第6讲 力的合成与分解

第6讲 力的合成与分解
第6讲 力的合成与分解

第6讲力的合成与分解

基础命题点一力的合成

1.共点力

作用在物体的同一点,或作用线的01延长线交于一点的几个力。

2.合力与分力

(1)定义:如果一个力的作用效果跟几个力共同作用的效果02相同,这个力就叫做那几个力的03合力,那几个力叫做这个力的04分力。

(2)相互关系:05等效替代关系。

3.力的合成

(1)定义:求几个力的06合力的过程。

(2)合成法则

①07平行四边形定则;②08三角形定则。

4.共点力合成的常用方法

(1)作图法

①平行四边形定则:从力的作用点起,按同一标度作出两个分力F1和F2的图示,再以表示F1和F2的线段为邻边作平行四边形,画出过作用点的对角线,量出对角线的长度,计算出合力的大小,量出对角线与某一力的夹角确定合力的方向(如图所示)。

②三角形定则:将表示两个力的图示(或示意图)保持原来的方向依次首尾相

接,从第一个力的作用点,到第二个力的箭头的有向线段为合力。平行四边形定则与三角形定则的关系如图甲、乙所示。

(2)计算法:常用于几种特殊情况的共点力的合成。

类型作图合力的计算

互相垂直

F=F21+F22

tanθ=

F1

F2

两力等大,夹角为θ

F=2F1cos

θ

2

F与F1夹角为

θ

2

两力等大且夹角为120°合力与分力等大

(1)两个共点力的合力

|F1-F2|≤F合≤F1+F2。两个力大小不变时,其合力随夹角的增大而减小,当两力反向时,合力最小,为|F1-F2|,当两力同向时,合力最大,为F1+F2。

(2)三个共点力的合力

①三个力共线且同向时,其合力最大,为F1+F2+F3。

②任取两个力,求出其合力的范围,如果第三个力在这个范围之内,则这三个力的合力的最小值为零;如果第三个力不在这个范围内,则合力的最小值等于最大的力减去另外两个力。

(多选)两个共点力F1、F2大小不同,它们的合力大小为F,则()

A.F1、F2同时增大一倍,F也增大一倍

B.F1、F2同时增加10 N,F也增加10 N

C.F1增加10 N,F2减少10 N,F一定不变

D.若F1、F2中的一个增大,F不一定增大

解析根据平行四边形定则,F1、F2同时增大一倍,F也增大一倍,故A正确;F1、F2同时增加10 N,F不一定增加10 N,B错误;F1增加10 N,F2减少10 N,F不一定不变,故C错误;若F1、F2中的一个增大,F不一定增大,故D 正确。

答案AD

1.力的合成的依据

力的合成遵循平行四边形定则或三角形定则,而不是代数加减,力的合成的平行四边形定则或三角形定则只适用于共点力。多个力的合成采用逐项合成法。

2.合力与分力大小关系的三个重要结论

(1)两个分力大小一定时,夹角θ越大,合力越小。

(2)合力一定,两等大分力的夹角越大,两分力越大。

(3)合力可以大于分力、等于分力,也可以小于分力。

1.两个大小相等的共点力F1和F2,当它们的夹角为90°时,合力大小为F,它们的夹角变为120°时,合力的大小为()

A.2F B.

2 2F

C.2F D.

3 2F

答案 B

解析两力夹角为90°时,合力F=2F1,F1=F2=F

2

,两力夹角为120°时,

合力F′=F1=F

2=2

2F,B正确。

2.[教材母题](人教版必修1 P64·T4)两个力F1和F2间的夹角为θ,两力的合力为F。以下说法是否正确?

(1)若F1和F2大小不变,θ角越小,合力F就越大。

(2)合力F总比分力F1和F2中的任何一个力都大。

(3)如果夹角θ不变,F1大小不变,只要F2增大,合力F就必然增大。

[变式子题](多选)两个力F1和F2间的夹角为θ,两力的合力为F。以下说法正确的是()

A.若F1和F2大小不变,θ角越小,合力F就越大

B.合力F总比分力F1和F2中的任何一个力都大

C.如果夹角θ不变,F1大小不变,只要F2增大,合力F就必然增大

D.合力F的作用效果与两个分力F1和F2共同产生的作用效果是相同的答案AD

解析根据已知条件,作出力的平行四边形,根据不同的变化情况,作出新的平行四边形,对比可知A正确,B、C错误;合力与分力是等效替代关系,D 正确。

3.如图所示,一个“Y”形弹弓顶部跨度为L,两根相同的橡皮条自由长度均为L,在两橡皮条的末端用一块软羊皮(长度不计)做成裹片。若橡皮条的弹力与形变量的关系满足胡克定律,且劲度系数为k,发射弹丸时每根橡皮条的最大长度为2L(弹性限度内),则发射过程中裹片对弹丸的最大作用力为()

A.kL B.2kL

C.

3

2kL D.

15

2kL

答案 D

解析设发射弹丸瞬间两橡皮条间的夹角为2θ,则sinθ=

L

2

2L

=1

4

,cosθ=

1-sin2θ=15

4

。发射过程中裹片对弹丸的最大作用力为F合=2F cosθ,F=kx=

kL,故F合=2kL·15

4

=15

2kL,D正确。

基础命题点二力的分解

1.定义:求一个力的01分力的过程。

2.遵循规律:力的分解是力的合成的逆运算,同样遵循矢量运算的规律,即遵守02平行四边形定则或03三角形定则。

3.分解原则:分解某个力时一般要根据这个力产生的04实际效果进行分解。

4.力的分解方法的选用原则

(1)一般来说,当物体受到三个或三个以下的力时,常利用三角形法则或按05实际效果进行分解。按力的作用效果分解的思路如下图所示:

(2)06正交分解法,即将已知力在互相垂直的两个方向进行分解。

①建立坐标轴的原则:一般选共点力的作用点为原点,在静力学中,以少分解力和容易分解力为原则(即使尽量多的力在坐标轴上);在动力学中,习惯以加速度方向和垂直加速度方向为坐标轴建立坐标系。

②方法:物体受到多个力F1、F2、F3…作用,求合力F时,可把各力沿相互垂直的x轴、y轴分解。

x轴上的合力

F x=F x1+F x2+F x3+…

y轴上的合力

F y=F y1+F y2+F y3+…

合力大小F=F2x+F2y

合力方向:与x轴夹角设为θ,如图所示,则tanθ=F y

F x

减速带是交叉路口常见的一种交通设施,车辆驶过减速带时要减速,以保障行人的安全。当汽车前轮刚爬上减速带时,减速带对车轮的弹力为F,下图中弹力F画法正确且分解合理的是()

解析减速带对车轮的弹力方向垂直车轮和减速带的接触面,指向受力物体,故A、C错误;按照力的作用效果分解,可以将F沿水平方向和竖直方向分解,水平向左的分力产生减慢汽车速度的效果,竖直向上的分力产生向上运动的作用效果,故B正确,D错误。

答案 B

按力的作用效果分解的几种情形

实例分解思路

拉力

F分解为水平方向分力F1=F cosα和竖直方向分力F2

=F sinα

重力分解为沿斜面向下的力F1=mg sinα和垂直斜面向下

的力F2=mg cosα

重力分解为使球压紧挡板的分力F1=mg tanα和使球压紧

斜面的分力F2=mg

cosα

重力分解为使球压紧竖直墙壁的分力F1=mg tanα和使球

拉紧悬线的分力F2=mg

cosα

重力分解为拉紧AO线的分力F2和拉紧BO线的分力F1,

大小都为F1=F2=mg

2sinα

1.(多选)如图所示,将光滑斜面上物体受到的重力G分解为F1、F2两个力,下列结论正确的是()

A.F1是斜面作用在物体上使物体下滑的力,F2是物体对斜面的正压力

B.物体受G、F N、F1、F2四个力作用

C.物体只受重力G和弹力F N的作用

D.力F N、F1、F2三个力的作用效果跟G、F N两个力的作用效果相同

答案CD

解析F1、F2是将重力G按效果分解所得的两个分力,实际不存在,物体只

受G和F N两个力,A、B错误,C正确;F1、F2是G的分力,故F1和F2与G 等效,D正确。

2.(多选)如图所示是李强同学设计的一个小实验,他将细绳的一端系在手指上,细绳的另一端系在直杆的A端,杆的左端顶在掌心上,组成一个“三角支架”。在杆的A端悬挂不同的重物,并保持静止。通过实验会感受到()

A.细绳是被拉伸的,杆是被压缩的

B.杆对手掌施加的作用力的方向沿杆由C指向A

C.细绳对手指施加的作用力的方向沿细绳由B指向A

D.所挂重物质量越大,细绳和杆对手的作用力也越大

答案ACD

解析重物所受重力的作用效果有两个,一是拉紧细绳,二是使杆压紧手掌,所以重力可分解为沿细绳方向的力F1和垂直于掌心方向的力F2,如图所示,由三角函数得F1=G

cosθ

,F2=G tanθ,故A、C、D正确。

3.(多选)已知力F,且它的一个分力F1跟F成30°角,大小未知,另一个分

力F2的大小为3

3F,方向未知,则F1的大小可能是()

A.

