,从园中园又有两条道路通向西门.另外,从东门有一条道路通向游乐场.从游乐场有两条道路通向水上世界,另有一条道路通向园中园.从水上世界有一条道路通向西门,另有一条道路通向小山亭,从小山亭有一条道路通向西门.问若从东门入园,从西门出园一共有多少种不同的走法(不走重复路线)?3.由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?①可组成多少个没有重复数字的三位数?4.如下图,A、B、C、D、E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法?5.4名同学到照相馆照相。
他们要排成一排,问:共有多少种不同的排法?6.从分别写有1、3、5、7、8五张卡片中任取两张,作成一道两个一位数的乘法题,问:①有多少个不同的乘积?①有多少个不同的乘法算式?7.如下图,问:①下左图中,共有多少条线段?①下右图中,共有多少个角?8.从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?9.国家举行足球赛,共15个队参加.比赛时,先分成两个组,第一组8个队,第二组7个队.各组都进行单循环赛(即每个队要同本组的其他各队比赛一场).然后再由各组的前两名共4个队进行单循环赛,决出冠亚军.问:①共需比赛多少场?①如果实行主客场制(即A、B两个队比赛时,既要在A队所在的城市比赛一场,也要在B队所在的城市比赛一场),共需比赛多少场?参考答案:1.98种【解析】【分析】首先看他们完成整个过程需要几个步骤,这是判断利用加法原理和乘法原理的依据.很明显整个过程要分两步完成,先从北京到天津,再从天津到上海,应该用乘法原理.我们再分开来看,先看从北京到天津,无论是坐火车还是汽车都是一步完成,所以要用加法原理,同样的道理,从天津到上海的走法计算也应该用加法原理.【详解】解:从北京到天津走法有:4+3=7种,从天津到上海走法有:3+5+4+2=14(种).从北京到上海的走法有:7×14=98(种).答:小明和小王从北京到上海旅游一共有98种走法.2.10种【解析】【详解】解法一:这个题的已知条件比较复杂.我们可将已知条件稍加“梳理”:1.从东门入园,从西门出园;2.从东门入园后,可以通向两个游览区,龙凤亭与游乐场;3.从龙凤亭经园中园可达到西门;4.从游乐场经水上世界可达到西门,或从游乐场经园中园可达到西门;5.从水上世界经小山亭可达到西门;根据以上五条可知,从东门入园经龙凤亭经园中园达到西门为一主干线.而东门到龙凤亭有两条不同路线;龙凤亭到园中园只有一条路线;园中园到西门又有两条不同的路线.由乘法原理,这条主干线共有2×1×2=4种不同的走法.再看从东门入园后到游乐场的路线.从东门到游乐场只有一条路,由游乐场分成两种路线,一是经园中园到西门,这条路线由乘法原理可知有1×1×2=2种不同走法;二是经水上世界到西门,从水上世界到西门共有两条路线(由水上世界直接到西门和经小山亭到西门),再由乘法原理可知这条路线有1×2×2=4种不同路线.最后由加法原理计算.从东门入园从西门出园且不走重复路线的走法共有2×1×2+1×1×2+1×2×2=10种.解法二:“枚举法”解题.如图,图中A 表示东门,B 表示西门,C 表示龙凤亭,D 表示园中园,E 表示游乐场,F 表示水上世界,G 表示小山亭,线表示道路.不同的走法有10种.1121111A C D BA C DB A E D BA E F G BA E F GB →→→→→→→→→→→→→→→→→ 1222222A C D BA C DB ACD B AEFG BA E F GB →→→→→→→→→→→→→→→→→答:不走重复路线,共有10种不同走法.【点睛】本题主要考察加法乘法原理.先分类利用加法原理,再对每一类进行分步利用乘法原理.建议可以利用加法与乘法原理的题型就没必要用枚举法,因为枚举法比较容易重复和遗漏.3.①48个①18个【解析】【分析】在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定。
排列组合问题经典题型解析含答案
排列组合问题经典题型解析含答案排列组合问题经典题型解析排列组合问题是高中数学中常见且重要的数学问题类型之一。
本文将从基本概念入手,逐步解析几个经典的排列组合问题,并附带解答。
# 1. 排列问题排列是指从给定的一组对象中选出若干个进行有序的排列。
下面以“abcd”为例,演示几个经典的排列问题。
## 1.1 无重复元素的排列问题描述:从元素集合{a, b, c, d}中,选取3个元素进行排列。
解答思路:首先来分析问题中的条件和要求。
问题中给出了四个元素{a, b, c, d},要求选取其中的三个元素进行排列,即考虑顺序。
根据排列的定义,我们知道从n个元素中选取k个元素进行排列,共有A(n, k)种情况。
其中,A(n, k)表示从n个元素中选取k个元素的排列数,计算公式为:A(n, k) = n! / (n-k)!对于本问题,选取3个元素进行排列,即A(4, 3),计算结果为:A(4, 3) = 4! / (4-3)! = 4! = 4 * 3 * 2 * 1 = 24。
因此,从元素集合{a, b, c, d}中选取3个元素进行排列,共有24种情况。
## 1.2 有重复元素的排列问题描述:从元素集合{a, b, b, c}中,选取3个元素进行排列。
解答思路:与上一个问题类似,只是在元素集合中存在重复元素。
排列问题的解法是一样的,只是在计算结果时需要考虑重复元素。
对于本问题,选取3个元素进行排列,即A(4, 3),计算结果为:A(4, 3) = 4! / 2! = 4 * 3 * 2 * 1 / 2 * 1 = 12。
