高数中导数的应用
高数课件3-6导数在经济上的应用举例
边际收益:增 加一单位产量 所增加的收益
边际利润:边 际收益减去边
际成本
边际分析在经 济决策中的应 用:通过比较 边际成本和边 际收益,确定 最优产量和价
格
弹性分析
需求弹性:衡量消费者对价格变化的敏感程度 供给弹性:衡量生产者对价格变化的敏感程度 交叉弹性:衡量两种商品之间的替代关系 收入弹性:衡量消费者收入变化对消费需求的影响
公司
导数在经济上的应 用举例
单击此处添加副标题汇报人:源自目录单击添加目录项标题
01
导数在经济分析中的应用
02
导数在金融领域的应用
03
导数在市场分析中的应用
04
导数在生产决策中的应用
05
导数在资源分配中的应用
06
01
添加章节标题
01
导数在经济分析中的应用
边际分析
边际成本:增 加一单位产量 所增加的成本
导数在风险评估中的局限性:导数只能预测短期趋势,不能预测长期趋势,因此需要结合其他方 法进行风险评估。
风险评估的实际应用:在金融领域,风险评估被广泛应用于股票、债券、期货等投资产品的风险 评估。
投资组合优化
导数在投资组合优化中的应 用:通过计算导数,找到最 优的投资组合
投资组合:将资金分散到不 同的资产中,以降低风险
资源利用和环境保护的平衡
导数在经济学中的应用:通过导数分析资源分配的优化问题
资源利用和环境保护的关系:资源利用过度会导致环境破坏,而保护环境 需要限制资源利用 导数在资源分配中的应用:通过导数分析,找到资源利用和环境保护的平 衡点
案例分析:某地区如何通过导数分析,实现资源利用和环境保护的平衡
资源分配的效率和公平性
高数隐函数偏导数的求法及其应用
隐函数具有连续性、可微性等性质, 这些性质使得我们可以对其进行微积 分运算。
偏导数定义及几何意义
偏导数定义
偏导数是指多元函数中,一个自变量变化而其余自变量保持不变时,因变量相对于该自变量的变化率 。
偏导数几何意义
偏导数在几何上表示多元函数在某一点处沿某一坐标轴方向的变化率,即切线斜率。
隐函数存在定理
04
隐函数偏导数在物理中的应用
速度、加速度与位移关系
隐函数偏导数在描述质点运动学中的速度、加速度与位移关系时具有重要作用。
通过求解隐函数的偏导数,可以得到质点在各个方向上的速度分量,进而求得质点 的合速度。
同样地,通过对速度进行偏微分,可以得到质点在各个方向上的加速度分量,从而 了解质点的运动状态。
收益函数
收益函数表示产量与收益之间的关系。通过求隐函数的收 益函数偏导数,可以得到边际收益,即增加一单位产量所 引起的总收益的变动。这些边际量在经济学中对于分析生 产者的行为和市场均衡具有重要意义。
06
总结与展望
隐函数偏导数求解方法总结
直接法
通过对方程两边同时求偏导数,得到包含未知偏导数的等式, 然后解出未知偏导数。这种方法适用于较简单的隐函数方程。
03
隐函数偏导数在几何中的应用
切线斜率与法线斜率
切线斜率
隐函数在某点的切线斜率可以由该点的偏导数求得。对于二元隐函数 $F(x,y)=0$,在点$(x_0,y_0)$处的切线斜率为$frac{F_x(x_0,y_0)}{F_y(x_0,y_0)}$。
法线斜率
法线是与切线垂直的直线,因此法线的斜率与切线的斜率互为负倒数。在点 $(x_0,y_0)$处的法线斜率为$frac{F_y(x_0,y_0)}{F_x(x_0,y_0)}$。
《高数导数公式》课件
导数可以用来描述振动和波动问题中的物理量,例如振幅、频率等 。
导数的扩展知识
05
高阶导数
高阶导数的定义
高阶导数是函数导数的连续求导过程,表示 函数在某点的变化率随阶数的增加而增加。
高阶导数的计算
高阶导数的计算需要使用到前一阶的导数,通过连 续求导来得到。