3

3F B.

3

2F

C.23

3F D.3F

答案AC

解析根据题意作出矢量三角形如图,因为3

3F>F

2

,从图上可以看出,F1有

两个解,由直角三角形OAD可知F OA=F2-F

2

2=32F。由直角三角形ABD得

F BA=F22-F

2

2=36F。由图的对称性可知F AC=F BA=36F,则分力F1=32F-

3

6F=

3

3F或F1=

3

2F+

3

6F=

23

3F,故A、C正确。

能力命题点绳上的“死结”和“活结”与“动杆”和

“定杆”问题

1.“活结”和“死结”问题

(1)活结:当绳绕过滑轮或挂钩时,由于滑轮或挂钩对绳无约束,因此绳上的力是相等的,即滑轮只改变力的方向不改变力的大小,如图乙中,两段绳中的拉力大小都等于重物的重力。

(2)死结:若结点不是滑轮,是固定点,称为“死结”结点,如图甲中的B点,则两侧绳上的弹力不一定相等。

2.“动杆”和“定杆”问题

(1)动杆:若轻杆用转轴或铰链连接,当杆处于平衡时杆所受到的弹力方向一定沿着杆,否则会引起杆的转动。如图甲所示,若C为转轴,则轻杆在缓慢转动中,弹力方向始终沿杆的方向。

(2)定杆:若轻杆被固定,不能发生转动,则杆所受到的弹力方向不一定沿杆的方向。如图乙所示,水平横梁的一端A插在墙壁内,另一端装有一个小滑轮B,一轻绳的一端C固定于墙壁上,另一端跨过滑轮后悬挂一质量m=10 kg的重物,∠CBA=30°。滑轮受到绳子的作用力应为图丙中两段绳中拉力F1和F2的合力F,弹力的方向不沿杆。

如图甲所示,细绳AD跨过固定的水平轻杆BC右端的定滑轮挂住一个质量为M1的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,在轻杆的G点用细绳GF拉住一个质量为M2的物体,求:

(1)细绳AC段的张力F T AC与细绳EG的张力F T EG之比;

(2)轻杆BC对C端的支持力;

(3)轻杆HG对G端的支持力。

解析(1)图甲中细绳AD跨过定滑轮拉住质量为M1的物体,物体处于平衡状态,细绳AC段的拉力

F T AC=F T CD=M1g

图乙中由F T EG sin30°=M2g,得F T EG=2M2g。

所以F T AC

F T E

G =M1 2M2

(2)图甲中,三个力之间的夹角都为120°,根据平衡条件有F N C=F T AC=M1g,方向与水平方向成30°角指向右上方。

(3)图乙中,根据平衡条件有

F T E

G sin30°=M2g,F T EG cos30°=F N G,

所以F N G=M2g cot30°=3M2g,方向水平向右。

答案(1)M1

2M2

(2)M1g,方向与水平方向成30°角指向右上方(3)3M2g,方向水平向右

绳上的“死结”与“活结”模型的答题技巧

(1)无论“死结”还是“活结”一般均以结点为研究对象进行受力分析。

(2)如果题目搭配杆出现,一般情况是“死结”搭配有转轴的杆即“动杆”,“活结”搭配无转轴的杆即“定杆”。

(2016·全国卷Ⅲ)如图,两个轻环a和b套在位于竖直面内的一段固定圆弧上;一细线穿过两轻环,其两端各系一质量为m的小球。在a和b之间的细线上悬挂一小物块。平衡时,a、b间的距离恰好等于圆弧的半径。不计所有摩擦。小物块的质量为()

A.m

2B.

3

2m

C.m D.2m

答案 C

解析由于物块通过挂钩悬挂在线上,细线穿过圆环且所有摩擦都不计,可知线上各处张力都等于小球重力mg。如图所示,由对称性可知a、b位于同一水平线上,物块处于圆心O点正上方,则∠1=∠2,∠3=∠4,∠1=∠5。因圆弧

对轻环的弹力沿圆弧半径方向,且轻环重力不计,由平衡条件知环两侧细线关于圆弧半径对称,即∠5=∠6,由几何关系得∠1=∠2=∠5=∠6=30°,∠3=∠4=60°。再由物块与挂钩的受力平衡有mg cos60°+mg cos60°=Mg,故有M=m,C 正确。

课时作业

1.将物体所受重力按力的作用效果进行分解,下列图中错误的是()

答案 C

解析A中重力产生了使物体下滑的效果及挤压斜面的效果,故A作图正确;B中重力产生了向两边拉绳的效果,故B作图正确;C中重力产生了挤压两墙壁的效果,两分力分别垂直于墙面,故C作图错误;D中重力产生了拉绳及挤压墙面的效果,故D作图正确。故C符合题意。

2.质点受到三个力的作用,三个力的合力可能为零的是()

A.2 N,4 N,8 N B.4 N,6 N,7 N

C.3 N,10 N,6 N D.4 N,6 N,1 N

答案 B

解析所有选项中只有B的三个力可以组成闭合三角形,三个力的合力可能为零,故选B。

3.如图是某同学为颈椎病人设计的一个牵引装置的示意图,一根绳绕过两个定滑轮和动滑轮后各挂着一个相同的重物,与动滑轮相连的帆布带拉着病人的颈椎(图中是用手指代替颈椎做实验),整个装置在同一竖直平面内。如果要增大手指所受的拉力,可采取的方法是()

A.只增加绳的长度B.只减小重物的重量

C.只将手指向下移动D.只将手指向上移动

答案 C

解析对动滑轮受力分析,受重力G、两个对称的拉力F1、F2和手向下的拉力F,F1、F2等于悬挂物体的重力mg,如图所示,合力为零,两个拉力F1、F2的大小恒定,夹角越大,合力越小,夹角越小,合力越大;若增加绳长,由于两根绳上拉力不变,动滑轮位置不变,故F的大小、方向都不变,由作用力与反作用力关系可知,A错误;若减小重物的重力,两个拉力F1、F2变小,动滑轮位置不变,则两拉力夹角不变,故合力变小,故F变小,由作用力与反作用力关系可知,B错误;若将手指向下移动,两个拉力F1、F2大小不变,夹角变小,故两拉力的合力变大,故F变大,故C正确;若将手指向上移动,两个拉力F1、F2大小不变,夹角变大,两拉力的合力变小,故F变小,D错误。

4.如图所示,一个物体由绕过定滑轮的绳拉着,分别用图中所示的三种情况的力拉住物体静止不动。在这三种情况下,若绳的张力分别为F T1、F T2、F T3,定滑轮对轴心的作用力分别为F N1、F N2、F N3,滑轮的摩擦、质量均不计,则()

A.F T1=F T2=F T3,F N1>F N2>F N3

B.F T1>F T2>F T3,F N1=F N2=F N3

C.F T1=F T2=F T3,F N1=F N2=F N3

D.F T1

答案 A

解析因为定滑轮只改变力的方向不改变力的大小,所以F T1=F T2=F T3,由牛顿第三定律知,定滑轮对轴心的作用力与轴心对定滑轮的作用力大小相等。轴心对定滑轮的支持力等于绳对其作用力的合力,而两个分力大小相等,则两个分力夹角越大,合力越小,所以F N1>F N2>F N3,A正确。

5.如图所示是轿车常用的千斤顶,当摇动把手时,螺纹轴就能迫使千斤顶的两臂靠拢,从而将汽车顶起。当车轮刚被顶起时汽车对千斤顶的压力为1.0×105 N,此时千斤顶两臂间的夹角为120°。下列判断正确的是()

A.此时千斤顶每臂受到的压力大小均为5.0×104 N

B.此时千斤顶对汽车的支持力为1.0×104 N

C.若继续摇动把手,将汽车顶起,千斤顶每臂受到的压力将增大

D.若继续摇动把手,将汽车顶起,千斤顶每臂受到的压力将减小

答案 D

解析车轮刚被顶起时,千斤顶两臂支持力的合力为千斤顶对汽车的支持力,等于汽车对千斤顶的压力,大小为1.0×105N,B错误;两臂夹角为120°,由力的合成可知千斤顶每臂受到的压力为1.0×105N,A错误;继续摇动把手,将汽车顶起,千斤顶两臂夹角减小,而合力不变,故每臂受到的压力减小,D正确,C错误。

6.如图为三种形式的吊车示意图,OA为可绕O点转动的杆,重量不计,AB 为缆绳,当它们吊起相同的重物时,杆OA在三图中的受力F a、F b、F c的关系是()

A.F a>F b=F c B.F a=F b>F c

C.F a>F b>F c D.F a=F b=F c

答案 B

解析分别对三图中的结点进行受力分析如图,设杆上的作用力分别为F a、F b、F c,各图中T=mg。

在图a中,F a=2mg cos30°=3mg,在图b中,F b=mg tan60°=3mg,在图

c中,F c=mg cos30°=

3

2mg,可知F a=F b>F c,B正确。

7.弹跳能力是职业篮球运动员重要的身体素质指标之一,许多著名的篮球运

动员因为具有惊人的弹跳能力而被球迷称为“弹簧人”。弹跳过程是身体肌肉、骨骼关节等部位一系列相关动作的过程,屈膝是其中的一个关键动作。如图所示,人屈膝下蹲时,膝关节弯曲的角度为θ,设此时大、小腿部的肌群对膝关节的作用力

F的方向水平向后,且大腿骨、小腿骨对膝关节的作用力大致相等,那么脚掌所受地面竖直向上的弹力约为()

A.

