自动控制原理 第五章 频域分析法
精品文档-自动控制原理(第二版)(千博)-第5章
图 5-5 惯性环节的波德图
25
三、对数幅相图(Nichols图)
对数幅相图是以相角(°)为横坐标, 以对数幅频L(ω)(dB)
为纵坐标绘出的G(jω)曲线。频率ω为参变量。因此它与幅相
频率特性一样, 在曲线的适当位置上要标出ω的值, 并且要用
箭头表示ω增加的方向。
用对数幅频Hale Waihona Puke 性及相频特性取得数据来绘制对数幅相
第五章 频 域 分 析 法
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 关系 第九节 德图
频率特性的基本概念 频率特性的表示方法 典型环节的频率特性 系统开环频率特性 奈奎斯特稳定性判据和波德判据 稳定裕度 闭环频率特性 开环频率特性和系统阶跃响应的
利用MATLAB绘制奈奎斯特图和波
8
图 5-2 频率特性与系统描述之间的关系
9
利用频率特性曲线分析研究控制系统性能的方法称为频域 分析法。频域分析法主要有傅氏变换法和经典法。
(1) 傅氏变换法就是系统在输入信号r(t)的作用下,其输 出响应为
即把时间函数变换到频域进行计算并以此分析研究系统的方法。 (2) 经典法就是先求出系统的开环频率特性G(jω)并绘成
的对数频率
22
(1) 对数幅频特性曲线。通常用L(ω)简记对数幅频特性, 故
ω从0变化到∞时的对数幅频特性曲线如图5-3所示。
23
(2) 相频特性曲线。通常以j(ω)表示相频特性, 即 j (ω)=∠G(jω)。对于惯性环节, 有
j (ω)=-arctanTω 对不同ω值, 逐点求出相角值并绘成曲线即为相频特性曲线, 如图5-5所示。
45
图 5-11 振荡环节近似波德图
自动控制原理第5章频域分析法
通过分析频率响应函数的极点和零点分布,以及系统的相位和幅值 特性,利用稳定性判据判断系统在不同频率下的稳定性。
注意事项
稳定性判据的选择应根据具体系统的特性和要求而定,同时应注意 不同判据之间的适用范围和限制条件。
04
频域分析法的应用实例
04
频域分析法的应用实例
控制系统性能分析
稳定性分析
极坐标或对数坐标表示。
绘制方法
通过频率响应函数的数值计算,将 结果绘制成曲线图,以便直观地了 解系统在不同频率下的性能表现。
注意事项
绘制曲线时应选择合适的坐标轴比 例和范围,以便更好地展示系统的 性能特点。
频率特性曲线的绘制
定义
频率特性曲线是频率响应函数在 不同频率下的表现形式,通常以
极坐标或对数坐标表示。
稳定裕度。
动态性能分析
02
研究系统在不同频率下的响应,分析系统的动态性能,如超调
和调节时间等。
静态误差分析
03
分析系统在稳态下的误差,确定系统的静态误差系数,评估系
统的静态性能。
系统优化设计
参数优化
通过调整系统参数,优化 系统的频率响应,提高系 统的性能指标。
结构优化
根据系统频率响应的特点, 对系统结构进行优化,改 善系统的整体性能。
05
总结与展望
05
总结与展望
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。
通过频率响应曲线,可以方便地比较不同系统或同一 系统不同参数下的性能。
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。
自动控制原理第五章频域分析法
谐振峰值
Am(m) 2
1
12
振荡环节的对数频率特性
L ()2l0 oG g (j) 2l0 o(g 1 n 2 2)24 2 n 2 2
n L()0低频渐近线是零分贝线。
n L ( ) 4 0lo g (/ n) 4 0lo g (T ) n 1 /T
高频段是一条斜率为- 40/dB的直线,和零分
幅频特性的谐振峰值和谐振角频率:
G(ju)
1
(1u2)242u2
d G d (j) u u 0 ,u r 1 22 ( 1 /2 0 .7)0
r n12 2 ( 1/ 20 .7) 0
幅频特性的谐振角频率和谐振峰值:
rn1 22, M r G (jr) 1 /21 2
谐振频率
1 / T , L () 2l0 o1 g2 T 2 2l0 o 1 0 g ( d)B
在频率很低时,对数幅频曲线可用0分贝线近似。
1 / T , L ( ) 2l0 o1 g 2 T 2 2l0 o T g
当频率很高时,对数幅频曲线可用一条直线近似,直
线斜率为-20dB/dec,与零分贝线相交的角频率为 1/T 。
( )
0 0.1 1 10
0 o 0.1 1 10
45o
20
90o
对数坐标刻度图
注意:
➢纵坐标是以幅值对数分贝数刻度的,是均匀的;横 ➢ 坐标按频率对数标尺刻度,但标出的是实际的值, ➢ 是不均匀的。 ——这种坐标系称为半对数坐标系。 ➢在横轴上,对应于频率每增大10倍的范围,称为十 ➢ 倍频程(dec),如1-10,5-50,而轴上所有十倍频 程 ➢ 的长度都是相等的。 ➢为了说明对数幅频特性的特点,引进斜率的概念, ➢ 即横坐标每变化十倍频程〔即变化〕所对应的纵 坐
