第4章 频域分析法

合集下载

第4章 频域分析法3

第4章 频域分析法3

2011年11月18日星期五
机电与汽车工程学院
11
四、频域分析法
■ ω = 0时
■ ω = 1/T时 ■ ω = ∞时
张家港校区
A(ω) = A(0) = 1 ϕ (ω) = ϕ (0) = 0° A(ω) = 2ξ ϕ(ω) = 90° A(ω) = ∞ ϕ(ω) = 180°
ω =∞
ω G(jω)
2011年11月18日星期五
机电与汽车工程学院
20
四、频域分析法
张家港校区
一阶不稳定环节和惯性环节: 0
Bode Diagram
ϕ(ω) / (deg) L(ω)/ (dB)
对数幅频 特性相同
-5
-10
-20dB/dec
-15
该结论对-200其它与振荡环节、一阶微分环节、二阶微 分环节幅-45频特性互为对应的不稳定惯环性节环也节成立。
机电与汽车工程学院
19
四、频域分析法
张家港校区
惯性环节:G( jω) = 1 1+ jωT
= 1− jωT 1+ ω2T 2
实、虚频关系:⎡⎢⎣P(ω)

1 2
⎤ ⎥⎦
2
+ [Q(ω)]2
=
⎛ ⎝⎜
1 2
⎞2 ⎠⎟
Im
ω =0
ω =∞ ω =∞
-1
0
一阶不稳定环节
惯性环节
ω =0 1 Re
ω
ω
Nyquist Diagram
ω
Nyquist Diagram
0<ξ <1
ϕ(ω) / (deg) L(ω)/ (dB)
0 -40dB/dec
-20

通信原理第四章word版

通信原理第四章word版

第四章.连续时间信号与系统频域分析一.周期信号的频谱分析1. 简谐振荡信号是线性时不变系统的本征信号:()()()()()j tj t j tj y t eh t eh d ee h d ωωτωωτττττ∞∞---∞-∞=*==⋅⎰⎰简谐振荡信号傅里叶变换:()()j H j e h d ωτωττ∞--∞=⎰点 测 法: ()()j t y t e H j ωω=⋅ 2.傅里叶级数和傅里叶变换3.荻里赫勒(Dirichlet )条件(只要满足这个条件信号就可以用傅里叶级数展开)○1()f t 绝对可积,即00()t T t f t dt +<∞⎰○2()f t 的极大值和极小值的数目应有限 ○3()f t 如有间断点,间断点的数目应有限4.周期信号的傅里叶级数5.波形对称性与谐波特性的关系6.周期矩形脉冲信号7.线性时不变系统对周期信号的响应一般周期信号:()jn tnn F ef t ∞Ω=-∞=∑系统的输出 :()()jn tnn F H jn t e y t ∞Ω=-∞Ω=∑ 二.非周期信号的傅里叶变换(备注)二.非周期信号的傅里叶变换1.连续傅里叶变换性质2.常用傅里叶变换对四.无失真传输1.输入信号()f t 与输出信号()f y t 的关系 时域: ()()f d y t kf t t =-频域:()()dj t f Y ke F ωωω-=2.无失真传输系统函数()H ω ()()()d f j t Y H ke F ωωωω-==无失真传输满足的两个条件:○1幅频特性:()H k ω= (k 为非零常数) 在整个频率范围内为非零常数 ○2相频特性:ϕ()d t ωω=- ( 0d t > )在整个频率范围内是过坐标原点的一条斜率为负的直线3. 信号的滤波:通过系统后 ○1产生“预定”失真○2改变一个信号所含频率分量大小 ○3全部滤除某些频率分量 4.理想低通滤波器不存在理由:单位冲击响应信号()t δ是在0t =时刻加入滤波器 的,而输出在0t <时刻就有了,违反了因果律5.连续时间系统实现的准则时 域 特 性 : ()()()h t h t u t =(因果条件) 频 域 特 性 : 2()H d ωω∞-∞<∞⎰佩利-维纳准则(必要条件):22()1H d ωωω∞-∞<∞+⎰五.滤波。

信号系统(陈后金)第4章-信号的频域分析

信号系统(陈后金)第4章-信号的频域分析
w0 w0
0 2 lim[ 2 ] 2 0 + w


2 w dw 2arctg( ) 2 2 2 +w
f (t )
dt (t )e jwt dt 1


(t )
(1)
1
F (w )
0
t
0
w
单位冲激信号及其频谱
(4) 直流信号
直流信号不满足绝对可积条件,可采用极限 的方法求出其傅里叶变换。
F [1] lim F [1 e
0
| t|
2 ] 2 (w ) ] lim[ 2 2 0 + w
符号表示:


F ( jw ) F[ f (t )] f (t ) F 1[ F ( jw )]

f (t ) F ( jw )
F
狄里赫莱条件
(1)非周期信号在无限区间上绝对可积


f (t ) dt
(2)在任意有限区间内,信号只有有限个最大值 和最小值。 (3)在任意有限区间内,信号仅有有限个不连续点, 且这些点必须是有限值。 狄里赫莱条件是充分不必要条件
P 1
2 2 2 | C ( n w ) | C ( 0 ) + 2 | C ( n w ) | 0.1806 0 0 n =1 4 4
n =—4
P 0.1806 1 90 % P 0.200
周期矩形脉冲信号包含在有效带宽内的各谐波平均功 率之和占整个信号平均功率的90%。
虚指数信号 正弦型信号单位冲激序列
• 常见周期信号的频谱密度
1. 常见非周期信号的频谱
(1) 单边指数信号