高阶导数的应用
高阶导数在数学、物理和工程等领域中有广 泛的应用,例如在研究函数的极值、拐点、 曲线的弯曲程度等方面。
描述物体运动的方向。
03
导数与切线斜率、运动方向的关系
导数可以表示曲线在某一点的切线斜率,进而可以判断物体的运动方向
。
导数在物理问题中的应用
瞬时速度
导数可以用来计算瞬时速度,例如在匀变速直线运动中,物体的瞬 时速度等于其位移的导数。
极值问题
导数可以用来求解函数的极值问题,例如在物理学中,最小作用量 原理就是利用导数求解极值问题的典型例子。
《高数导数公式》ppt 课件
目录
• 导数的定义与几何意义 • 导数的计算 • 导数的应用 • 导数的物理意义 • 导数的扩展知识
01
导数的定义与几何
意义
导数的定义
导数的定义
导数是函数在某一点的变化率,表示函数在该 点附近的小范围内变化的情况。
导数的计算方法
通过极限来计算函数在某一点的导数,即求函 数在该点的切线斜率。
THANKS.
利用导数研究曲线的凹凸性
总结词
通过求二阶导数判断函数的凹凸性,有 助于了解函数图像的弯曲趋势和变化规 律。
VS
详细描述
二阶导数大于零表示函数图像向下凸出, 二阶导数小于零表示函数图像向上凸出。 通过分析二阶导数的符号变化,可以确定 函数的凹凸区间和弯曲趋势。
高数上册第3章微分中值定理与导数的应用
f ( x) 在以 x0 , x1 为端点的区间满足罗尔定理条件 , 在 x0 , x1 之间
至少存在一点
假设另有
但
矛盾, 故假设不真!
二、拉格朗日中值定理
满足: (1) 在区间 [ a , b ] 上连续
y
y f ( x)
b x (2) 在区间 ( a , b ) 内可导 f (b) f (a ) . 至少存在一点 使 f ( ) ba f (b) f (a ) 0 证: 问题转化为证 f ( )
1 sec 2 x 1 1 tan 2 x lim lim 2 x0 1 cos x 2 x 0 1 cos x
1 x2 lim 2 2 x 0 x 2
0 型 0
1.
二、 型未定式 定理 2. (洛必达法则)
(2) 存在 0,使得x U ( x0 , ) 时,f ( x), g ( x)可导,
f ( x) (3) lim A (或为∞) x x0 g ( x )
f ( x) f ( x) lim lim . x x0 g ( x ) x x0 g ( x )
例4. 求 解: 原式 lim
1 x n 1
x
nx
1 0 lim n x n x
则 ( x) 在[a, b] 上连续, 在 (a, b)内可导, 且 f (b) g (a) f (a) g (b) (a) (b) g (b) g (a)
由罗尔定理知, 至少存在一点
使
即
f (b) f (a) f ( ) . g (b) g (a) g ( )
ba 显然 , 在[a, b] 上连续, 在(a, b)内可导, 且 (a) b f (a) a f (b) (b) , 由罗尔定理知至少存在一点 ba 思路: 利用逆向思维找出一个满足罗尔定理条件的函数 即定理结论成立 . 证毕
高数大一导数和微分知识点
高数大一导数和微分知识点在高等数学学科中,导数和微分是非常重要的概念和知识点。
导数用于描述函数在某一点上的变化率,而微分则是导数的一种具体形式。
本文将介绍导数和微分的基本概念、计算方法以及它们在实际问题中的应用。
一、导数的定义和性质导数描述了函数在某一点上的变化率。
函数f(x)在点x=a处的导数可以表示为f'(a),它的定义如下:f'(a) = lim [f(x) - f(a)] / (x - a) 当 x -> a时导数具有以下一些性质:1. 可导性:如果函数f(x)在点x=a处有导数,那么我们说函数在点x=a处可导。