自动控制原理第五章
•表5-1 RC网络的幅频特性和相频特性数据
A( )
( )
0 1 0
1 0.707
45
2 0.45
5 0.196
0
63.4 78.69 90
图5-2 RC网络的幅频和相频特性
图5-3 RC网络频率特性的幅相曲线
对数频率特性图又称伯德图(Bode图),包 括对数幅频特性和对数相频特性两条曲线, 其中,幅频特性曲线可以表示一个线性系 统或环节对不同频率正弦输入信号的稳态 增益;而相频特性曲线则可以表示一个线 性系统或环节对不同频率正弦输入信号的 相位差。对数频率特性图通常绘制在半对 数坐标纸上,也称单对数坐标纸。
图5-20控制系统结构图
将系统的开环频率特性函数按典型环节划分, 可以分解为: ( j 1) ( ( j ) 2 ( j ) 1) k
m1 m2
G ( j ) H ( j )
k
2 l
2
l l
( j )
0
k 1 n1
( i s 1) ( 2 ( j ) 2 2 j j ( j ) 1) j
图5-19 Ⅱ型三阶系统幅相频率特性图
讨论更一般的情况,对于如图5-20所示的闭 环控制系统结构图,其开环传递函数为 G( s) H ( s) ,可以把系统的开环频率特性写作如 下的极坐标形式或直角坐标形式:
G( j)H ( j) G( j)H ( j) e j () P() jQ()
•图5-6积分环节频率特性的极坐标图
在伯德图上,积分环节的对数频率特性为
L( ) lg A( ) lg G( j ) lg ( ) 2
图5-7积分环节的伯德图
第五章频域分析法
惯性环节的幅相特性曲线
j
M()
()
0 1 0
1
0 -90
O
自动控制原理
第五章 频域分析法-频率法
3.对数坐标图—伯德图(H.W.Bode) 对数频率特性曲线又称伯德图,包括对数 幅频和对数相频两条曲线。 对数频率特性曲线的横坐标表示频率 , 并按对数分度,单位是1/s。 对数幅频曲线的纵坐标表示对数幅频特性 的函数值,线性均匀分度,单位是分贝, 记作dB。 对数幅频特性定义为 L( ) 20lg M ( )
G( j) A()e j ( )
幅频特性A( ) 系统对不同频率输入信号在稳态情况下的衰减 (或放大)特性; 相频特性 ( ) 系统稳态输出对不同频率输入信号的相位滞后 (或超前)特性。 理论上可将频率特性的概念推广到不稳定系统,但是不稳定系 统的瞬态分量不会消失,瞬态分量和稳态分量始终同时存在, 不稳定系统的频率特性观察不到。 频率特性也是描述系统的动态数学模型,频率响应法 从频率特性出发研究系统。
频率特性反映了系统的内在性质,与外界因素无关!!
频率特性的定义: 稳定的线性定常系统,正弦信号的作用下 三种数学模型的关系如图 输出的稳态分量也是正弦信号,和输入频率相同; 振幅与输入信号振幅之比为幅频特性 A( ); 相位与输入信号相位差为相频特性 ( ) 。 输出稳态分量与输入正弦信号的复数比得频率特性。
-26.6 -45 -63.5 -71.5 -76
0
-78.7 -90
自动控制原理
第五章 频域分析法-频率法
幅频和相频特性曲线
自动控制原理
第五章 频域分析法-频率法
1 1 2T 2 1
自动控制原理--第5章 频域分析法
L() 20lg | G( j) | 20lg 2T 2 1
arctanT
当=0时,L()=0dB, =0, 曲线起始于坐标原点;当=1/T时, L()=-3dB, =-45;
自动控制原理
30
5-4 频域稳定性判据
一、映射定理
闭环特征函数 F(s)=1+G(s)H(s)
T
如果τ>T,则∠G(j)>0°,极坐标曲线在第Ⅰ象限变化;如果τ<T, 则∠G(j)<0°,极坐标曲线在第Ⅳ象限变化,如图所示。
自动控制原理
16
5.3.2 对数坐标图
通过半对数坐标分别表示幅频特性和相频特性的图形, 称为对数坐称图或波德(Bode)图。
1.对数坐标 对数频率特性曲线由对数幅频特性和相频特性两部分
系统的传递函数为 C(s) G(s)
R(s)
假定输入信号r(t)为
r(t) Asint
R(s) L[ Asint] A
A
s 2 2 (s j)(s j)
自动控制原理
7
G(s)
K (s z1 )(s z2 )(s zm ) (s s1 )(s s2 )(s sn )
nm
2j
AG( j) sin(t )
B sin(t )
G( j ) G( j ) e jG( j) G( j) e j
即
G( j) G(s) s j
这里的结论同RC网络讨论的结果是一致的。
自动控制原理
10
5.3 频率特性的图示方法
频率特性的图示方法主要有三种,即极坐标图、对数坐 标图和对数幅相图,现分述如下。
所以K=10。因此,所求开环传递函数
自动控制原理第五章频域分析法
第19页/共187页
频率特性
对应的幅值和相角:
同理,可求得对应于2的|G(j2)|和(j2) 。
若对取所有可能的值,则可得到一系列相应的幅值和相位。 其中幅值随频率变化而变化的特性称为系统的幅频特性。 相角随频率变化而变化的特性称为系统的相频特性。