频域分析方法

频域分析方法

解为许多个周期性信号之和,然后分别求解,
最后求和(积分)。 在某频率点 ω ,实际(复)振幅是一个无穷
小量:
E&(ω) = lim 1 E( jω) = lim Ω E( jω) = E( jω) dω
T→∞ T
Ω→0 2π

所以其响应为:
∴R& (ω) = H( jω)E&(ω) = H( jω)E( jω) dω 2π
4、系统的频率特性
H ( jω) 在特定 ω 点上的取值实际上表示了系统
对该频率点上的信号的幅度和相位的影响。由
H ( jω ) 可以引出系统的频域特性:
1) 频域特性定义:系统的频率特性是指系统对各 个频率的复正弦信号的影响:包括对复正弦信 号幅度和相位的影响。
2)频率特性曲线 系统的传输特性也可以用图形的方法表示。
如果要在理论上更加严格的话,还可以进一步证
明只有 R( jω ) ⋅ e jωt 可能是系统对 E( jω ) ⋅ e jωt 信
号的响应。
令系统的传输函数为:
H ( jω) = bm ( jω )m + bm−1( jω )m−1 + ... + b1( jω ) + b0
( jω )n + an−1( jω )n + ... + a1( jω ) + a0 它实际上可以将时域中的转移算子 H ( p) 中的算 子 p 用 jω 替代后得到。这里的 H 完全是一个代
E(
jω )
= H ( jω)E( jω)
非周期信号通过线性系统的 rzs 求解公式还 有第三种推导方法: 根据卷积积分公式,有:
r(t) = e(t) ⊗ h(t)

第4章第12节频率响应与频率特性及频率特性的图示法

第4章第12节频率响应与频率特性及频率特性的图示法

4.1频率响应与频率特性
▪ 频率特性是复变量s=jω的复变函数,因此 有
▪ 一般地,系统对正弦输入信号的稳态响应 为
4.2频率特性的图示法——奈氏图 和伯德图
4.2.1奈魁斯特图
▪ 奈魁斯特(Nyquist)图也称极坐标图。在 数学上,频率特性可以用直角坐标式表 示,;也可以用幅相式(指数式)表示, 即
因是系统有储能元件、有惯性,对频率 高的输入信号,系统来不及响应。 (3)系统的频率特性是系统的固有特性,取 决于系统结构和参数。
4.1频率响应与频率特性
4.1.6求取频率特性的解析方法 ▪ 当已知系统的传递函数时,可按下式求取,

G(j)G(s) sj
▪ 当从系统原理图开始求取系统的频率特性 时,应该先求出系统的传递函数。
4.1频率响应与频率特性
可以看出: 随着输入信号频率的变化,输出、输入信号 的幅值比和相位差将会相应地随频率而发生 变化。 因此,可以利用这一特性,保持输入信号的 幅值不变,不断改变输入信号的频率,研究 系统响应信号的幅值和相位随频率的变化规 律,即可达到研究系统性能的目的。
4.1频率响应与频率特性来自4.1频率响应与频率特性
4.1.3频率响应
▪ 稳定的线性系统对正弦输入的稳态响应称 为频率响应。
▪ 另外一种表达: 当正弦信号作用于稳定的线性系统时,系 统输出响应的稳态分量是与输入同频率的 正弦信号,这种过程称为系统的频率响应。
线性系统的频率响应
求上图中输出信号与输入信号的 1、相位差A(ω) 2、幅值比ψ(ω)
两个问题:
1、正弦输入信号可不可以代表所 有信号?
2、什么是系统的频率特性?其图 形表示是什么样子?
4.1频率响应与频率特性

信号分析与处理第4章-3(频域分析)

信号分析与处理第4章-3(频域分析)


h
(
)

t
0

线性相位
无失真传输
信号幅度不失真
信号放大、时延, 波形不失真
y(t) Kx(t t0 )
线性相位,波形 不失真
h ()
Y () KX ()e j t0
K H()

x(t)
Kx(t t0 )
t0
H ()
t
h ()
无失真传输的频域条件:
X ()
H ( )
Y ( )

×
k
2

kπ/2
-3 -2 -1 0 1 2 3
-ωc
0 ωc
-ωc -1 0 1 ωc
根据以上图示,分三种情况讨论Y(ω)
(1) c 3
X () H()
Байду номын сангаас

2
- ωc -3 -2 -1 0
1 2 3 ωc
输入信号的频带完全被包含在低通滤 波器的通带内,有
系统的幅频特性是一个与频率无关的常 数,即在全部频带内,系统都具有恒定 的放大倍数
系统的相频特性与频率成线性关系。且 信号通过系统的延迟时间t0就是系统相频 特性 h () 斜率的负值,即
t0

dh () d
3、理想低通滤波器
H
()