F

2sin

θ

2

B.

F

2cos

θ

2

C.

F

2tan

θ

2

D.

F

2cot

θ

2

答案 D

解析设大腿骨和小腿骨对膝关节的作用力大小为F1,已知它们之间的夹角

为θ,F即为它们的合力的大小,作出平行四边形,如图所示,F1cosθ

2

=1

2F,即F1=

F

2cos

θ

2

,则脚掌对地面竖直向下的压力F N=F1sinθ

2

=F

2cot

θ

2

,由牛顿第三定律可知D正确。

8.(多选)如图所示,质量为m的木块在推力F作用下,在水平地面上做匀速直线运动,已知木块与地面间的动摩擦因数为μ,那么木块受到的滑动摩擦力为()

A.μmg B.μ(mg+F sinθ)

C.μ(mg-F sinθ) D.F cosθ

答案BD

解析对木块进行受力分析如图所示,将F进行正交分解,由于木块做匀速直线运动,所以在x轴和y轴均受力平衡,即F cosθ=F f,F N=mg+F sinθ,又由于F f=μF N,故F f=μ(mg+F sinθ),B、D正确。

9.如图所示,作用在滑块B上的推力F=100 N,若α=30°,装置重力和摩擦力均不计,则工件上受到的压力为()

A.100 N

B.100 3 N

C.50 N

D.200 N

答案 B

解析对B进行受力分析,如图甲所示,分解F2可得F2=F

=2F;对工

sin30°

件进行受力分析,如图乙所示,其中F2′=F2,F N=F2′·cosα=100 3 N,故B 正确。

10.(2018·天津高考)(多选)明朝谢肇淛《五杂组》中记载:“明姑苏虎丘寺塔倾侧,议欲正之,非万缗不可。一游僧见之,曰:无烦也,我能正之。”游僧每天将木楔从塔身倾斜一侧的砖缝间敲进去,经月余扶正了塔身。假设所用的木楔为等腰三角形,木楔的顶角为θ,现在木楔背上加一力F,方向如图所示,木楔两侧产生推力F N,则()

A.若F一定,θ大时F N大B.若F一定,θ小时F N大

C.若θ一定,F大时F N大D.若θ一定,F小时F N大

答案BC

解析力F的分解如图所示,由于木楔是等腰三角形,所以F N=F N1=F N2,F=2F N cos90°-

θ

2

=2F N sinθ

2

,故解得F N=F

2sin

θ

2

,所以F一定时,θ越小,F N越大;θ一定时,F越大,F N越大,故A、D错误,B、C正确。

11.(2017·全国卷Ⅲ)一根轻质弹性绳的两端分别固定在水平天花板上相距80 cm的两点上,弹性绳的原长也为80 cm。将一钩码挂在弹性绳的中点,平衡时弹性绳的总长度为100 cm;再将弹性绳的两端缓慢移至天花板上的同一点,则弹性绳的总长度变为(弹性绳的伸长始终处于弹性限度内)()

A.86 cm B.92 cm

C.98 cm D.104 cm

答案 B

解析轻质弹性绳的两端分别固定在相距80 cm的两点上,钩码挂在弹性绳的中点,平衡时弹性绳的总长度为100 cm,以钩码为研究对象,受力如图所示,

由胡克定律F=k(l-l0)=0.2k,由共点力的平衡条件和几何知识得F=mg

2sinα

5mg

6

;再将弹性绳的两端缓慢移至天花板上的同一点,设弹性绳的总长度变为l′,

由胡克定律得F′=k(l′-l0),由共点力的平衡条件F′=mg

2

,联立上面各式解得l′=92 cm,选项B正确。

12.(2019·北京高考模拟)如图,通过细绳拴在一重物上的氢气球,在水平向右的风力作用下处于静止状态,细绳与竖直方向的夹角为θ。已知风力大小正比于风速,则当风速改变时,始终保持不变的是()

A.细绳与竖直方向的夹角B.细绳对重物的拉力

C.地面对重物的摩擦力D.地面对重物的支持力

答案 D

解析对气球进行受力分析,受重力、浮力、细绳的拉力和水平风力,如图所示,根据平衡条件,有:T sinθ=F,F浮-T cosθ-mg=0,解得:T=

F2+(F浮-mg)2,tanθ=

F

F浮-mg

,可知拉力随着风力的增加而增加,细绳与竖直

方向的夹角随着风力的增加而增加,由牛顿第三定律知细绳对重物的拉力也随着风力的增加而增加,故A、B错误;对气球和重物整体受力分析,受重力(M+m)g、浮力F浮、支持力N、风力F和摩擦力f,根据平衡条件,有:N=(M+m)g-F浮,f=F,可知地面对重物的支持力不变,地面对重物的摩擦力随着风力的变化而变化,故C错误,D正确。

13.(2019·湖南高考模拟)超市里磁力防盗扣的内部结构及原理如图所示,在锥形金属筒内放置四颗小铁珠(其余两颗未画出),工作时弹簧通过铁环将小铁珠挤压于金属筒的底部,同时,小铁珠陷于钉柱上的凹槽里,锁死防盗扣。当用强磁场吸引防盗扣的顶部时,铁环和小铁珠向上移动,防盗扣松开,已知锥形金属筒底部的圆锥顶角刚好是90°,弹簧通过铁环施加给每个小铁珠竖直向下的力F,小铁珠锁死防盗扣,每个小铁珠对钉柱产生的侧向压力为(不计摩擦以及小铁珠的重力)()

A.2F B.

2 2F

C.F D.3F

答案 C

解析以一个小铁珠为研究对象,将力F按照作用效果分解如图所示,由几何关系可得小铁球对钉柱产生的侧向压力为:N=F

tan45°

=F。故选C。

14.(2019·云南省模拟)如图甲所示为杂技表演的安全网示意图,网绳的结构为正方格形,O,a,b,c,d…为网绳的结点,安全网水平张紧后,若质量为m 的演员从高处落下,并恰好落在O点上,该处下凹到最低点时,网绳dOe、bOg

3.4 力的合成与分解—【新教材】人教版(2019)高中物理必修第一册讲义

物理概念和规律: 一、力的合成 1.定义:如果一个力的 与几个力共同作用的效果 ,这个力就叫做那几个力的 ;如果几个力的 与某个力单独作用的效果 ,这几个力叫做那个力的分力. 2.力的合成:求几个力的 叫做力的合成. (1)平行四边形定则 求两个互成角度的力的合力,可以用表示这两个力的有向线段为 ,作平行四边形,这两邻边所夹的 就表示合力的大小和方向.这种方法叫平行四边形定则.所有矢量的合成都遵循平行四边形定则. (2)三角形定则 把两个矢量 ,从第一个矢量的始端指向第二个矢量的末端的有向线段就表示合矢量的 .三角形定则与平行四边形定则实质上是一样的 (3)两分力等大,夹角为θ时,,大小:F = , 方向:F 与F 1夹角为θ 2 。 3.共点力:作用于物体上 ,或者力的 相交于同一点的几个 力称为共点力. 4.合力与分力的三性 5.合力与分力的关系:合力与分力是作用效果上的一种 关系 (1)两个力的合成 当两分力F 1、F 2大小一定时, ①最大值:两力 时合力最大,F =F 1+F 2,方向与两力同向; ②最小值:两力方向相反时,合力 ,F =|F 1-F 2|,方向与两力中较大的力同向; ③合力范围:两分力的夹角θ(0°≤θ≤180°)不确定时,合力大小随夹角θ的增大而 ,所以合力大小的范围是: (2)三个力的合成 三个力进行合成时,若先将其中两个力F 1、F 2进行合成,则这两个力的合力F 12的范围为|F 1-F 2|≤F 12≤F 1+F 2.再将F 12与第三个力F 3合成,则合力F 的范围为 ,对F 的范围进行讨论:

①最大值:当三个力方向相同时,合力,大小为F max=F1+F2+F3.②最小值:若F3的大小介于F1、F2的和与差之间,F12可以与F3等大小,即|F12-F3|可以等于零,此时三个力合力的就是零;若F3不在F1、F2的和与差之间,合力的最小值等于最大的力减去另外两个较小的力的和的绝对值.③合力范围:F min≤F≤F max. 6. 计算法求合力时常用到的几何知识 (1)应用直角三角形中的边角关系求解,用于平行四边形的两边垂直,或平行四边形的对角线垂直的情况. (2)应用等边三角形的特点求解. (3)应用相似三角形的知识求解,用于矢量三角形与实际三角形相似的情况. 二、力的分解 1.定义:一个力的作用可以用几个力的共同作用来等效替代,这几个力称为那一个力的分力.求一个已知力的的过程,是力的合成的逆运算. 2.分解法则 平行四边形定则——把已知力F作为平行四边形的,与力F共点的平行四边形的两个就表示力F的两个分力F1和F2. 3.分解依据 通常依据力的进行分解. (1)已知合力和两个分力的方向时,有. 甲乙 (2)已知合力和一个分力的时,有唯一解. 丙丁 (3)已知合力以及一个分力的大小和另一个分力的方向时,有下面几种可能: a b c d ①当F sinθ<F2<F时,有. ②当F2=时,有唯一解. ③当F2<F sin θ时,. ④当F2>F时,有唯一解.