第20页/共187页
每当ω增加十倍, L(ω)减少20dB负20分贝十倍频程 -20dB/ dec
第34页/共187页
5-3典型环节和开环系统频率特性
第35页/共187页
积分环节L(ω)
[-20]
[-20]
[-20]
第36页/共187页
5-3典型环节和开环系统频率特性
三、微分环节
幅频特性与ω成正比,相频特性恒为90°
第12页/共187页
5-2频率特性
以RC网络为例,说明频率特性的基本概念。
取拉氏变换,求网络的传递函数
如果输入为正弦量:
由电路分析,电路达到稳态时,输出也是以ω为角频率的正弦量。
在传递函数中G(s)中,只要令s=jω,则可由⑴式得到⑵式。
第13页/共187页
5-2频率特性
控制系统的三种数学模型:微分方程、传递函数、频率特性可以相互转换,它们的关系见右图。
交接频率将近似对数幅频特性曲线分为二段:低频段和高频段。
第41页/共187页
惯性环节G(jω)
φ(ω) = -tg-10.5 ω
ω
0
0.5
1
2
4
5
8
20
φo(ω)
A(ω)
0
1
-14.5
0.97
-26.6
0.89
自动控制原理第5章
自动控制原理
第五章 频域分析法-频率法
1 sin(t arctanT ) 1 2T 2
1
e jarctanT
j 1
e 1 jT
1 2T 2
jT
1
1 jT
RC网络的频率特性
只要把传递函数式中的s以j置换,就可以 得到频率特性,即
1
1
1 jT 1 Ts sj
自动控制原理
第五章 频域分析法-频率法
对数相频特性:( ) arctan 特征点: 1 , L( ) 3dB, 45
自动控制原理
第五章 频域分析法-频率法
一阶微分环节的伯德图 幅相曲线
自动控制原理
第五章 频域分析法-频率法
六、振荡环节
传递函数: 频率特性:
G(s)
2 n
s2 2n s n2
1
s
n
2
2 n
s1
G( j
M ( ) G(j )
G1(j ) G2 (j ) G3(j ) M1( ) M2 ( ) M3 ( )
( ) G(j ) G1(j ) G2(j ) G3(j ) 1( ) 2( ) 3( )
自动控制原理
第五章 频域分析法-频率法
1.开环幅相特性曲线的绘制
例 某0型单位负反馈控制系统,系统开环
频率特性: G(j) 2 j 2 2 j 1
对数幅频特性:
L() 20lg G j 20lg 1 22 2 2 2
对数相频特性:
arctan
1
2 2
2
自动控制原理
第五章 频域分析法-频率法
幅相曲线: 0时,M 1, 0 ; 时,M =, =180
自动控制原理
自动控制原理 第五章(第一次课)
autocumt@
18
中国矿业大学信电学院 常俊林
ω =1
1 12 + 2 2 e
(− tg
−1 1 2
)j
= 0 . 45 e
− 26 .6 o
c ss (t ) = 2 ⋅ 0 .45 sin t + 30 o − 26 .6 o = 0 .9 sin t + 3 .4 o
autocumt@ 13
(
)
(
)
中国矿业大学信电学院 常俊林
c(t ) = b1e
− s1t
+ ... + bn e
− sn t
+c1e
− jωt
+ c2e
jωt
css (t ) = c1e
− jωt
+ c2 e
jωt
其中: 其中
c1 = C ( s)( s + jω ) s = − jω
Aω = G ( s) ⋅ ( s + j ω ) s = − jω ( s + jω )( s − jω )
[ a (ω ) c (ω ) + b (ω ) d (ω )] + j[ b (ω ) c (ω ) − a (ω ) d (ω )] = c 2 (ω ) + d 2 (ω )
autocumt@ 9 中国矿业大学信电学院 常俊林
5-1 频率特性
b(ω )c(ω ) − a(ω )d (ω ) ϕ (ω ) = arctg a(ω )c(ω ) + b(ω )d (ω )
自ห้องสมุดไป่ตู้控制原理
r (t ) = 2 sin(t + 30 )
自动控制原理第五章线性系统的频域分析法
自动控制原理第五章线性系统的频域分析法1、基本内容和要点(l)频率特性系统的稳态频率响应,频率响应的物理概念及数学定义;求取频率特性的分析法和实验法。
(2)典型环节的频率特性比例、惯性、积分、微分、振荡、延迟环节的频率特性和对数频率特性。
非最小相位环节的频率特性。
(3)反馈控制系统的开环频率特性研究系统开环频率特性的意义。
单环系统开环对数频率持性的求取与绘制。
最小相位系统开环对数幅频特性与相频特性间的对应关系。
(4)奈奎斯特稳定判据幅角定理。
S平面与F平面的映射关系。
根据开环频率特性判别闭环系统稳定性的奈氏判据。
奈氏判据在多环系统中的应用和推广。
系统的相对稳定性。
相角与增益稳定裕量。
(5)二阶和高阶系统的频率域性能指标与时域性指标。
系统频率域性能指标。
二阶和高阶系统暂态响应性能指标与频率域性能指标间的解析关系及近似关系。
