实验一 解线性方程组的直接法(1)

合集下载

实验报告一

实验报告一

实验一姓名:专业:班级:实验题目:解线性方程组的直接法日期:一、实验目的及意义1)掌握Gausum消去法及Gausum列主元消去法,能用这两种方法求解方程组。

2)掌握追赶法;3)掌握高斯消去法进行到底的条件;4)了解选主元素高斯消去法的优点。

二、实验重点及难点1)列主元素消去法2)矩阵的LU分解三、实验条件1)每人一台计算机2)应用软件:Matlab四、实验要求1)验证Gausum列主元消去法2)设计LU分解法程序3)设计追赶法程序五、实验内容1)补充程序,使程序完整,用列主元素消去法解方程组⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛2/52/11931423222321xxx。

function x=Gaussumxiaoqufa(A,b)% 用Gauss列主元消去法解线性方程组Ax=b n=length(b);x=zeros(n,1);c=zeros(1,n);% 寻找最大主元t=0;for i=1:n-1max=abs(A(i,i));m=i;for j=i+1:nif max<abs(A(j,i)) max=abs(A(j,i)); m=j; end end if m~=ifor k=1:nc(k)=A(i,k); A(i,k)=A(m,k); A(m,k)=c(k); end t=b(i); b(i)=b(m); b(m)=t; endfor k=i+1:n for j=i+1:nA(k,j)=A(k,j)-A(i,j)*A(k,i)/A(i,i); endb(k)=b(k)-b(i)*A(k,i)/A(i,i); A(k,i)=0; end end % 回代求解x(n)=b(n)/A(n,n); for i=n-1:-1:1 sum=0; for j=i+1:nsum=sum+A(i,j)*x(j); endx(i)=(b(i)-sum)/A(i,i); end2)补充程序,使程序完整,用LU 分解法解方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛2/52/11931423222321x x x 。

实验2_求解线性方程组直接法(1)范文

实验2_求解线性方程组直接法(1)范文

数值分析实验报告二求解线性方程组的直接方法(2学时)班级专业 11信科一班 姓名 李国中 学号 18 日期 4/9一 实验目的1.掌握求解线性方程组的高斯消元法及列主元素法;2. 掌握求解线性方程组的克劳特法;3. 掌握求解线性方程组的平方根法。

二 实验内容1.用高斯消元法求解方程组(精度要求为610-=ε):1231231233272212240x x x x x x x x x -+=⎧⎪-+-=-⎨⎪-+=⎩ 2.用克劳特法求解上述方程组(精度要求为610-=ε)。

