因式分解课件
合集下载
因式分解ppt课件
(华师大版)八年级 上
第12章
整式的乘除
12.5 因式分解
内容总览
目录
01
教学目标
02
新知导入
03
新知讲解
04
课堂练习
05
课堂总结
06
作业布置
07
教学目标
教学目标:
1、理解因式分解的意义和概念及其与整式乘法的区别和联系;
2、理解并掌握提公因式法并能熟练地运用提公因式法分解因式;
3、认识平方差公式、完全平方公式的特点,会运用这两种公式
b
=(a ±b)2
完全平方公式:
完全平方式的特点:
1.必须是三项式(或可以看成三项的);
2.有两个同号的数或式的平方;
3.中间有两底数之积的±2倍.
简记口诀:首平方,尾平方,首尾两倍在中央.
凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便
实现了因式分解.
a2 ± 2 . a . b + b2 = (a ± b)²
原式=(2×1.5-2)×(0.5-2)=-1.5
作业布置
【综合拓展类作业】
3.在一块边长为a=6.6米的正方形空地的四角均留出一块边长为
b=1.7米的正方形空地修建花坛,其余的地方种植草坪.问草坪的面
积有多大?
解:由题意可知,草坪的面积是边长为a米
的正方形的面积减去四个边长为b米的小正
方形的面积,即a2-4b2 =(a+2b)(a-2b)
2
2
∴ab +a b=ab(a+b)=− ;
,
(2)∵(a+b)2=a2+2ab+b2,
第12章
整式的乘除
12.5 因式分解
内容总览
目录
01
教学目标
02
新知导入
03
新知讲解
04
课堂练习
05
课堂总结
06
作业布置
07
教学目标
教学目标:
1、理解因式分解的意义和概念及其与整式乘法的区别和联系;
2、理解并掌握提公因式法并能熟练地运用提公因式法分解因式;
3、认识平方差公式、完全平方公式的特点,会运用这两种公式
b
=(a ±b)2
完全平方公式:
完全平方式的特点:
1.必须是三项式(或可以看成三项的);
2.有两个同号的数或式的平方;
3.中间有两底数之积的±2倍.
简记口诀:首平方,尾平方,首尾两倍在中央.
凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便
实现了因式分解.
a2 ± 2 . a . b + b2 = (a ± b)²
原式=(2×1.5-2)×(0.5-2)=-1.5
作业布置
【综合拓展类作业】
3.在一块边长为a=6.6米的正方形空地的四角均留出一块边长为
b=1.7米的正方形空地修建花坛,其余的地方种植草坪.问草坪的面
积有多大?
解:由题意可知,草坪的面积是边长为a米
的正方形的面积减去四个边长为b米的小正
方形的面积,即a2-4b2 =(a+2b)(a-2b)
2
2
∴ab +a b=ab(a+b)=− ;
,
(2)∵(a+b)2=a2+2ab+b2,
七年级下《因式分解》(苏科版)-课件
一元二次方程的求解
求解一元二次方程
因式分解法是求解一元二次方程的一种常用方法。通过将方程$ax^2 + bx + c = 0$因 式分解为$(x - x_1)(x - x_2) = 0$,可以得到方程的解$x_1$和$x_2$。
判断解的合理性
在得到一元二次方程的解后,可以通过因式分解法判断解的合理性。例如,对于方程 $x^2 - 4 = 0$,因式分解为$(x + 2)(x - 2) = 0$,得到解$x = 2$和$x = -2$,这两
因式分解的历史与发展
古代数学中的因式分解
01
在古代数学中,因式分解就已经有了一些初步的应用,如中国
的《九章算术》等。
近现代因式分解的发展
02
ห้องสมุดไป่ตู้
随着数学的发展,因式分解的方法和技巧也得到了不断的完善
和发展,出现了许多新的方法和技巧。
因式分解在现代数学中的应用
03
因式分解是代数中的基本技能之一,它在代数学、几何学、方
例子
$2x^2 + 5x - 3 = (2x - 1)(x + 3)$
03
因式分解的应用与 实例
代数式的化简
代数式化简
通过因式分解,可以将复杂的代数式简化,使其更易于计算 和理解。例如,将多项式$x^2 - 4$因式分解为$(x + 2)(x 2)$,可以更方便地处理后续的运算。
简化计算过程
因式分解可以简化计算过程,减少不必要的复杂运算。例如 ,在计算$(x + 3y)(x - y)$时,通过因式分解可以快速得到结 果$x^2 + 2xy - 3y^2$。
因式分解的重要性
01
02
因式分解法-ppt课件
2
2
思考:将一个多项式进行因式分解,通常有哪几 种方法?