2. 右导数和左导数:如果函数f(x)在点x=a处的右导数和左导数存在且相等,那么函数在点x=a处可导。
3. 常数导数:常数函数的导数为0。
4. 和差法则:(f+g)'(a) = f'(a) + g'(a),(f-g)'(a) = f'(a) - g'(a)。
5. 乘法法则:(f·g)'(a) = f'(a)·g(a) + f(a)·g'(a)。
6. 除法法则:(f/g)'(a) = (f'(a)·g(a) - f(a)·g'(a)) / (g(a))^2,其中g(a) ≠ 0。
7. 复合函数的导数:如果y=f(u)和u=g(x)都可导,则复合函数y=f(g(x))也可导,且导数为f'(g(x))·g'(x)。
二、导数的计算方法1. 基本函数的导数:- 常数函数的导数为0。
- 幂函数y=x^n的导数为y'=n·x^(n-1)。
- 三角函数的导数:正弦函数的导数为y'=cos(x),余弦函数的导数为y'=-sin(x),正切函数的导数为y'=sec^2(x)。
高数-导数概念及应用
核心导语
3 个必知条件——导数应用中的三个重要结论
(1) f (x)>0 在(a,b)上成立是 f(x)在(a,b)上单调递增的充
导数
知识网络
导数概念 导数运算
导数应用
函数的瞬时变化率
运动的瞬时速度 曲线的切线斜率 基本初等函数求导 导数的四则运算法则 简单复合函数的导数
函数单调性研究 函数的极值、最值
曲线的切线 变速运动的速度
最优化问题
核心导语
一、导数概念及运算
1个重要区别——“过某点”与“在某点”的区别
求曲线的切线要注意“过点P的切线”与“在点P处的切线” 的差异:过点P的切线中,点P不一定是切点,点P也不一定 在已知曲线上,而在点P处的切线,必以点P为切点.
2项必须防范——导数运算中应注意的问题 (1)利用公式求导时要特别注意,除法公式中分子符号,防 止与乘法公式混淆. (2)含有字母参数的函数求导时,要分清哪是变量哪是参 数,参数是常量,其导数为零.
核心导语
3种必会方法——求导数的基本方法 (1)连乘积的形式:先展开化为多项式形式,再求导. (2)根式形式:先化为分数指数幂、再求导. (3)复杂分式:通过分子上凑分母,化为简单分式的和、差, 再求导.
内的图象如图所示,则函数 f(x)在开区间(a,b)内有极小值点的
个数为 1 .
第1讲 导数及其应用
考向一 导数的基本运算
例1 求下列函数的导数.
热 点
(1)y=exlnx;
考 向
(2)y=(x+1)(x+2)(x+3);
邓正华高数基础02第二讲 导数及其应用
简单.
例
1.设,则 .
【100!】
2.设恒成立,则 .
【】
3.设在有定义,,且,有,求.
【】
解,
,
,又, 故. 问题8 如何求函数的阶导数? 答 求阶导数的方法有 ⑴归纳法 依次求出,等,观察其规律,写出; ⑵分解法 将函数分解为某些简单函数之和; ⑶用莱布尼茨公式求乘积的阶导数; ⑷用泰勒公式求. 例 1.设,求.【】 2.设,求.【】 问题9 如何判别函数的单调性?
11.讨论曲线与的交点个数. 解 【零点个数问题,讨论方程根的个数】 令, 令,, 当时,,递减,只有惟一零点, 故只有惟一驻点,在,上单调, 又,,, 当,即时,方程无实根,当,即时,方程有惟一实根,当,即时, 方程有两个实根. 故当时,两条曲线无交点,当时,两条曲线有一个交点,当时,两 条曲线有两个交点. 12.在区间内,方程有几个实根? 证 【零点个数问题】 令,此函数为偶函数且时,故只要讨论在内有几个实根. 时,,
答 根据函数单调性判别法知,函数单调区间的分界点是其导函数
的零点(称为函数的驻点)或者导数不存在的点.