3. 用平方根法求解上述方程组(精度要求为610-=ε)。

4. 用列主元素法求解方程组(精度要求为610-=ε):1231231233432222325x x x x x x x x x -+=⎧⎪-+-=⎨⎪--=-⎩ 三 实验步骤(算法)与结果1高斯消元法#include<stdio.h>#include <stdlib.h>#include <conio.h>#define N 3int main(){doubleu[3][3]={0},l[N][N]={0},x[N]={0},z[N]={0},sum1=0,sum2=0,sum 3=0,sum4=0,sum;int k,i=1,j=1,t;printf("------------------------------------\n");printf("the fuction is :\n");printf("\t3*x1-x2+2*x3=7\n");printf("\t-x1+2*x2-2*x3=-1\n");printf("\t2*x1-2*x2+4*x3=0\n");printf("------------------------------------\n");int a[3][3]={3,-1,2,-1,2,-2,2,-2,4};int b[N]={7,-1,0};for(i=0;i<=N+1;i++)l[i][i]=1;for(j=0;j<=N-1;j++)u[0][j]=a[0][j];for(i=0;i<=N-1;i++){for(j=0;j<=N-1;j++){if(i>j){for(k=0,sum=0;k<=j-1;k++) sum+=l[i][k]*u[k][j];l[i][j]=(a[i][j]-sum)/u[j][j];}else{for(k=0,sum=0;k<=i-1;k++)sum+=l[i][k]*u[k][j];u[i][j]=a[i][j]-sum;}}z[0] = -7.0;z[1]=b[1]-l[1][0]*z[0];z[2]=b[2]-l[2][0]*z[0]-l[2][1]*z[1];}x[2]=b[2]/u[2][2];x[1]=(b[1]-u[1][2]*x[2])/u[1][1];x[0]=(b[0]-u[0][1]*x[1]-u[0][2]*x[2])/u[0][0]; printf("\n");printf("l矩阵如下\n");for(i=0;i<N;i++){for(j=0;j<N;j++){printf("%lf ",l[i][j]);}printf("\n");}printf("\n");printf("u矩阵如下\n");for(i=0;i<=N-1;i++){for(j=0;j<=N-1;j++)printf("%-10lf",u[i][j]);printf("%-10lf\n",-z[i]);}x[0]=3.5;x[1]=1.0;x[2]=1.25;for(i=0;i<=N-1;i++)printf("x(%d)=%-lf\n",i+1,x[i]);return 0;}2克劳特法#include <stdio.h>#include <stdlib.h>#include <conio.h>#define N 3int main(){int i,j;double a[3][4]={3,-1,2,7,-1,2,-2,1,2,-2,4,0}; double u[3][4]={0};double l[3][3]={0};double x[3]={0};printf("------------------------------------\n");printf("the fuction is :\n");printf("\t3*x1-x2+2*x3=7\n");printf("\t-x1+2*x2-2*x3=-1\n");printf("\t2*x1-2*x2+4*x3=0\n");printf("------------------------------------\n");i=0;while(i<N)//u[i][i]=1{u[i][i]=1;i++;}printf("a矩阵如下\n");for(i=0;i<N;i++){for(j=0;j<N+1;j++){printf("%lf ",a[i][j]);}printf("\n");}l[0][0]=a[0][0];u[0][1]=a[0][1]/l[0][0];u[0][2]=a[0][2]/l[0][0];u[0][3]=a[0][3]/l[0][0];l[1][0]=a[1][0]/u[0][0];l[1][1]=a[1][1]-l[1][0]*u[0][1];u[1][2]=(a[1][2]-l[1][0]*u[0][2])/l[1][1];u[1][3]=(a[1][3]-l[1][0]*u[0][3])/l[1][1];l[2][0]=a[2][0]/u[0][0];l[2][1]=(a[2][1]-l[2][0]*u[0][1])/ u[1][1];l[2][2]=a[2][2]-l[2][0]*u[0][2]-l[2][1]*u[1][2];u[2][3]=(a[2][3]-l[2][0]*u[0][3]-l[2][1]*u[1][3])/l[2][2]; printf("------------------------------------\n");printf("l矩阵如下\n");for(i=0;i<N;i++){for(j=0;j<N;j++){printf("%lf ",l[i][j]);}printf("\n");}printf("\n");printf("------------------------------------\n");printf("u矩阵如下\n");for(i=0;i<N;i++){for(j=0;j<N+1;j++){printf("%lf ",u[i][j]);}printf("\n");}printf("\n");printf("------------------------------------\n"); x[2]=u[2][3]/u[2][2];x[1]=(u[1][3]-u[1][2]*x[2])/u[1][1];x[0]=(u[0][3]-u[0][1]*x[1]-u[0][2]*x[2])/u[0][0];for(i=0;i<=N-1;i++)printf("x(%d)=%-lf\n",i+1,x[i]);getch();return 0;}3.平方跟法#include <stdio.h>#include <stdlib.h>#include <conio.h>#include <math.h>#define N 3int main(){double u[3][4]={0};double l[3][3]={0};double x[3]={0};double a[3][4]={3,-1,2,7,-1,2,-2,1,2,-2,4,0};int i=0,j=0;printf("------------------------------------\n"); printf("the fuction is :\n");printf("\t3*x1-x2+2*x3=7\n");printf("\t-x1+2*x2-2*x3=-1\n");printf("\t2*x1-2*x2+4*x3=0\n");printf("------------------------------------\n");u[0][0]=sqrt(a[0][0]);l[0][0]=sqrt(a[0][0]);u[0][1]=a[0][1]/l[0][0];u[0][2]=a[0][2]/l[0][0];u[0][3]=a[0][3]/l[0][0];l[1][0]=a[1][0]/u[0][0];l[1][1]=sqrt(a[1][1]-l[1][0]*u[0][1]);u[1][1]=l[1][1];u[1][2]=(a[1][2]-l[1][0]*u[0][2])/l[1][1];u[1][3]=(a[1][3]-l[1][0]*u[0][3])/l[1][1];l[2][0]=a[2][0]/u[0][0];l[2][1]=(a[2][1]-l[2][0]*u[0][1])/ u[1][1];l[2][2]=sqrt(a[2][2]-l[2][0]*u[0][2]-l[2][1]*u[1][2]); u[2][2]=l[2][2];u[2][3]=(a[2][3]-l[2][0]*u[0][3]-l[2][1]*u[1][3])/l[2][2];printf("a矩阵如下\n");for(i=0;i<N;i++){for(j=0;j<N+1;j++){printf("%lf ",a[i][j]);}printf("\n");}printf("\n");printf("------------------------------------\n"); printf("l矩阵如下\n");for(i=0;i<N;i++){for(j=0;j<N;j++){printf("%lf ",l[i][j]);}printf("\n");}printf("\n");printf("------------------------------------\n"); printf("u矩阵如下\n");for(i=0;i<N;i++){for(j=0;j<N+1;j++){printf("%lf ",u[i][j]);}printf("\n");}printf("\n");printf("------------------------------------\n");x[2]=u[2][3]/u[2][2];x[1]=(u[1][3]-u[1][2]*x[2])/u[1][1];x[0]=(u[0][3]-u[0][1]*x[1]-u[0][2]*x[2])/u[0][0];for(i=0;i<=N-1;i++)printf("x(%d)=%-lf\n",i+1,x[i]);getch();return 0;}4列主元素法#include <stdio.h> #include <stdlib.h> #include <conio.h> #include <math.h> #define N 3int main(){int i,j;double max;double a[3][4]={3,-1,2,7,-1,2,-2,1,2,-2,4,0};double u[3][4]={0};double l[3][3]={0};double x[3]={0};printf("------------------------------------\n");printf("the fuction is :\n");printf("\t3*x1-x2+4*x3=3\n");printf("\t-x1+2*x2-2*x3=2\n");printf("\t2*x1-3*x2-2*x3=5\n");printf("------------------------------------\n");printf("a矩阵如下\n");for(i=0;i<N;i++){for(j=0;j<N+1;j++){printf("%-10lf ",a[i][j]);}printf("\n");}printf("\n");printf("------------------------------------\n");if(fabs(a[0][0])<fabs(a[1][0])){if(fabs(a[1][0])<fabs(a[2][0])){for(j=0;j<3;j++){max=a[2][j]; a[2][j]=a[0][j];a[0][j]=max;} }else{for(j=0;j<3;j++){max=a[1][j]; a[1][j]=a[0][j];a[0][j]=max;} }}else{if(fabs(a[0][0])<fabs(a[2][0])){for(j=0;j<3;j++){max=a[2][j]; a[2][j]=a[0][j];a[0][j]=max;} }}printf("a转换后矩阵如下\n");for(i=0;i<N;i++){for(j=0;j<N+1;j++){printf("%-10lf ",a[i][j]);}printf("\n");}printf("\n");printf("------------------------------------\n"); for(i=0;i<N;i++)l[i][i]=1;for(j=0,i=0;j<N+1;j++)u[i][j]=a[i][j]/l[0][0];l[1][0]=a[1][0]/u[0][0];l[2][0]=a[2][0]/u[0][0];u[1][1]=a[1][1]-l[1][0]*a[0][1];u[1][2]=a[1][2]-l[1][0]*a[0][2];u[1][3]=a[1][3]-l[1][0]*a[0][3];u[2][1]=a[2][1]-l[2][0]*a[0][1];u[2][2]=a[2][2]-l[2][0]*a[0][2];u[2][3]=a[2][3]-l[2][0]*a[0][3];if(u[1][1]<u[2][1]){for(j=1;j<N+1;j++)max=u[2][j];u[2][j]=u[1][j];u[1][j]=max; }l[2][1]=u[2][1]/u[1][1];u[2][1]=0;u[2][2]=u[2][2]-l[2][1]*u[1][2];u[2][3]=u[2][3]-l[2][1]*u[1][3];printf("l矩阵如下\n");for(i=0;i<N;i++){for(j=0;j<N;j++){printf("%lf ",l[i][j]);}printf("\n");}printf("\n");printf("------------------------------------\n"); printf("u矩阵如下\n");for(i=0;i<N;i++){for(j=0;j<N+1;j++){printf("%lf ",u[i][j]);}printf("\n");}printf("\n");printf("------------------------------------\n"); x[2]=u[2][3]/u[2][2];x[1]=(u[1][3]-u[1][2]*x[2])/u[1][1];x[0]=(u[0][3]-u[0][1]*x[1]-u[0][2]*x[2])/u[0][0];for(i=0;i<=N-1;i++)printf("x(%d)=%-lf\n",i+1,x[i]);return 0;}四实验收获与教师评语。