(6)系统的闭环频率特性开环频率特性与闭环频率特性间的解析关系。
用等M圆线从开环频率特性求取闭环频率特性。
用尼氏图线从开环对数频率特性求取闭环频率特性。
2、重点(l)系统稳态频率响应和暂态时域响应的关系。
(2)系统开环频率特性的绘制,最小相位系统开环频率特性的特点。
(3)奈奎斯特稳定判据和稳定裕量。
5-1引言第三章,时域分析,分析系统零、极点与系统时域指标的关系;典型二阶系统极点或和n与时域指标tp、和t、tr及稳态误差等的关系,及高阶系统的近似指标计算;第四章,根轨迹分析,研究系统某一个参数变化对系统闭环极点的影响;本章讨论系统零、极点对系统频率域指标的关系,频域指标又分开环频域指标和闭环频域指标,它们都是在频域上评价系统性能的参数。
频域分析是控制理论的一个重要分析方法。
5-2频率特性1.频率特性的基本概念理论依据定理:设线性定常系统G()的输入信号是正弦信号某(t)某int,在过度过程结束后,系统的稳态输出是与输入同频率的正弦信号,其幅值和相角都是频率的函数,即为c(t)Y()in[t()]。
自动控制原理第5章
jY (ω )
ω =∞
X (ω )
ω
积分环节的Nyquist图 积分环节的Bode图
幅频特性与角频率ω成反比,相频特性恒为-90° 成反比, 90° 对数幅频特性为一条斜率为 - 20dB/dec的直线,此 线通过L(ω)=0,ω=1的点
三、微分环节 微分环节的频率特性为
G ( jω ) = jω = ωe
奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述 奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述 了反馈系统稳定性。 极坐标图(Polar 极坐标图(Polar plot) =幅相频率特性曲线=幅相曲线 幅相频率特性曲线=
G ( jω )
可用幅值 G( jω ) 和相角ϕ (ω ) 的向量表示。
当输入信号的频率 ω → 0 ~ ∞ 变化时,向量 G ( jω ) 的幅值和相位也随之作相应的变化,其端点在复平面 上移动的轨迹称为极坐标图。
jY (ω )
ω →∞
ϕ (ω ) A(ω )
ω = 0 X (ω )
ω
RC网络对数频率特性 RC网络频率特性
5.2 典型环节的频率特性
用频域分析法研究控制系统的稳定性和动态 响应时,是根据系统的开环频率特性进行的, 响应时,是根据系统的开环频率特性进行的, 而控制系统的开环频率特性通常是由若干典 型环节的频率特性组成的。 型环节的频率特性组成的。 本节介绍八种常用的典型环节。 本节介绍八种常用的典型环节。
频率响应: 正弦输入信号作用下, 系统输出的稳态分量。 频率响应 : 正弦输入信号作用下,系统输出的稳态分量。 (控制系统中的信号可以表示为不同频率正弦信号的合成) 控制系统中的信号可以表示为不同频率正弦信号的合成) 频率特性: 系统频率响应和正弦输入信号之间的关系, 频率特性 : 系统频率响应和正弦输入信号之间的关系,它 和传递函数一样表示了系统或环节的动态特性。 和传递函数一样表示了系统或环节的动态特性。 数学基础:控制系统的频率特性反映正弦输入下系统响应 数学基础:控制系统的频率特性反映正弦输入下系统响应 的性能。研究其的数学基础是Fourier变换。 的性能。研究其的数学基础是Fourier变换。 频域分析法:应用频率特性研究线性系统的经典方法。 频域分析法:应用频率特性研究线性系统的经典方法。
第五章 频域分析法-自动控制原理(双语教材)(第2版)-摆玉龙-清华大学出版社
Lecture 5 Frequency Responses (2)
Control Engineering 2006/2007
The frequency response is a representation of the system's response to sinusoidal [ˌsɪnə'sɔɪdəl] inputs at varying frequencies. The output of a linear system to a sinusoidal input is a sinusoid of the same frequency but with a different magnitude and phase. The frequency response is defined as the magnitude and phase differences between the input and output sinusoids.
自动控制原理
第5章 线性系统的频域分析法
1
第5章 线性系统的频域分析法
5.1 引言 5.2 频率特性的基本概念 5.3 典型环节的频率特性及特性曲线的绘制 5.4 频域稳定判据及稳定裕量 5.5 频率特性与控制系统性能的关系 5.6 MATLAB在本章中的应用
2
The overall purpose of the chapter.