判别函数单调性的步骤是:
⑴求出函数的驻点和不可导点;
⑵用这些点将函数的定义域分成若干小区间;
⑶确定各小区间上导数的符号(列表);
⑷判别函数在各小区间上的单调性. 例 1.证明在上单调增加. 2.设在上二次可导且,,证明在上单调减少. 问题10 如何求函数的极值?
⑴若在上连续,则求出函数在驻点,不可导点、端点处的函数值,
其中最大(小)的为最大(小)值.
⑵若在区间内可导且只有惟一极值,则极小值就是最小值,极大值
就是最大值.
注 实际问题根据题意判别. 例 1.在抛物线上的第一象限部分求一点,过点作切线,使该切线与坐
高数导数的应用习题及答案
1•函数fx在a,b上连续,且f
a f b,则至少存在一点
错误
a,b,使f
•••不满足罗尔定理的条件。
2 .若函数
fX在Xo的某邻域内处处可微,且
Xo
0,则函数fX必在Xo处取得
极值.
错误
•••驻点不一定是极值点,如:y
X 0是其驻点,但不是极值点。
3 •若函数
f X在Xo处取得极值,则曲线y
••Timlim
x 0sin2xx 02x
1
一lim
2x0X
ax .即lime b
X 0
又当X 0时,
1,b1。
三、选择填空:
1•下列函数中,在区间
1,1上满足罗尔定理条件的是(
a.
InX
c.
1 X2
.1
XSi n-X
X
0 X
•/
eX在端点的值不相等;
gXln|X在区间1,1上不连续;
.1对kXxsn;
X X3X的拐点是(
o,o
).
X2x21,fX
4x,令f
o,得
•••函数
fXX3X的拐点是0,0。
4 .曲线f X
InX的凸区间是(
0,
).
•/fX
■4,使fX无意义的点为X 0。
X
0时,fX
•••曲线fX
InX的凸区间是
0,。
ax
5.若lim —
X0sin2x
1),b
1).
ax ]ax I
e b e b
内单调减少且是向上凹. 正确
二、填空:
1.设fX
ainX
bx2
(a,b为常数)在x11,x22处有极值,则a
导数的概念和定义高数
导数的概念和定义高数导数是微积分中的一个重要概念,用来描述函数在某一点处的变化率。
它在数学和物理学等领域中具有广泛应用,并且是理解微积分的基础之一。
本文将详细介绍导数的概念和定义,并探讨其在高等数学中的意义和应用。
一、导数的概念导数描述了函数在某一点的切线斜率,或者说函数在该点的瞬时变化率。
对于函数f(x),若它在某一点x处的导数存在,那么导数f'(x)表示函数在该点的切线斜率。
如果函数在每一个点的导数都存在,那么这个函数被称为可导函数。
导数的概念可以用极限来精确定义。
设函数f(x)在点x处连续,那么该点的导数f'(x)可以通过以下极限公式来计算:```f'(x) = lim h→0 (f(x+h) - f(x))/h```其中,h表示自变量的增量,即x+h代表一个比x更接近的点。
上述极限即为切线的斜率。
二、导数的定义导数的定义是导数概念的具体表达,用来计算函数在某一点处的导数值。
根据导数的概念,导数的定义可表示为:```f'(x) = lim h→0 (f(x+h) - f(x))/h```这就是导数的一种常见形式定义。
根据这个定义,我们可以计算函数在某一点的导数值。
三、导数的意义和应用导数在高等数学中具有重要的意义和应用。
首先,导数可以用来求函数的极值点。
对于一个可导函数,在其极值点处导数等于0。
通过求导,我们可以找到函数的极值点,并进一步研究函数的性质。
其次,导数可以用来描述函数的变化趋势。
函数的导数可以告诉我们函数在某一点的变化快慢。
如果导数为正,表示函数在该点递增;如果导数为负,表示函数在该点递减;如果导数为零,表示函数在该点取得极值。
此外,导数还可以用来求解曲线的切线方程。
利用导数的概念,我们可以求得曲线在某一点的切线斜率,并通过点斜式方程来求解切线方程。