因此,从元素集合{a, b, b, c}中选取3个元素进行排列,共有12种情况。
# 2. 组合问题组合是指从给定的一组对象中选取若干个进行无序的组合。
下面以“abcd”为例,演示几个经典的组合问题。
## 2.1 无重复元素的组合问题描述:从元素集合{a, b, c, d}中,选取3个元素进行组合。
排列组合常见题型及解答
一.可重复的摆列求幂法:重复摆列问题要划分两类元素:一类能够重复,另一类不可以重复,把不能重复的元素看作“客” ,能重复的元素看作“店” ,则经过“住店法”可顺利解题,在这种问题使用住店办理的策略中,重点是在正确判断哪个是底数,哪个是指数【例 1】( 1)有 4 名学生报名参加数学、物理、化学比赛,每人限报一科,有多少种不一样的报名方法(2)有 4 名学生参加抢夺数学、物理、化学比赛冠军,有多少种不一样的结果(3)将 3 封不一样的信投入 4 个不一样的邮筒,则有多少种不一样投法【分析】:(1)( 2)( 3)【例 2】把6名实习生疏派到7 个车间实习共有多少种不一样方法【分析】:达成此事共分 6 步,第一步;将第一名实习生疏派到车间有7 种不一样方案,第二步:将第二名实习生疏派到车间也有7 种不一样方案,挨次类推,由分步计数原理知共有种不一样方案 .【例 3】 8 名同学抢夺 3 项冠军,获取冠军的可能性有()A、B、C、D、【分析】:冠军不可以重复,但同一个学生可获取多项冠军,把8 名学生看作8 家“店”, 3 项冠军看作 3 个“客”,他们都可能住进随意一家“店” ,每个“客”有 8 种可能,所以共有种不一样的结果。
所以选 A二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,看作一个大元素参加摆列.【例 1】 A,B,C,D,E五人并排站成一排,假如A,B 一定相邻且 B 在 A 的右侧,那么不一样的排法种数有【分析】:把 A,B 视为一人,且 B 固定在 A 的右侧,则此题相当于 4 人的全摆列,种【例 2】( 2009 四川卷理) 3 位男生和 3 位女生共 6 位同学站成一排,若男生甲不站两头, 3 位女生中有且只有两位女生相邻,则不一样排法的种数是()A. 360B. 188C. 216D. 96【分析】:间接法 6位同学站成一排, 3位女生中有且只有两位女生相邻的排法有,,此中男生甲站两头的有,切合条件的排法故共有288三.相离问题插空法:元素相离(即不相邻)问题,可先把无地点要求的几个元素全摆列,再把规定的相离的几个元素插入上述几个元素的空位和两头.【例 1】七人并排站成一行,假如甲乙两个一定不相邻,那么不一样的排法种数是【分析】:除甲乙外,其余 5 个摆列数为种,再用甲乙去插 6 个空位有种,不一样的排法数是【例 2】书架上某层有 6 本书,新买 3 本插进去,要保持原有 6 本书的次序,有种不一样的插法(数字作答)【分析】:【例 3】高三(一)班学要安排毕业晚会的 4 各音乐节目, 2 个舞蹈节目和 1 个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不一样排法的种数是【分析】:不一样排法的种数为=3600【例 4】某工程队有 6 项工程需要独自达成,此中工程乙一定在工程甲达成后才能进行,工程丙必须在工程乙达成后才能进行,有工程丁一定在工程丙达成后立刻进行。
2024年高考数学专项复习排列组合12种题型归纳(解析版)
排列组合12种题型归纳1.排列与组合的概念名称定义区别排列从n 个不同元素中取出m (m ≤n )个元素按照一定的顺序排成一列排列有序,组合无序组合合成一组2.排列数与组合数定义计算公式性质联系排列数从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数,叫做从n 个不同元素中取出m 个元素的排列数.用符号“A m n ”表示A m n =n (n -1)(n -2)…(n -m +1)=n !(n -m )!(n ,m ∈N *,且m ≤n )(1)A n n =n !;(2)0!=1C m n =A m nm !组合数从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号“C m n ”表示C m n =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!(n ,m ∈N *,且m ≤n )(1)C n n =C 0n =1;(2)C m n =C n -m n ;(3)C m n +1=C mn +C m -1n【题型一】人坐座位模型1:捆绑与插空【典例分析】1.有四男生,三女生站一排,其中只有俩个女生相邻:2.有四男生,4女生站一排,女生若相邻,则最多2个女生相邻:2024年高考数学专项复习排列组合12种题型归纳(解析版)【变式演练】1.在某班进行的歌唱比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为A.30B.36C.60D.722.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.144B.120C.72D.483.2021年4月15日,是第六个全民国家安全教育日,教育厅组织宣讲团到某市的六个不同高校进行国家安全知识的宣讲,时间顺序要求是:高校甲必须排在第二或第三个,且高校甲宣讲结束后需立即到高校丁宣讲,高校乙、高校丙的宣讲顺序不能相邻,则不同的宣讲顺序共有()A.28种B.32种C.36种D.44种【题型二】人坐座位模型2:染色(平面)【典例分析】如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区涂色,规定每个区域只能涂一种颜色,相邻区域颜色不同,则A、C区域颜色不相同的概率是A.1/7 b.2/7 c.3/7 D.4/7【变式演练】1.