(1)频率特性具有明确的物理意义,可以将系统参 数、系统结构变化和系统性能指标统一进行研究。
5
5.1 引言
(2)频率特性法的计算量较小,一般可采用近似的作图
方法,简单、直观,易于工程技术领域使用。
(3)可以采用实验的方法求出系统或元件的频率特性,
自动控制原理第五章 线性系统的频域分析法-5-1
如同收音机、电视机一样,任一系统的频率响应反映系统的频率特性,体现系统的控制性能。
系统频率特性物理意义明确。应用频率特性分析研究系统性能的方法称为频域分析法。
控制系统的频域分析法兼顾动态响应和噪声抑制的要求,可以拓展应用于非线性系统。
频率特性定义
分别称为系统的幅频特性和相频特性。
系统数学模型间的关系
控 制 系 统
傅氏变换
拉氏变换
g(t)
数学建模
例5.1-1
图示系统,设输入为r(t)=sin(5t),计算系统的频率响应和稳态误差。
当
1
2
3
4
5
6
7
8
9
10
20
100
1
2
3
4
5
6
7
8
9
10
0
0.301
0.477
0.602
0.699
0.788
0.845
0.903
0.954
1
十倍频程
两倍频程
0.1
0.2
200
十倍频程
十倍频程
对数坐标的单位长度
⑶ 对数频率特性曲线
对数幅频特性曲线 纵坐标: ,线性刻度,单位为分贝(dB) 横坐标:ω ,对数刻度,单位为弧度/秒(rad/s)
绘制一阶系统幅相频率特性曲线
解:系统频率特性为
且有
即
复平面上位于第Ⅳ象限圆心为(1/2,j0),半径为1的半圆。
箭头表示随ω增加,曲线的运动方向
2. 对数频率特性曲线(对数坐标图、伯德(Bode)图)
⑴ 频率特性的常用对数函数
自动控制原理第五章
第五章 频域分析法目的:①直观,对高频干扰的抑制能力。
对快(高频)、慢(低频)信号的跟踪能力。
②便于系统的分析与设计。
③易于用实验法定传函。
§5.1 频率特性一. 定义)()()()(1n p s p s s s G +⋅⋅⋅+=θ在系统输入端加一个正弦信号:t R t r m ωsin )(⋅=))(()(22ωωωωωj s j s R s R s R m m -+⋅=+⋅=↔ 系统输出:))(()()()()(1ωωωθj s j s R p s p s s s Y m n-+⋅⋅+⋅⋅⋅+=t j t j e A e A t y t y ωω⋅+⋅+=↔-瞬态响应)()(1若系统稳定,即)(s G 的极点全位于s 左半平面,则 0)(l i m 1=∞→t y t稳态响应为:tj tj ss eA eA t y ωω⋅+⋅=-)(而)(21)()(22ωωωωωj G R jj s s R s G A m j s m -⋅-=+⋅+⋅⋅=-=)(21)()(22ωωωωωj G R jj s s R s G A m j s m ⋅=-⋅+⋅⋅== ∴t j m tj m ss e j G R je j G R j t y ωωωω⋅⋅+⋅-⋅-=-)(21)(21)( =])()([21t j t j m e j G e j G R jωωωω-⋅--⋅⋅ 又)(s G 为s 的有理函数,故)()(*ωωj G j G -=,即φωωj e j G j G )()(= φωωj e j G j G -=-)()(∴][)(21)()()(φωφωω+-+--⋅=t j t j mss e e j G R jt y =)sin()(φωω+⋅⋅t j G R m =)sin(φω+⋅t Y m可见:对稳定的线性定常系统,加入一个正弦信号,其稳态响应也是一个同频率的正弦信号。
其幅值是输入正弦信号幅值的)(ωj G 倍,其相移为)(ωφj G ∠=。
自动控制原理 第五章 控制系统的频域分析法
则
uos (t) = A ⋅ A(ω)sin[ω t + ϕ(ω)]
(5.2)
结论:
(1) 稳态解与输入信号为同一频率的正弦量;
(2) 当ω 从 0 向∞变化时,其幅值之比 A(ω) 和相位差ϕ(ω) 也将随之变化,其变化规
律由系统的固有参数 RC 决定; (3) 系统稳态解的幅值之比 A(ω) 是ω 的函数,其比值为
三角函数形式: G( jω) = A(ω)[cosϕ(ω) + jsinϕ(ω)] 。
式中 A(ω) = G( jω) 是幅值比,为ω 的函数,称为幅频特性;
ϕ(ω) = ∠G( jω) 是相位差,为ω 的函数,称为相频特性; U (ω) 是 G( jω) 的实部,为ω 的函数,称为实频特性; V (ω) 是 G( jω) 的虚部,为ω 的函数,称为虚频特性。
s + p1 s + p2
s + pn s + jω s − jω
∑n
=
Ci
+
B
+
D
i=1 s + pi s + jω s − jω
(5.4)
式中 Ci , B , D 均为待定系数。
将(5.4)式进行拉氏反变换,得系统的输出响应为
n
∑ c(t) = Cie− pi t + (Be− jω t + Dejω t ) = ct (t) + cs (t) i =1
C( jω) = G( jω)R( jω)
因而,得
G( jω) = C( jω) R( jω)
(5.11)
事实上,当ω 从 0 向∞变化时, G( jω) 将对不同的ω 作出反映,这种反映是由系统自
第五章1 控制系统的频域分析(频率特性与BODE图)
自动控制原理