1ge 0
jt0
H() 1

c
Sa[c (t
t0 )]
h(t)
c

0
t0

[例3] 求信号x(t)=Sa(t)cos(2t) 通过理想低通滤 波器(设通带内的放大倍数为k)后的输出响应。

信号与系统第4章

信号与系统第4章
35
正方波为奇谐函数
f (t)
1
OT
2T t
1
f
(t
)
4
sin(t)
1 3
sin(3t)
1 5
sin(5t)
36
傅里叶级数的指数形式
f
(t)
A0 2
n1
An
c os (nt
n)
A0 2
n1
An
1 2
e j (nt n )
e j(nt n )
A0 2
1 2
n1
Ane jn e jnt
t1
(t)
i
(t)dt
0,
i 1,2,, n
则称该函数集为完备正交函数集。函数 ψ (t) 应满足条 件
0 t2 2 (t)dt t1
5
正交的三角函数集 (1)
1, cos 2 1 t , cos 2 2 t ,cos 2 m t ,,
T T
T
sin 2 1 t ,sin 2 2 t ,sin 2 n t ,
1 2
n1
Ane jn e jnt
A0 2
1 2
n1
Ane jn e jnt
1 2
Ane
n1
e j n
jnt
A0 2
1 2
n1
Ane jn e jnt
1 2
Ane
n1
e jn
jnt
1 2
Ane jn e jnt
n
37
傅里叶级数的指数形式
f
(t)
1 2
Ane
n
e j n
jnt
Fne jnt
n
上式中,

机械工程控制基础(第4章_系统的频率特性分析)

机械工程控制基础(第4章_系统的频率特性分析)

对频率 的函数曲线,此即幅频特性曲线;作出相位 ) (
的函数曲线,此即相频特性曲线。
对频率
由上可知,一个系统可以用微分方程或传递函数来描述,也可以
用频率特性来描述。它们之间的相互关系如图4.1.2所示。将微分方程
的微分算子 中的s再换成 j,传递函数就变成了频率特性;反之亦然。
d 换成s后,由此方程就可获得传递函数;而将传递函数 dt
式中,
u ( ) 是频率特性的实部,称为实频特性 v( ) 是频率特性的虚部,称为虚频特性
武科大城市学院
机电学部
4.1.3 频率特性的求法
1. 根据系统的频率响应来求取
因为
K G s Ts 1 X i X i s 2 s 2
X i xo t L G s 2 s 2
G j 端点的轨迹即为频率特性的极坐标图, 或称为Nyquist 图, 如
实轴开始, 逆时针方向旋转为正, 顺时针方向旋转为负。当从0→∞时,
武科大城市学院
机电学部
图4.2.1所示。它不仅表示幅频特性和相频特性, 而且也表示实频特性和
虚频特性。图中的箭头方向为从小到大的方向。
正如4.1节所述, 系统的幅频特性和相频特
武科大城市学院
机电学部
2. 频率特性
线性系统在谐波输入作用下,其稳态输出与输入的幅值比是输入
信号的频率 的函数,称为系统的幅频特性,记为A( ) 它描述了在稳态情况下,当系统输入不同频率的谐波信号时,其幅值 的衰减或增大特性。显然
X o ( ) A( ) Xi
) 稳态输出信号与输入信号的相位差 ( (或称相移)也是 的函
1
所以
1 T 2 2 X K A o Xi 1 T 2 2

机电控制工程基础 第 4 章 线性系统的频域分析法

机电控制工程基础 第 4 章 线性系统的频域分析法
比较式( 4-5 )和式( 4-6 )可知, A ( ω )和 φ ( ω )分别是 G ( j ω )的幅值 G ( j ω ) 和相角∠ G ( j ω )。这一结论非常重 要,反映了 A ( ω )和 φ ( ω )与控制系统数学模型的本质关系, 在线性定常系统中具有普遍性。
第 4 章 线性系统的频域分析法
第 4 章 线性系统的频域分析法
4. 2 频率特性的图示法
工程中常用的频率特性的图示法有以下三种。 1. 频率特性曲线 频率特性 曲 线 包 括 幅 频 特 性 曲 线 和 相 频 特 性 曲 线。幅 频 特 性 是 频 率 特 性 幅 值︱ G (j ω )︱ 随 ω 的变 化规律;相频特性描述的是频率特性相角 ∠ G ( j ω )随 ω 的 变化规律,如图 4-4 ( a )所示。
时域分析法具有直观、准确的优点,但实际系统往往都 是高阶的,求解高阶系统的微分方程以及按时域指标进行设 计并非易事。频域分析法能比较方便地由频率特性来确定系 统性能。当系统的传递函数难以确定时,可以通过实验法确 定频率特性。
第 4 章 线性系统的频域分析法
4. 1 频 率 特 性
4. 1. 1 频率特性的基本概念与定义 1. 频率特性的基本概念 首先以图 4-1 所示的 RC 滤波网络为例,建立频率特性
(3 )有关传递函数的概念和运算法则对频率特性同样适 用。
(4 )频率特性虽然是用系统稳态响应定义的,但可以用来 分析系统全过程的响应特性,这一点可以通过傅里叶变换加 以证明。
第 4 章 线性系统的频域分析法
图 4-3 频率特性、传递函数与微分方程之间的关系
第 4 章 线性系统的频域分析法
(5 )频率特性具有明显的物理意义。 传递函数表示的是系统或环节传递任意信号的性能,而 频率特性则表示系统或环节传递正弦信号的能力,并且有 3 个要素,即同频率、变幅值、相位移。因此,对于稳定的系 统,可以通过实验的方法求出其输出量的各个物理参数。即 在系统的输入端施加不同频率的正弦信号,然后测量系统的 输出稳态响应,再根据幅值比和相位差作出系统的频率特性 曲线。对于不稳定系统,输出响应稳态分量中含有由系统传 递函数的不稳定极点产生的呈发散或振荡的分量,所以不稳 定系统的频率特性不能通过实验方法确定。