力的合成与分解归纳总结

力的合成与分解知识要点归纳 一、力的合成 1.合力与分力:如果几个力共同作用产生的效果与某一个力单独作用时的效果相同,则这一个力为那几个力的,那几个力为这一个力的. 2.共点力:几个力都作用在物体的同一点,或者它们的作用线相交于一点,这几个力叫做共点力. 3.力的合成:求几个力的的过程. 4.平行四边形定则:两个力合成时,以表示这两个力的线段为作平行四边形,这两个邻边之间的就表示合力的大小和方向. 二、力的分解 1.力的分解:求一个力的的过程,力的分解与力的合成互为. 2.矢量运算法则: (1)平行四边形定则 (2)三角形定则:把两个矢量的首尾顺次连结起来,第一个矢量的首到第二个矢量的尾的为合矢量. 3.力的分解的两种方法 1)力的效果分解法 ①根据力的实际作用效果确定两个实际分力的方向; ②再根据两个实际分力方向画出平行四边形; ③最后由平行四边形和数学知识(如正弦定理、余弦定理、三角形相似等

)求出两分力的大小. 2)正交分解法 ①正交分解方法:把一个力分解为互相垂直的两个分力,特别是物体受多个力作用时,把物体受到的各力都分解到互相垂直的两个方向上去,然后分别求出每个方向上力的代数和. ②利用正交分解法解题的步骤 首先:正确选择直角坐标系,通常选择共点力的作用点为坐标原点,直角坐标系的选择应使尽量多的力在坐标轴上. 其次:正交分解各力,即分别将各力投影在坐标轴上,然后求各力在 x 轴和y 轴上的分力的合力F x 和F y :F x =F 1x +F 2x +F 3x +…,F y =F 1y +F 2y +F 3y +… 再次:求合力的大小F =F x 2+F y 2 ,确定合力的方向与x 轴夹角为 θ=arctan F y F x . 4.将一个力分解的几种情况: ①已知合力和一个分力的大小与方向:有唯一解 ②已知合力和两个分力的方向:有唯一解 ③已知合力和两个分力的大小(两分力不平行):当F1+F2F 时有两组解

知识讲解:力的合成与分解).

力的合成与分解 【学习目标】 1.知道合力与分力的概念 2.知道平行四边形定则是解决矢量问题的方法,学会作图,并能把握几种特殊情形 3.知道共点力,知道平行四边形定则只适用于共点力 4.理解力的分解和分力的概念,知道力的分解是力的合成的逆运算 5.会用作图法求分力,会用直角三角形的知识计算分力 6.能区别矢量和标量,知道三角形定则,了解三角形定则与平行四边形定则的实质是一样的【要点梳理】 要点一、力的合成 要点诠释: 1.合力与分力 ①定义:一个力产生的效果跟几个力的共同作用产生的效果相同,则这个力就叫那几个力的合力,那几个力叫做分力。 ②合力与分力的关系。 a.合力与分力是一种等效替代的关系,即分力与合力虽然不同时作用在物体上,但可以相互替代,能够相互替代的条件是分力和合力的作用效果相同,但不能同时考虑分力的作用与合力的作用。 b.两个力的作用效果可以用一个力替代,进一步想,满足一定条件的多个力的作用效果也可由一个力来替代。 2.力的合成 ①定义:求几个力的合力的过程叫做力的合成。 ②说明:力的合成的实质是找一个力去替代作用在物体上的几个已知的力,而不改变其作用效果的方法。 3.平行四边形定则 ①内容:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,这个法则叫做平行四边形定则。 说明:平行四边形定则是矢量运算的基本法则。 ②应用平行四边形定则求合力的三点注意 a.力的标度要适当; b.虚线、实线要分清,表示分力和合力的两条邻边和对角线画实线,并加上箭头,平行四边形的另两条边画虚线; c.求合力时既要求出合力的大小,还要求出合力的方向,不要忘了用量角器量出合力与某一分力间的夹角。 要点二、共点力 要点诠释: 1.共点力:一个物体受到两个或更多个力的作用,若它们的作用线交于一点或作用线的延长线交于一点,这一组力就是共点力。 2.多个力合成的方法: 如果有两个以上共点力作用在物体上,我们也可以应用平行四边形定则求出它们的合力:先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。 说明: ①平行四边形定则只适用于共点力的合成,对非共点力的合成不适用。 ②今后我们所研究的问题,凡是涉及力的运算的题目,都是关于共点力方向的问题。 3.合力与分力的大小关系: 由平行四边形可知:F i、F2夹角变化时,合力F的大小和方向也发生变化。 (1)合力F 的范围:| F1-F2 |< FWF 1+F2。 ①两分力同向时,合力F最大,F=F1+F2。 ②两分力反向时,合力F最小,F= | F1-F2丨。 ③两分力有一夹角0时,如图甲所示,在平行四边形OABC中,将F2平移到F i末端,则F i、F2、F围成一个闭合三角形。如图乙所示, 由三角形知识可知;| F1-F2 | < Fv F1+F2。

第二讲、力的合成与分解

Ⅰ重力弹力摩擦力 基础知识梳理 知识点一、重力 1.产生:由于地球的吸引而使物体受到的力。 2.大小:与物体的质量成正比,即G=mg。可用弹簧测力计测量重力。 3.方向:总是竖直向下的。 4.重心:其位置与物体的质量分布和形状有关。 5.重心位置的确定 质量分布均匀的规则物体,重心在其几何中心;对于形状不规则或者质量分布 不均匀的薄板,重心可用悬挂法确定。 知识点二、形变、弹性、胡克定律 1.形变 物体在力的作用下形状或体积的变化叫形变。 2.弹性 (1)弹性形变:有些物体在形变后撤去作用力能够恢复原状的形变。 (2)弹性限度:当形变超过一定限度时,撤去作用力后,物体不能完全恢复 原来的形状,这个限度叫弹性限度。 3.弹力 (1)定义:发生弹性形变的物体,由于要恢复原状,对与它接触的物体会产 生力的作用,这种力叫做弹力。 (2)产生条件:物体相互接触且发生弹性形变。 (3)方向:弹力的方向总是与作用在物体上使物体发生形变的外力方向相反。 4.胡克定律 (1)内容:弹簧发生弹性形变时,弹力的大小F跟弹簧伸长(或缩短)的长 第1 页共20 页

第 2 页 共 20 页 度x 成正比。 (2)表达式:F =kx 。 ①k 是弹簧的劲度系数,单位为N/m ;k 的大小由弹簧自身性质决定。 ②x 是形变量,但不是弹簧形变以后的长度。 知识点三、滑动摩擦力、动摩擦因数、静摩擦力 1.静摩擦力与滑动摩擦力对比 2.动摩擦因数: (1)定义:彼此接触的物体发生相对运动时,摩擦力的大小和压力的比值。μ=F F N 。 (2)决定因素:与接触面的材料和粗糙程度有关。

必备方法突破 必备方法一弹力的分析与计算 1.弹力有无的判断“三法” (1)条件法:根据物体是否直接接触并发生弹性形变来判断是否存在弹力。此方 法多用来判断形变较明显的情况。 (2)假设法:对形变不明显的情况,可假设两个物体间弹力不存在,看物体能否 保持原有的状态,若运动状态不变,则此处不存在弹力;若运动状态改变,则此 处一定有弹力。 (3)状态法:根据物体的运动状态,利用牛顿第二定律或`共点力平衡条件判断弹 力是否存在。 2.弹力方向的判断方法 (1)常见模型中弹力的方向 (2)根据共点力的平衡条件或牛顿第二定律确定弹力的方向。 3.弹力大小计算的三种方法 (1)根据力的平衡条件进行求解。 (2)根据牛顿第二定律进行求解。 (3)根据胡克定律进行求解。 例1[弹力方向的判断](多选)如图1-1所示为位于水平面上的小车,固定在小 车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m的小球。下 列关于杆对球的作用力F的判断中,正确的是() 第3 页共20 页