幅相频率特性画法举例
画出二阶系统 G ( s ) = 112
的幅相频率特性
s (1 + 0 .02 s )
自动控制原理
2. 伯德图(Bode图)
如将系统频率特性G(jω ) 的幅值和相角分别绘在半对数坐
标图上,分别得到对数幅频特性曲线(纵轴:对幅值取分贝数
自动控制原理
极坐标图(Polar plot),幅相频率特性曲线,幅相曲线 当ω在0~∞变化时,相量G(jω) 的幅值和相角随ω而变化,与 此对应的相量G(jω) 的端点在复平面 G(jω) 上的运动轨迹 就称为幅相频率特性曲线或 Nyqusit曲线。画有 Nyqusit曲 线的坐标图称为极坐标图或Nyqusit图。( ω在0~-∞变化 对称于实轴) 奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述了反馈系统 稳定性
这些幅频特性曲线将通过点
自动控制原理
0dB,ω = 1
L(ω ) = 20 lg 1 = −20 lg ω (dB ) jω
ϕ (ω ) = −90°
Magnitude (dB)
Phas e (deg)
20 10
0 -10 -20 -30 -40 -89
-89.5
-90
-90.5
-91
-1
10
Bode Diagram of G(jw )=1/(jw )
(a) 幅频特性
自动控制原理
ϕ(ω) = −arctgTω
自动控制原理
输出与输入的相位之差
(b)相频特性
Uo (s) = G(s) = 1
Uo ( jω) = G( jω) = 1 = 1
自动控制原理 第5章
⇒
X 2 − X +Y 2 = 0
(下半圆) 下半圆)
Y = −ω T X
§5.2 典型环节与开环系统的频率特性
1 G( s) = 不稳定惯性环节 Ts − 1 1 G ( jω ) = − 1 + jω T 1 G = 1 + ω 2T 2 ωT ∠ G = − arctan = − ( 180° − arctan ω T ) = −180° + arctan ω T -1
ω ω ⑹ G ( jω ) = 1 1 − 2 + j 2ξ ωn 2 ωn ω ω ⑺ G ( jω ) = 1 − 2 + j 2ξ ωn ωn ω2 ω 1 − 2 − j 2ξ ωn ωn ⑻ G ( jω ) = e − jτ ω
2
jω
ω ω2 1 − 2 + j 2ξ ωn ωn
建 模
§5.1
频率特性
cs (t ) = A
2
r ( t ) = A sin ω t
1+ω T
2
§5.1.2 频率特性 G(jω) 的定义 ω 定义一: 定义一: G ( jω ) = G ( jω ) ∠G ( jω )
G ( jω ) = cs (t ) 1 = r (t ) 1 + ω 2T 2
∠ c s (t ) = − 63.4° + 30° = − 33.4°
ω =2
cs (t ) =
3 sin( 2t − 33.4° ) 5
s Φ e ( s) = s+1
ω =2 2 es (t ) ω jω Φ e ( jω ) = = = = 2 1 + jω 3 5 1+ω
《自动控制原理》 胡寿松 第05#1章 线性系统的频域分析法
用,它也是经典控制理论中的重点内容。
本章主要学习内容如下: 5.1 频率特性
5.2 典型环节和开环系统频率特性
5.3 频域稳定判据
5.4频域稳定裕度
5.5 闭环系统的频域性能指标
5.1 频率特性的一般概念
1 频率特性的基本概念
首先我们以图示的RC滤波网络为例,建立频
率特性的基本概念。
R i(t) C
②实验方法
(原理后续介绍)
三种数学模型之间的关系
频率特性也是描述系统的一种动态数学模型。
与微分方程和传递函数一样,也表征了系统的运动
规律。
例1 已知系统传递函数 G ( s)
1 ,输入正弦信号 s 1 r (t ) 3sin(2t 30) ,求稳态输出响应 Css (t ) ?
G ( j ) G ( j ) e jG ( j ) 指数形式:
G ( j ) G ( j ) e jG ( j ) U ( ) jV ( ) 实部和虚部形式:
实频特性: 虚频特性:
U () A() cos () V () A( ) sin ( )
(1)频率特性的定义
频率特性:零初始条件下,输出信号与输入信 号的傅氏变换之比,用 G( j) 表示。
C ( j ) G ( j ) G ( s) |s j R( j )
A( ) G ( j ) C ( j ) R ( j )
—幅频特性 —相频特性
( ) G( j )
率的关系曲线;对数相频特性则是相角∠ G(j)
和频率的关系曲线。
伯德图是在半对数坐标纸上绘制出来的。横坐
标采用对数刻度,纵坐标采用线性的均匀刻度。
在绘制伯德图时,为了作图和读数方便,常将
自动控制原理 第五章-2
Determine the stability of the system for two cases (1)K is small(2) K is large
G ( j ) H ( j )
K (1 jT1 )(1 jT2 )( j ) (1 T12 2 )(1 T22 2 ) K ((T1 T2 ) j (1 T 1T2 2 ) (1 T12 2 )(1 T22 2 )
0 ~ 90
K ( j 3) G ( j ) H ( j ) j ( j 1) K [4 j (3 2 )] (1 2 )