切线方程在物理学等应用领域中具有重要意义。
导数的概念和定义在高数中是非常基础的概念,它为后续的微积分学习奠定了坚实的基础。
高数(1)第四章微分中值定理和导数的应用
第四章微分中值定理和导数的应用【字体:大中小】【打印】4.1 微分中值定理费马引理:设函数y=f(x)在点的一个邻域上有定义,并在可导,如果(或)则一、罗尔(Rolle)定理1.罗尔(Rolle)定理如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a)=f(b),那么在(a,b)内至少有一点,使得函数f(x)在该点的导数等于零,即。
2.几何解释:在曲线弧AB上至少有一点C,在该点处的切线是水平的。
例1.判断函数,在[-1,3]上是否满足罗尔定理条件,若满足,求出它的驻点。
【答疑编号11040101:针对该题提问】解满足在[-1,3]上连续,在(-1,3)上可导,且f(-1)=f(3)=0,∵,取例2.设f(x)=(x+1)(x-2)(x-3)(x-5),判断有几个实根,并指出这些根所在的区间。
【答疑编号11040102:针对该题提问】二、拉格朗日(Lagrange)中值定理1.拉格朗日(Lagrange)中值定理如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么在(a,b)内至少有一点,使等式成立。
注意:与罗尔定理相比条件中去掉了f(a)=f(b)结论亦可写成。
2.几何解释:在曲线弧AB上至少有一点C,在该点处的切线平行于弦AB。
拉格朗日中值定理又称微分中值定理例3(教材162页习题4.1,3题(2)题)、判断f(x)=sinx在上是否满足拉格朗日中值定理。
【答疑编号11040103:针对该题提问】推论1 如果函数f(x)在区间I上的导数恒为零,那么f(x)在区间I上是一个常数。
例4(教材162页习题4.1,4题)、证明【答疑编号11040104:针对该题提问】证设又,即,推论2 假设在区间I上两个函数f(x)和g(x)的导数处处相等,则f(x)与g(x)至多相差一个常数。
4.2 洛必达法则一、型及型未定式解法:洛必达法则1、定义如果当x→a(或x→∞)时,两个函数f(x)与F(x)都趋于零或都趋于无穷大,那么极限称为或型未定式。
高数大一上知识点总结导数
高数大一上知识点总结导数导数是高等数学中一个重要的概念,它是微积分的基础之一。
在大一上学期的高等数学课程中,我们学习了许多与导数相关的知识点。
本文将对这些知识点进行总结,帮助大家更好地掌握导数的概念和运用。
一、导数的定义导数的定义是极限的一种应用。
设函数f(x)在点x0的某邻域内有定义,若极限lim (f(x) - f(x0))/(x - x0)x → x0存在,且记为f'(x0),则称f(x)在点x0处可导,f'(x0)为f(x)在点x0处的导数。
二、导数的几何意义导数的几何意义是函数曲线在某一点处的切线的斜率。
切线的斜率可以通过导数来表示,导数为正表示函数曲线在该点处递增,导数为负表示函数曲线在该点处递减,导数为零表示函数曲线在该点处取得极值。
三、导数的运算法则1. 常数法则:若c为常数,则d(c)/dx = 0。
2. 基本初等函数的导数:- 若y = xn,则dy/dx = nx^(n-1)。
- 若y = sin(x),则dy/dx = cos(x)。
- 若y = cos(x),则dy/dx = -sin(x)。
- 若y = e^x,则dy/dx = e^x。
- 若y = ln(x),则dy/dx = 1/x。
4. 乘法法则:若f(x)和g(x)都在点x处可导,则(fg)'(x) =f'(x)g(x) + f(x)g'(x)。
5. 商法则:若f(x)和g(x)都在点x处可导且g(x)≠0,则(f/g)'(x) = [f'(x)g(x) - f(x)g'(x)] / [g(x)]^2。
