广义相对论课堂2Schwarzschild时空轨道36页PPT
合集下载
专题讲座—广义相对论.ppt
![专题讲座—广义相对论.ppt](https://img.taocdn.com/s3/m/d01020662af90242a895e56f.png)
?
1、小室静止在地面,地球引 力使落体的加速度为g
2、小室在自由空间相对惯 性系向上以g做匀加速运动, 以小室为参考系,物体受到 向下的惯性力mig,惯性力使得 其产生向下的加速度g。
小室里的人无法确定是哪种情况, 无法区分作用在落体上的是引力还 是惯性力,实际上做任何力学实验 都无法区分引力和惯性力。
2、等效原理和广义相对性原理是广义 相对论的两个基本原理,从这两个原理 出发,就可以一并解决引力和加速系问
题,构建起广义相对论理论。
3、不再有严格的、绝对的刚性参考系。
S’
S o
Y o
Y’ X1
a
X2X’ X
S系认为自己是刚性参考系,但认为s’系在运动 方向上每小段长度随时间不断减小,所以不是刚 性参考系。因此在广义相对论中,只有内禀刚性 参考系,不存在各参考系都承认的刚性参考系。
质量 M (2 3) M⊙时,才可能形成黑洞,
此时rs 10 km 。
恒星演化的晚期,其核心部分经过核反应 T ∼ 6109K, 各类中微子过程都能够发生, 中微子将核心区的能量迅速带走引力坍缩
强冲击波 外层物质抛射或超新星爆发 致密天体(白矮星、中子星、黑洞) 五.引力波
广义相对论预言了引力波的存在。 加速的物体系,会引起周围时空性质变化, 并以波动(引力波)的形式向外传播。
相对论中的力 包括惯性力。
等效原理:引力场中任意时空点,总能 建立一个局域惯性系,在此参考系内, 狭义相对论所确定的物理规律都成立。
2、广义相对性原理 物理规律在一切参考系中都具有相同的形式。
几点说明: 1、物理规律在局惯系和该点的任意其 他参考系中表述都相同。这些参考系 包括加速度也包括引力场。这样通过 坐标变换就可以把无引力的狭义相对 论的物理规律转换到引力场中去,引 力场的影响体现在坐标变换关系上。
高二物理竞赛课件:广义相对论(引力的时空理论)简介(共14张PPT)
![高二物理竞赛课件:广义相对论(引力的时空理论)简介(共14张PPT)](https://img.taocdn.com/s3/m/c06b1a5453d380eb6294dd88d0d233d4b14e3f16.png)
E0 m0c2 1 (3108)2 9 1016 J
相当于20吨汽油燃烧的能量。
粒子的静质量一般用静能量表示
电子 0.510 999 06 Mev/c2
质子 938.272 31 Mev/c2
中子 939.565 63 Mev/c2
氘核 1875.613 39 Mev/c2
3
质能相互依存,且同增减
1.37 1025 kg
(2) E2 E02 ( pc)2 E E0 Ek
2E0Ek Ek2 ( pc)2
p 2E0Ek Ek2 4.11017 kg m / s c
例3、在一惯性系中一粒子具有动量6Mev/c(c为 光速),若粒子总能量E=10Mev,计算在该系 中(1)粒子的运动速度;2)粒子的运动动能。
利用三角形有助记忆:Pc
E
E0
1)质速关系
m
m0
1
v
2
c
2)动量
P mv
m0 v
小
1 (v / c)2
结
3)质能关系 E mc2 m0c2 Ek
4)动量能量关系 E2 E02 (P c)2
5)动力学方程
F
d
(mv)
m
d
v
v
dm
dt
dt dt
例1、 设一质子以速度 v 0.80c 运动. 求
2克氘核反应结果可产生相当于60吨煤燃烧的能量
重核裂变 X Y Z 质量亏损
m0mX 0 (mY 0m Z 0 )
裂变能
E m0 c2
6
【例】氘核的结合能
+
mnc2 mpc2
mn 939.565 63 Mev / c 2 mp 938.272 31 Mev / c 2 md 1875.613 39 Mev / c 2
相当于20吨汽油燃烧的能量。
粒子的静质量一般用静能量表示
电子 0.510 999 06 Mev/c2
质子 938.272 31 Mev/c2
中子 939.565 63 Mev/c2
氘核 1875.613 39 Mev/c2
3
质能相互依存,且同增减
1.37 1025 kg
(2) E2 E02 ( pc)2 E E0 Ek
2E0Ek Ek2 ( pc)2
p 2E0Ek Ek2 4.11017 kg m / s c
例3、在一惯性系中一粒子具有动量6Mev/c(c为 光速),若粒子总能量E=10Mev,计算在该系 中(1)粒子的运动速度;2)粒子的运动动能。
利用三角形有助记忆:Pc
E
E0
1)质速关系
m
m0
1
v
2
c
2)动量
P mv
m0 v
小
1 (v / c)2
结
3)质能关系 E mc2 m0c2 Ek
4)动量能量关系 E2 E02 (P c)2
5)动力学方程
F
d
(mv)
m
d
v
v
dm
dt
dt dt
例1、 设一质子以速度 v 0.80c 运动. 求
2克氘核反应结果可产生相当于60吨煤燃烧的能量
重核裂变 X Y Z 质量亏损
m0mX 0 (mY 0m Z 0 )
裂变能
E m0 c2
6
【例】氘核的结合能
+
mnc2 mpc2
mn 939.565 63 Mev / c 2 mp 938.272 31 Mev / c 2 md 1875.613 39 Mev / c 2
11-1 史瓦西时空中的运动方程广义相对论教学课件
![11-1 史瓦西时空中的运动方程广义相对论教学课件](https://img.taocdn.com/s3/m/d8f2c420f011f18583d049649b6648d7c1c70832.png)
=
−
1 2
gαβ
xα
xβ
η
=
⎧0, ⎨⎩1,
(光子) (质点)
L=η
2
L
=
1 2
⎡⎢⎢⎣⎛⎜⎝1 −
2M r
⎞ ⎟⎠
t
2
− ⎛⎜⎝1−
2M r
⎞−1 ⎟⎠
r2
−
r 2θ
2
−
r2
⎤
sin2 θϕ 2 ⎥
⎥⎦
∂L = 0, ∂L = 0
∂t
∂ϕ
E
=
∂L ∂t
=
⎛⎜⎝1 −
2M r
⎞ ⎟⎠
dt
dλ
L = − ∂L = r2 sin2 θ dϕ
d2
dϕ 2
⎜⎛ ⎝
1 r
⎟⎞ ⎠
+
1 r
=
GM L2
u = GM r
d 2u
dϕ 2
+
u
=
⎜⎛ ⎝
GM L
⎟⎞ 2 ⎠
1⎡ d
2 ⎢⎣ dϕ
⎜⎛ ⎝
1 r
⎟⎠⎞⎥⎦⎤
2
=
E L2
−
1 2r 2
+
GM rL2
r
=
L2 GM
⋅
(1 +
1
e cosϕ )
u = ⎜⎛ GM ⎟⎞2 (1 + e cosϕ)
⎝L⎠
史瓦西时空中的运动方程
水星轨道近日点的进动
狭义相对论的修正
d 2u
dϕ 2
+
⎡ ⎢1
+
⎜⎛
GM
⎢⎣ ⎝ L
广义相对论简介ppt课件
![广义相对论简介ppt课件](https://img.taocdn.com/s3/m/9600880ca5e9856a5612606e.png)
3.(2011·大同高二检测)设想有一艘飞船以v=0.8c的速度在
地球上空飞行,如果这时从飞船上沿其运动方向抛出一物体,
该物体相对于飞船的速度为0.9c,从地面上的人看来,物体 的速度为( )
A.1.7c
B.0.1c
C.0.99c
D.无法确定
1 uv c2
【解析】选C.根据相对论速度变换公式:u u v , 得 u 0.8c 0.9c 0.99c, 故选项C正确.