Im[G( j ) H ( j )] 0
c 3
G ( j ) H ( j )
K ( j 3) j ( j 1)
越(-∞,-1)区间一次。 开环频率特性曲线逆时针穿越(-∞,-1)区间时,随ω增加,频 率特性的相角值增大,称为一次正穿越N’+。 反之,开环频率特性曲线顺时针穿越(-∞,-1)区间时,随ω增 加,频率特性的相角值减小,则称为一次负穿越N’-。 频率特性曲线包围(-1,j0)点的情况,就可以利用频率特性曲线 在负实轴(-∞,-1)区间的正、负穿越来表达。
除劳斯判据外,分析系统稳定性的另一种常用判据 为奈奎斯特(Nyquist)判据。Nyquist稳定判据是奈奎斯 特于1932年提出的,是频率法的重要内容,简称奈氏判 据。奈氏判据的主要特点有
1.根据系统的开环频率特性,来研究闭环系统稳定性,而 不必求闭环特征根;
2.能够确定系统的稳定程度(相对稳定性)。 3.可分析系统的瞬态性能,利于对系统的分析与设计; 4.基于系统的开环奈氏图,是一种图解法。
N(s)=0 的根为开环传递函数的极点。
自动控制原理第五章 线性系统的频域分析法-5-6
5.6 控制系统的频域校正方法
控
结合校正装置,简要介绍串联校正的设计方法。常
制 原
用校正装置分为无源和有源两大类。
理 1. 串联无源校正 包括无源超前、无源滞后和无源滞
后-超前校正三种。无源校正网络由电阻、电容构成。
⑴ 串联无源超前校正
超前校正网络实现形式
Gc
(s)
U U
c r
( (
s s
) )
a4
制 校验相角裕度
原 理
m
arctan
a 21 a=源自arctan3 4
=36.9
=180 +(c)+m 180 167.2 36.9 49.7
达到相角裕度的要求。由于选择超前校正,校正后开
环幅相曲线与负实轴仍无交点,故幅值裕度无穷大,
自然满足要求。
再由
m
T
1 a
=4.4
T 0.114 s
串联超前校正设计步骤
R(s)
K C(s)
例5.6-1 图示反馈系统
-
s(s 1)
要求系统在 r(t)=t 1(t) 时,
稳态误差 e ss 0 .1 ra d ,截止频率 c 4 .4 ra d / s 相角
裕度 4 5 幅值裕度 h d B 1 0 d B ,试设计串联无
源超前网络。
5
Page: 5
自 解:① 设计开环增益,满足稳态要求
动
控 未校正系统为Ⅰ型系统。在单位斜坡输入下,由
制
1
原 理
ess K 0.1
K 10
T 为a的减函数 m 为a的增函数
② 校验待校正系统频域指标 由 L(m) 为a的增函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、频率特性的定义
线性定常系统,在正弦信号作用下, 稳态输出振幅与输入振幅之比,称为 系统的幅频率特性;稳态输出相位与 输入相位之差,称为系统的相频率特 性。 Ac j Ar A j
t j t j
第5章
基本要求 5-1 频率特性
频域分析法
5-2 典型环节的频率特性 5-3 系统的开环频率特性 5-4 频率稳定判据 5-5 系统闭环频率特性与阶跃响应的关系 5-6 开环频率特性与系统阶跃响应的关系
返回主目录
基本要求
1. 正确理解频率特性的概念。
2. 熟练掌握典型环节的频率特性,熟记其幅相特性曲 线及对数频率特性曲线。
n
Ci B D C ( s) s j s j i 1 s si
拉氏反变换 c(t ) Ci e s t ( De jt Be jt ) i 1 得
i
n
ct (t ) cs (t )
ct t
是系统的瞬态分量,最后趋于零。
cs t 是系统的稳态分量。
同理:
D
jw
2
Ar e
j j
2
将B、D代入(5-5)则
cs (t )
( j )
2 ( j ) Ar cos( t ( j ) ) 2 ( j) Ar sin(t ( j))
Ar (e
2 2 L( ) 20 lg 1 ( ) (2 ) n n
对数相频特性
2
2 n ( ) arctan 2 1 ( n )
图5-13 振荡环节的对数幅 频渐进特性
2.对数频率特性
振荡环节的对数幅频特性不仅与 n 有关,而且与阻尼比 有关,因此在转折频率附近一般不能简单地用渐近线近似代 替,否则可能引起较大的误差。
( ) 90
积分环节对数幅频曲线在 1 处通过 0dB 线,斜率为
20 dB / dec ;对数相频特性为
90 直线。
三、惯性环节(一阶系统)
传递函数
幅相特性
1 G(s) Ts 1
1 1 j tan1 T G( j ) e Tj 1 (T )2 1
5- 1
频率特性
输入信号:
其拉氏变换式
r (t ) Ar sin t
返回子目录
A R( s) 2 2 s
输出
b0 s m bm A C s s Rs 2 r 2 s s1 s s n s Cn C1 B D s s1 s sn s j s j
7. 理解闭环频率特性的特征量与控制系统阶跃响应的定 性关系。
8. 理解开环对数频率特性与系统性能的关系及三频段的 概念,会用三频段的分析方法对两个系统进行分析与 比较。
一、控制系统在正弦信号作用下的 稳态输出
闭环传递函数: b0 s m bm C s b0 s m bm s n s s1 s sn Rs s an
G( s) s
j
2
图5-15