五、导数的应用导数在实际问题的建模和解决中有重要的应用,下面介绍一些典型的应用场景:1. 切线和法线:通过求导数,我们可以得到函数曲线在特定点处的切线和法线方程,这在几何中具有重要意义。
2. 极值问题:通过导数的正负变化可以判断函数的极值点,这在最优化问题中有广泛应用。
高数课件第三章中值定理及导数的应用第四节:单调性凹凸性
设f ( x) x x 1 I [1, 0], 证明:
5
f ( 1) 1 0,
f (0) 1 0,
由零点定理, f (x) 在 (-1, 0) 内至少有一个实根,
f ( x ) 5 x 4 1 0,
因此 f (x) 在 (- , + ) 内单调增加,
x ( , 0) y y 凹
0 0 1
(0 , 2 ) 3
(2 , ) 3 0
2 3 11 27
凸
凹
2) 上 2 在 ( 0 , ( , 0 ) 上向上凹 , 故该曲线在 及 ( 3 , ) 3 2 , 11 ) 均为拐点. ( 点 ( 0 , 1 ) 及 向上凸 , 3 27
y cos x sin x , y sin x cos x ,
y cos x sin x . 3 7 令 y 0, 得 x1 , x2 . 4 4
f ( 3 ) 2 4
0,
f (
在[0,2 ]内曲线有拐点为 ( 3 ,0), ( 7 ,0).
方法2:
设函数 f ( x) 在 x0 的邻域内三阶可导
,
P154 15 且 f ( x0 ) 0,而 f ( x0 ) 0 ,
那末 ( x0 , f ( x0 )) 是曲线 y f ( x) 的拐点.
例10 求曲线 y sin x cos x ( [0,2 ] 内 ) 的拐点. 解
y
y f ( x)
B
A
o
a
b
x
即 f ( x) 在 [ a , b ] 上单调减少.
由单调性判断可知:
若 f ( x) 0 f ( x) 单调减少 曲线 y f ( x) 是凸的.
高数上课件3——导数的应用
南京航空航天大学高等数学竞赛培训——3、导数的应用
南京航空航天大学高等数学竞赛培训——3、导数的应用
南京航空航天大学高等数学竞赛培训——3、导数的应用
南京航空航天大学高等数学竞赛培训——3、导数的应用
南京航空航天大学高等数学竞赛培训——3、导数的应用
3 导数的应用III——凹凸函数的性质与判定
边际收益与边际成本
需求弹性
南京航空航天大学高等数学竞赛培训——3、导数的应用
南京航空航天大学高等数学竞赛培训——3、导数的应用
南京航空航天大学高等数学竞赛培训——3、导数的应用
南京航空航天大学高等数学竞赛培训——3、导数的应用
南京航空航天大学高等数学竞赛培训——3、导数的应用
南京航空航天大学高等数学竞赛培训——3、导数的应用
南京航空航天大学高等数学竞赛培训——3、导数的应用
1 导数的应用I——几何应用
南京航空航天大学高等数学竞赛培训——3、导数的应用
切线与法线
南京航空航天大学高等数学竞赛培训——3、导数的应用
切线与法线
南京航空航天大学高等数学竞赛培训——3、导数的应用
曲率、曲率半径、曲率圆
南京航空航天大学高等数学竞赛培训——3、导数的应用
(A)xyyyx
x
x
(B)
(C)
(D)
南京航空航天大学高等数学竞赛培训——3、导数的应用
南京航空航天大学高等数学竞赛培训——3、导数的应用
(−∞, −1) −1 (−1,0) 0 (0,1) 1 (1,+∞)
f '( x) −
0+
0−
0
+
f (x)
2
极小 值点
/
高数中的导数概念及其应用领域
高数中的导数概念及其应用领域导数是微积分中的一个重要概念,它描述了函数在某一点的变化率。
在高等数学中,导数具有广泛的应用领域,包括物理学、经济学、计算机科学等等。
本文将重点探讨导数的概念及其应用领域。