Ek m 1.6 1017 0.02% 2 31 8 2 m0 m0c 9.1 10 (3 10 )
17 加速后的速度为 v 2E k 2 1.6 10 m / s 5.9 106 m / s. 31
m0
9.110
上述计算表明,加速后的电子还属于低速的,可以使用经典 的动能公式. 答案:1.6×10-17 J 0.02% 5.9×106 m/s 可以使用经典
【解题指导】依据广义相对论中的引力场中的光线弯曲
考虑.
【标准解答】选C.根据爱因斯坦的广义相对论可知,光线在 太阳引力场作用下发生了弯曲,所以可以在适当的时候 (如日 全食时)通过仪器观察到太阳后面的恒星,故 C正确,A、B、D 均错.
【典例】(2011·临沂高二检测)地球上一观察者,看见一飞
船A以速度2.5×108 m/s从他身边飞过,另一飞船B以速度
3.水星近日点的进动 天文观测显示,行星的轨道并不是严格闭合的,它们的近日点 (或远日点)有进动(行星绕太阳一周后,椭圆轨道的长轴也随
之有一点转动,叫做“进动”),这个效应以离太阳最近的水星
最为显著,这与牛顿力学理论的计算结果有较大的偏差,而 爱因斯坦的广义相对论的计算结果与实验观察结果十分接近. 广义相对论所作出的以上预言全部被实验观测所证实.还有其 他一些事实也支持广义相对论.目前,广义相对论已经在宇宙 结构、宇宙演化等方面发挥了主要作用.
黑洞面面观PPT课件
![黑洞面面观PPT课件](https://img.taocdn.com/s3/m/0df24a6d302b3169a45177232f60ddccda38e606.png)
.
11
第十一页,共五十七页。
恒星的形成
通常的恒星是万有引力效应将物 质聚集,同时恒星内部热核反应的大 量热能造成粒子剧烈运动形成排斥效 应,当这两种效应势均力敌时,恒星 维持平衡不会塌缩。
.
12
第十二页,共五十七页。
恒星的塌缩
随着热核反应能量逐渐耗尽,恒星 会慢慢冷却,吸引效应压倒排斥效应, 使恒星塌缩。原子的壳层被压碎,形 成原子核在电子海洋中漂浮状态。此 时电子间的斥力抵抗不住恒星自身引 力,恒星塌缩至高密度状态。
.
7
第七页,共五十七页。
附:第二宇宙速度
如果将地球质量和半径的数值 代入,便是通常所谓的“第二宇宙 速度”。它是从地球表面将一个物 体发射到地球引力场以外所具有的 最低限度的速度。
.
8
第八页,共五十七页。
黑洞(black hole)
直到1915年爱因斯坦提出广义相对论之前, 一直没有关于引力如何影响光的协调的理论。 又过了很长时间,这个黑洞的模型才被理解。 在没有任何观测到的实际证据证明其理论是正 确的情形下,作为数学模型的黑洞理论已经被 发展到非常详尽的地步。
按黑洞本身的物理特性划分
.
25
第二十五页,共五十七页。
暗能量黑洞
暗能量黑洞主要由高速旋转的巨大的暗能量 组成,它内部没有巨大的质量。巨大的暗能 量以接近光速的速度旋转,其内部产生巨大 的负压以吞噬物体,从而形成黑洞。暗能量 黑洞的体积很大,可以有太阳系那般大。暗 能量黑洞是星系形成的基础,也是星团、星 系团形成的基础。
从上式中不难看出,质量越大、半径越小 的球体,其逃逸速度越大,如果令球体半径
R<
则有 v逃>c
这意味着什么呢?如果假定光也同一般物体一
广义相对论_ppt02
![广义相对论_ppt02](https://img.taocdn.com/s3/m/748039375727a5e9856a61d1.png)
2010-4-24 广义相对论_数学基础 11
2.2 张量的运算
由于决定张量变换行为的矩阵是随不同点而不同的,所有必须在同一 点上的两个张量进行运算。 张量的加减法定义为相应分量的相加或相减。因此这两个张量必须同 阶。如 张量的乘法:张量的乘法叫外乘。如
混合张量的缩并(或“降阶”):任何一个混合张量,当把它的一个 协变性的指标同一个逆变性的指标相当,并对这个指标累加起来,这 样就构成一个比原来的张量低两阶的张量。如
2010-4-24 广义相对论_数学基础 5
仿射空间
为何引入仿射空间?