正方体六个面上分别标有A、B、C、D、E、F六个字母,现用5种不同的颜色给此正方体六个面染色,要求有公共棱的面不能染同一种颜色,则不同的染色方案有()种.A.420B.600C.720D.7802.如图,某伞厂生产的太阳伞的伞篷是由太阳光的七种颜色组成,七种颜色分别涂在伞篷的八个区域内,且恰有一种颜色涂在相对区域内,则不同颜色图案的此类太阳伞最多有().A .40320种B .5040种C .20160种D .2520种3.如图,用四种不同的颜色给图中的A ,B ,C ,D ,E ,F ,G 七个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有()A .192B .336C .600D .以上答案均不对【题型三】人坐座位模型3:染色(空间):【典例分析】如图所示的几何体由三棱锥P ABC -与三棱柱111ABC A B C -组合而成,现用3种不同颜色对这个几何体的表面涂色(底面111A B C 不涂色),要求相邻的面均不同色,则不同的涂色方案共有()A .6种B .9种C .12种D .36种【变式演练】1.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法种数是()A.420B.210C.70D.352.在如图所示的十一面体ABCDEFGHI中,用3种不同颜色给这个几何体各个顶点染色,每个顶点染一种颜色,要求每条棱的两端点异色,则不同的染色方案种数为__________.3.用五种不同颜色给三棱台ABC DEF的六个顶点染色,要求每个点染一种颜色,且每条棱的两个端点染不同颜色.则不同的染色方法有___________种.【题型四】书架插书模型【典例分析】有12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.168B.260C.840D.560【变式演练】A aB bC cD d1.从A,B,C,D,a,b,c,d中任选5个字母排成一排,要求按字母先后顺序排列(即按(),(),(),()先后顺序,但大小写可以交换位置,如AaBc或aABc都可以),这样的情况有__________种.(用数字作答)2..在一张节目表上原有6个节目,如果保持这些节目的相对顺序不变,再添加进去三个节目,求共有多少种安排方法3.书架上有排好顺序的6本书,如果保持这6本书的相对顺序不变,再放上3本书,则不同的放法共有().A.210种B.252种C.504种D.505种【题型五】球放盒子模型1:球不同,盒子也不同【典例分析】已知有5个不同的小球,现将这5个球全部放入到标有编号1、2、3、4、5的五个盒子中,若装有小球的盒子的编号之和恰为11,则不同的放球方法种数为()A.150B.240C.390D.1440【变式演练】1.将5个不同的小球放入3个不同的盒子,每个盒子至少1个球,至多2个球,则不同的放法种数有()A.30种B.90种C.180种D.270种2.将编号分别为1,2,3,4,5的5个小球分别放入3个不同的盒子中,每个盒子都不空,则每个盒子中所放小球的编号奇偶性均不相同的概率为A.17B.16C.625D.7243.将A,B,C,D四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A,B不能放入同一个盒子中,则不同的放法种数为()A.15B.30C.20D.42【题型六】球放盒子模型2:球相同,盒子不同【典例分析】把1995个不加区别的小球分别放在10个不同的盒子里,使得第i 个盒子中至少有i 个球(1,2,...,10i ),则不同放法的总数是A .101940C B .91940C C .101949C D .91949C 【变式演练】1.将7个相同的球放入4个不同的盒子中,则每个盒子都有球的放法种数为()A .22B .25C .20D .482.把20个相同的小球装入编号分别为①②③④的4个盒子里,要求①②号盒每盒至少3个球,③④号盒每盒至少4个球,共有种方法.A .39C B .319C C .3494C AD .143205C C 3.将7个相同的小球放入A ,B ,C 三个盒子,每个盒子至少放一球,共有()种不同的放法.A .60种B .36种C .30种D .15种【题型七】相同元素排列模型1:数字化法【典例分析】如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓才加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24B.18C.12D.9【变式演练】1.一只小蜜蜂位于数轴上的原点处,小蜜蜂每一次具有只向左或只向右飞行一个单位或者两个单位距离的能力,且每次飞行至少一个单位.若小蜜蜂经过5次飞行后,停在数轴上实数3位于的点处,则小蜜蜂不同的飞行方式有多少种?A .5B .25C .55D .752.跳格游戏:如图,人从格子外只能进入第1个格子,在格子中每次可向前跳1格或2格,那么人从格子外跳到第8个格子的方法种数为A .8种B .13种C .21种D .34种3.如图所示,甲、乙两人同时出发,甲从点A 到B ,乙从点C 到D ,且每人每次都只能向上或向右走一格.则甲、乙的行走路线没有公共点的概率为().A .37B .57C .514D .1321【题型八】相同元素排列模型2:空车位停车等【典例分析】1.