提公因式法,公式法,十字相乘法 用因式分解法解一元二次方程的依据是:
如果ab=0,则a=0或b=0.
解下列方程: (x-2)·(x-3)=0; 解: 由题可得
x-2=0或x-3=0 x1=2, x2=3
4x2-11x=0.
解: 分解因式,得
x1=2,x2=-1.
于是得
2x+1=0,或2x-1=0,
x1
1 2
,
x2
1. 2
直接开平方法适用于哪种形式的方程? x2=p 配方法适用于哪种形式的方程? (mx+n)2=p 公式法适用于哪种形式的方程? ax2+bx+c=0(a≠0) 因式分解法适用于哪种形式的方程?x2-(m+n)x+mn=0
课堂小结
因式分解法
通过因式分解 实现降次来解 一元二次方程
提公因式法 公式法
十字相乘法
完全平方公式 平方差公式
课后作业
1.用合适的方法法解下列一元二次方程. (1)(5x)2-9=16; (2)x2+4x+5=2; (3)2x2-3x-2=0; (4)(x-2)(x-3)=12;
2.填空 ①x2-3x+1=0 ②3x2-1=0 ③-3t2+t=0 ④x2-4x=2 ⑤2x2-x=0 ⑥5(m+2)2=8 ⑦3y2-y-1=0 ⑧2x2+4x-1=0 ⑨(x-2)2=2(x-2). (1)适合运用直接开平方法 ② ⑥ ; (2)适合运用因式分解法 ③ ⑤ ⑨ ; (3)适合运用公式法 ① ⑦ ⑧ ; (4)适合运用配方法 ④ . 【提示】每个题都有多种解法,选择更 合适的方法,可以简化解题过程!
21.2.3 因式分解法 课件(共21张PPT)
( + )( − )
−
( − )( + )
情境引入
对于方程 − = ,除了可以用配方法或公式法求
解,还可以怎样求解呢?
观察和分析小亮的解法,你认为他的解法有没有道理?
小亮的思考及解法
解一元二次方程的关键是将它转化为一元一次方程,因此,
可将方程的左边分解因式.于是,得( − ) = .
那么这两个因式中至少有一个等于0;
(3)用因式分解法解一元二次方程的注意点:①必须将方程的右边
化为0;②方程两边不能同时除以含有未知数的代数式;
(4)解一元二次方程时,如果能用因式分解法进行解题,那么它是
首选.
知识点2:换元法解一元二次方程(难点)
1. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使
0,解得y₁=2,y₂=-1(不合题意,舍去),∴|x|=2,∴x₁=2,x₂=-2.
变式:已知(x+y-3) (x+y+4)=-10, 求x+y的值.
解:整理,得( − ) = ,
直接开平方,得 − = 或 −
= −,
解得 = , = −.
() + − = .
解: = , = , = −,
− = + = > ,
所以 =
−±
= − ± ,
21.2.3 因式分解法
1.通过阅读课本 , 学生会用因式分解法解某些简单的数字系
数的一元二次方程,提高了学生的运算能力.
2.通过学生自主探究利用因式分解的方法解方程,培养学生
分析问题、解决问题的能力,并体会通过“降次”把一元二
次方程转化为两个一元一次方程的转化思想.
因式分解法ppt课件
(1)提公因式法:am+bm+cm= m(a+b+c)
;
( 2)公式法:a²-b²= (a+b)(a-b) ,a²±2ab+b²= (a± b)²
(3)十字相乘法 X
)(x
根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛, 那么物体经过xs 离地面的高度(单位:m) 为10-4.9x².