高中物理知识讲解 力的合成与分解

力的合成与分解 【典型例题】 类型一、求合力的取值范围 例1、物体同时受到同一平面内的三个共点力的作用,下列几组力的合力不可能为零的是( ) A.5 N,7 N,8 N B.5 N,2 N,3 N C.1 N,5 N,10 N D.10 N,10 N,10 N 【答案】C 【解析】分析A?B?C?D各组力中,前两力合力范围分别是:2 N≤F合≤12 N,第三力在其范围之内:3 N≤F合≤7 N,第三力在其合力范围之内;4 N≤F合≤6 N,第三力不在其合力范围之内;0≤F合≤20 N,第三力在其合力范围之内,故只有C中第三力不在前两力合力范围之内,C中的三力合力不可能为零. 【点评】共点的三个力的合力大小范围分析方法是:这三个力方向相同时合力最大,最大值等于这三个力大小之和;若这三个力中某一个力处在另外两个力的合力范围中,则这三个力的合力最小值是零. 举一反三 【变式】一个物体受三个共点力的作用,它们的大小分别为F1=7 N、F2=8 N、F3=9 N.求它们的合力的取值范围?【答案】0≤F≤24 N 类型二、求合力的大小与方向 例2、如图所示,物体受到大小相等的两个拉力作用,每个拉力都是20 N,夹角是60°,求这两个力的合力. 【解析】本题给出的两个力大小相等,夹角为60°,所以可以通过作图和计算两种方法计算合力的大小. 解法1(作图法):取5 mm长线段表示5 N,作出平行四边形如图甲所示,量得对角线长为35 mm.合力F大小为35 N,合力的方向沿F1、F2夹角的平分线. 解法2(计算法):由于两个力大小相等,所以作出的平行四边形是菱形,可用计算法求得合力F,如图乙所示,【点评】力的合成方法有“作图法”和“计算法”,两种解法各有千秋.“作图法”形象直观,一目了然,但不够精确,误差大;“计算法”是先作图,再解三角形,似乎比较麻烦,但计算结果更准确. 【高清课程:力的合成与分解例2】 例3、如左图在正六边形顶点A分别施以F1~F55个共点力,其中F3=10N,A点所受合力为;如图,在A 点依次施以1N~6N,共6个共点力.且相邻两力之间夹角为600,则A点所合力为。

力的合成与分解经典知识总结

北京四中编稿老师:肖伟华审稿老师:肖伟华责编: 郭金娟 力的合成与分解 本节课我们需要掌握以下几个概念: 1、合力与分力; 2、力的合成、分解; 3、矢量与标量; 4、熟练掌握力的合成与分解的定则:平行四边形定则。 5、理解一种物理学处理问题的方法:等效替代法,并能用这种方法解决有关力学问题。 一、合力与分力: 在实际问题中,一个物体往往同时受到几个力的作用。如果一个力产生的效果与原来几个力产生的效果相同,这个力就叫那几个力的合力,而那几个力就叫这个力的分力。 二、力的合成与分解: 求几个力的合力的过程叫力的合成,求一个力的分力的过程叫力的分解。 合力与分力有等效性与可替代性。求力的合成的过程实际上就是寻找一个与几个力等效的力的过程;求力的分解的过程,实际上是寻找几个与这个力等效的力的过程。 三、力的平行四边形定则: 在中学阶段,我们主要处理平面力学中的共点力的合成与分解。 1、一条直线上的两个共点力的合成方法: 选定一定正方向,我们用“+”、“-”号代表力的方向,与正方向相同的力前面加“+”号,与正方向相反的力前面加“-”号。有了这种规定以后,一条直线上的力的合成就可以转化为代数加减了:当两个力的方向相同时,合力的大小等于两个分力数值相加,方向与分力的方向相同;当两个力的方向相反时,合力的大小等于两个分力数值上相减,方向与大的那个分力相同。 2、互成角度的共点力的合成、分解: 实验表明,两个互成角度的共点力的合力,可以用表示这两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向,这就是力的平行四边形定则。 力的分解是合成的逆运算,即以表示合力的有向线段为对角线,作平行四边形,与合力作用点共点的两个邻边就表示两个分力的大小和方向。 在理解力的合成与分解时应注意的问题: 1)合力与分力在效果上是相同的,可以互相替代。在求力的合成时,合力只是分力的效果,实际并不存在;同样,在求力的分解时,分力只是合力产生的效果,实际并不存在。因此在进行受力分析时,不能同时把合力与分力都当作物体所受的力。

2021年高考物理复习学与练:2.2 力的合成与分解(精讲)(学生版)

『高考复习|学与练』『汇总归纳·备战高考』

专题2.2 力的合成与分解 【考情分析】 1.会用平行四边形定则、三角形定则进行力的合成与分解. 2.会用正交分解法进行力的合成与分解.【核心素养分析】 物理观念:合力与分力、力的合成、力的分解。 科学思维:平行四边形定则、整体法、隔离法、合成法、分解法。 科学探究:探究弹簧形变与弹力的关系、研究两个互成角度的共点力的合成规律。科学态度与责任:在生产、生活情境中,体验物理学技术的应用。【重点知识梳理】知识点一 力的合成1.共点力合成的常用方法 (1)作图法:从力的作用点起,按同一标度作出两个分力F 1和F 2的图示,再以F 1和F 2的图示为邻边作平行四边形,画出过作用点的对角线,量出对角线的长度,计算出合力的大小,量出对角线与某一力的夹角确定合力的方向(如图所示) . (2)计算法:几种特殊情况的共点力的合成. 类型作图 合力的计算①互相垂直 F =F 2 1+F 2tan θ=F 1F 2

②两力等大,夹角为θ F =2F 1cos θ 2 F 与F 1夹角为θ 2 ③两力等大且夹角为 120° 合力与分力等大 (3)力的三角形定则:将表示两个力的图示(或示意图)保持原来的方向依次首尾相接,从第一个力的作用点,到第二个力的箭头的有向线段为合力.平行四边形定则与三角形定则的关系如图甲、乙所示. 2.合力的大小范围(1)两个共点力的合成|F 1-F 2|≤F 合≤F 1+F 2 即两个力大小不变时,其合力随夹角的增大而减小,当两力反向时,合力最小,为|F 1-F 2|,当两力同向时,合力最大,为F 1+F 2. (2)三个共点力的合成 ①三个力共线且同向时,其合力最大,为F 1+F 2+F 3. ②任取两个力,求出其合力的范围,如果第三个力在这个范围之内,则三个力的合力最小值为零;如果第三个力不在这个范围内,则合力最小值等于最大的力减去另外两个力. 【归纳总结】 三种特殊情况的共点力的合成 类型 作图 合力的计算①互相垂直 F =F 2 1+F 2tan θ=F 1F 2 ②两力等大,夹角θ F =2F 1cos θ 2 F 与F 1夹角为θ 2

生活中的力的合成和分解

F 1 F 2 F O 生活中的力的合成和分解 如果几个力产生的效果跟原来的一个力产生的效果相同,这几个力就叫做 原来那个力的分力。求一个已知力的分力叫力的分解,力的分解是力的合成的 逆运算,遵循平行四边形定则,也就是已知对角线求两个邻边的问题。显然, 如果没有附加条件,则可有无数个答案。所以,力的分解关键在于根据具体情 况确定某一已知力的实际作用效果。以下两种情况可以得到确定的分力。第一, 根据力的实际效果能够确定两个分力的方向,则可得到两个分力的大小;第二, 根据力的实际效果能够确定一个分力的方向和大小,则可得到另一个分力的方 向和大小。 1.力的合成 (1)力的合成的本质就在于保证作用效果相同的前提下,用一个力的作用 代替几个力的作用,这个力就是那几个力的“等效力”(合力)。力的平行四 边形定则是运用“等效”观点,通过实验总结出来的共点力的合成法则,它给 出了寻求这种“等效代换”所遵循的规律。 (2)平行四边形定则可简化成三角形定则。由三角形定则还可以得到一个 有用的推论:如果n 个力首尾相接组成一个封闭多边形,则这n 个力的合力为零。 (3)共点的两个力合力的大小范围是 |F 1-F 2| ≤ F 合≤ F 1+F 2 (4)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零。 【例1】如图甲所示,物体受到大小相等的两个拉力的作用,每个拉力均为 200 N ,两力之间的夹角为60°,求这两个拉力的合力. 解析:根据平行四边形定则,作出示意图乙,它是一个菱形,我们可以利 用其对角线垂直平分,通过解其中的直角三角形求合力. 320030cos 21== F F N=346 N 合力与F 1、F 2的夹角均为30°. 2.力的分解 (1)力的分解遵循平行四边形法则,力的 分解相当于已知对角线求邻边。 (2)两个力的合力惟一确定,一个力的两个分力在无附加条件时,从理论 上讲可分解为无数组分力,但在具体问题中,应根据力实际产生的效果来分解。 【例2】如在图所示的支架悬挂一个重力为G 的灯。支架的重力不计。已知 AO 、BO 、AB 的长分别为L 1、L 2、L 3,求支架两杆所受的力。 解:在支架的O 端悬挂电灯后,使支架的两根杆受到力的作 用。由于支架的A 、 B 两端与墙壁是绞链连结,因此作用在 杆上的力是沿杆的方向。但杆受的是拉力还是压力,需要通 过实践来判断。可以设想,若将杆AO 换成弹簧,则弹簧会