控制工程基础---第4章--频域分析法1

控制工程基础---第4章--频域分析法1

☎ 4.1.3 频率特性的图示方法
V( )
系统的频率特性可分解为实部 和虚部,即
直角坐标形式: G( j) U () jV ()
极坐标形式: G( j ) A( )e j ()
O
式中:极直U坐角(标坐形标) _式形_:式__:实频GG特(( jj性)); UA(())ej
对数频率特性又称为博德图。
☆半对数坐标图(纸)
对数幅频特性:
L( ) 其中: L( ) 20 lg A( ) (dB )
对数相频特性:
( )
(3)对数幅相频率特性(尼科尔斯图 Nichols)。
在所需要的频率范围内,以频率作为参数 来表示的对数幅值和相角关系的图。
据“根符据号“符法号”法 ” ‘( ‘(电电路路’’中中有有介介绍绍

):)X:iXm im
Xim Xe ji0m0 e
j00
X

Xom

om
A(A).(X
im).eXj
(
im
)e
j
此时 定此义时定“ 义系x“i统(系t)稳统态稳X态输im 输si nt 出出与与输输入入信信号号的复的数复比数比 ”为:为:
(t)

U 1
im T T 2
2
t
eT

U im sin( t arctan T ) ( 4 .3) 1 T 2 2
uo(t) 的稳态uo解 (t)
Uim sin(tarctTan) 1T22

Ui
Uimej0

, U o

Uim 1T2
其 中 : 这(xj就Ao这(((t是))j就) 系-是)A 统幅系XX(频 统的XXoi特)的mm“X oimm性“频i;m 频s率率AAi特特((n tXX[)) ..根i XmiXm据 此ei(m“e 时i jme0符性 定j0)e0号 性j义”0(法 ]“(jj”” 系)( )统 稳) 态‘XXA(输oi电m(m路A’)(.Ae中 (有 出jX))介 与.(.iXm绍 e输e)i其m 入jje00信)j中:(X号(Xo的)m)im复

4时域分析法频域分析法

4时域分析法频域分析法

当kt 0.1时, ( s )
kt
10 0.1s 1 显然时间常数T 0.1秒。
解:系统的闭环传递函数
( s)
1 / kt 100/ s 100 0.01s 1 kt 1 s kt
因此调节时间为: t s 3T 0.3秒。
如果要求t s 0.1秒, 0.01 t s 3T 3 0.1 , kt 故kt 0.3
二.二阶系统的单位阶跃响应
2 特征方程为: s 2 2 n s n 0
特征根为: s1, 2 n n 2 1 ,注意:当 不同时,(极点) 有不同的形式,其阶跃响应的形式也不同。它的阶跃响应有振 荡和非振荡两种情况。
⒈ 当时 0 ,特征方程有一对共轭的虚根,称为零(无)阻尼 系统,系统的阶跃响应为持续的等幅振荡。 ⒉ 当时 0 1 ,特征方程有一对实部为负的共轭复根,称 为欠阻尼系统,系统的阶跃响应为衰减的振荡过程。
结构图和闭环极点分布图为:
R(s)
-
j
k/s
C(s) -1/T
0
T表征系统惯性大小的重要参数。
二.一阶系统的单位阶跃响应 1 当r (t ) 1(t )时,R ( s ) , s 1 1 1 T 则C ( s ) ( s ) R ( s ) Ts 1 s s Ts 1
h(t p ) h() % 100% h ( )
超调量表示系统响应过冲的程度,超 调量大,不仅使系统中的各个元件处于恶 劣的工作条件下,而且使调节时间加长。
五.振荡次数N 在调节时间以内,响应曲线穿越其稳态 值次数的一半。 tr,tp和ts表示控制系统反映输入信号的 快速性,而σ%和N反映系统动态过程的平 稳性。即系统的阻尼程度。 其中ts和σ%是最重要的两个动态性能 的指标。