某单位有8个连在一起的车位,现有4辆不同型号的车需要停放,如果要求剩余的4个车位中恰好有3个连在一起,则不同的停放方法的种数为()A.240B.360C.480D.7202.马路上有编号为1,2,3,4,5,6,7,8,9的9盏路灯,为节约用电,可以把其中的三盏路灯关掉,但不能同时关掉相邻的两盏或三盏,也不能关掉两端的路灯,满足条件的关灯办法有种【变式演练】1.某公共汽车站有6个候车位排成一排,甲、乙、丙三个乘客在该汽车站等候228路公交车的到来,由于市内堵车,228路公交车一直没到站,三人决定在座位上候车,且每人只能坐一个位置,则恰好有2个连续空座位的候车方式的种数是A.48B.54C.72D.842.现有一排10个位置的空停车场,甲、乙、丙三辆不同的车去停放,要求每辆车左右两边都有空车位且甲车在乙、丙两车之间的停放方式共有_________种.3.地面上有并排的七个汽车位,现有红、白、黄、黑四辆不同的汽车同时倒车入库.当停车完毕后,恰有两个连续的空车位,且红、白两车互不相邻的情况有________种.【题型九】相同元素排列模型3:上楼梯等【典例分析】欲登上第10级楼梯,如果规定每步只能跨上一级或两级,则不同的走法共有A.34种B.55种C.89种D.144种【变式演练】1.斐波那契数列,又称黄金分割数列.因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、…..,在数学上,斐波那契数列以如下被递推的方法定义:()11f =,()21f =,()()()()122,f n f n f n n n N *=-+-≥∈.这种递推方法适合研究生活中很多问题.比如:一六八中学食堂一楼到二楼有15个台阶,某同学一步可以跨一个或者两个台阶,则他到二楼就餐有()种上楼方法.A .377B .610C .987D .15972.从一楼到二楼共有12级台阶,可以一步迈一级也可以一步迈两级,要求8步走完,则从一楼到二楼共有走法.A .12B .8C .70D .663.某人从上一层到二层需跨10级台阶.他一步可能跨1级台阶,称为一阶步,也可能跨2级台阶,称为二阶步,最多能跨3级台阶,称为三阶步.从一层上到二层他总共跨了6步,而且任何相邻两步均不同阶.则他从一层到二层可能的不同过程共有()种.A .6B .8C .10D .122010年全国高中数学联赛山东赛区预赛试题【题型十】多事件限制重叠型【典例分析】班班会准备从含甲、乙、丙的7名学生中选取4人发言,要求甲、乙两人至少有一个发言,且甲、乙都发言时丙不能发言,则甲、乙两人都发言且发言顺序不相邻的概率为A .217B .316C .326D .328【变式演练】1.某同学计划用他姓名的首字母,T X ,身份证的后4位数字(4位数字都不同)以及3个符号,,αβθ设置一个六位的密码.若,T X 必选,且符号不能超过两个,数字不能放在首位和末位,字母和数字的相对顺序不变,则他可设置的密码的种数为()A .864B .1009C .1225D .14412.2019年11月19日至20日,北京师范大学出版集团携手北师大版数学教材编写组在广东省珠海市联合举办了以“新课程,我们都是追梦人”为主题的北师大版中小学数学教材交流研讨会,会议期间举办了一场“互动沙龙”,要求从6位男嘉宾,2位女嘉宾中随机选出4位嘉宾进行现场演讲,且女嘉宾至少要选中1位,如果2位女嘉宾同时被选中,她们的演讲顺序不能相邻,那么不同演讲顺序的种数是()A .1860B .1320C .1140D .10203.有2辆不同的红色车和2辆不同的黑色车要停放在如图所示的六个车位中的四个内,要求相同颜色的车不在同一行也不在同一列,则共有______种不同的停放方法.(用数字作答)【题型十一】多重限制分类讨论【典例分析】高一新生小崔第一次进入图书馆时看到了馆内楼梯(图1),她准备每次走1级或2级楼梯去二楼,并在心中默默计算这样走完25级楼梯大概有多少种不同的走法,可是当她走上去后发现(图2)原来在13级处有一宽度达1.5米的平台,这样原来的走楼梯方案需要调整,请问,对于剩下的15级()123+楼梯按分2段的走法与原来一次性走15级的走法相比较少了______种.【变式演练】1.市内某公共汽车站有7个候车位(成一排),现有甲,乙,丙,丁,戊5名同学随机坐在某个座位上候车,则甲,乙相邻且丙,丁不相邻的不同的坐法种数为______;(用数字作答)3位同学相邻,另2位同学也相邻,但5位同学不能坐在一起的不同的坐法种数为______.(用数字作答)2.2021年某地电视台春晚的戏曲节目,准备了经典京剧、豫剧、越剧、粤剧、黄梅戏、评剧6个剧种的各一个片段.对这6个剧种的演出顺序有如下要求:京剧必须排在前三,且越剧、粤剧必须排在一起,则该戏曲节目演出顺序共有()种.A .120B .156C .188D .2403.甲、乙、丙、丁等六名退休老党员相约去观看党史舞台剧《星火》.《星火》的票价为50元/人,每人限购一张票.甲、乙、丙三人各带了一张50元钞,其余三人各带了一张100元钞.他们六人排成一列到售票处买票,而售票处一开始没有准备50元零钱,那么他们六人共有多少种不同排队顺序能使购票时售票处不出现找不出钱的状态.()A .720B .360C .180D .90【题型十二】综合应用【典例分析】设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需Ti 分钟,假设Ti 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少()A .从Ti 中最大的开始,按由大到小的顺序排队B .从Ti 中最小的开始,按由小到大的顺序排队C .