6力的合成与分解课后练习

6力的合成与分解课后练习 1.我国自行设计建造的世界第二斜拉索桥——上海南浦大桥,桥面高46 m ,主桥全长845 m ,引桥全长7 500 m ,引桥建得这样长的目的是( ) A .增大汽车上桥时的牵引力 B .减小汽车上桥时的牵引力 C .增大汽车的重力平行于引桥桥面向下的分力 D .减小汽车的重力平行于引桥桥面向下的分力 2.(多选)如图所示是李强同学设计的一个小实验,他将细绳的一端系在手指上,细绳的另一端系在直杆的A 端,杆的左端顶在掌心上,组成一个“三角支架”.在杆的A 端悬挂不同的重物,并保持静止.通过实验会感受到( ) A .细绳是被拉伸的,杆是被压缩的 B .杆对手掌施加的作用力的方向沿杆由 C 指向A C .细绳对手指施加的作用力的方向沿细绳由B 指向A D .所挂重物质量越大,细绳和杆对手的作用力也越大 3.(2020吉林市第二次调研考)如图所示,小球被轻绳系住静止在光滑斜面上。若按力的实际作用效果来分解小球受到的重力G ,则G 的两个分力方向分别是图中的 A .1和4 B .3和4 C .2和4 D .3和2 4. (2019·济南外国语学校月考)舰载机保持牵引力F 大小不变在匀速航行的航母上降落时受到阻拦而静止,此时阻拦索夹角θ=120°,空气阻力和甲板阻力不计,则阻拦索承受的张力大小为( ) A .F 2 B .F C .3F D .2F 5. 小明想推动家里的衣橱,但使出了很大的力气也推不动,他便想了个妙招,如图所示,用A 、B 两块木板,搭成一个底角较小的人字形架,然后往中央一站,衣橱居然被推动了!下列说法中正确的是( )

A.这是不可能的,因为小明根本没有用力去推衣橱 B.这是不可能的,因为无论如何小明的力气也没那么大 C.这有可能,A板对衣橱的推力有可能大于小明的重力 D.这有可能,但A板对衣橱的推力不可能大于小明的重力 6.(2018?全国名校大联考)图示为春节悬挂灯笼的一种方 式,AB点等高,0为结点,轻绳AO,BO长度相等.绳子对O点的拉力分別为FA、FB.灯笼受到的重力为G,下列表述正确的是() A.F A与F B相等 B.F A与F B是一对平衡力 C. .F A与F B的合力大小与轻绳AO、BO间的夹角有关 D. F A与F B的合力方向竖直向上 7.(多选)两个共点力F1、F2大小不同,它们的合力大小为F,则() A.F1、F2同时增大一倍,F也增大一倍 B.F1、F2同时增加10 N,F也增加10 N C.F1增加10 N,F2减少10 N,F一定不变 D.若F1、F2中的一个增大,F不一定增大 8.(2019·北京海淀区模拟)如图所示,质量为m的物体放在水平桌面上,在与水平方向成θ角的拉力F作用下加速往前运动.已知物体与桌面间的动摩擦因数为μ,则下列判断正确的是() A.物体受到的摩擦力为F cos θ B.物体受到的摩擦力为μmg C.物体对地面的压力为mg D.物体受到地面的支持力为mg-F sin θ

力的合成与分解教学设计

《力的等效和替代》教学设计 【课题】力的等效替代 【教学对象】高一学生 【授课时间】45分钟 【教材】广东教育出版社《物理》必修I 【教学内容分析】 1、本节课的地位与作用:力的等效和替代是粤版物理必修I第三章第三节的内容。在学习本节课之前学生已经学习了弹力、摩擦力等力的概念,对力有了一定的感性和理性的认识,同时在第一章中已经学习了位移矢量,对矢量的知识有了一定的储备,获得感性认识。 这节课的内容,为下面的力的合成与分解有着密不可分的联系,为后续力的合成与分解打下知识层面的基础。本节课所初步总结出来的平行四边形定则也是处理矢量的一个通则,因此本节课为以后动量、冲量、动能定理等内容打下了坚实的基础,具有承上启下的作用,这节课的学习效果将直接影响后续课程的学习。 2、课程标准对本节内容的要求:通过实验,理解力的合成与分解。对等效替代的思想在科学研究中的应用有质的认识。学习关于实验探究的一般程序和方法,养成良好的思维习惯,能运用等效思想和所学的探究方法分析、解决日常生活中的一些问题。 3、教材的内容安排:粤教版教材第三章第3节力的等效和替代这一节的内容,首先是教师讲解一些相关的概念:力的图示、力的等效、合力、分力、力的合成与分解等概念,教师引导学生探究:寻找等效力,引导学生进行试验设计,最后引导学生得出具有普适性的方法:平行四边形定则的初步得出。

4、对教材的思考:这章的教材编写整体上看,比较适合学生的认识特点,但是,我觉得第三节《力的等效与替代》力的等效这部分,我们一直在强调力的等效,直至后面寻找等效力,从本质上来说,就是求几个分力的合力,故而在这里,应该把寻找等效力与力的合成在观念上应该先对等起来,教师应该注重提出猜想前的引导工作,引导学生从几何层面上来考虑他们之间的关系,不置使得学生无从下手。 【学生学情分析】 (一)学生兴趣:实验操作的兴趣,对未知世界的强烈好奇心。 (二)学生的知识基础:在本节课之前学生已经学习了位移以及力的概念,初步接触了矢量的概念。 (三)学生的认知特点:对矢量方向性的理解还仅停留在表面上。本节课应着重让学生通过实验探究来体验矢量运算并非简单相加减,而是遵循平行 四边形定则。授课对象为高一学生,对于第一次接触平行四边形定则的 学生来说,是一个大的挑战,也是一个大的飞跃,对于习惯于代数运算 的学生来说,矢量运算是相对较困难的,也比较难以接受,如何让学生 在以前学习基础之上接受本节课内容是一个难点。 【教学目标】 (一)知识与技能 1、理解力的图示法,区别力的图示和力的示意图. 2、理解力的合成与分解本质上是从作用效果相等的角度进行力的相互替代.(二)过程与方法

高中物理《力的合成与分解》教案

力的合成与分解【同步教育信息】 一. 本周教学内容: 力的合成与分解 二. 知识要点: 理解力的合成和合力的概念。掌握力的平行四边形定则。会用作图法求共点力的合力,会用三角形知识计算合力。知道合力大小与分力间夹角关系,知道矢量概念。理解力的分解和分力概念。理解力的分解是力的合成的逆运算,遵循力的平行四边形定则。能根据力的实际作用效果进行力的分解。会计算分力大小。 三. 学习中注意点: (一)力的合成、合力与分力 1. 合力与分力:如果一个力作用在物体上,产生的效果,与另外几个力同时作用于这个物体上产生的效果相同,原来的一个力就是另外几个力的合力。另外几个力叫分力。 合力是几个力的等效力,是互换的,不是共存的。 2. 共点力:几个力的作用点相同,或几个力的作用线相交于一个点,这样的力叫共点力。 3. 力的合成:求几个共点力的合力的过程叫力的合成。 力的合成就是在保证效果相同的前提下,进行力的替代,也就是对力进行化简,使力的作用效果明朗化。 现阶段只对共点(共面)力进行合成。

4. 平行四边形定则:两个共点力的合力与分力满足关系是:以分力为邻边做平行四边形,以共点顶向另一顶点做对角线,即为合力。这种关系叫平行四边形定则。 5. 力的合成方法:几何作图法,计算法。 6. 多个力的合成先取两个力求合力,再与第三个力求合力,依次进行下去直到与最后一个分力求得的合力就是多个力的合力。 7. 力是矢量:有大小有方向遵循平行四边形定则。凡矢量有大小有方向还要遵循平行四边形定则。 (二)力的分解 1. 力的分解:由一个已知力求分力的过程叫力的分解。 2. 力的分解中分力与合力仍遵循平行四边形定则,是力的合成的逆运算。 3. 分解一个力时,对分力没有限制,可有无数组分力。 4. 分解力的步骤 (1)根据力作用效果确定分力作用的方向,作出力的作用线。 (2)根据平行四边形定则,作出完整的平行四边形。 (3)根据数学知识计算分力 5. 一个力分解为二个分力的几种情况 (1)已知合力及两分力方向,求分力大小,有唯一定解。 (2)已知合力及一个分力的大小方向,求另一分力大小方向,有唯一定解。 (3)已知合力及一个分力方向,求另一分力,有无数组解,其中