六、一阶微分环节
G( s) s 1
G ( j ) j 1 ( ) 1 e
2
j tan1
图5-16
七、二阶微分环节
s s G ( s) 2 1 n n
Matlab程序 ks=[0.1 0.2 0.3 0.5 0.7 1.0]; om=10; for i=1:length(ks) num=om*om; den=[1 2*ks(i)*om om*om]; bode(num,den);hold on; end
五、微分环节
G( j ) j e
图5-11
谐振峰值
Am ( m ) 1 2 1 2
2 arctan
n
2
G j
1 1 n
2
2 n
2
e
2
1 n
图5-12 振荡环节的幅相特性
Matlab程序
ks=[0.4 0.6 0.8];om=10; for i=1:3
num=om*om;
den=[1 2*ks(i)*om om*om]; nyquist(num,den); axis('square');hold on; end
2.对数频率特性
对数幅频特性
对数频率特性
L 20lg A 1 T 2 2 1
2 2
20lg T 1
G tan1 T
当 当
T 1,
L 0
T 1,
L 20lg T
图5-9 惯性环节的对数频率特性曲线
四、振荡环节(二阶系统)
一、比例环节(放大环节)
传递函数: 幅相特性:
5-2 典型环节的频率特性
G( s) K
G ( j ) K K e
j 0
1)幅频特性 2)相频特性
A( ) K
( ) 0
L( ) 20 lg K
3)对数幅相特性
返回子目录
图5-5 比例环节的频率特性曲线
二、积分环节
采用对数坐标图的优点较多,主要表现在: ① 由于横坐标采用对数刻度,将低频段相对展宽了(低频 段频率特性的形状对于控制系统性能的研究具有较重要的意 义),而将高频段相对压缩了。可以在较宽的频段范围中研 究系统的频率特性。 ② 由于对数可将乘除运算变成加减运算。当绘制由多个环 节串联而成的系统的对数坐标图时,只要将各环节对数坐标 图的纵坐标相加、减即可,从而简化了画图的过程。 ③ 在对数坐标图上,所有典型环节的对数幅频特性乃至系 统的对数幅频特性均可用分段直线近似表示。这种近似具有 相当的精确度。若对分段直线进行修正,即可得到精确的特 性曲线。 ④ 若将实验所得的频率特性数据整理并用分段直线画出对 数频率特性,很容易写出实验对象的频率特性表达式或传递 函数。
3. 熟练掌握由系统开环传递函数绘制系统的开环对数 幅频渐近特性曲线及开环对数相频曲线的方法。
4. 熟练掌握由具有最小相位性质的系统开环对数幅频 特性曲线求开环传递函数的方法。
返回子目录
5. 熟练掌握乃奎斯特稳定判据和对数频率稳定判据及其 它们的应用。
6. 熟练掌握稳定裕度的概念及计算稳定裕度的方法。
G( j ) G( j ) G( j ) j ( ) =
幅频特性和相频特性曲线
图5-2
RC网络的幅
频特性和相 频特性
幅相频率特性曲线又称奈奎斯特(Nyquist)曲线
图5-3 RC网 络的幅相特性 曲线
2。对数频率特性
• 对数频率特性曲线又称伯德(Bode)图,包 括对数幅频和对数相频两条曲线
传递函数
1 G (s) s
1 j2 G ( j ) e
幅相特性
幅频特性
相频特性
1 A( ) ( ) 90
图5-6 积分环节的幅频、相频、幅相特性曲线
对数频率特性
积分环节的对数幅频特性与对数相频特性分别为:
L( ) 20 lg
Ar Ar
二、频率特性的定义
线性定常系统,在正弦信号作用下, 输出的稳态分量与输入的复数比,称 为系统的频率特性(即为幅相频率特 性,简称复相特性)。
频率特性表达式为
(s) |s j ( j) | ( j) | e
j ( j )
例子 以RC网络为例
• 其传递函数
1 G(s) Ts 1
G( j ) G( s) s j 1 Tj 1
频率特性
G ( j ) G ( s) s j 1 Tj 1
1 (T ) 1
2
e
j tan1 (T )
例子 以RC网络为例
频率特性
G ( j ) G ( s) s j 1 Tj 1
1
2 1 2 n n 2 2
( ) t an1
2 n
1 n
2
谐振频率
m 和谐振峰值 Am
dA 0 d
谐振频率
m n 1 2 2
幅频特性:
相频特性:
A( ) 2 2 1 T ( ) arctan T 1
图5-8 惯性环节的幅频、相频、幅相特性曲线
惯性环节幅相特性曲线是一个以(1/2,j0)为圆心、1/2为半径的半圆。 证明如下:
G( j )
其中
1 1 jT X jY 2 2 1 jT 1 T
对数幅频特性:
L( ) 20lg A( ) ~ (lg )
对数相频特性:
( ) ~ (lg )
图5-4 对数坐标刻度图
注意
– 纵坐标是以幅值对数分贝数刻度的,是均匀的;
横坐标按频率对数标尺刻度,但标出的是实际的 值,是不均匀的。 ——这种坐标系称为半对数坐标系。
– 在横轴上,对应于频率每增大10倍的范围,称 为十倍频程(dec),如1-10,5-50,而轴上所有 十倍频程的长度都是相等的。 – 为了说明对数幅频特性的特点,引进斜率的概 念,即横坐标每变化十倍频程(即变化)所对 应的纵坐标分贝数的变化量。
j [ t ( j ) ] 2
ቤተ መጻሕፍቲ ባይዱe
j [ t ( j ) ] 2
Ac sin(t )