解 :(1) x(x-4)=2-8x
方程整理,得x²+4x=2,
配方,得x²+4x+4=6, 即(x+2)²=6 开平方,得x+2=± √6,
解得x
=-2+√6,x₂=-2-√6.
解 :(2) x²-4x=0
分解因式,得x(x-4)=0, 所以x=0 或x-4=0, 解得x=0,x₂=4.
解:(3)2 x(x+4)=1
解得
,X
₂
解 :2(x-3)²=x²-9,
2(x-3)²=(x-3)(x+3) (x-3)[2(x-3)-(x+3)]=0 (x-3)[x-9]=0 x₁=3,x₂=9.
练习6 按要求解一元二次方程.
(1)x(x-4)=2-8x
(配方法) .
(2)x²-4x=0
(因式分解法).
(3)2x(x+4)=1 (公式法) .
元
先配方,再用直接开平方法降
二 配方法 次 方
次
适用于全部
一
程 公式法
直接利用求根公式
元二次方程
的 方
先使方程一边化为两个一次因
法
因式分解法
式乘积的形式,另一边为0,适用于部分一
24《因式分解法》课件(共35张PPT)ppt课件
x+2 = 0 或 3x-5 = 0
∴ x1 =-2 ,
x2 =
5 3
(3)x2-4 = 0
解:因式分解,得 (x+2) (x-2) = 0 x+2 = 0 或 x-2 = 0 ∴ x1 = -2, x
解:因式分解,得
3x 1 5 3x 1 5 = 0
PPT教学课件
回顾与复习
1.我们已经学过了几种解一元二次方程 的方法?
直接开平方法 x2=a (a≥0)
配方法 (x+m)2=n (n≥0)
公式法
x b b2 4ac . b2 4ac 0 . 2a
2.什么叫分解因式?
把一个多项式分解成几个整式乘积 的形式叫做分解因式.
回顾与复习
x1 0,
x2
100 49
2.04
这种解法是不是很简单?
以上解方程 x10 4.9 x 0的方法
是如何使二次方程降为一次的?
x10 4.9x 0 ①
x 0 或 1 0 4.9x 0, ②
可以发现,上述解法中,由①到②的过程,不是用开 方降次,而是先因式分解使方程化为两个一次式的乘 积等于0的形式,再使这两个一次式分别等于0,从而 实现降次,这种解法叫做因式分解法.
10x 4.9x2
根据这个规律求出物体经过多少秒落回地面?
(精确到 0.01 s)
提示
设物体经过 x s 落回地面,这时它 离地面的高度为 0 ,即
10x 4.9x2 0
配方法
公式法
10x 4.9x2 0
10x 4.9x2 0
解:x2 100 x 0
49
x2
100 49
x
50 49
例3.解下列方程 :
因式分解ppt课件
方式.
完全平方式的条件:(1)多项式是二次三项式;(2)首末
两项是两个数(或式子)的平方且符号相同,中间项是这
两个数(或式子)的积的2 倍,符号可以是“+”,也可以
是“-”.
感悟新知
知5-讲
2. 完全平方公式
两个数的平方和加上(或减去)这两个数
的积的2 倍,等于这两个数的和(或差)的平方.
即:a2±2ab+b2=(a±b)2 .
知4-讲
3. 运用平方差公式分解因式的步骤
一判:根据平方差公式的特点,判断是否为平方差,若负
平方项在前面,则利用加法的交换律把负平方项放在后面;
二定:确定公式中的a和b,除a和b是单独一个数或字母外,
其余不管是单项式还是多项式都必须用括号括起来,表示
一个整体;三套:套用平方差公式进行分解;四整理:将
(2)确定另一个因式,另一个因式即多项式除以公因式所
得的商;
(3)写成积的形式.
感悟新知
知3-讲
特别解读
1. 提公因式法实质上是逆用乘法的分配律.
2. 提公因式法就是把一个多项式分解成两个因式的积的形
式,其中的一个因式是各项的公因式,另一个因式是多
项式除以这个公因式所得的商.