仿射空间是数学中的几何结构, 这种结构是欧式空间的仿射特性的推广。在仿 射空间中,点与点之间做差可以得到向量,点与向量做加法将得到另一个点,但是 点与点之间不可以做加法。(维基百科) 向量空间的对象是向量。这里的关键在于,向量空间有一个原点,所以向量空 间中连点也可以看成一个向量(从原点出发指向该点的矢量)。 “在仿射空间里,点和向量是基本的概念,无需用逻辑方法再定义。当然,这 不是说点和向量没有实在的内容。例如向量就可理解为速度和力等。考察一个点和 向量的集合,它满足以下公理(1)至少存在一个点。(2)任意给定一对有顺序的 点A和B,对应一个且仅对应一个向量。通常记此向量为AB。... (略)” 可见,点在仿射空间中有独立的地位,即便是存在点和矢量的对应也得是两个 有序点。之所以是这样,是因为仿射空间里没有原点。 举个例子,某空间中有两个点,如果是在向量空间,则我们可以对两个点加减, 即两个点对应与原点相连的矢量按照平行四边形法则加减,从而得到第三个点。然 而在仿射空间中,两个点的加减是没有意义的,但两点之间的距离可以计算,距离 是个不变量,独立于坐标系。 引入仿射空间的原因是要对独立于坐标系的不变量进行描述,它实际上放宽了 向量空间的要求,从而促使人们在更一般的空间上研究某些不变的性质。这就像欧 氏空间的假设被放宽后使得我们开始研究更一般的非欧几何一样。仿射空间是张量 代数和张量分析的基础。
2.2 张量的运算
由于决定张量变换行为的矩阵是随不同点而不同的,所有必须在同一 点上的两个张量进行运算。 张量的加减法定义为相应分量的相加或相减。因此这两个张量必须同 阶。如 张量的乘法:张量的乘法叫外乘。如
混合张量的缩并(或“降阶”):任何一个混合张量,当把它的一个 协变性的指标同一个逆变性的指标相当,并对这个指标累加起来,这 样就构成一个比原来的张量低两阶的张量。如
2010-4-24 广义相对论_数学基础 5
仿射空间
为何引入仿射空间?
仿射空间是数学中的几何结构, 这种结构是欧式空间的仿射特性的推广。在仿 射空间中,点与点之间做差可以得到向量,点与向量做加法将得到另一个点,但是 点与点之间不可以做加法。(维基百科) 向量空间的对象是向量。这里的关键在于,向量空间有一个原点,所以向量空 间中连点也可以看成一个向量(从原点出发指向该点的矢量)。 “在仿射空间里,点和向量是基本的概念,无需用逻辑方法再定义。当然,这 不是说点和向量没有实在的内容。例如向量就可理解为速度和力等。考察一个点和 向量的集合,它满足以下公理(1)至少存在一个点。(2)任意给定一对有顺序的 点A和B,对应一个且仅对应一个向量。通常记此向量为AB。... (略)” 可见,点在仿射空间中有独立的地位,即便是存在点和矢量的对应也得是两个 有序点。之所以是这样,是因为仿射空间里没有原点。 举个例子,某空间中有两个点,如果是在向量空间,则我们可以对两个点加减, 即两个点对应与原点相连的矢量按照平行四边形法则加减,从而得到第三个点。然 而在仿射空间中,两个点的加减是没有意义的,但两点之间的距离可以计算,距离 是个不变量,独立于坐标系。 引入仿射空间的原因是要对独立于坐标系的不变量进行描述,它实际上放宽了 向量空间的要求,从而促使人们在更一般的空间上研究某些不变的性质。这就像欧 氏空间的假设被放宽后使得我们开始研究更一般的非欧几何一样。仿射空间是张量 代数和张量分析的基础。
XX省专用学年高中物理第十五章相对论简介第节狭义相对论的其他结论广义相对论简介课件新人教版选修.ppt
![XX省专用学年高中物理第十五章相对论简介第节狭义相对论的其他结论广义相对论简介课件新人教版选修.ppt](https://img.taocdn.com/s3/m/4776c838960590c69ec376e5.png)
(1)经典力学:物体的质量是 不变 的,一定的力作用在物体 上产生一定的 加速度 ,足够长时间后物体可以达到 任意 的速度。
(2)相对论:物体的质量随物体 速度 的增大而增大。
物体以速度 v 运动时的质量 m0
m
与静止时的质量
m0
之间的关
系是:m=_____1_-__v_c_2___,因为总有 v<c,可知运动物体的质量
(3)物体的总能量 E 为动能与静质能之和,即 E=Ek+E0=
mc2(m 为动质量)。
(4)由质能关系式可知 ΔE=Δmc2。
[典例] 一匀质矩形薄板,在它静止时测得其长度为 a,宽为 b,质量为 m0,由此可算得其面积密度为 ρ=mab0。假定该薄板沿长 度方向以接近光速的速度 v 做匀速直线运动,此时再测算该矩形 薄板的面积密度为多少?