从靠近Ti 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变【变式演练】1.由1,2,3,4,5组成的没有重复数字的五位数,从中任意抽取一个,则其恰好为“前3个数字保持递减,后3个数字保持递增”(如五位数“43125”,前3个数字“431”保持递减,后3个数字“125”保持递增)的概率是()A .120B .112C .110D .162.设A 是集合{}12345678910,,,,,,,,,的子集,只含有3个元素,且不含相邻的整数,则这种子集A 的个数为()A .32B .56C .72D .843.为迎接第24届冬季奥林匹克运动会,某校安排甲、乙、丙、丁、戊共五名学生担任冰球、冰壶和短道速滑三个项目的志愿者,每个比赛项目至少安排1人.则学生甲不会被安排到冰球比赛项目做志愿者的概率为()A.34B.23C.56D.12【经典题专练】1.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则,A C区域涂色不相同的概率为()A.17B.27C.37D.472.将一个四棱锥S ABCD的每个顶点染上一种颜色,并使同一条棱的两端异色,如果只有5种颜色可供使用,则不同的染色方法的总数是A.540B.480C.420D.3603.清明节前夕,某校团委决定举办“缅怀革命先烈,致敬时代英雄”主题演讲比赛,经过初赛,共有10人进入决赛,其中高一年级3人,高二年级3人,高三年级4人,现采用抽签方式决定演讲顺序,则在高二年级3人相邻的前提下,高一年级3人不相邻的概率为()A.512B.712C.914D.5144.10名同学合影,站成前排4人后排6人,现摄影师要从后排6人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是()A .2263C A B .2666C A C .2266C AD .2265C A 5.将编号为1、2、3、4、5、6的小球放入编号为1、2、3、4、5、6的六个盒子中,每盒放一球,若有且只有两个盒子的编号与放入的小球的编号相同,则不同的放法种数为()A .90B .135C .270D .3606.现有9个相同的球要放到3个不同的盒子里,每个盒子至少一个球,各盒子中球的个数互不相同,则不同放法的种数是()A .28B .24C .18D .167.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位中恰好有3个连在一起,则不同的停放方法的种数为A .16B .18C .32D .728.校园某处并排连续有6个停车位,现有3辆汽车需要停放,为了方便司机上下车,规定:当有汽车相邻停放时,车头必须同向;当车没有相邻时,车头朝向不限,则不同的停车方法共有__________种.(用数学作答)9.如图,在某城市中,M 、N 两地之间有整齐的方格形道路网,其中1A 、2A 、3A 、4A 是道路网中位于一条对角线上的4个交汇处.今在道路网M 、N 处的甲、乙两人分别要到N 、M 处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N 、M 处为止.则下列说法正确的是()A .甲从M 到达N 处的方法有120种B .甲从M 必须经过2A 到达N 处的方法有64种C .甲、乙两人在2A 处相遇的概率为81400D .甲、乙两人相遇的概率为1210.有一道楼梯共10阶,小王同学要登上这道楼梯,登楼梯时每步随机选择一步一阶或一步两阶,小王同学7步登完楼梯的概率为___________.11.2020年疫情期间,某县中心医院分三批共派出6位年龄互不相同的医务人员支援武汉六个不同的方舱医院,每个方舱医院分配一人.第一批派出一名医务人员的年龄为1P ,第二批派出两名医务人员的年龄最大者为2P ,第三批派出三名医务人员的年龄最大者为3P ,则满足123P P P <<的分配方案的概率为()A .13B .23C .120D .3412.如图,在某海岸P 的附近有三个岛屿Q ,R ,S ,计划建立三座独立大桥,将这四个地方连起来,每座桥只连接两个地方,且不出现立体交叉形式,则不同的连接方式有().A .24种B .20种C .16种D .12种13.现安排甲、乙、丙、丁、戊5名同学参加2022年杭州亚运会志愿者服务活动,有翻译、导游、礼仪、司机四项工作可以安排,以下说法正确的是()A .每人都安排一项工作的不同方法数为54B .每人都安排一项工作,每项工作至少有一人参加,则不同的方法数为4154A C C .如果司机工作不安排,其余三项工作至少安排一人,则这5名同学全部被安排的不同方法数为()3122352533C CC C A +D .每人都安排一项工作,每项工作至少有一人参加,甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是1232334333C C A C A +14.罗马数字是欧洲在阿拉伯数字传入之前使用的一种数码,它的产生标志着一种古代文明的进步.罗马数字的表示法如下:数字123456789形式ⅠⅡⅢⅣⅤⅥⅦⅧⅨ其中“Ⅰ”需要1根火柴,“Ⅴ”与“X”需要2根火柴,若为0,则用空位表示.(如123表示为,405表示为)如果把6根火柴以适当的方式全部放入下面的表格中,那么可以表示的不同的三位数的个数为()A .87B .95C .100D .10315.如图为33⨯的网格图,甲、乙两人均从A 出发去B 地,每次只能向上或向右走一格,并且乙到达任何一个位置(网格交点处)时向右走过的格数不少于向上走过的格数,记甲、乙两人所走路径的条数分别为M、 的值为()N,则M NA.10B.14C.15D.16排列组合12种题型归纳1.