感悟新知
知3-练
例 5 把下列多项式分解因式:
感悟新知
例 3 仔细阅读下面例题,解答问题:
知1-练
例题:已知把x2-4x+m分解因式后有一个因式是x
+3,求其另一个因式及m的值.
解:设另一个因式为x+n,则x2-4x+m=(x+3)(x
+n),即x2-4x+m=x2+(n+3)x+3n.
=-,
+=-,
所以
解得
=-.
因式分解ppt课件
识别多项式的系数
观察多项式的系数,可以发现其中的规律和特点,有助于因式分解的进行。
ห้องสมุดไป่ตู้
寻找公因式或公因子
提取公因式
通过观察多项式的各项,可以发现其 中的公因式,提取公因式是因式分解 的一种常用方法。
寻找公因子
在某些情况下,多项式中可能存在公 因子,通过寻找公因子可以简化因式 分解的过程。
灵活运用公式和分组方法
利用公式进行因式分解
在数学中存在许多公式可以用于因式分解,如平方差公式、 完全平方公式等,利用这些公式可以简化因式分解的过程。
分组方法
对于一些复杂的多项式,可以将其分组进行因式分解,这样 可以更好地理解和处理多项式。
04
因式分解的应用实例分析
代数式的化简与求值
代数式的化简
通过因式分解,可以将复杂的代数式 化简为简单的形式,便于计算和理解 。
$ax^n + bx^{n-1} + \ldots + y = a(x^m)^n + b(x^m)^{n-1} + \ldots + y$
因式分解的意义
01
02
03
简化计算
因式分解可以简化多项式 的计算过程,提高计算效 率。
便于应用
因式分解在解决实际问题 中具有广泛应用,如解方 程、求根、不等式等。
分组分解法
总结词
将多项式分组进行因式分解
详细描述
分组分解法是将多项式中的某些项进行分组,然后对每组进行因式分解的方法。这种方法可以简化多项式的结构 ,使其更容易进行因式分解。
03
因式分解的技巧与策略
观察多项式的结构特点
识别多项式的项数和各项的次数
观察多项式的项数和各项的次数,有助于确定因式分解的策略。
观察多项式的系数,可以发现其中的规律和特点,有助于因式分解的进行。
ห้องสมุดไป่ตู้
寻找公因式或公因子
提取公因式
通过观察多项式的各项,可以发现其 中的公因式,提取公因式是因式分解 的一种常用方法。
寻找公因子
在某些情况下,多项式中可能存在公 因子,通过寻找公因子可以简化因式 分解的过程。
灵活运用公式和分组方法
利用公式进行因式分解
在数学中存在许多公式可以用于因式分解,如平方差公式、 完全平方公式等,利用这些公式可以简化因式分解的过程。
分组方法
对于一些复杂的多项式,可以将其分组进行因式分解,这样 可以更好地理解和处理多项式。
04
因式分解的应用实例分析
代数式的化简与求值
代数式的化简
通过因式分解,可以将复杂的代数式 化简为简单的形式,便于计算和理解 。
$ax^n + bx^{n-1} + \ldots + y = a(x^m)^n + b(x^m)^{n-1} + \ldots + y$
因式分解的意义
01
02
03
简化计算
因式分解可以简化多项式 的计算过程,提高计算效 率。
便于应用
因式分解在解决实际问题 中具有广泛应用,如解方 程、求根、不等式等。
分组分解法
总结词
将多项式分组进行因式分解
详细描述
分组分解法是将多项式中的某些项进行分组,然后对每组进行因式分解的方法。这种方法可以简化多项式的结构 ,使其更容易进行因式分解。
03
因式分解的技巧与策略
观察多项式的结构特点
识别多项式的项数和各项的次数
观察多项式的项数和各项的次数,有助于确定因式分解的策略。
因式分解(完全平方公式)课件
3 因式分解(完全平方公式)
因式分解(完全平方公式)是将多项式分解成平方因子的特殊方法。
完全平方公式的原理
1 平方公式
平方公式是指一个二次方程的两个解之和等于系数b的相反数,而两个解的乘积等于系数 c。
