涂层流程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.真空涂层技术的发展
真空涂层技术起步时间不长,国际上在上世纪六十年代才出现将CVD(化学气相沉积)技术应用于硬质合金刀具上。由于
该技术需在高温下进行(工艺温度高于 1000ºC),涂层种类单一,局限性很大,因此,其发展初期未免差强人意。
到了上世纪七十年代末,开始出现 PVD(物理气相沉积) 技术,为真空涂层开创了一个充满灿烂前景的新天地,之后在短短的二、三十年间PVD 涂层技术得到迅猛发展,究其原因,是因为其在真空密封的腔体内成膜,几乎无任何环境污染问题,有利于环保;因为其能得到光亮、华贵的表面,在颜色上,成熟的有七彩色、银色、透明色、金黄色、黑色、以及由金黄色到黑色之间的任何一种颜色,可谓五彩缤纷,能够满足装饰性的各种需要;又由于 PVD 技术,可以轻松得到其他方法难以获得的高硬度、高耐磨性的陶瓷涂层、复合涂层,应用在工装、模具上面,可以使寿命成倍提高,较好地实现了低成本、高收益的效果;此外, PVD 涂层技术具有低温、高能两个特点,几乎可以在任何基材上成膜,因此,应用范围十分广阔,其发展神速也就不足为奇。
真空涂层技术发展到了今天还出现了PCVD(物理化学气相沉积)、MT-CVD(中温化学气相沉积)等新技术,各种涂层设备、各种涂层工艺层出不穷,如今在这一领域中,已呈现出百花齐放,百家争鸣的喜人景象。
与此同时,我们还应该清醒地看到,真空涂层技术的发展又是严重不平衡的。由于刀具、模具的工作环境极其恶劣,对薄膜附着力的要求,远高于装饰涂层。因而,尽管装饰涂层的厂家已遍布各地,但能够生产工模涂层的厂家并不多。再加上刀具、模具涂层售后服务的欠缺,到目前为止,国内大多数涂层设备厂家都不能提供完整的刀具涂层工艺技术(包括前处理工艺、涂层工艺、涂后处理工艺、检测技术、涂层刀具和模具的应用技术等),而且,它还要求工艺技术人员,除了精通涂层的专业知识以外,还应具有扎实的金属材料与热处理知识、工模涂层前表面预处理知识、刀具、模具涂层的合理选择以及上机使用的技术
要求等,如果任一环节出现问题,都会给使用者产生使用效果不理想这样的结论。所有这些,都严重制约了该技术在刀具、模具上的应用。
另一方面,由于该技术是一门介乎材料学、物理学、电子、化学等学科的新兴边缘学科,而国内将其应用于刀具、模具生产领域内的为数不多的几个骨干厂家,大多走的也是一条从国外引进先进设备和工艺技术的路子,尚需一个消化、吸收的过程,因此,国内目前在该领域内的技术力量与其发展很不相称,急需奋起直追。
2. PVD 涂层的基本概念及其特点
PVD 是英文“Physical Vapor Deposition”的缩写形式,意思是物理气相沉积。我们现在一般地把真空蒸镀、溅射镀膜、离子镀等都称为物理气相沉积。
较为成熟的 PVD 方法主要有多弧镀与磁控溅射镀两种方式。多弧镀设备结构简单,容易操作。它的离子蒸发源靠电焊机电源
供电即可工作,其引弧的过程也与电焊类似,具体地说,在一定工艺气压下,引弧针与蒸发离子源短暂接触,断开,使气体放电。由于多弧镀的成因主要是借助于不断移动的弧斑,在蒸发源表面上连续形成熔池,使金属蒸发后,沉积在基体上而得到薄膜层的,与磁控溅射相比,它不但有靶材利用率高,更具有金属离子离化率高,薄膜与基体之间结合力强的优点。此外,多弧镀涂层颜色较为稳定,尤其是在做 TiN 涂层时,每一批次均容易得到相同稳定的金黄色,令磁控溅射法望尘莫及。多弧镀的不足之处是,在用传统的 DC 电源做低温涂层条件下,当涂层厚度达到0.3μm 时,沉积率与反射率接近,成膜变得非常困难。而且,薄膜表面开始变朦。多弧镀另一个不足之处是,由于金属是熔后蒸发,因此沉积颗粒较大,致密度低,耐磨性比磁控溅射法成膜差。