[解析] 由相对论长度公式 a′=a
1-vc 2;
相对论质量 m=
m0 1-vc 2
所以 ρ′=a′m b= ab
[答案]
ρ 1-vc 2
m0 1-1-vcvc22=1-ρvc 2。
(1)质能方程没有“质能转化”的含义,质能方程只反映 质量和能量在量值上的关系,二者不能相互转化。对一个封闭 系统而言,质量是守恒的,能量也是守恒的。
第 3、4 节
狭义相对论的其他结论 广义相对论简介
1.光速是宇宙速度的极限,相对任何参考系光速 都是一样的。
2.物体的质量随物体速度的增大而增大,质能方 程:E=mc2。
3.广义相对论的基本原理:在任何参考系中,物 理规律都是相同的;一个均匀的引力场与一个 做匀加速运动的参考系等价。
4.广义相对论的结论:光线在引力场中偏转;引 力场的存在使得空间不同位置的时间进程出现 偏差。
《广义相对论》课件
![《广义相对论》课件](https://img.taocdn.com/s3/m/13fd61bdfbb069dc5022aaea998fcc22bcd1438b.png)
1915年,爱因斯坦发表了广义相对论 ,描述了引力是由物质引起的时空弯 曲所产生。
爱因斯坦的灵感来源
爱因斯坦受到马赫原理、麦克斯韦电 磁理论和黎曼几何的启发,开始思考 引力与几何之间的关系。
广义相对论的基本假设
1 2
等效原理
在小区域内,不能通过任何实验区分均匀引力场 和加速参照系。
广义协变原理
物理定律在任何参照系中都保持形式不变,即具 有广义协变性。
研究暗物质与暗能量的性质有助于深入理 解宇宙的演化历史和终极命运。
05
广义相对论的未来发展
超弦理论与量子引力
超弦理论
超弦理论是一种尝试将引力与量子力学统一的理论框架,它认为基本粒子是一 维的弦,而不是传统的点粒子。超弦理论在数学上非常优美,但目前还没有被 实验证实。
量子引力
量子引力理论试图用量子力学的方法描述引力,解决广义相对论与量子力学之 间的不兼容问题。目前,量子引力理论仍在发展阶段,尚未有成熟的理论框架 。
广义相对论为宇宙学提供了重 要的理论基础,用于描述宇宙
的起源、演化和终极命运。
大爆炸理论
广义相对论解释了大爆炸理论 ,即宇宙从一个极度高温和高 密度的状态开始膨胀和冷却的 过程。
黑洞理论
广义相对论预测了黑洞的存在 ,这是一种极度引力集中的天 体,能够吞噬一切周围的物质 和光线。
宇宙常数
广义相对论引入了宇宙常数来 描述空间中均匀分布的真空能
宇宙加速膨胀与暗能量研究
宇宙加速膨胀
通过对宇宙微波背景辐射和星系分布的研究,科学家发现宇 宙正在加速膨胀。这需要进一步研究以理解其中的原因,以 及暗能量的性质和作用。
暗能量
暗能量是一种假设的物质,被认为是宇宙加速膨胀的原因。 需要进一步研究暗能量的性质和作用机制,以更好地理解宇 宙的演化。
高二物理广义相对论2(教学课件201911)
![高二物理广义相对论2(教学课件201911)](https://img.taocdn.com/s3/m/372bb594941ea76e59fa043b.png)
课文是怎样来展示爱因斯坦与他的艺术世界的?
思考,讨论: (1)课文写作结构疏理; (2)爱因斯坦艺术世界的内涵
结构疏理:
第一部分:⑴--⑷ ,揭示文章的基本内容。通过 探讨爱因斯坦与艺术的关系,揭示科学与艺术的 互补性与统一性。具有提纲挈领的作用。
第二部分:⑸--⒃ ,列举爱因斯坦热爱音乐、崇 尚文学的生动事例,证明本文的中心论点——科 学与艺术是互补的、统一的。
; 公司起名 https:/// 公司起名
;
且我今死 员外郎 启高帝求景先同行 犹不能伏理 遣人夜掩取坦之 颖胄为侍中 文集二十卷 "六弟五人至大官 "迁太子舍人 位司徒左长史 为《伐社文》以见其志 四年 依据深险 会上暂卧 乃去 及卒 今日所求 高帝在领军府 如何 武帝时镇江州盆城 城内皆梦群蛇缘城四出 何足不除 武 帝车驾临哭渚次 《齐书》六十卷 融与之游 多见信纳 唯出太极四厢 给班剑二十人 "因悲恸不自胜 跂床垂脚 复在兹日 独受旨云 蒨辌车 "常吟讽之 扬州刺史 以要酬答 迁江州刺史 "先是贵人以华钗厨子 尚书令沈约见而称曰 永定元年 追寻平生 数年然后能行 丹阳尹 哭泣过度 阐文 勒兵斩之 行释菜礼 洞彻字体 曰 若不信 天监初降爵为子 见谌为崇 立寨自保 辄恸绝 时人号为萧痖 岁寒复不为朝廷所容 道中收遥光所虏之余 "答曰 书与颖胄 永明元年 七岁 此自然理 上华林园宴谌及尚书令晏等数人 子恪曰 况子舆乎?侍中如故 出为东阳太守 与王茂 加以甘果 在 州不营产利 仍岁多故 加金章紫绶 宜急改也 仆必先于二子 取之不可必制 留卫西朝 乾单使临郡 弱冠拜中书郎 竟不视 曰 乃朱服而入 唐宇之贼起 获金货数百万 给扶 郢 "身处朱门 性好学 评直三千余万 后自当见我心 都督二州 足疾不得同朝例 深相赏好 太极
高二物理34154 广义相对论简介精品PPT课件
![高二物理34154 广义相对论简介精品PPT课件](https://img.taocdn.com/s3/m/0dc44298b4daa58da1114a9b.png)
2020/10/27
如果飞船做匀加速运动,在光 向右传播的同时,飞船的速度也在 不断增大,因此船上观察者记录下 的光的径迹是一条抛物线。
9
通常物体的引力场都太弱,20世纪只能观测到太阳 引力场引起的光线弯曲.
太阳
由于太阳引 力场的作用,我 们有可能观测到 太阳后面的恒星, 最好的观测时间 是发生日全食的 时候.
6
二、广义相对性原理和等效原理
1、广义相对性原理: 在任何参考系中,物理规律都是相同的。
伽利略相对性原理
力学规律在任何惯性系都是相同的 逻
辑
形
爱因斯坦狭义相对性原理(1905年)
式
逐
在不同的惯性参考系中,一切物理规律都是相同的;
渐
简
约
爱因斯坦广义相对论原理(1916年)
在任何参考系中(包括非惯系)所有的物理规律都是相
3、引力红移
各 类 星 体 对 比
宇宙中有一类恒星,体积很小,质量却很大,叫 做矮星,引力势比地球低的多,矮星表面的时间进程 比较慢,哪里的发光的频率比同种的原子在地球上发 光2020频/10/2率7 低,看起来偏红,这个现象叫做引力红移. 13
由于物质的存在,实际空间并不是均匀 的,空间发生了“弯曲”:
无
法
黑
星体
观
洞
测
2020/10/27
11
2、引力场的存在使得空间不同位置的时间 进程出现差别.
对于高速转动的圆盘, 除了转动轴的位置外,各点都 在做加速运动,越是靠近边缘, 加速度越大,方向指向盘心.
地面上看到:越是靠近边缘,速度越大.根据狭义相对论, 靠近边缘部位的时间进程较慢.
圆盘上的人认为:盘上存在引力场,方向由盘心指向边缘, 靠20近20/1边0/27缘的位置引力势较低,得出:引力势较低的位置,时间12进 程比较慢.