第四章 频域分析(第三节)1

第四章 频域分析(第三节)1
v
G (s) =
jt m w )
? ( j w ) (1 + jT1 w )(1 + jT 2 w ) 鬃 (1 + jT n - v w )
(n
m)
其分母阶次为n-m,分子阶次为m,v=0,1,2…, 乃奎斯特图具有以下特点: (1) 当ω=0时,乃奎斯特图的起点取决于系统的型次:
0型系统(v=0) 起始于正实轴上某一有限点;
由系统的频率特性
G ( jw ) = = K j w (1 + jT w ) - KT 1+ T w
2 2
= - K
K j w (1 - jT w )
( j w ) (1 + jT w )(1 - jT w )
w (1 + T w
2 2
2
+ j
)
- KT
则系统的实频特性为
U (w ) = R e 轾 ( jw ) = G 2 2 臌 1+ T w
ω=0

Im
K (T1T2 ) T1 T2
3 2
[G ( j )]
O ω=∞
Re
例 4-6 已 知 系 统 的 开 环 传 递 函 数 G (s) =
K (1 + T1 s ) s (1 + T 2 s )
(T1> T 2 ) , 试 绘 制 其 N y q u i s t 图 。
解 系统是由一个比例环节﹑一个积分环节﹑ 一个一阶微分环节和一个惯性环节串联组成, 其频率特性为 K (1 + jT1 w ) G ( jw ) = ( j w )(1 + jT 2 w ) = K (T1 - T 2 )
(1 + T 2 w

第4章 线性系统的频域分析

第4章 线性系统的频域分析

系统的稳态输出相对于输入信号发生的幅值 和相角的变化,可以用一个关于角频率ω 的 复变函数表示,称为系统的频率特性。
G(i) | G(i) | e

iG ( )
频率特性中的模值和相角也分别称为系统的 幅频特性函数和相频特性函数。
频率特性是系统的频域模型
系统的频率特性可以用实验直接测定。 线性定常系统的频率特性与系统的传递函数 具有如下对应关系:

以RC网络为例。输入是正弦信号,则系统 的稳态输出也是同频率的正弦信号,但幅值 和相角发生变化。

RCu (来自 ) sin tu (t )
uc (t )

uo (t ) A( ) sin[ t ( )] A( ) 1 1 (T ) 2

i (t )
du o RC uo u dt
0

0 1 Re G
O
2 n G( s) 2 2 s 2n s n
1 Re G
Im G
G ( s ) T 2 s 2 2Ts 1
Im G
0
1 Re G
O
O

0
1 Re G

延时环节的频率特性曲线
Im G
e
1
i
1 i / 2 1 i / 2
1 Re G
O

G(s) e s
例题4-1
已知某系统频率特性曲线,试确定传递函数。
解 该系统没有积分环节, 没有零点时为二阶系统。 设传递函数为
Kn 2 G( s) 2 s 2n s n 2
Im G
1.2
O
Re G
令s=iω =0 得到 K=1.2。

第4章 线性系统的频域分析

第4章 线性系统的频域分析

第4章线频域分析法频域分析方法是根据系统的频率特性来分析系统的性能,也常称为频率特性法或频率法。

频域分析法有以下特点,首先是频率特性有明确的物理意义。

系统的频率响应可以用数学模型算出,也可以通过实际的频率特性实验测出。

这一点在工程实践上价值很大,特别是对结构复杂或机理不明确的对象,频率分析法提供了一个处理这类问题的有效方法。

频率法计算简单,只用很小的计算量和很简单的运算方法,再辅以作图,便可以完成分析与综合的工作。

当前已有一套完整便捷的基于频率法的计算机辅助设计软件,可以代替人工完成绝大部分的设计工作。

频率法也有其缺点和局限性。

频率法只适合用于线性定常系统。

从原理上讲频率法不能用于非线性系统或时变系统。

虽然在研究非线性系统时也借用了频率法的一些思想,但只能在特定的条件下解决一些很有局限性的问题。

本章研究频率特性的基本概念、图示方法、控制系统的稳定性判据、系统性能的频域分析方法。

4.1 频率特性系统的频率特性描述了线性系统在正弦信号输入下其稳态输出和输入的关系。

为了说明频率特性的概念,下面分析线性系统在正弦输入信号的作用下,其输出信号和输入信号间的关系。

设线性定常系统输入信号为()r t ,输出信号为()c t ,如图4-1所示。

图中G(s)为系统的传递函数。

即 1011111()()()mm m m n n n nb s b s b s b C s G s R s s a s a s a ----++⋅⋅⋅++==++⋅⋅⋅++ (n m ≥) (4-1)若在系统输入端作用一个时间的谐波函数,即0()s i n ()r t r t ωϕ=⋅+ ,式中,0r 是振幅;ω是频率;ϕ是相角。

为简便起见,假设0ϕ=,则0()sin r t r t ω=⋅ 图4-1 一般线性定常系统由于0022()()()r r R s s s j s j ωωωωω==++- (4-2)系统输出()C s 为10110111()()()()()m m m m n n n n b s b s b s b r C s G s R s s a s a s a s j s j ωωω----++⋅⋅⋅++==⋅++⋅⋅⋅+++-1()ni i i C B Ds s s j s j ωω==++-+-∑(4-3)式中,i s 为系统特征根,即极点(设为互异);C i ,B ,D 均为相应极点处留数。