可见,多弧镀膜与磁控溅射法镀膜各有优劣,为了尽可能地发挥它们各自的优越性,实现互补,将多弧技术与磁控技术合而为一的涂层机应运而生。在工艺上出现了多弧镀打底,然后利用磁控溅射法增厚涂层,最后再利用多弧镀达到最终稳定的表面涂层颜色的新方法。
大约在八十年代中后期,出现了热阴极电子枪蒸发离子镀、热阴极弧磁控等离子镀膜机,应用效果很好,使TiN 涂层刀具很快得到普及性应用。其中热阴极电子枪蒸发离子镀,利用铜坩埚加热融化被镀金属材料,利用钽灯丝给工件加热、除气,利用电子枪增强离化率,不但可以得到厚度 3~5μm的TiN 涂层,而且其结合力、耐磨性均有不俗表现,甚至用打磨的方法都难以除去。但是这些设备都只适合于 TiN涂层,或纯金属薄膜。对于多元涂层或复合涂层,则力不从心,难以适应高硬度材料高速切
削以及模具应用多样性的要求。
3. 现代涂层设备(均匀加热技术、温度测量技术、非平衡磁控溅射技术、辅助阳极技术、中频电源、脉冲技术) 现代涂层设备主要由真空室、真空获得部分、真空测量部分、电源供给部分、工艺气体输入系统、机械传动部分、加热及测温部件、离子蒸发或溅射源、水冷系统等部分组成。
3.1 真空室
涂层设备主要有连续涂层生产线及单室涂层机两种形式,由于工模涂层对加热及机械传动部分有较高要求,而且工模形状、尺寸千差万别,连续涂层生产线通常难以满足要求,须采用单室涂层机。
3.2 真空获得部分
在真空技术中,真空获得部分是重要组成部分。由于工模件涂层高附着力的要求,其涂层工艺开始前背景真空度最好高于6mPa,涂层工艺结束后真空度甚至可达 0.06mPa 以上,因此合理选择真空获得设备,实现高真空度至关重要。
就目前来说,还没有一种泵能从大气压一直工作到接近超高真空。因此,真空的获得不是一种真空设备和方法所能达到的,必须将几种泵联合使用,如机械泵、分子泵系统等。
3.3 真空测量部分
真空系统的真空测量部分,就是要对真空室内的压强进行测量。像真空泵一样,没有一种真空计能测量整个真空范围,人们于是按不同的原理和要求制成了许多种类的真空计。
3.4 电源供给部分
靶电源主要有直流电源(如 MDX)、中频电源(如美国 AE公司生产的 PE、PEII、PINACAL);工件本身通常需加直流电源(如 MDX)、脉冲电源(如美国AE公司生产的 PINACAL+)、或射频电源(RF)。
3.5 工艺气体输入系统
工艺气体,如氩气(Ar)、氪气(Kr)、氮气(N2)、乙炔(C2H2)、甲烷(CH4)、氢气(H2)、氧气(O2)等,一般均由气瓶供应,经气体减压阀、气体截止阀、管路、气体流量计、电磁阀、压电阀,然后通入真空室。这种气体输入系统的优点是,管路简捷、明快,维修或更换气瓶容易。各涂层机之间互不影响。也有多台涂层机共用一组气瓶的情况,这种情况在一些规模较大的涂层车间可能有机会看到。它的好处是,减少气瓶占用量,统一规划、统一布局。缺点是,由于接头增多,使漏气机会增加。而且,各涂层机之间会互相干扰,一台涂层机的管路漏气,有可能会影响到其他涂层机的产品质量。此外,更换气瓶时,必须保证所有主机都处于非用气状态。
3.6 机械传动部分
刀具涂层要求周边必须厚度均匀一致,因此,在涂层过程中须有三个转动量才能满足要求。即在要求大工件台转动(I)的同时,小的工件承载台也转动( II),并且工件本身还能同时自转(III)。
在机械设计上,一般是在大工件转盘底部中央为一大的主动齿轮,周围是一些小的星行轮与之啮合,再用拨叉拨动工件自转。当然,在做模具涂层时,一般有两个转动量就足够了,但是齿轮可承载量必须大大增强。
3.7 加热及测温部分
做工模涂层的时候,如何保证被镀工件均匀加热比装饰涂