《广义相对论》课件
![《广义相对论》课件](https://img.taocdn.com/s3/m/30c582596d175f0e7cd184254b35eefdc8d315c1.png)
详细描述
等效原理表明,在任何小的时空区域内,我们无法通过任何可预见的实验区分均匀引力场和加速参照系。这意味 着在局部范围内,我们无法区分引力和加速参照系引起的效应。这一原理在广义相对论中扮演着重要的角色,为 引力场的描述和性质提供了基础。
广义协变原理
总结词
广义协变原理是广义相对论的另一个基本原理,它要求物理定律在任何参照系中 都保持形式不变。
05
广义相对论的应用
黑洞与宇宙学
黑洞的形成与演化
广义相对论预测了黑洞的存在,并描 述了其形成和演化的过程,如恒星坍 缩、吸积盘等。
宇宙学模型
广义相对论为宇宙学提供了理论基础 ,如大爆炸理论、宇宙膨胀等,解释 了宇宙起源和演化的过程。
Байду номын сангаас 宇宙的起源与演化
宇宙起源
广义相对论提供了宇宙起源的理论框 架,解释了宇宙从大爆炸开始的一系 列演化过程。
牛顿力学与狭义相对 论无法同时成立,需 要一种新的理论来统 一。
狭义相对论解决了牛 顿力学在高速领域的 矛盾,但无法解释引 力问题。
爱因斯坦与广义相对论的创立
爱因斯坦受到物理学家马赫的 启发,开始探索引力问题。
爱因斯坦提出了等效原理和光 速不变原理,作为广义相对论 的基本假设。
广义相对论成功地解释了引力 作用,并将其与空间-时间结构 联系起来。
暗物质与暗能量的研究
深入探索暗物质和暗能量的本质,揭示它们在宇宙中的 作用和相互关系,进一步完善宇宙学模型。
预测了更为精确的进动值。
光线在引力场中的弯曲
要点一
总结词
光线在引力场中的弯曲是广义相对论的另一个重要实验验 证,它证实了爱因斯坦关于引力透镜的预测。
要点二
详细描述
等效原理表明,在任何小的时空区域内,我们无法通过任何可预见的实验区分均匀引力场和加速参照系。这意味 着在局部范围内,我们无法区分引力和加速参照系引起的效应。这一原理在广义相对论中扮演着重要的角色,为 引力场的描述和性质提供了基础。
广义协变原理
总结词
广义协变原理是广义相对论的另一个基本原理,它要求物理定律在任何参照系中 都保持形式不变。
05
广义相对论的应用
黑洞与宇宙学
黑洞的形成与演化
广义相对论预测了黑洞的存在,并描 述了其形成和演化的过程,如恒星坍 缩、吸积盘等。
宇宙学模型
广义相对论为宇宙学提供了理论基础 ,如大爆炸理论、宇宙膨胀等,解释 了宇宙起源和演化的过程。
Байду номын сангаас 宇宙的起源与演化
宇宙起源
广义相对论提供了宇宙起源的理论框 架,解释了宇宙从大爆炸开始的一系 列演化过程。
牛顿力学与狭义相对 论无法同时成立,需 要一种新的理论来统 一。
狭义相对论解决了牛 顿力学在高速领域的 矛盾,但无法解释引 力问题。
爱因斯坦与广义相对论的创立
爱因斯坦受到物理学家马赫的 启发,开始探索引力问题。
爱因斯坦提出了等效原理和光 速不变原理,作为广义相对论 的基本假设。
广义相对论成功地解释了引力 作用,并将其与空间-时间结构 联系起来。
暗物质与暗能量的研究
深入探索暗物质和暗能量的本质,揭示它们在宇宙中的 作用和相互关系,进一步完善宇宙学模型。
预测了更为精确的进动值。
光线在引力场中的弯曲
要点一
总结词
光线在引力场中的弯曲是广义相对论的另一个重要实验验 证,它证实了爱因斯坦关于引力透镜的预测。
要点二
详细描述
《广义相对论讲》PPT课件
![《广义相对论讲》PPT课件](https://img.taocdn.com/s3/m/96e0d9ee6c85ec3a86c2c5b0.png)
测量一段弧的长度及圆周长精选ppt15根据等效原理转动参考系等效为引力场引力场强是由洛仑兹变换可得结论引力场中空间弯曲愈强弯曲愈烈精选ppt16三史瓦西场中固有时与真实距离schwarcchildfield1场的特征相对静止的球对称分布的物质球外部的场2某处的固有时由静止在该处的标准钟测得的时间间隔某处真实距离由静止在该处的标准尺测得的空间间隔刚性微分尺精选ppt17在无引力的地方有一系列的走时完全一样的钟然后把它们分别放到引力场中的各个时空点称各地的标准钟标准时间标准长度无引力影响的时间和长度标准钟标准尺在无引力的地方有一系列的完全一样的刚性微分尺然后把它们分别放到引力场中的各个时空点称各地的标准尺精选ppt18远离引力场处无限远处引力为0平直空间场各处引力不同空间时间各处不同精选ppt194引力场中的固有时与真实距离瞬时静止在s系中确定时空点的局惯系s0飞来局惯系由无限远处沿径向自由飞到史瓦西场确定的时空点精选ppt20相遇的两只钟系的确定时空点处的标准钟c测得的是原时同样在确定的时空点的标准尺测的是原长精选ppt21弱引力场牛顿近似飞来惯性系sgmmmv精选ppt22度有关与加速度无关处引力势r处的固有时r邻域的真实距离2双生子中谁年轻
8
一系列的 局惯系
r g(r)
无限远 引力为0 惯性系
以该点的引力场强自由降落 可有多个 相对匀速运动 可用洛仑兹变换
引力场源
图示局惯系
9
二、广义相对性原理 principle of general covariance (广义协变性原理)
物理规律在一切参考系中形式一样 小结
广义相对论根本原理 1)等效原理 2)相对性原理 3)马赫原理 Mach principle 时空性质由物质及其运动所决定
1m2vGMm 0 2 r
8
一系列的 局惯系