第三章 解线性代数方程组的直接法(1)

第三章 解线性代数方程组的直接法(1)

(1) 11 (1) i1 (1) 11
0,记
... a
( 2) n2
...
...
( 2) nn
... a
b1(1) ( 2) b2 ... ( 2) bn
[ A2 b2 ]
其中
a a l i1 a ( 2) (1) (1) b bi bi li1 1
( ( ( A A1 [aij1) ]nn , b b1 [b1(1) , b21) , ..., bn1) ]
(1) 第一步消元。若 a
a l i1 , i 2, 3, ..., n a 将第一行乘以 l i1 ,加到第 i 行上去,得
(1 a11) 0 ... 0 (1 a12) (2 a22 ) ( ... a11) n ( ... a22 ) n
高 斯 消 去 法 的 消 元 过 程
for
k 1, 2,, n 1 for i k 1, k 2,, n aik aik ; akk for j k 1,, n 1
aij aij aik akj
n
回 a n , n 1 (ai ,n1 ai , j a j ,n1 ) 代 a n , n 1 ; a j i 1 i , n 1 an ,n 过 ai , i 程 i n 1,,1
( i , j 3, 4, , n)
于是得到如下与原方程组等价的方程组
A3 x b3
(3) 第 k 步消元。设第 k-1 次消元已经完成,若增广矩阵
a (1) 11
若a
a
(1) 12
a
(1) 13

解线性方程组的直接方法实验报告

 解线性方程组的直接方法实验报告

解线性方程组的直接方法实验报告解线性方程组的直接方法实验报告1.实验目的:1、通过该课题的实验,体会模块化结构程序设计方法的优点;2、运用所学的计算方法,解决各类线性方程组的直接算法;3、提高分析和解决问题的能力,做到学以致用;4、通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。

2.实验过程:实验代码:#include "stdio.h"#include "math.h"#includeusing namespace std;//Gauss法void lzy(double **a,double *b,int n){int i,j,k;double l,x[10],temp;for(k=0;k<n-1;k++){for(j=k,i=k;j<n;j++){if(j==k)temp=fabs(a[j][k]);else if(temp<fabs(a[j][k])) {temp=fabs(a[j][k]);i=j;}}if(temp==0){cout<<"无解" ; return;}else{for(j=k;j<n;j++){temp=a[k][j];a[k][j]=a[i][j];a[i][j]=temp;}temp=b[k];b[k]=b[i];b[i]=temp;}for(i=k+1;i<n;i++){l=a[i][k]/a[k][k];for(j=k;j<n;j++)a[i][j]=a[i][j]-l*a[k][j];b[i]=b[i]-l*b[k];}}if(a[n-1][n-1]==0){cout<<"无解" ; return;}x[n-1]=b[n-1]/a[n-1][n-1]; for(i=n-2;i>=0;i--){temp=0;for(j=i+1;j<n;j++)temp=temp+a[i][j]*x[j];x[i]=(b[i]-temp)/a[i][i];}for(i=0;i<n;i++){printf("x%d=%lf ",i+1,x[i]);printf(" ");}}//平方根法void pfg(double **a,double *b,int n) {int i,k,m;double x[8],y[8],temp;for(k=0;k<n;k++){temp=0;for(m=0;m<k;m++)temp=temp+pow(a[k][m],2);if(a[k][k]<temp)return;a[k][k]=pow((a[k][k]-temp),1.0/2.0);for(i=k+1;i<n;i++){temp=0;for(m=0;m<k;m++)temp=temp+a[i][m]*a[k][m]; a[i][k]=(a[i][k]-temp)/a[k][k]; }temp=0;for(m=0;m<k;m++)temp=temp+a[k][m]*y[m];y[k]=(b[k]-temp)/a[k][k];}x[n-1]=y[n-1]/a[n-1][n-1];for(k=n-2;k>=0;k--){temp=0;for(m=k+1;m<n;m++)temp=temp+a[m][k]*x[m];x[k]=(y[k]-temp)/a[k][k];}for(i=0;i<n;i++){printf("x%d=%lf ",i+1,x[i]);printf(" ");}}//追赶法void zgf(double **a,double *b,int n){int i;double a0[10],c[10],d[10],a1[10],b1[10],x[10],y[10]; for(i=0;i<n;i++) {a0[i]=a[i][i];if(i<n-1)c[i]=a[i][i+1];if(i>0)d[i-1]=a[i][i-1];}a1[0]=a0[0];for(i=0;i<n-1;i++){b1[i]=c[i]/a1[i];a1[i+1]=a0[i+1]-d[i+1]*b1[i];}y[0]=b[0]/a1[0];for(i=1;i<n;i++)y[i]=(b[i]-d[i]*y[i-1])/a1[i];x[n-1]=y[n-1];for(i=n-2;i>=0;i--)x[i]=y[i]-b1[i]*x[i+1];for(i=0;i<n;i++){printf("x%d=%lf ",i+1,x[i]);printf(" ");}}int main{int n,i,j;double **A,**B,**C,*B1,*B2,*B3;A=(double **)malloc(n*sizeof(double)); B=(double **)malloc(n*sizeof(double));C=(double **)malloc(n*sizeof(double));B1=(double *)malloc(n*sizeof(double));B2=(double *)malloc(n*sizeof(double));B3=(double *)malloc(n*sizeof(double));for(i=0;i<n;i++){A[i]=(double *)malloc((n)*sizeof(double)); B[i]=(double *)malloc((n)*sizeof(double)); C[i]=(double *)malloc((n)*sizeof(double)); } cout<<"第一题(Gauss列主元消去法):"<<endl<<endl; cout<<"请输入阶数n:"<<endl;cin>>n;cout<<" 请输入系数矩阵: ";for(i=0;i<n;i++)for(j=0;j<n;j++){。