第四章 频域分析法

第四章   频域分析法

波德图
L(ω) 比例 积分 [0], L(ω) =20lgK [-γ20] ,过(1 , 0)
φ(ω) 0 -γ90
(ω ) = tg 1ωT
ω ) ωn 1 ( ω ) = tg ω 2 1 ( ) ωn
2ζ (
惯性
[0] ~[- 20]
0 ~ - 45 ~ -90
振荡 微分
[0] ~[- 40] [γ20] ,过(1 , 0)
波德图(Bode)、对数频率特性曲线 lg ω -------L(ω)=20lgA(ω):对数幅频特性曲线 lg ω -------φ(ω) :对数相频特性曲线
半对数坐标: 横轴上频率变化10倍,即ω2 / ω1 =10 ,则间隔是一个单位,称 为“十倍频程”,记做“dec”; 横轴上频率变化1倍,即ω2 / ω1 =2 ,则间隔是0.301单位,称为 “倍频程” 。 因此,横轴按对数分度,对ω言是不均匀的,对言lg ω是均匀 的。
一、比例环节 G(j ω) = Kej0 A(ω)=K 奈氏图 φ(ω)=0
波德图 L(ω) = 20lg A(ω)
二、微分环节
G ( jω ) = 1 1 = e j 90 jω ω
A(ω) = 1/ ω 奈氏图 ω=0 ω= ∞ A(ω)= ∞ A(ω)= 0
φ(ω) = -90
波德图 L(ω) = 20lg(1/ ω) = - 20lg ω 若 则 且 ω2 / ω1 =10 L(ω2 )-L(ω1 ) = 20lg(1/ ω2 ) - 20lg(1/ ω1 ) = -20dB ω=1, L(ω) =0
1
A(ω ) =
[1 (
ω 2 ) ] ωn
ω 2 ) ωn
ω ) ωn (ω ) = tg 1 ω 1 ( )2 ωn

第4章 频域分析法

第4章 频域分析法

第4章 频域分析法
r1(t)=Asin ω1t O t r2(t)=Asin ω2t O t
c 1(t)=M 1Asin( ω1t +ϕ1)
ϕ1 O
t c 2(t)=M 2Asin( ω2t -ϕ2)
渐三线线
ϕ2
输输输输
输输输输
图4 - 1 线性系统的频率特性响应示意图
第4章 频域分析法
由图4-1可见,若r1(t)=A sinω1t,其输出为 c1(t)=A1 sin(ω1t+φ1)=M1A sin(ω1t+φ1),即振幅增加了M1 倍, 相位超前了φ1角。 若改变频率ω, 使 r2(t)=A sinω2t, 则系统的输出变为 c2(t)=A2 sin(ω2t-φ2)=M2A sin(ω2t-φ2), 这时输出量的振 幅减少了(增加M2倍, 但M2<1), 相位滞后φ2角。 因此, 若以频率ω为自变量, 系统输出量振幅增长的倍数M 和相位的变化量φ为两个因变量, 这便是系统的频率 特性。
2 2
相频特性
− Tω /(T 2ω 2 + 1) ϕ (ω ) = arctan = arctan( −Tω ) 2 2 1 /(T ω + 1)
(4 - 14)
第4章 频域分析法
2) 图形表示方式 (1) 极坐标图(PolAr Plot)。 极坐标图又称奈奎 斯特图。 当ω从0→∞变化时, 根据频率特性的极坐标 表示式 G(jω)=|G(jω)|∠G(jω)=M(ω)∠φ(ω) 可以计算出每一个ω值下所对应的幅值M(ω)和相 角φ(ω)。 将它们画在极坐标平面上, 就得到了频率特 性的极坐标图。
第4章 频域分析法
Im U (ω2)
ω→ ∞
0 V (ω2)

第四章连续系统的复频域分析

第四章连续系统的复频域分析

(region of convergence)实际上就是拉氏变换存在的条
件;
则收敛条件为 。 lim f (t) eσt 0 t
σ σ0
jω 收敛轴
收敛区
收敛坐标
σ0 O
σ
图4-2拉普拉斯收敛域
4.1.2 拉普拉斯变换的收敛域
例 4-1-1 求指数函数 f (t) et ( 0) 的拉氏变换及其收敛域。
F(s) f (t)e-stdt 0
F( s ) :为s的函数,称为象函数。
s = + j,复频率。
变换对:
f( t ) F( s )
电压:u( t ) U( s )
电流:i( t ) I( s )
4.1.2 拉普拉斯变换的收敛域
收敛域就是使 存在的s的区域称为收敛域。记为:ROC
eα st


1
αs αs
σ α
3.单位冲激信号
0
L
t



0
t

estd
t

1
全s域平面收敛
L t t0



0
t t0
estd t est0
表4—1一些常见函数的拉氏变换
4.1.3 常用信号的拉普拉斯变换
解: 用两种方法进行求解。
dt
的拉普拉斯变换。
方法一:由基本定义求解。 d
因为 f (t) 的导数为
dt
[e
atu(t
)]

aeat
u(t)