r g(r)
无限远 引力为0 惯性系
以该点的引力场强自由降落 可有多个 相对匀速运动 可用洛仑兹变换
引力场源
图示局惯系
9
二、广义相对性原理 principle of general covariance (广义协变性原理)
物理规律在一切参考系中形式一样 小结
广义相对论根本原理 1)等效原理 2)相对性原理 3)马赫原理 Mach principle 时空性质由物质及其运动所决定
1m2vGMm 0 2 r
《广义相对论》课件
![《广义相对论》课件](https://img.taocdn.com/s3/m/7a7e164ebb1aa8114431b90d6c85ec3a87c28bbc.png)
《广义相对论》PPT课件
探索广义相对论的奇妙世界。从理论基础到引力波,从曲率时空到应用前景, 了解这个重要的物理理论。
简介
广义相对论是描述引力的理论,解释了时空的非欧几何结构。它对宇宙的起 源和演化具有重要意义。
理论基础
牛顿引力理论的弊端推动了研究广义相对论的诞生。伽利略相对性原理与等 效原理也是理论曲率效应。黑洞与奇点以及引力透镜效应是曲率时空的重要结果。
引力波
引力波是广义相对论的重要预言,它的探测将带来重力波天文学的崭新时代。了解引力波的来源和探测 方法。
应用
广义相对论不仅在纯理论研究中有价值,还在实际应用中发挥作用。探索GPS与广义相对论的关系,黑 洞的研究以及宇宙的诞生和演化。
结论
广义相对论是一项非常重要的物理理论,对我们理解宇宙和解释引力的性质至关重要。展望未来广义相 对论的发展方向。
探索广义相对论的奇妙世界。从理论基础到引力波,从曲率时空到应用前景, 了解这个重要的物理理论。
简介
广义相对论是描述引力的理论,解释了时空的非欧几何结构。它对宇宙的起 源和演化具有重要意义。
理论基础
牛顿引力理论的弊端推动了研究广义相对论的诞生。伽利略相对性原理与等 效原理也是理论曲率效应。黑洞与奇点以及引力透镜效应是曲率时空的重要结果。
引力波
引力波是广义相对论的重要预言,它的探测将带来重力波天文学的崭新时代。了解引力波的来源和探测 方法。
应用
广义相对论不仅在纯理论研究中有价值,还在实际应用中发挥作用。探索GPS与广义相对论的关系,黑 洞的研究以及宇宙的诞生和演化。
结论
广义相对论是一项非常重要的物理理论,对我们理解宇宙和解释引力的性质至关重要。展望未来广义相 对论的发展方向。
广义相对论简介优秀PPT
![广义相对论简介优秀PPT](https://img.taocdn.com/s3/m/c9c01cc72e3f5727a4e96284.png)
广义相对论简介
(general relativity)
广义相对论:研究空间、时间和引力的理论 狭义相对论:广义相对论在无引力存在时的特例
狭义相对论的缺陷: 承认惯性系的特殊地位。 不能建立令人满意的引力理论。
爱因斯坦的思考 1、非惯性系与惯性系 2、时空与物质
平权? 有关?
广义相对论 超越了 牛顿的引力论
F真
ma
ma0
ma
a
物体对惯性系
的加速度
因此在非惯性系中定义虚拟力:惯性力 f惯 ma非惯性系对惯性系
则非惯性系中的牛顿定律形式为: F相 互 作 用 力 f惯 性 力 ma物 体 对 非 惯 性 系
注意:上式表面上是非惯性系的,实质上是惯性
系的变形而已
F相互作用力 ma物体对非惯性系 f惯性力
0
引力 红移效应
红移z定义
z
0
0 0
1
2GM c2R
1
GM 1 c 2r
(1
1 2
2GM c2R
)
1
GM c2R
引力红移 gravitational redshift
若太阳发光 GM S 2.12 106
1
c2 RS
结论 引力时缓尺缩效应及引力红移
远离引力中心的地方观察引力场中发生在不 同地点的同一物理过程,引力场越强的地方,观 测时间越慢,空间距离越短,即引力的时缓尺缩 效应越显著。
广义相对性原理 :一切参考系(惯性系与非 惯性系)都是平权的,物理学定律在所有的参 考系中都具有相同的数学形式.
小结 广义相对论基本原理
1)等效原理 2)相对性原理
时空性质由物质及其运动所决定
? 非惯性系里的时空
(general relativity)
广义相对论:研究空间、时间和引力的理论 狭义相对论:广义相对论在无引力存在时的特例
狭义相对论的缺陷: 承认惯性系的特殊地位。 不能建立令人满意的引力理论。
爱因斯坦的思考 1、非惯性系与惯性系 2、时空与物质
平权? 有关?
广义相对论 超越了 牛顿的引力论
F真
ma
ma0
ma
a
物体对惯性系
的加速度
因此在非惯性系中定义虚拟力:惯性力 f惯 ma非惯性系对惯性系
则非惯性系中的牛顿定律形式为: F相 互 作 用 力 f惯 性 力 ma物 体 对 非 惯 性 系
注意:上式表面上是非惯性系的,实质上是惯性
系的变形而已
F相互作用力 ma物体对非惯性系 f惯性力
0
引力 红移效应
红移z定义
z
0
0 0
1
2GM c2R
1
GM 1 c 2r
(1
1 2
2GM c2R
)
1
GM c2R
引力红移 gravitational redshift
若太阳发光 GM S 2.12 106
1
c2 RS
结论 引力时缓尺缩效应及引力红移
远离引力中心的地方观察引力场中发生在不 同地点的同一物理过程,引力场越强的地方,观 测时间越慢,空间距离越短,即引力的时缓尺缩 效应越显著。
广义相对性原理 :一切参考系(惯性系与非 惯性系)都是平权的,物理学定律在所有的参 考系中都具有相同的数学形式.