排列与组合的概念名称定义区别排列从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列排列有序,组合无序组合合成一组2.排列数与组合数定义计算公式性质联系排列数从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数.用符号“A m n”表示A m n=n(n-1)(n-2)…(n-m+1)=n!(n-m)!(n,m∈N*,且m≤n)(1)A n n=n!;(2)0!=1C m n=A m nm!组合数从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号“C m n”表示C m n=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!(n,m∈N*,且m≤n)(1)C n n=C0n=1;(2)C m n=C n-m n;(3)C m n+1=C m n+C m-1n【题型一】人坐座位模型1:捆绑与插空【典例分析】1.有四男生,三女生站一排,其中只有俩个女生相邻:2.有四男生,4女生站一排,女生若相邻,则最多2个女生相邻:解答(1):先捆绑俩女生,再排列捆绑女生,然后排列四个男生,两个“女生”插孔即可,2242 3245 C A A A(2)分类讨论24422422243445224542451; (2); (3)2C A A A A A C A A A ()都不相邻:A 两队各自相邻:一对两人相邻:!【方法技巧】人坐座位模型:特征:1.一人一位;2、有顺序;3、座位可能空;4、人是否都来坐,来的是谁;5、必要时,座位拆迁,剩余座位随人排列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合问题经典题型与通用方法1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A ,B ,C ,D ,E 五人并排站成一排,如果 A ,B 必须相邻且B 在A 的右边,则不同的排法有( )A 60 种B 、48 种C 、36 种D 、24 种2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离 的几个元素插入上述几个元素的空位和两端例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A 1440 种B 、3600 种C 、4820 种D 、4800 种3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果B 必须站在A 的右边(A,B 可以不相邻)那么不同的排法有() A 24 种B、60 种 C 、90 种D 、120 种4. 标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素, 如此继续下去,依次即可完成 .例4•将数字1,2,3,4填入标号为1,2, 3,4的四个方格里,每格填一个数,则每个方格的标号与所填 数字均不相同的填法有( )A 、6 种B、9 种 C 、11 种D 、23 种5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5. ( 1)有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务,不同的选法种数是( )A 1260 种B 、2025 种C 、2520 种D 、5040 种6. 全员分配问题分组法:例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2) 12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有(G 42C ;C : 4 4 C 12C 8C443C 12C 8 CC 12C 8 A 3种A 3种4个学生,每个学生至少一本,不同的分法种数为( C 、120 种 D 、96 种7. 名额分配问题隔板法:例7: 10个三好学生名额分到 7个班级,每个班级至少一个名额,有多少种不同分配方案?8•限制条件的分配问题分类法 :例8.某高校从某系的10名优秀毕业生中选 4人分别到西部四城市参加中国西部经济开发建设,其中甲同 学不到银川,乙不到西宁,共有多少种不同派遣方案?9. 多元问题分类法: 元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。
例9( 1)由数字0,1 ,2, 3,4, 5组成没有重复数字的六位数, 其中个位数字小于十位数字的共有 ( ) A 210 种 B 、300 种 C 、464 种 D 、600 种 (2)从1, 2, 3…,100这100个数中,任取两个数,使它们的乘积能被 7整除,这两个数的取法(不计顺序)共有多少种?(3)从1, 2, 3,…,100这100个数中任取两个数,使其和能被 4整除的取法(不计顺序)有多少种?10. 交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式 n(A_.B)=n(A n(B) -n(A ' B) 例10.从6名运动员中选出4人参加4 X 100米接力赛,如果甲不跑第一棒, 乙不跑第四棒,共有多少种不 同的参赛方案?11. 定位问题优先法: 某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