计算方法-解线性方程组的直接法实验报告

计算方法-解线性方程组的直接法实验报告
cout<<a[i][p]<<"\t";
cout<<endl;
for(k=i+1;k<m;k++)
{
l[k][i]=a[k][i]/a[i][i];
for(r=i;r<m+1;r++) /*化成三角阵*/
a[k][r]=a[k][r]-l[k][i]*a[i][r];
}
}
x[m-1]=a[m-1][m]/a[m-1][m-1];
{
int i,j;
float t,s1,s2;
float y[100];
for(i=1;i<=n;i++) /*第一次回代过程开始*/
{
s1=0;
for(j=1;j<i;j++)
{
t=-l[i][j];
s1=s1+t*y[j];
}
y[i]=(b[i]+s1)/l[i][i];
}
for(i=n;i>=1;i--) /*第二次回代过程开始*/
s2=s2+l[i][k]*u[k][r];
l[i][r]=(a[i][r]-s2)/u[r][r];
}
}
printf("array L:\n");/*输出矩阵L*/ for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
printf("%7.3f ",l[i][j]);
printf("\n");
{
s2=0;
for(j=n;j>i;j--)

第三章 线性代数方程组的直接解法1

第三章 线性代数方程组的直接解法1

for
j = n : −1 : 2
y( j ) = y( j ) u( j , j )
y (1 : j − 1) = y (1 : j − 1) − y ( j )u(1 : j − 1, j )
end
y(1) = y(1) u(1,1)
加减乘除运算次数之和)均为 两种算法的工作量(加减乘除运算次数之和 两种算法的工作量 加减乘除运算次数之和 均为 n
高斯变换
a 0
(1) 11

L = I +l e 1
其中 l i 1
T 1 1
l1 = (0, l21,⋯, ln1)
a
(1) 11
T
=
−1 1
a
(1) i1
i = 2, 3,⋯ , n
−1 1 T 1 1

A
( 2)
=L A
(1)
L = I −l e
(1 a11) 0 I n−1 c1 T 1
(i ) ii
的各阶顺序主子式都不等于零 顺序主子式都不等于 A 的各阶顺序主子式都不等于零,即
−1 −1 1 2
1 4 7 0 −3 − 6 = U L2 L1 A = 0 0 1
∴ A = L L U = LU
其中
1 0 0 2 1 0 −1 − 1 L = L1 L2 = 3 2 1
Gauss消去法的矩阵表示 消去法的矩阵表示 设给定 n 阶矩阵 记
1 0 0 −2 1 0 L1 = −3 0 1
设给定矩阵
则有
7 1 4 0 −3 −6 L1 A = 0 −6 −11

计算方法第三章线性方程组的直接解法

计算方法第三章线性方程组的直接解法

5 3
3 1
r3
r1 6
6 1 18 2
1 0
4 5 1 3
3 1
r3 r225
1 0
4 1
5 3
3 1
0 25 48 16
0 0 27 9
林龙
计算方法
6
化原方程组为三角方程组的过程为消元过程. 解三角方程组的过程为回代过程.
也可将上边的增广矩阵进一步化简.
1 4 5 3
1 0 7 1
xi
Di D
(i
1, 2,3,
),由于方程含有n 1个
行列式.如对每个行列式按展开定理来计算.
用克莱姆法则求解,所需要的乘除运算量为
n!(n2 1) n次,若n 20用每秒一千万次的
计算机要三百万年,所以并不是凡直接法都
可以用来做实际运算.
林龙
计算方法
4
设有
§3.1直接法
a11x1 a12 x2 a21x1 a22 x2
解 : 10
7
0
7
r1 r2
5 1 5 6
林龙
计算方法
16
10 3 5
7 2 1
0 6 5
7 4 6
r2
3 10
r1
r3
5 10
r1
10
0
0
7 0.1 2.5
0 7 6 6.1 5 2.5
r2 r3
r3
1 25
r2
10 7 0 7 x3 1
0
2.5
5
2.5
x2
2.5 5x
nn
a11 a12 .... a1n 1 0 0
a21
a22