小结 广义相对论基本原理
1)等效原理 2)相对性原理
时空性质由物质及其运动所决定
? 非惯性系里的时空
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• Φ——测地线 • θ——非测地线,除赤道圈
– θ换成Φ' – 也用测地线,赤道圈上某一点P=第二极点O' – 相对于北极点O – OO'大圆上坐标失效,无能区分不同点——非
全局! – 对比极点(θ,Φ)坐标简并
• θ、Φ类似匀加速系直线+曲线网格
三种理论4种钟尺网格
无非是将平直时空(事件集合) 用网格划分 网格点标记
匀加速正交坐标系 完美类比
平面几何及坐标系
第四点:测地线方程(组)
径向方程
测试粒子和光线的测地运动
三个初积分/运动常数/守恒量
• 单位质量粒子能量e(因为在远处), 无量纲, 物理意义! • 单位质量粒子角动量L(因为L=rv) • 所有的轨道都是在某一个过球心平面上运动:1。直观地
看,任何偏离平面的运动都受到非向心力,破坏了球对称 • 2。教材9.22,L=0,初始dφ/dτ=0,则以后沿测地线处处
• 所以,任意力学中势能曲线可以看成地面上起伏山坡 (无磨擦无空气阻力)上粒子运动,地面支承力+重 力=有效力,即所谓势能曲线分析
反省3问题
• 1、这部分你是否学到了什么?或者你认为最有用 的是什么?
• 和钟的世界线重合吗? • 类时、切矢量 • 类空=尺子延展方向、分量表达
– 与坐标网格的关系 – 线元和度规
线元存在时空交叉项 基准钟尺相对运动? g0i 0
• i方向的基准尺子相对基准钟运动
– 不是j方向
• 另选尺子相对不动的总能做到吗? • Cook没讲到:钟尺相对运动
应用 g0i 0
• 2.0=V,R01,02=;L≥4;随L分别为减函2<R01<4、增函数 >4
• 3.0=dV/dR,Rmin,max=;Vmin,max=下标指的是V最小最大 Rmin>Rmax;L≥3.46;Vmax给出给定e粒子的俘获截面
• 4. d^2V/dR^2><=0 • 按单位质量角动量分类L=l/M • 1.L<3.46,两种轨道:向外ε>0逃逸,其余投入或回落 • 2.L=3.46,同上+拐点R=L^2/2处ε=V不稳定圆周轨道 • 3.3.46<L≤4,最高点不稳定+最低点稳定圆周+束缚
为dφ/dτ=0, φ=Const.在一个平面上 • 3. 解测地线方程,附录B,LightmanP404 • 可以证明平面运动是稳定的,小扰动后回 • 坐标轴重新取向,约定在赤道面上讨论θ=π/2 • 第三个初积分,四速度归一/0化,即线元 • 四速度只有三个非零分量,利用三个初积分方程,可用
e,L表达
(Vmin<ε<0) • 4.L>4,+散射轨道0<ε<Vmax
第六点:有效势曲线分析原理
势能曲线的分析原理
• d/dτ径向方程后,得到dr/dτ=0或d^2r/dτ^2=-V’= 有效力,所以碰到势垒会反弹;散射和束缚由 d^2r/dτ^2连续性仍然有d^2r/dτ^2=-V’=有效力 ;问题:在ε=V, dr/dτ=0是否可以保持圆周运 动?答:不会--
• 数学的威力——Einstein求助 • 重要的是数学表达了什么物理
第一个活动 惯性斜交坐标系
写在纸上
• 不要太潦草——上交我查看 • 多留空白、隔行写——方便批改 • 尽量文字说明你的推理要点、步骤
测量钟与尺相对运动 平直时空坐标网格
• 三位一体 • 惯性系skew坐标
– 钟的世界线 – 尺子原点刻度的世界线
测验目的
• 了解大家的学习困难、不足、效果 • 确保掌握重点和难点
改进
‘动钟变慢’误导吗?
• ‘动’=速度不为零=钟尺测量速度=相对于 坐标钟
• 加速钟dτ2=γ-2dt2 • 双生子佯谬=为什么反过来不可以?
– 钟尺网格 – Marzke-Wheeler坐标
• 实验不需理论引入钟尺网格
试图在球面上构造全局性 惯性系skew坐标
第五点:有效势
机械能=径向动能+有效势能(势能+ 角向动能=离心势能)牛顿情况
E T r V eff V eff V T T VC
e
mc
2
E Newton mc 2
1 e,
牛顿低速 e《1
e2 1 2
e
E Newton mc 2
给定M,首先按照角动量分类
• 牛顿L=0径向可到达r=0,实际情况星体表面 阻挡--外力,不再有机械能守恒分析; 径向远离,E≥0可逃逸到无穷远(势能为0), E<0会回落
• L≠0不可到达r=0, • 1。E≥0散射,双曲线(E>0)或抛物线(E=0) • 2。E<0椭圆束缚轨道 • 3。特别地,势能曲线最低点E=V_min=-
1/2L^2(与熟知结果一致)圆周,且稳定
微分应用:分析曲线形状
• 1.R->0,V->-L^2/R^3->-∞;R->∞,V->-1/R->0;中间V>L^2/2R^2
广义相对论课堂2Schwarzschild时空 轨道
广义相对论课堂21 Schwarzschild时空轨道
2011.11.25
课程安排
• 复习内容: • 讨论内容:惯源自系斜交坐标测量意义 • 新内容:Schwarzschild时空应用 • 下次课:经典检验 • 测验 • 发草稿纸——助教 • 课后发调查表
• 1。仍然有效力不为0,V’≠0;牛顿情况,某个高 度上,速度大(小)于圆周速度,离心力大( 小)于引力,双曲(抛物)(椭圆);测地线 方程d^2r/dτ^2=-Γ^r_tt(u^t)^2-Γ^r_φφ(u^φ)^2Γ^r_rr(u^r)^2
势能曲线的分析原理:续
• 2.Cauchy定解,运动方程总是二阶微分方程(例如从 变分原理看L(v,x),所有力学都是从牛顿力学比拟而来 ),初始位置确定(静态时空)则时空点确定,初始 三个速度确定,则定解。即L, ε决定了一条且仅仅一条 测地线(当然,不一定遍历,如一开始就在V最高点则 只有从R<R_min或R>R_max过来的圆周运动部分)
• 转盘系 • Schwarzschild时空Eddington-Finkelstein坐
标 • Kerr时空Boyer-Lindquist坐标
– 未解之谜:Kerr环奇点
• 转动宇宙Godel度规
进一步可探讨
• 对比习题7.21 • Cook雷达回波、t',x坐标下
第二个活动 匀加速正交坐标系
– θ换成Φ' – 也用测地线,赤道圈上某一点P=第二极点O' – 相对于北极点O – OO'大圆上坐标失效,无能区分不同点——非
全局! – 对比极点(θ,Φ)坐标简并
• θ、Φ类似匀加速系直线+曲线网格
三种理论4种钟尺网格
无非是将平直时空(事件集合) 用网格划分 网格点标记
匀加速正交坐标系 完美类比
平面几何及坐标系
第四点:测地线方程(组)
径向方程
测试粒子和光线的测地运动
三个初积分/运动常数/守恒量
• 单位质量粒子能量e(因为在远处), 无量纲, 物理意义! • 单位质量粒子角动量L(因为L=rv) • 所有的轨道都是在某一个过球心平面上运动:1。直观地
看,任何偏离平面的运动都受到非向心力,破坏了球对称 • 2。教材9.22,L=0,初始dφ/dτ=0,则以后沿测地线处处
• 所以,任意力学中势能曲线可以看成地面上起伏山坡 (无磨擦无空气阻力)上粒子运动,地面支承力+重 力=有效力,即所谓势能曲线分析
反省3问题
• 1、这部分你是否学到了什么?或者你认为最有用 的是什么?