首先,我们来了解一下导数的定义。
在数学中,导数表示的是函数在某个特定点上的变化率。
假设$f(x)$是一个函数,如果存在极限$\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$,那么这个极限值就被称为函数$f(x)$在点$x=x_0$处的导数,记作$f'(x_0)$或$\frac{df}{dx}(x_0)$。
导数的几何意义是函数图像在某一点处的切线斜率。
具体来说,当我们计算函数在某一点的导数时,我们得到的是这个点处图像切线的斜率。
这个斜率的正负表示了函数在该点上升或下降的趋势,斜率的大小表示了函数的变化速度。
导数的概念在物理学中有着非常广泛的应用。
例如,在物理学中,速度是对位移的导数,加速度是对速度的导数。
通过求取导数,我们可以计算出物体在某一时刻的速度和加速度,从而研究物体的运动规律。
经济学中也广泛使用导数来分析经济现象。
例如,边际成本、边际收益等概念都是由导数引出的。
经济学家通过求取导数,可以得到这些边际量的具体数值,并据此来做出决策和预测。
在计算机科学领域,导数在图像处理、机器学习和优化等方面都有广泛应用。
在图像处理中,导数用于边缘检测和图像增强等任务中。
在机器学习中,导数常被用于优化算法的求解过程中,帮助寻找函数的极值点。
此外,导数在神经网络的反向传播算法中也起着重要的作用。
除了物理学、经济学和计算机科学等应用领域外,导数还在工程、生物学和医学等领域有重要应用。
在工程学中,导数常被用于分析电路中的电流和电压关系,以及信号处理和控制系统等方面;在生物学和医学中,导数被用来研究细胞生长过程、药物浓度的变化等。
总结起来,导数是微积分中的一个重要概念,它描述了函数在某一点的变化率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若 x 0,
f( x0 )
lim
x0
f
( x0
x) x
f ( x0 ) 0.
f ( x0 ) 0.
函数的 驻点, 稳定点, 临界点.
4
连续的曲线弧、除端点外处处有不垂直于x轴的切线 .
本节的几个定理都来源于下面的明显的
几何事实: 在一条光滑的平面曲线段A⌒B上, 至少有
一点处的切线 与连接此曲线两端点的弦 AB 平行.
2
费马 Fermat,(法) 1601-1665 定理4.1 费马引理
设函数f ( x)在点x0的某邻域U ( x0 )内
有定义, 且f ( x0 )存在, 如果对 x U ( x0 ), f ( x) f ( x0 ) (或f ( x) f ( x0 )), 那么 f ( x0 ) 0. 证 对于 x0 x U ( x0 ), 有
ba
如果最大值和最小值在端点a, b处取得,
由 (a) (b), 函数 ( x)必恒为常数,导数处处为零,
结论成立!
9
Lagrange公式可以写成下面的各种形式:
(1) f (b) f (a) f ( )(b a).当a b时也成立. (2) f ( x x) f ( x) ff((x)x,在 x)x和x,在x 0和x之1之间间. .
y
C
有水平的切线
y f ( x) f ( ) 0
B
A
f (a) f (b)
B
A
O a 1
2 b x
5
定理4.2 拉格朗日中值定理 若函数f ( x)满足 :
(1) 在闭区间[a,b] 上连续;
(2) 在开区间(a,b)内可导; 则在开区间(a, b)内至少存在一点 , 使得
f (b) f (a) f ( )(b a) 注 结论亦可写成 f (b) f (a) f ( ).
10
f (b) f (a) (b a) f ( )在微分学中占有
极重要的地位.它表明了函数在两点处的函数值 与导数间的关系.
今后要多次用到它.尤其可利用它研究函数 的单调性及某些等式与不等式的证明.