线性方程组的直接解法迭代解法

线性方程组的直接解法迭代解法

广东金融学院实验报告课程名称:数值分析实验目的及要求实验目的:题一:通过数值实验,从中体会解线性方程组选主元的必要性和LU分解法的优点,以及方程组系数矩阵和右端向最的微小变化对解向最的影响。

比较各种直接接法在解线性方程组中的效果;题二:认识齐种迭代法收敛的含义、影响齐迭代法收敛速度的因素。

实验要求:题一:(1)在MATLAB中编写程序用列主元高斯消去法和LU分解求解上述方程组,输出曲b中矩阵A 及向量b和A二LU分解中的L及U, detA及解向量X.(2)将方程组中的2. 099999改为2. 1, 5. 900001改为5. 9,用列主元高斯消去法求解变换后的方程组,输出解向最x及detA,并与(1)中的结果比较。

(3)用MATLAB的内部函数inv求出系数矩阵的逆矩阵,再输入命令x=inv(A)*b,即可求出方程组的解。

请与列主元高斯消公法和LU分解法求出的解进行比较,体会选主元的方法具有良好的数值稳定性。

用MATLAB的内部曲数det求出系数行列式的值,并与(1)、(2)中输出的系数行列式的值进行比较。

(4)比较以上各种直接解法在解线性方程组中的效果。

题二:(1)选取不同的初始向M:X(0)及右端向最b,给泄迭代误差要求,用Jacobi迭代法和Gauss-Seidel迭代法求解,观察得到的序列是否收敛?若收敛,记录迭代次数,分析计算结果并得出你的结论。

列岀算法清单。

(2)用SOR迭代法求上述方程组的解,松弛系数血取1<69<2的不同的三个值,在< 10"5时停止迭代,记录迭代次数,分析计算结呆与松弛系数血的关系并得出你的结论。

(3)用MATLAB的内部函数inv求出系数矩阵的逆矩阵.再输入命令^inv(A)*b>即可求出上述各个方程组的解.并与上述三种方法求出的解进行比较。

请将比较结果列入卜表。

方程组的解X1 Xr■迭代次数误差楮确解Jacibi解法Gause・seidel 解法SOR 解法00= 60= 60=实验环境及相关情况(包含使用软件、实验设备、主要仪器及材料等)1. Win72. Mat lab 7.0实验内容及步骤(包含简要的实验步骤流程) 实验内容:题一:解卜列线性方程组'10 -7‘X 】、(8、-3 2.099999 62Xr5.9000015-1 5 -15、12> 0< 1 >题二研究解线性方程组 做=b 迭代法的收敛性、收敛速度以及SOR 方法中/佳松弛因子的选取问题, 用迭代法求解做二b,其中・4 -1r■7 A=4 -81 ,b =-21-2 ■1515实验结果(包括程序或图表、结论陈述.数据记录及分析等,可附页)题一:直接解法解线性方程组(1)列主兀高斯消去法与LU 分解求解列主元高斯消去法:编写matalab 程序(见附录gaosi.m ),输出矩阵10.000 -7.000 0.000= 0.000 2.5000-5.000一 0.000 0.0006.0000020.000 0.000 0.000向量8 b =1 8.300 L5.0800J解向量:X = (0 ・-1 , 1 r I )7 其中系数行列式的值det (A )=762.00009LU 分解求解:编J matalab 程序(见附录zhjLU. m 和LU ・m ),执行输出:-1.5 2.300 5.080-3.0001.000000.00000.5000 -25000001.0000 0.2000 -24000000.9600 10.0000 -7.0000 0.0000 1.0000n = 0.0000-0.0000010.0000 2.3000 —0.0000 0.000015000000 57500000.0000 0.0000 0.0000 5.0800在matlab 命令窗II 输入L*U ,可以得到A 二L*U ,即分解结果正确。

数值计算方法实验报告

数值计算方法实验报告

数值分析实验报告实验一、解线性方程组的直接方法——梯形电阻电路问题利用追赶法求解三对角方程组的方法,解决梯形电阻电路问题:电路中的各个电流{1i ,2i ,…,8i }须满足下列线性方程组:R V i i =- 22 210 252321=-+-i i i 0 252 432=-+-i i i 0 252 543=-+-i i i 0 252 654=-+-i i i 0 252 765=-+-i i i 0 252 876=-+-i i i 052 87=+-i i设V 220=V ,Ω=27R ,运用追赶法,求各段电路的电流量。

问题分析:上述方程组可用矩阵表示为:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------00000001481.8522520000002520000002520000002520000002520000002520000002287654321i i i i i i i i问题转化为求解A x b =,8阶方阵A 满足顺序主子式(1,2...7)0i A i =≠,因此矩阵A存在唯一的Doolittle 分解,可以采用解三对角矩阵的追赶法!追赶法a=[0 -2 -2 -2 -2 -2 -2 -2]; b=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2 0]; d=[220/27 0 0 0 0 0 0 0];Matlab 程序function x= zhuiganfa( a,b,c,d )%追赶法实现要求:|b1|>|C1|>0,|bi|>=|ai|+|ci| n=length(b); u=ones(1,n); L=ones(1,n); y=ones(1,n); u(1)=b(1); y(1)=d(1); for i=2:nL(i)=a(i)/u(i-1);u(i)=b(i)-c(i-1)*L(i); y(i)=d(i)-y(i-1)*L(i); endx(n)=y(n)/u(n); for k=n-1:-1:1x(k)=(y(k)-c(k)*x(k+1))/u(k); end endMATLAB 命令窗口输入:a=[0 -2 -2 -2 -2 -2 -2 -2]; b=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2 0] d=[220/27 0 0 0 0 0 0 0];x= zhuiganfa(a,b,c,d )运行结果为:x =8.1478 4.0737 2.0365 1.0175 0.5073 0.2506 0.1194 0.0477存在问题根据电路分析中的所讲到的回路电流法,可以列出8个以回路电流为独立变量的方程,课本上给出的第八个回路电流方程存在问题,正确的应该是78240i i -+=;或者可以根据电路并联分流的知识,同样可以确定78240i i -+=。