例11.现1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?12. 多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。
例12. (1) 6个不同的元素排成前后两排,每排 3个元素,那么不同的排法种数是( ) A 36 种 B 、120 种 C 、720 种 D 、1440 种(2) 8个不同的元素排成前后两排,每排 4个元素,其中某2个元素要排在前排,某 1个元素排在 后排,有多少种不同排法?13. “至少” “至多”问题用间接排除法或分类法:(2)5本不同的书,全部分给例13.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有( )A、140 种B 、80 种 C 、70 种D 、35 种14.选排问题先取后排:从几类元素中取出符合题意的几个元素,再安排到一定的位置上, 可用先取后排法例14. ( 1)四个不同球放入编号为 1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?(2)9名乒乓球运动员,其中男 5名,女4名,现在要进行混合双打训练,有多少种不同的分组方 法?15. 部分合条件问题排除法:在选取的总数中,只有一部分合条件,可以从总数中减去不符合条件数,即为 所求• 例15. ( 1)以正方体的顶点为顶点的四面体共有( ) A 70 种B 、64 种C、58 种 D 、52 种10点,在其中取4个不共面的点,不同的取法共有(C 、144 种D 、141 种 16. 圆排问题单排法:把n 个不同元素放在圆周 n 个无编号位置上的排列,顺序(例如按顺时钟)不同的排 法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在 于只计顺序而首位、末位之分,下列 n 个普通排列:a],a 2,a 3 fca n ;a 2,a 3, 34, ,a n , ;a n ,a 1, ,a n4在圆排列中只算一种,因为旋转后可以重合,故认为相同,n 个元素的圆排列数有 n!种.因此可将某个元素固定展成单排,其它的n-1元素全排列.n例16.有5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法?17.可重复的排列求幕法:允许重复排列问题的特点是以元素为研究对象,元素不受位置的约束, 可逐一安排元素的位置,一般地 n 个不同元素排在 m 个不同位置的排列数有 m n 种方法. 例17.把6名实习生分配到7个车间实习共有多少种不同方法?18.复杂排列组合问题构造模型法 :例18.马路上有编号为1 , 2, 3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也 不能关掉两端的两盏,求满足条件的关灯方案有多少种?(2)四面体的顶点和各棱中点共 A 150 种 B 、147 种19. 元素个数较少的排列组合问题可以考虑枚举法:例19.设有编号为1, 2, 3, 4, 5的五个球和编号为1 , 2, 3, 4, 5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?20. 复杂的排列组合问题也可用分解与合成法:例20. ( 1)30030能被多少个不同偶数整除?(2)正方体8个顶点可连成多少队异面直线?21. 利用对应思想转化法:对应思想是教材中渗透的一种重要的解题方法,它可以将复杂的问题转化为简单问题处理•例21. ( 1)圆周上有10点,以这些点为端点的弦相交于圆内的交点有多少个?(2)某城市的街区有12个全等的矩形组成,其中实线表示马路,从A到B的最短路径有多少种?22. 全错位排列问题公式法:全错位排列问题(贺卡问题,信封问题)记住公式即可瑞士数学家欧拉按一般情况给出了一个递推公式:用A、B、C••…表示写着n位友人名字的信封,a、b、c ...... 表示n份相应的写好的信纸。
把错装的总数为记作f(n)。
假设把a错装进B里了,包含着这个错误的一切错装法分两类:(1)b装入A里,这时每种错装的其余部分都与A、B、a、b无关,应有f(n-2)种错装法。
(2)b装入A、B之外的一个信封,这时的装信工作实际是把(除a之外的) 份信纸b、c……装入(除B以外的)n —1个信封A、C••…,显然这时装错的方法有f(n-1)种。
总之在a装入B的错误之下,共有错装法f(n-2)+f(n-1)种。
a装入C,装入D••… 的n —2种错误之下,同样都有f(n-2)+f(n-1)种错装法,因此:得到一个递推公式:f(n)=(n-1) {f(n-1)+f(n-2)},分别带入n=2、3、4等可推得结果。
也可用迭代法推导出一般公式:1 1 1 n 1、f(n ) = n!(1 (-1))1! 2! 3! n!排列组合问题经典题型与通用方法解析版1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列例i.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,则不同的排法有()A、60 种B、48 种C、36 种D、24 种4解析:把A, B视为一人,且B固定在A的右边,则本题相当于4人的全排列,凡=24种,答案:D.2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端例2. 