(t
)
L

df (t) dt

第4章-2信号频域分析

第4章-2信号频域分析

fk (t)dt
t2 t1
fk (t) 2 dt
定理2.
若f(t)可用完备正交函数集{ f1(t) ,…, fn(t) }
表示,则:
t2 f
t 2dt
n
t2 Ckfk(t)2dt
t1
k1 t1
物理意义:
(Parserval定理)
一个信号所含有的能量(功率)恒等于此信号在 完备正交函数集中各分量能量(功率)之和。
0
T
1
2
t
e jnt dt 1
T T
T
2
1
T 0 T
t
f
(t)
T
(t)
n
1e T
jnt
周期信号频谱特点:
1)离散性 :频谱由频率离散而不连续的谱线组成;
2)谐波性:各次谐波分量的频率都是基波频率的 整数倍;
3)收敛性:谱线幅度随谐波频率的增大而衰减25 。
二. 周期矩形脉冲的频谱
本节以周期矩形脉冲信号为例,讨论频谱的特点。
三. 用完备正交函数集表示任意信号
定理1. 若{f1(t) ,…, fn(t) }在区间( t1,t2)上
为完备正交函数集,则在 ( t1,t2)上任意函数 f(t) 可表示为: (广义傅立叶级数)
f(t) C1f1(t) C2f2(t)Ckfk(t) Cnfn(t)
其中
Ck
t2 t1
f (t)
单位频带上的频谱值
TFn T
f (t)e j tdt
F( j )
f(t)的频谱密度函数,简称频谱函数。
(1)可写为:
f
(t)
TFn
n
1 e jnt T

第4章 短时频域分析

第4章 短时频域分析

X n (e j )

m
[ x(m)w(n m)]e jm

当n取不同值时窗w(n-m)沿着x(m)序列滑动,所 以w(n-m)是一个“滑动的”窗口。

由于窗口是有限长度的,满足绝对可和条件,所 以这个变换是存在的。与序列的傅里叶变换相同, 短时傅里叶变换随着ω作周期变化,周期为2π。
经典方法滤波器组求和法叠接相加法对于某个频率其傅里叶变换可表示为若定义451短时综合的滤波器组相加法图46滤波器组求和法的单通道表示451短时综合的滤波器组相加法图47451短时综合的滤波器组相加法复数带通滤波器的频率响应为451短时综合的滤波器组相加法假定所有l个带通滤波器都使用了相同的窗函数即考虑整个带通滤波器组时其中每个带通滤波器具有相同的输入其输出相加在一起
N=500时(取样率10 kHz,窗持续时间50 ms)时直角窗及海明窗下浊音语音的频谱。
窗函数及窗口长度对短时傅里叶变换的影响



N=50的比较结果(取样 率为10KHz,因而窗口 持续时间为5ms)。 由于窗口很短,因而时 间序列(图(a)和(c))及信 号频谱(图(b)和(d))均不 能反映信号的周期性。 图中大约在400、1 400 及2 200Hz频率上有少量 较宽的峰值。比较(b)及 (d)的频谱后,再次表明 矩形窗可以得到较高的 频率分辨率。

W ( e j )

为窄带低 通滤波器。第 一种形式为低 通滤波器; 由于第二种形 式中的滤波器 单位函数响应 为 w(n)(e ) ,所以 它为带通滤波 器。
jn
4. 3 滤波器的解释
如果将w(n)的滤波运算除外,短时傅里叶变换实
际上是对信号的幅度调制。

频域分析法

频域分析法

1
1
U0 (s) Ts 1Ui (s) Ts 1
Ui s2 2
对上式取拉氏反变换,得输出时域解为
u0
(t
)
1
UiT T 2
2
t
eT
Ui sin(t arctanT) 1 T 22
2021年4月15日3时14分
当t→∞时,第一项趋于0,这时电路的稳态输出为
u0 (t)
Ui
1 T 22
sin(t
arctan
T2
T1 2 1 T2 2 1
A
K
T1 2 1 T2 2 12arctan T1
arctan T2
2021年4月15日3时14分
4.2 频率特性的几种图示方法
序号 1
名称 幅相频率特性曲线
图形常用名 奈奎斯特图
坐标系 极坐标
2 对数幅值频率特性曲线 对数相角频率特性曲线
伯德图
4.1 频率特性 1、频率特性的定义
对于稳定的线性定常系统,其传递函数为G(s),若输 入量为一正弦信号,则其输出响应的稳态分量也是同 频率的正弦信号,但幅值、相位与输入信号的不同。 保持输入信号的幅值不变,逐次改变输入信号的频率, 则可测得一系列稳态输出的幅值和相位。 (输出信 号稳态时的幅值与相位按照系统传递函数的不同随着 输入正弦信号频率的变化而有规律的变化)。
j p
例:试求
Gs
K
s T1s 1 T2s 1
的幅频特性和相频特性。
G
j
K
j T1 j 1T2 j 1
G j K 1 1 1
j T1 j 1 T2 j 1
K
1
ej
2
1
e jarctanT1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

sin(t tg 1T )
电路参数 (R、C给定后, G ( j ) ) 随频率变化规律就完全确定。所以频率 特性反映了电路本身性质,与外界因素无关。
例4-1-2 设系统的传递函数 振幅为
G(s)
时,系统的稳态输出。 X 0 10 f 1Hz
K 10 ,求输入信号频率为 Ts 1 0.5s 1
频率法分析和设计控制系统的优点