知识讲解-力的合成与分解-(基础)word版本

力的合成与分解 要点一、力的合成 要点诠释: 合力与分力 ①定义:一个力产生的效果跟几个力的共同作用产生的效果相同,则这个力就叫那几个力的合力,那几个力叫做分力。 ②合力与分力的关系:等效替代。 要点二、共点力 要点诠释: 1.共点力:一个物体受到两个或更多个力的作用,若它们的作用线交于一点或作用线的延长线交于一点,这一组力就是共点力。 说明: ①平行四边形定则只适用于共点力的合成,对非共点力的合成不适用。 ②今后我们所研究的问题,凡是涉及力的运算的题目,都是关于共点力方向的问题。 2.合力与分力的大小关系: 由平行四边形可知:F1、F2夹角变化时,合力F的大小和方向也发生变化。 (1)合力F的范围:|F1-F2|≤F≤F1+F2。 ①两分力同向时,合力F最大,F=F1+F2。 ②两分力反向时,合力F最小,F=|F1-F2|。 ③两分力有一夹角θ时,如图甲所示,在平行四边形OABC中,将F2平移到F1末端,则F1、F2、F围成一个闭合三角形。如图乙所示, 由三角形知识可知;|F1-F2|<F<F1+F2。 综合以上三种情况可知: ①|F1-F2|≤F≤F1+F2。 ②两分力夹角越大,合力就越小。 ③合力可能大于某一分力,也可能小于任一分力. 要点三、力的分解 要点诠释: 力的分解定则:平行四边形定则,力的分解是力的合成的逆运算. 两个力的合力唯一确定,一个力的两个分力不是唯一的,如果没有其他限制,对于一条对角线,可以作出无数个不同的平行四边形(如图所示).即同一个力F可以分解成无数对大小、方向不同的分力.

要点四、实际分解力的方法 要点诠释: 1.按效果进行分解 在实际分解中,常将一个力沿着该力的两个效果方向进行分解,效果分解法的方法步骤: ①画出已知力的示意图; ②根据此力产生的两个效果确定出分力的方向; ③以该力为对角线作出两个分力方向的平行四边形,即作出两个分力. 2.利用平行四边形定则求分力的方法 ①作图法:利用平行四边形作出其分力的图示,按给定的标度求出两分力的大小,用量角器量出各分力与已知力间的夹角即分力的方向. ②计算法:利用力的平行四边形定则将已知力按几何方法求解,作出各力的示意图,再根据解几何知识求出各分力的大小,确定各分力的方向. 由上可知,解决力的分解问题的关键是根据力的作用效果,画出力的平行四边形,接着就转化为一个根据已知边角关系求解的几何问题.因此其解题的基本思路可表示为 3.实例 分析 地面上物体受斜向上的拉力F ,拉力F 一方面使物体沿水平地 面前进,另一方面向上提物体,因此拉力F 可分解为水平向前 的力F 1和竖直向上的力F 2 质量为m 的物体静止在斜面上,其重力产生两个效果:一是使 物体具有沿斜面下滑趋势的分力F 1;二是使物体压紧斜面的分 力F 2,1F mg sin α=,2F mg cos α= 质量为m 的光滑小球被竖直挡板挡住而静止于斜面上时.其重 力产生两个效果:一是使球压紧板的分力F 1;二是使球压紧斜 面的分力F 2,1F mg tan α=,2cos =mg F α 质量为m 的光滑小球被悬线挂靠在竖直墙壁上,其重力产生两 个效果:一是使球压紧竖直墙壁的分力F 1;二是使球拉紧悬线 的分力F 2,1F mg tan α=,2cos mg F α= A 、 B 两点位于同一平面上,质量为m 的物体由AO 、BO 两线拉 住,其重力产生两个效果:一是使物体拉紧AO 线的分力F2; 二是使物体拉紧BO 线的分力质量为m 的物体被支架悬挂而静 止,其重力产生两个效果:一是拉伸AB 的分力F 1;二是拉伸 BC 的分力F 2,122sin mg F F α==

力的合成和分解完美版

力的合成和分解 教学目标: 1.理解合力、分力的概念,掌握矢量合成的平行四边形定则。 2.能够运用平行四边形定则或力三角形定则解决力的合成与分解问题。 3.进一步熟悉受力分析的基本方法,培养学生处理力学问题的基本技能。 教学重点:力的平行四边形定则 教学难点:受力分析 教学方法:讲练结合,计算机辅助教学 教学过程: 一、标量和矢量 1.将物理量区分为矢量和标量体现了用分类方法研究物理问题的思想。 2.矢量和标量的根本区别在于它们遵从不同的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则。 矢量的合成与分解都遵从平行四边形定则(可简化成三角形定则)。平行四边形定则实质上是一种等效替换的方法。一个矢量(合矢量)的作用效果和另外几个矢量(分矢量)共同作用的效果相同,就可以用这一个矢量代替那几个矢量,也可以用那几个矢量代替这一个矢量,而不改变原来的作用效果。 3.同一直线上矢量的合成可转为代数法,即规定某一方向为正方向。与正方向相同的物理量用正号代入.相反的用负号代入,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样.但不能认为是矢量,最后结果的正负也不表示方向如:功、重力势能、电势能、电势等。 二、力的合成与分解 力的合成与分解体现了用等效的方法研究物理问题。 合成与分解是为了研究问题的方便而引人的一种方法.用合力来代替几个力时必须把合力与各分力脱钩,即考虑合力则不能考虑分力,同理在力的分解时只考虑分力而不能同时考虑合力。 1.力的合成 (1)力的合成的本质就在于保证作用效果相同的前提下,用一个力的作用代替几个力的作用,这个力就是那几个力的“等效力”(合力)。力的平行四边形定则是运用“等效”观点,通过实验总结出来的共点力的合成法则,它给出了寻求这种“等效代换”所遵循的规律。

力的合成与分解教学设计

力的合成与分解教学设计 教学目标 知识目标 1、掌握力的平行四边形法则; 2、初步运用力的平行四边形法则求解共点力的合力; 3、会用作图法求解两个共点力的合力;并能判断其合力随夹角的变化情况,掌握合力的变化范围。 能力目标 1、能够通过实验演示归纳出互成角度的两个共点力的合成遵循平行四边形定则; 2、培养学生动手操作能力; 情感目标 培养学生的物理思维能力和科学研究的态度 教学建议 教学重点难点分析 1、本课的重点是通过实验归纳出力的平行四边形法则,这同时也是本章的重点. 2、对物体进行简单的受力分析、通过作图法确定合力是本章的难点; 教法建议 一、共点力概念讲解的教法建议 关于共点力的概念讲解时需要强调不仅作用在物体的同一点的力是共点力,力的作用线相交于一点的也叫共点力.注意平行力于共点力的区分(关于平行力的合成请参考扩展资料中的“平行力的合成与分解”),教师讲解示例中要避开这例问题. 二、关于矢量合成讲解的教法建议 本课的重点是通过实验归纳出力的平行四边形法则,这同时也是本章的重点.由于学生刚开始接触矢量的运算方法,在讲解中需要从学生能够感知和理解的日常现象和规律出发,理解合力的概念,从实验现象总结出力的合成规律,由于矢量的运算法则是矢量概念的核心内容,又是学习物理学的基础,对于初上高中的学生来说,是一个大的飞跃,因此教学时,教师需要注意规范性,但是不必操之过急,通过一定数量的题目强化学生对平行四边形定则的认识. 由于力的合成与分解的基础首先是对物体进行受力分析,在前面力的知识学习中,学生已经对单个力的分析过程有了比较清晰的认识,在知识的整合过程中,教师可以通过练习做好规范演示. 三、关于作图法求解几个共点力合力的教法建议 1、在讲解用作图法求解共点力合力时,可以在复习力的图示法基础上,让学生加深矢量概念的理解,同时掌握矢量的计算法则. 2、注意图示画法的规范性,在本节可以配合学生自主实验进行教学. 第四节力的合成与分解 教学设计过程: 一、复习提问: 1、什么是力?