七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440 种B、3600 种C、4820 种D、4800 种5 2 5 2解析:除甲乙外,其余5个排列数为A5种,再用甲乙去插6个空位有A6种,不同的排法种数是A5A6 = 3600 种,选B.3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法例3. A ,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A, B可以不相邻)那么不同的排法有()A、24 种B、60 种C、90 种D、120 种解析:B在A的右边与B在A的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即1 5—A =60种,选B.24. 标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()A、6 种B、9 种C、11 种D、23 种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有 3 x 3X 1=9种填法,选B.5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法例5. (1 )有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务, 不同的选法种数是()A、1260 种B、2025 种C、2520 种D、5040 种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有c10c8c7 2520种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()A、Ctc'C:种B、3G;C;C:种c/c:C、efe^A3种D、A种答案:A.6.全员分配问题分组法:例6. (1 )4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成 2 3 2 33组有C4种方法,再把三组学生分配到三所学校有A3种,故共有C4A3 -36种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A、480 种B、240 种C、120 种D、96 种答案:B.7. 名额分配问题隔板法:例7 : 10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为C;=84种.8. 限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案A84种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余3 3 3学生有A8方法,所以共有3A8 ;③若乙参加而甲不参加同理也有3A8种;④若甲乙都参加,则先安排甲2 2乙,有7种方法,然后再安排其余8人到另外两个城市有九种,共有7A&方法.所以共有不同的派遣方法总数为A84 3A3 3A3 -7A2 =4088种.9. 多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9( 1)由数字0,1,2 ,3, 4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210 种B、300 种C、464 种D、600 种;A3A3\A;A3A L A;解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有A|个,AA3A L A3A;个,合并总计300个,选B(2 )从1 , 2, 3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做A =「7,14,21,川98共有14个元素,不能被7整除的数组成的集合记做A =〔1,2,3,4, |]|,100^共有86个元素;由此可知,从A中任取2个元素的取法有C:,从A中任取一个,又从A中任取一个共有C;4C86,两种情形共符合要求的取法有G;• C;4C;6 =1295种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将I「1,2,3川,100^分成四个不相交的子集,能被4整除的数集^' 4,8,12^(100 ;能被4除余1的数集B —1,5,9,川97?,能被4除余2的数集C—2,6,H ,98,能被4除余3的数集D =「3,7,11,川99?,易见这四个集合中每一个有25个元素;从A中任取两个数符合要;从B,D中各取一个数也符合要求;从C中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有C;5C5C;5 C;5 种.10. 交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式n(A_.B) =n(A n(B) -n(A ' B)例10.从6名运动员中选出4人参加4 X 100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A= {甲跑第一棒的排列},B= {乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:n(I) -n(A) -n(B) n(A「B)二A J 朋-A 代=252种.11. 定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。