• 和钟的世界线重合吗? • 类时、切矢量 • 类空=尺子延展方向、分量表达
– 与坐标网格的关系 – 线元和度规
线元存在时空交叉项 基准钟尺相对运动? g0i 0
• i方向的基准尺子相对基准钟运动
– 不是j方向
• 另选尺子相对不动的总能做到吗? • Cook没讲到:钟尺相对运动
应用 g0i 0
• 2.0=V,R01,02=;L≥4;随L分别为减函2<R01<4、增函数 >4
• 3.0=dV/dR,Rmin,max=;Vmin,max=下标指的是V最小最大 Rmin>Rmax;L≥3.46;Vmax给出给定e粒子的俘获截面
• 4. d^2V/dR^2><=0 • 按单位质量角动量分类L=l/M • 1.L<3.46,两种轨道:向外ε>0逃逸,其余投入或回落 • 2.L=3.46,同上+拐点R=L^2/2处ε=V不稳定圆周轨道 • 3.3.46<L≤4,最高点不稳定+最低点稳定圆周+束缚
为dφ/dτ=0, φ=Const.在一个平面上 • 3. 解测地线方程,附录B,LightmanP404 • 可以证明平面运动是稳定的,小扰动后回 • 坐标轴重新取向,约定在赤道面上讨论θ=π/2 • 第三个初积分,四速度归一/0化,即线元 • 四速度只有三个非零分量,利用三个初积分方程,可用
e,L表达
(Vmin<ε<0) • 4.L>4,+散射轨道0<ε<Vmax
第六点:有效势曲线分析原理
势能曲线的分析原理
• d/dτ径向方程后,得到dr/dτ=0或d^2r/dτ^2=-V’= 有效力,所以碰到势垒会反弹;散射和束缚由 d^2r/dτ^2连续性仍然有d^2r/dτ^2=-V’=有效力 ;问题:在ε=V, dr/dτ=0是否可以保持圆周运 动?答:不会--
• 数学的威力——Einstein求助 • 重要的是数学表达了什么物理
第一个活动 惯性斜交坐标系
写在纸上
• 不要太潦草——上交我查看 • 多留空白、隔行写——方便批改 • 尽量文字说明你的推理要点、步骤
测量钟与尺相对运动 平直时空坐标网格
• 三位一体 • 惯性系skew坐标
– 钟的世界线 – 尺子原点刻度的世界线
测验目的
• 了解大家的学习困难、不足、效果 • 确保掌握重点和难点
改进
‘动钟变慢’误导吗?
• ‘动’=速度不为零=钟尺测量速度=相对于 坐标钟
• 加速钟dτ2=γ-2dt2 • 双生子佯谬=为什么反过来不可以?
– 钟尺网格 – Marzke-Wheeler坐标
• 实验不需理论引入钟尺网格
试图在球面上构造全局性 惯性系skew坐标
第五点:有效势
机械能=径向动能+有效势能(势能+ 角向动能=离心势能)牛顿情况
E T r V eff V eff V T T VC
e
mc
2
E Newton mc 2
1 e,
牛顿低速 e《1
e2 1 2
e
E Newton mc 2
给定M,首先按照角动量分类
• 牛顿L=0径向可到达r=0,实际情况星体表面 阻挡--外力,不再有机械能守恒分析; 径向远离,E≥0可逃逸到无穷远(势能为0), E<0会回落
• L≠0不可到达r=0, • 1。E≥0散射,双曲线(E>0)或抛物线(E=0) • 2。E<0椭圆束缚轨道 • 3。特别地,势能曲线最低点E=V_min=-
1/2L^2(与熟知结果一致)圆周,且稳定
微分应用:分析曲线形状
• 1.R->0,V->-L^2/R^3->-∞;R->∞,V->-1/R->0;中间V>L^2/2R^2
广义相对论课堂2Schwarzschild时空 轨道
广义相对论课堂21 Schwarzschild时空轨道
2011.11.25
课程安排
• 复习内容: • 讨论内容:惯源自系斜交坐标测量意义 • 新内容:Schwarzschild时空应用 • 下次课:经典检验 • 测验 • 发草稿纸——助教 • 课后发调查表
• 1。仍然有效力不为0,V’≠0;牛顿情况,某个高 度上,速度大(小)于圆周速度,离心力大( 小)于引力,双曲(抛物)(椭圆);测地线 方程d^2r/dτ^2=-Γ^r_tt(u^t)^2-Γ^r_φφ(u^φ)^2Γ^r_rr(u^r)^2
势能曲线的分析原理:续
• 2.Cauchy定解,运动方程总是二阶微分方程(例如从 变分原理看L(v,x),所有力学都是从牛顿力学比拟而来 ),初始位置确定(静态时空)则时空点确定,初始 三个速度确定,则定解。即L, ε决定了一条且仅仅一条 测地线(当然,不一定遍历,如一开始就在V最高点则 只有从R<R_min或R>R_max过来的圆周运动部分)
• 转盘系 • Schwarzschild时空Eddington-Finkelstein坐
标 • Kerr时空Boyer-Lindquist坐标
– 未解之谜:Kerr环奇点
• 转动宇宙Godel度规
进一步可探讨
• 对比习题7.21 • Cook雷达回波、t',x坐标下
第二个活动 匀加速正交坐标系