力的合成与分解练习及答案汇编

θ 力的合成与分解 一.选择题 1. 用手握瓶子,瓶子静止在手中,下列说法正确的是 A .手对瓶子的压力恰好等于瓶子所受的重力 B .手对瓶子的摩擦力等于瓶子所受的重力 C .手握得越紧,手对瓶子的摩擦力越大 D .手对瓶子的摩擦力必须大于瓶子所受的重力 2.一物体受绳的拉力作用由静止开始运动,先做加速运动,后做匀速运动,再 做减速运动,则下列说法中正确的是 ( ) A. 加速运动时,绳拉物体的力大于物体拉绳的力 B. 减速运动时,绳拉物体的力小于物体拉绳的力 C. 只有匀速运动时,绳拉物体的力才与物体拉绳的力大小相等 D. 不管物体如何运动,绳拉物体的力与物体拉绳的力大小总相等 4.在机场和海港,常用输送带运送旅客和行李、货物。如图2所示,a 为水平输送带,b 为倾斜输送带。当行李箱随输送带一起匀速运动时,下列几种判断中正确的是 ( ) A . a 、b 两种情形中的行李箱都受到两个力作用 B . a 、b 两种情形中的行李箱都受到三个力作用 C .情形a 中的行李箱受到两个力作用,情形 b 中的行李箱受到三个力作用 D .情形a 中的行李箱受到三个力作用,情形 b 中的行李箱受到四个力作用 5. 如图3所示,物体与水平面间的滑动摩擦力大小为20N ,在向右运动的过程中,还受到一个方向向左的大小为15N 的拉力作用,则物体受到的合力为( ) A. 5 N ,向右 B. 5N ,向左 C. 35 N ,向右 D. 35 N ,向左 6. 如图4所示,在竖直光滑墙上用细线悬挂一重为G 的小球,悬线与竖直方向成角,将重力G 沿细线方向和垂直于墙的方向分解为和,则它们的大 小应为: ( ) A. B. a b 图2 F v

力的合成和分解教案

力的合成 【教学重点】 1.从力的作用效果相同来理解合力与分力的概念 2.设计实验,探究求合力的方法 3.平行四边形法则的理解及应用 【教学流程】 创设情境,提出合力与分力概念——给出问题情境,激发思考合力与分力关系——设计探究求合力的实验方案——分组实验——学生讨论,得出结论——练习与拓展(例题、合力大小与角度关系、多力合成) 【教学过程】 一、创设情境,提出合力分力的概念 1.出示卡通画,介绍共点力概念 在大多数实际问题中,物体同时受到几个力,引入共点力和非共点力概念,分别给出共点力和非共点力的图片示例。在研究中如果使用质点模型,则受力均可以作为共点力处理。本节课研究物体受共点力的情况。 出示卡通画: 小车均匀速向前运动,一头牛拉车的效果与三位同学拉车的效果相同。 2.学生小实验 一个力气大的男生在讲台上提起一桶水,使水桶保持静止;另外两位同学一起提起这桶水并使之保持静止。分析在两种情况下这桶水的受力情况,并画出示意图。提问:可以发现各个力之间有什么关系 学生讨论得到:F单独作用和F1、F2共同作用的力的效果相同。 3.引出等效替代关系,提出合力、分力概念 从前面两个情境出发,抓住共同点:一个力单独作用时可以和多个力一起作用时产生相同的作用效果。自然地引出等效替代的关系,并从力的角度分析,得到合力、分力的概念。 用问题引导学生讨论合力、分力的概念: 谈合力、分力的出发点在于什么 (力的作用效果相同,可以用一个合力去替代几个分力的作用) 合力与几个分力同时存在吗 (不是,合力只是几个分力的等效替代,并不是物体又多受到了一个力) 二、探究求合力的方法

1.情境讨论,激发认知冲突 提问:前面三位同学拉车的情境中,如果三位同学水平向右的拉力分别为F1、F2、F3,那么这三个力的合力是多少呢方向是怎么样的呢 (学生利用以前所学的知识,可以得到合力F=F1+F2+F3,方向与三个拉力方向相同) 提问:把所有的分力相加就得到合力的大小,这个方法就是求合力的方法吗请学生讨论。 (有学生提出异议,以前学过,两个力方向相反时,合力应该是两个力相减,方向与较大的力方向相同) 提问:求合力就是把分力相加或者相减吗 实验:两个弹簧秤互成一定角度,提起几个钩码保持静止,分别读出弹簧秤示数。用一个弹簧秤提起同样的钩码保持静止,读出弹簧秤示数。 提问:两个分力大小与合力既不满足相加关系,也不满足相减关系。如果给定两个分力,到底应该怎么去求这两个力的合力呢 2.设计探究实验 提出任务:探究合力与分力之间到底有什么样的关系。介绍可用的实验器材:木板、白纸、弹簧秤(2个)、橡皮条、细绳、刻度尺、图钉、三角板。 问题讨论,引导实验设计: ①根据器材,可以用什么方法来得到分力,以及两个分力的合力 (两个弹簧秤拉橡皮条和一个弹簧秤拉橡皮条,使作用效果相同) ②怎么样保证分力的作用效果与合力的作用效果相同 (把橡皮条一端固定,保证另一端与绳子的节点拉到相同的位置) ③需要记录哪些数据怎么样来记录 (橡皮条节点的位置,合力和分力的大小。引导讨论是否需要记录力的方向。讨论文字记录的不足,引导思考怎样更好地同时记录描述力的大小和方向力的图示。) 请各小组学生再整理探究实验的方案,确定明白实验的目的、过程、操作。 3.小组实验,记录实验结果 各小组根据自行整理好的方案进行实验,并用力的图示记录实验结果。教师巡视,观察各小组实验进行情况,进行适当指导。 4.思考讨论,得出实验结论 观察实验得到的F及F1、F2的大小和方向,猜想F1、F2和F之间有什么样的关系。引导学生适当地添加辅助线,研究几何关系。 (学生得出,连接分力和合力的末端,得到的几何图形大致是一个平行四边形) 两个分力为平行四边形的一对邻边,合力为此对邻边所夹的对角线。 各个小组实验时,力的大小和方向都各不相同,都能大致得到这样一个结论,说明有一定的普遍性。请各小组再次实验,改变力的大小、方向,看是否满足同样的结论。 演示实验,特殊角度特殊值验证(即大纲版教材中本节的演示实验)。橡皮条一端固定,另一端与绳系为节点。两分力互成90度,分别由三个钩码、四个钩码的重力提供。合力沿橡皮条拉伸方向,由5个钩码的重力提供。 三、平行四边形定则 两个共点力合成时,遵循平行四边形法则:以表示这两个力的线段为邻边作平行四边形,两邻边之间的对角线就代表合力的大小和方向。 讨论:为什么力的合成(两个力相加)不是简单的加减,而是满足平行四边形法则呢 (力是既有大小,又有方向的矢量,相加时既要考虑大小又要考虑方向,所以满足的法则必须是大小和方向同时考虑的。) 思考:对于有大小有方向的矢量相加,是否都不能简单地加减呢

高一物理(上)--力的合成与分解 全面的讲解

力的合成与分解 一日常生活中一个物体通常会受到几个力的共同作用,比如两个同学可以共同提起一桶水,也可以让一个同学提起这桶水,我们可以说两个同学提水桶的力与一个同学提水桶的力产生的效果是相同的。若一个力产生的效果与原来几个力产生的效果相同,这个力就叫做那几个力的合力,原来的几个力叫做分力。求几个力的合力的过程或求合力的方法,叫做力的合成。 合力与分力的关系是在“改变运动状态”效果上可以等效替代。只要效果相同,都可以进行代换。由于力是矢量,力的合成并非是简单的代数相加,而要遵循平行四边形定则,一切矢量的运算都遵循这个定则。 如果两个分力的大小不变,夹角越大,合力就越小;夹角越小,合力越大;合力可能大于任何一个分力,也可能小于任何一个分力,也可能介于两个分力之间,若两个分力的大小分别为F1、F2,则当两个力的方向相同时,合力最大,为F1+F2,若两个分力的方向相反,则合力的取值最小为F1-F2的绝对值,方向与较大的那个分力方向相同。当两个分力的夹角在0O和1800之间,则合力的大小在上述最大值和最小值之间变化,即其合力F的变化范围是:|F1-F2|≤F≤F1+F2。比如5N、8N两个力的合力最小值可以是3N,最大值可以是13N,在这个例子中,合力显然可以比任一个分力都小。 若三个力合成,合力的大小变化范围会更复杂些,可以先将其中任意两个力合成,则这两个力的合力有个范围,若第三个力正好在这个范围内,则三力的合力最小值为0,若第三个力不在这个范围内,则三力的合力最小值为第三个力与前两个力合力的最大值之差。比如2N,4N,5N三力的合成,若先将2N,4N 合成,它们合力的范围在2N和6N之间,第三个力5N正好在这个范围内,当前两个力的合力大小正好为5N,方向与第三个力的方向相反时,三力的合力为0。若三力的方向相同,它们的合力最大值为三力的代数和11N。又比如2N,4N,7N三力的合成,若先将2N,4N合成,它们合力的范围在2N和6N之间,第三个力7N并不在这个范围内,当前两个力的合力取最大值6N,第三个力7N与之方向相反时,三力的合力最小值为这两者之差1N。若三力的方向相同,它们的合力最大值为三力的代数和13N。

相关文档
最新文档