(1)当控制系统的结构和参数变化时,很容易确定相应的频率特 性的变化。再通过频率特性指标和时域性能指标之间的关系,就 将系统的结构和参数与时域性能指标联系起来了。 (2)不解系统的闭环特征方程,用系统开环频率特性曲线图就可 以研究闭环系统的稳定性和相对稳定性。 (3)频率特性有明确的物理意义,控制系统或元部件的频率特性 都可用实验方法测定,这对于很难列写运动方程的元部件或系统 很有实用意义。 (4)频率法不仅适用于线性定常系统的分析研究,还可推广应用 于某些非线性控制系统。 (5)当系统在某些频率范围内存在严重的噪声时,应用频率法, 可以设计出能够抑制这些噪声的系统。
输入信号的拉氏变换为
则输出信号的拉氏变换为
(4-1-2)
A01 G ( s) X ( s).(s j ) |
同理
x0 ( s j ) G ( s) | ( s j )(s j ) s j x0 G ( j ) 2j x
A02 2 0j G( j )
2.对数频率特性
4.2典型环节的频率特性
2.惯性环节的频率特性
1 惯性环节的传递函数为 G ( s ) 1 Ts
(1) 幅相频率特性
式中 T——环节的时间常数
G( j )
1 P( ) jQ( ) A( )e j ( ) 1 jT 1 式中 实频特性 P ( ) = 1 T 2 2 T 虚频特性 Q ( )= 1 T 2 2
第4章频率分析法
4.1 频率特性的基本概念与表示方法 4.2 典型环节的频率特性 4.3 系统开环频率特性的绘制 4.4 用频率法分析控制系统的稳定性 4.5 系统开环频率特性与时域特性的关系 4.6 设计实例:雕刻机位置控制系统
第4章 频域分析法
本章首先由系统对正弦输入的稳态响应引出频率特性基本概念及频率响应, 具体讲述频率特性的表示方法即极坐标图(奈氏图)和对数频率特性图 (BODE图);通过典型环节频率特性的绘制,引出系统开环频率特性两种 曲线的手工绘制方法及用MATLAB工具软件的绘制。然后根据绘制出的 曲线,用奈氏稳定判据判断其稳定性并计算其相对稳定性指标——相角裕 量和幅值裕量(手工和用MATLAB软件计算);最后分析系统频率特性性能 与时域性能指标之间的关系。 频率法是研究自动控制系统的一种经典工程方法,也是一种基本方法。 它仍然是分析研究系统的瞬态特性、稳定性、稳态误差等问题的主要方 法之一。研究方法是用图解方法,间接分析系统的瞬态特性和稳定性。 一旦用频率法对控制系统做出了分析和设计后,再根据时域和频域的关 系就可确定系统的时域特性。
0
电路频率特性以 可得
j 代替 s j ( ) G( j) 1 1 G ( j ) e jT
t
幅频特性为 相频特性为
G ( j )
y (t )
1 1 jT

1 1 (T ) 2
() G( j) tg 1T
x0 1 (T ) 2
系统频率特性为
x0 X ( s) s 2 2 ( s j )( s j ) x0
m K (s Z i ) x0 i 1 Y (s) G ( s) X (s) n ( s j )( s j ) (s P j ) j 1
输入信号的幅值; x—— 0
幅频特性 A( ) =
(4-2-2)
4.1 频率特性的基本概念与表示方法
频率特性的基本概念
在一般情况下,系统的传递函数为 若输入信号为正弦函数 式中
x(t ) x0
m K (s Z i ) Y (s) G(s) X ( s) i 1 n (s P j ) j 1 sin t
——输入信号的角频率。输入信号的拉氏变换为
解:[解题步骤](1)输出与输入频率相同
f 1Hz ,所以
2f 6.3(rad / s)
(2)求输出与输入相位差 惯性环节相位落后为
tg 1T tg 1 0.5 6.3 tg 1 3.15 72.4
(3)求输出幅值
100 30.3 1 y 0 x 0 K 0.5 1 10 10 j 1 (0.56.3) 2 1 3.295
同理 G( j)
G( j) e j ( ) G( j) e j ()
例4-1-1 求图4-1-1,电路的频率响应。 解: R C 电路的传递函数为
G(s)
图4-1-1
1 正弦输入信号为 x(t ) x sin
(4)稳态输出
y(t ) y0 sin(t ) 30.3 sin(6.3t 72.4 )
4.1.2 频率特性的表示方法


系统或环节的频率特性的表示方法很多,其本 质都是一样的,只是表示的形式不同而已。最 常用的有; 频率特性 幅相频率特性 对数频率特性
1.幅相频率特性
s j
(4-1-6)
因为
G ( j )是一个复数,则可以用幅值和相角表示,即
G( j) G( j) e j ()
式中 G( j) 是 G ( j ) 的幅值;
(4-1-7)
( )
是 G ( j ) 的相角(或幅角)。
G( j )的虚部 1 ( ) G( j ) tg [ ] G( j )的实部
相关文档
最新文档