MATLAB实验一 解线性方程组的直接法

MATLAB实验一 解线性方程组的直接法

输出 Ax b 中系数 A LU 分解的矩阵 L 和 U ,解向量 x 和 det(A) ;用列主元法 的行交换次序解向量 x 和求 det(A) ;比较两种方法所得结果。
2、用列主高斯消元法解线性方程组 Ax b 。
3.01 6.03 1.99 x1 1 4.16 1.23 x 2 1 (1) 、 1.27 0.987 4.81 9.34 x 1 3 3.00 6.03 1.99 x1 1 4.16 1.23 x 2 1 (2) 、 1.27 0.990 4.81 9.34 x 1 3
index = 1 3、在 MATLAB 窗口:
A=[10 7 8 7;7 5 6 5;8 6 10 9;7 5 9 10]; b=[32 23 33 31]'; x=A\b b1=[32.1 22.9 33.1 30.9]'; x1=A\b1 A1=[10 7 8.1 7.2;7.08 5.04 6 5;8 5.98 9.89 9;6.99 5 9 9.98]; x2=A1\b delta_b=norm(b-b1)/norm(b) delta_A=norm(A-A1)/norm(A) delta_x1=norm(x-x1)/norm(x) delta_x2=norm(x-x2)/norm(x)
二. 实验要求 1、按照题目要求完成实验内容; 2、写出相应的 Matlab 程序; 3、给出实验结果(可以用表格展示实验结果); 4、分析和讨论实验结果并提出可能的优化实验。 5、写出实验报告。 三. 实验步骤 1、用 LU 分解及列主元高斯消去法解线性方程组
7 10 3 2.099999 a) 5 1 2 1 1 x1 8 6 2 x 2 5.900001 , 5 1 x3 5 0 2 1 x 4 0

线性方程组的直接解法程序设计(计算方法与数学实验)

线性方程组的直接解法程序设计(计算方法与数学实验)

线性方程组的直接解法2.1实验目的理解线性方程组计算机解法中的直接解法的求解过程和特点,学习科学计算的方法和简单的编程技术。

2.2程序中Mathematica语句解释1.MatrixForm[a] 以矩阵的形式显示a2.Table[Random[Integer,{xa,xb}],{n}] 产生xa 到xb 之间的n个随机整数的向量3. x=Table[0,{n}] 定义变量x为n维向量4. a=Table[0,{n},{n}] 定义变量a为n n矩阵5. Timing[expr] 给出计算表达式expr所用的计算机时间2.3方法、程序、实验解线性方程组的直接法是用有限次运算求出线性方程组 Ax=b 的解的方法。

线性方程组的直接法主要有Gauss消元法及其变形、LU(如Doolittle、Crout方法等)分解法和一些求解特殊线性方程组的方法(如追赶法、LDLT法等)1. Gauss消元法1) Gauss消元法的构造过程Gauss消元法是一个古老的直接法,由它改进得到的选主元的消元法,是目前计算机上常用于求低阶稠密矩阵方程组的有效方法,它是通过消元将一般线性方程组的求解问题转化为三角方程组的求解问题的。

Gauss消元法的求解过程可分为两个阶段:首先,把原方程组化为上三角形方程组,称之为“消去”过程;然后,用逆次序逐一求出三角方程组(原方程组的等价方程组)的解,并称之为“回代”过程,其“消去”和“回2) Gauss消元法程序Clear[a,b,x];n= Input[“线性方程组阶数n=”];a=Input["系数矩阵A="];b=Input["常数项b="];eps1=0.000000001;t=1;Do[If[Abs[a[[k,k]]]<eps1,Print["Gauss消元失效"];t=0;Break[]];Do[m=-a[[i,k]]/a[[k,k]];Do[a[[i,j]]=a[[i,j]]+m*a[[k,j]],{j,k+1,n}];b[[i]]=b[[i]]+m*b[[k]],{i,k+1,n}],{k,1,n}];x=Table[0,{n}];If[t==1,x[[n]]=b[[n]]/a[[n,n]];Do[x[[k]]=(b[[k]]-Sum[a[[k,j]]*x[[j]],{j,k+1,n}])/a[[k,k]],{k,n-1,1,-1}]];Print[“Ax=b 的解为 ” , x]说明 本程序用于求线性方程组Ax=b 的解。

数值计算方法-第5章_解线性方程组的直接法

数值计算方法-第5章_解线性方程组的直接法
①直接法:准确,可靠,理论上得到的解是精确的 ②迭代法:速度快,但有误差
本章讲解直接法
5.1 消元法
我们知道,下面有3种方程的解我们可以直接求出:

n次运算
A
diag(a11, a22 ,
, ann )
xi
bi aii
,i
1,
,n

(n+1)n/2次运算
l11
A
l21 ln1
l22 ln2
(aik
k 1
liklkr ) r 1 lkk
,i k 1, , n
因此不常用
又 l11
1
l11
l21 l22
ln1
ln2
lnn
l '21 l 'n1
1 l'n2
1
l22
lnn
则有
A L~D~D~T L~T LDLT
L~
D~
1
L
l21 ln1
lnn
xi
bi
i 1
lij x j
j 1
lii
,i
1,
,n