拉格朗日中值定理又称微分中值定理
11
罗尔 Rolle,(法)1652-1719
例1 罗尔定理 若函数f ( x)满足 : y C
f ( x0 x) f ( x0 ) f ( x0 x) f ( x0 ) 0 若 x 0, f ( x0 x) f ( x0 ) 0;
x
若 x 0, f ( x0 x) f ( x0 ) 0;
x
3
由极限的保号性
若 x 0,
f(
x0
)
lim
x0
f
(
x0
x) x
f ( x0 ) 0,
C M y f (x) B D
(3)NM的值的表达式是什么? A N
(4)直线AB的方程是什么? O a 1
2 b x
AB的斜率 f (b) f (a) ba
经过点 (a, f (a))
所以AB的方程为 yy f (a) ff((bb)) ff((aa))((xxaa))
所以NM的值为:
bbaa
(1) 在闭区间[a, b]上连续;
y f (x)
(2) 在开区间(a, b)内可导;
A
f (a) f (b)
B
(3) f (a) f (b),
O a 1
2 b x
则在开区间(a, b)内至少存在一点 , 使得 f ( ) 0.
12
例2. 平均速度 假设一个百米运动员跑100米的过程
用函数s s(t)表示,如果用时是10秒,则有s(10) 100.
( x) f ( x) [ f (a) f (b) f (a)( x a)]
ba
8
( x) f ( x) [ f (a) f (b) f (a)( x a)]
ba
注意到 ( x) : 在[a,b]连续, 从而在[a,b]上存在最值.
如果 ( x)的最值在(a, b)内处取得, 由费马引理,有( ) 0. 即f ( ) f (b) f (a) ,
第四章 导数的应用
4.1 微分中值定理
4.2 洛必达法则 4.3 函数的增减性和判定法则 4.4 函数的极值 4.5 函数的凹凸性及作图简介 4.6.函数的最值及应用 4.7 导数在经济分析中的应用
1
4.1 微分中值定理
上一章研究了函数随自变量变化的速度 ----导数. 并且掌握了基本的求导方法. 本章 将利用导数来研究函数以及曲线的某些性态, 并解决一些实际的问题. 为此,先学习微分 中值定理. 微分中值定理是建立函数与导数联系的纽带.
14
推论2 导数处处相等的两个函数只相差一个常数.
即若 f (x) g(x) , a x b, 则 f (x) g(x) C, a x b.
那末 f ( x) 在区间 I 上是一个常数. 证 在区间I上任取两点x1, x2 ( x1 x2 ),
根据拉格朗日中值定理
f ( x2 ) f ( x1 ) f ( )( x2 x1 ) ( x1 x2 )
0
由条件,则 f ( x1 ) f ( x2 ), 即在区间I中任意两
点的函数值都相等,所以, f ( x) C.
ba
拉格朗日 Lagrange (法) 1736-1813
6
几何解释:
y
Байду номын сангаас
f (b) f (a) f ( ).
ba
在曲线弧 AB 上至少有一点 C ,
C A
在该点处的切线平行于弦 AB. O a 1
y f (x)
B D
2 b x
7
分析图中有向线段NM的值: y
(1)NM的值是x的函数. (2)在两个端点A,B处NM的值?
(3) y f ( x x) x (0 1).
y dy f ( x) x
增量y的精确表达式.
注 由(3)式看出, 它表达了函数增量和某点的
导数之间的直接关系. 这里 ,未定, 但是增量、
导数是个等式关系. 这是十分方便的.
拉格朗日中值公式又称 有限增量公式.
拉格朗日中值定理又称有限增量定理.
可得 s(10) s(0) 10(米 / 秒) 10 0
表示这个运动员的平均速度是每秒10米. 运动员起跑时速度低,而冲刺时速度都很高,所以
速度不是匀速的,
在跑的途中应至少有一个时刻 ,在该时刻的速度为
平均速度,即 s( ) s(10) s(0) 10
10 0
13
应用拉格朗日中值定理可得到两个重要推论: 推论1 如果函数 f ( x) 在区间 I 上的导数恒为零,