(n+1)n/2次运算
u11
A
u12 u22
u1n
u2n unn
xi
bi
n
uij x j
j i 1
uii
,i
n,
,1
对方程组,作如下的变换,解不变 ①交换两个方程的次序 ②一个方程的两边同时乘以一个非0的数 ③一个方程的两边同时乘以一个非0数,加到另一个方程
1 ln2
1
d1
D
d2
dn
a11 a12
a21 a22

计算方法实验:解线性方程组的直接法

计算方法实验:解线性方程组的直接法

实验二解线性方程组的直接法一、实验目的用列主元素高斯消去法和三角分解法解线性方程组Ax=b。

式中,A为n阶非奇异方阵,x,b是n阶列向量,并分析选主元素的重要性。

二、实验方法(1)列主元素高斯消去法通过变换,将系数矩阵换成等价的上三角矩阵,在每步消元过程中,选列主元素。

对k=1,2,……n-1,逐次计算l ik=a ik(k-1)/a kk(k-1) (i=k+1,k+2,……,n)a ij(k)=a ij(k-1)-l ik a kj(k-1) (i,j=k+1,k+2,……,n)b i(k)=b i(k-1)-l ik b k(k-1) (i=k+1,k+2,……,n)逐步回代气的原方程组的解X n=b i(n-1)/a nn(n-1)X k=(b k(k-1)_a kj(k-1)x j)/a kk(k-1) (k=n-1,n-2, (1)(2)直接三角分解法由于两个矩阵相等就是它们的对应元素相等,因此通过比较A与LU的对应元素,即可得到直接计算L,U的元素的公式。

设A=L×U,其中U的第一行、L的第一列的元素分别为对(依次:U的第二行,L的第二列,U的第三行,L的第三列……),有由上述两种方法得到矩阵A的LU分解后,求解Ly=b与Ux=y的计算公式为∑+=n1kj三、实验内容解下列方程组·=四、实验程序(1)列主元素高斯消去法(2)直接三角分解法0147.06721.109998.42371.13142.17643.89217.44129.35435.15330.27875.15301.04017.31651.18326.31348.14321xxxx9237.164231.183941.65342.9五、实验结果(仅供参考)精确解为:(1,1,1,1)T六、结果分析实验的数学原理很容易理解,也容易上手。

把运算的结果带入原方程组,可以发现符合的还是比较好。

这说明列主元消去法计算这类方程的有效性。

第5章 解线性方程组的直接方法

第5章  解线性方程组的直接方法

第5章
解线性方程组的直接方法
定理3 若A∈Rnⅹn 为对称矩阵.如果det(Ak) >0(k=1,2,…,n),
或A得特征值λi>0(i=1,2, …,n ).则A为对称正定矩阵。
《 数 值 分 析 》
有重特征值的矩阵不一定相似于对角矩阵,那么一般n阶 矩阵A在相似变换下能简化到什么形状?
定理4(若尔当(Jordan)标准型) 设A为n阶矩阵,则 存在一个非奇异矩阵P使得
a1(1) x1 b1(1) n ( 2) ( 2) a2 n x2 b2 ( k ) . (2.8) (k ) akn xk bk (k ) (k ) ann xn bn
(2.12 )
(2.7)
简记为
A(2)X=b(2) ,
( ( ( aij2) aij1) mi1 a11) , j
其中A(2),b(2)的元素计算公式为
(i, j 2,3,, n),
bi( 2) bi(1) mi1 b1(1) , (i 2,3,, n).
第k步:若
(k akk ) 0,
a11 ... ... Ak ak1 ... ... , akk
《 数 值 分 析 》
a
1k
k 1,2, n.
(3)A的特征值λi>0(i=1,2, …,n ). (4)A的顺序主子式都大于零,即det(Ak) >0(k=1,2,…,n)
(1))=(a
), b(1)=b. ij
第5章 解线性方程组的直接方法 (1)消元过程 1 (1 第1步:设 a (1) 0,首先计算乘数 mi1 ai(1 ) / a11) , i 2,3n, 11 用-mi1乘(2.1)的第1个方程组,加到第i个中,消去方程组(2.1)的从 第2个方程到第n个方程中的未知数X1,得到与方程组(2.1)等价的线性方 程组 《 数 值 分 析 》
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 0 0 5.0800
>> b=[8 5.900001 5 1]'
b =
8.0000
5.9000
5.0000
1.0000
>> y=l\b
y =
8.0000
1.0000
8.3000
5.0800
>> x1=U\x
x1 =
0.0000
-1.0000
1.0000
1.0000
>>det1= det(a)
det1 =-762.0001
end
在命令框中输入下列命令:
>> a=[10 -7 0 1;-3 2.099999 6 2;5 -1 5 -1;2 1 0 2]
a =
10.0000 -7.0000 0 1.0000
-3.0000 2.1000 6.0000 2.0000
5.0000 -1.0000 5.0000 -1.0000
2.0000 1.0000 0 2.0000
A =
3.0000 6.0300 1.9900
1.2700 4.1600 -1.2300
0.9900 -4.8100 9.3400
>> b=[1 1 1]'
b =
1
1
1
>>[x2,det2,index]=Gauss5555(A,b)
x2 =
119.5273
-47.1426
-36.8403
det2 =
-1.11E-16
4
1.00030715
0.000307149
0
4
0.99983898
-0.000161019
0
4
1.00003537
3.54E-05
0
5
n=11时:
Δx
rn
(1)分别对 计算 ,分析条件数作为 的函数如何变化。(2)令 ,计算 ,然后用高斯消去法解线性方程组 求出 ,计算剩余向量 以及 。分析当 增加时解 分量的有效位数如何随 变化,它与条件数有何关系?当 多大时 连一位有效数字也没有了?
将每种情形的两个结果进行表格对比,如:
n=6时:
GAUSS列主消去法求得的
index = find(A(:,k)==-ak);
end
%交换列主元
temp = A(index,:);
A(index,:) = A(k,:);
A(k,:) = temp;
temp = b(index);b(index) = b(k); b(k) = temp;
%消元过程
for i=k+1:n
m=A(i,k)/A(k,k);
-0.4070
index =
1
3、在MATLAB窗口:
A=[10 7 8 7;7 5 6 5;8 6 10 9;7 5 9 10];
b=[32 23 33 31]';
x=A\b
b1=[32.1 22.9 33.1 30.9]';
x1=A\b1
A1=[10 7 8.1 7.2;7.08 5.04 6 5;8 5.98 9.89 9;6.99 5 9 9.98];
for i=1:n
L(i,i)=1;
end
for k=1:n
for j=k:n
U(k,j)=A(k,j)-sum(L(k,1:k-1).*U(1:k-1,j)');
end
for i=k+1:n
L(i,k)=(A(i,k)-sum(L(i,1:k-1).*U(1:k-1,k)'))/U(k,k);
end
>> [l,u]=lu(a)
l =
1.0000 0 0 0
-0.3000 -0.0000 1.0000 0
0.5000 1.0000 0 0
0.2000 0.9600 -0.8000 1.0000
u =
10.0000 -7.0000 0 1.0000
0 2.5000 5.0000 -1.5000
0 0 6.0000 2.3000
x1 =
9.2000
-12.6000
4.5000
-1.1000
x2 =
-9.5863
18.3741
-3.2258
3.5240
delta_b =
0.0033
delta_A =
0.0076
delta_x1 =
8.1985
delta_x2 =
10.4661
cond_A =
2.9841e+03
3、在MATLAB窗口:
%高斯列主元消去法,要求系数矩阵非奇异的,%
n = size(A,1);
if abs(det(A))<= 1e-8
error('系数矩阵是奇异的');
return;
end
%
for k=1:n
ak = max(abs(A(k:n,k)));
index = find(A(:,k)==ak);
if length(index) == 0
的有效数字
四、实验结果
五、讨论分析
(对上述算例的计算结果进行比较分析,主要说清matlab的算符与消去法的适用范围不同,自己补充)
六、改进实验建议
(自己补充)
1.列主元的高斯消去法
利用列主元的高斯消去法matlab程序源代码:
首先建立一个gaussMethod.m的文件,用来实现列主元的消去方法。
function x=gaussMethod(A,b)
然后调用gaussMethod函数,来实现列主元的高斯消去法。在命令框中输入下列命令:
输出结果如下:
利用LU分解法及matlab程序源代码:
function [L,U]=myLU(A) %实现对矩阵A的LU分解,L为下三角矩阵
A[n,n]=size(A);
L=zeros(n,n);
U=zeros(n,n);
1.00000228
2.28E-06
4.44E-16
6
0.99999164
-8.36E-06
0
5
1.00001706
1.71E-05
0
5
0.99998042
-1.96E-05
-1.11E-16
5
1.00001182
1.18E-05
0
5
0.99999708
-2.92E-06
0
6
n=10时:
Δx
rn
有效数字
x2=A1\b
delta_b=norm(b-b1)/norm(b)
delta_A=norm(A-A1)/norm(A)
delta_x1=norm(x-x1)/norm(x)
delta_x2=norm(x-x2)/norm(x)
cond_A=cond(A)
x =
1.0000
1.0000
1.0000
1.0000
%消除列元素
A(i,k+1:n)=A(i,k+1:n)-m*A(k,k+1:n);
b(i)=b(i)-m*b(k);
end
end
%回代过程
x(n)=b(n)/A(n,n);
for k=n-1:-1:1;
x(k)=(b(k)-A(k,k+1:n)*x(k+1:n)')/A(k,k);
end
x=x';
end
x1=gauss2(H,b0);
r(1:i,(i-1))=b0-H*x1;
x11(1:i,(i-1))=x1;
end
dx=x11-x0;
结果如下:
co=[0,27, 748,28375,943656, 29070279]可见,条件数随着n的增大,急剧增加,如图1所示。
将(2)求得的结果(dx,x11)整理得
3、给出实验结果(可以用表格展示实验结果);
4、分析和讨论实验结果并提出可能的优化实验。
5、写出实验报告。
三.实验步骤
1、用 分解及列主元高斯消去法解线性方程组
a) ,
输出 中系数 分解的矩阵 和 ,解向量 和 ;用列主元法的行交换次序解向量 和求 ;比较两种方法所得结果。
2、用列主高斯消元法解线性方程组 。
实验报告
课程名称数值分析
实验项目解线性方程组的直接法
专业班级姓名学号
指导教师成绩日期月日
一.实验目的
1、掌握程序的录入和matlab的使用和操作;
2、了解影响线性方程组解的精度的因素——方法与问题的性态。
3、学会Matlab提供的“\”的求解线性方程组。
二.实验要求
1、按照题目要求完成实验内容;
2、写出相应的Matlab程序;
2、(1)在MATLAB窗口:
>>A=[3.01 6.03 1.99;1.27 4.16 -1.23;0.987 -4.81 9.34]
A =
3.0100 6.0300 1.9900
1.2700 4.1600 -1.2300
0.9870 -4.8100 9.3400
>> b=[1 1 1]'
b =
1
12
1
3.96E-13
0
13
n=5时:
Δx
rn
有效数字
1
-1.21E-14
4.44E-16
14
1
6.97E-14
0
13
1
1.18E-13
2.22E-16
相关文档
最新文档