2 完全平方公式的推导
完全平方公式的推导基于平方公式,通过对多项式进行平方运算。
3 常用的完全平方公式
因式分解(完全平方公式) 课件
因式分解(完全平方公式)是一种数学方法,用于将多项式分解成较简单的因子。 它的原理基于完全平方的特性,可以帮助我们解决各种数学问题。
什么是因式分解(完全平方公式)
1 定义
因式分解是将一个多项式分解成多个乘积的过程,每个乘积都被称为因子。
2 完全平方
一个完全平方是一个数的平方,例如4的完全平方是16。
1
确定多项式的类型
首先,我们需要确定多项式的类型,是一个二次方程还是其他类型的多项式。
2
提取公因子
然后,我们可以尝试提取多项式的公因子,使其更容易进行因式分解。
3
应用完全平方公式
接下来,我们可以根据所学的完全平方公式,将多项式分解成平方因子。
因式分解(完全平方公式)的例子
二次方程
多项式
例如,我们可以用因式分解(完全 平方公式)来解决二次方程的问题。
常用的完全平方公式包括平方差公式和平方和公式。
完全平方公式的应用
求解方程
完全平方公式可以帮助我们求 解二次方程,找到方程的解。
化简多项式
通过因式分解(完全平方公式), 我们可以将复杂的多项式化简 为更简单的形式。
探索数学关系
通过分析完全平方公式,我们 可以发现数学中的一些有趣的 关系和特性。
因式分解(完全平方公式)的步骤
因式分解(完全平方公式)是将多项式分解成平方因子的特殊方法。
完全平方公式的原理
1 平方公式
平方公式是指一个二次方程的两个解之和等于系数b的相反数,而两个解的乘积等于系数 c。
2 完全平方公式的推导
完全平方公式的推导基于平方公式,通过对多项式进行平方运算。
3 常用的完全平方公式
因式分解(完全平方公式) 课件
因式分解(完全平方公式)是一种数学方法,用于将多项式分解成较简单的因子。 它的原理基于完全平方的特性,可以帮助我们解决各种数学问题。
什么是因式分解(完全平方公式)
1 定义
因式分解是将一个多项式分解成多个乘积的过程,每个乘积都被称为因子。
2 完全平方
一个完全平方是一个数的平方,例如4的完全平方是16。
1
确定多项式的类型
首先,我们需要确定多项式的类型,是一个二次方程还是其他类型的多项式。
2
提取公因子
然后,我们可以尝试提取多项式的公因子,使其更容易进行因式分解。
3
应用完全平方公式
接下来,我们可以根据所学的完全平方公式,将多项式分解成平方因子。
因式分解(完全平方公式)的例子
二次方程
多项式
例如,我们可以用因式分解(完全 平方公式)来解决二次方程的问题。
常用的完全平方公式包括平方差公式和平方和公式。
完全平方公式的应用
求解方程
完全平方公式可以帮助我们求 解二次方程,找到方程的解。
化简多项式
通过因式分解(完全平方公式), 我们可以将复杂的多项式化简 为更简单的形式。
探索数学关系
通过分析完全平方公式,我们 可以发现数学中的一些有趣的 关系和特性。
因式分解(完全平方公式)的步骤
因式分解ppt课件
因式分解
根据左面的算式填空: (1) 3x2-3x=_______ (2) m2-16=__________ (3) y2-6y+9=______ (4) ma+mb-mc=
归纳小结
想一想 因式分解与整式乘法有什么关系?
整式积的形式 整式乘法
整式乘法 因式分解
互逆运算
多项式 因式分解
典例精析
例1 若多项式 ax+B可分解为a(x+y),则B等于( )
第四章 因式分解
第一节 因式分解
温故知新
一、用简便方法计算
(1)66×42- 42×6
(2)16.9× 1 +15.1× 1
8
8
探索一:因式分解的概念
993-99能被100整除吗?
乘法对加法分配律Βιβλιοθήκη 逆用解:993-99=99×992-99×1 =99×(992-1) =99×9800 =99×100×98
8
8
5.若多项式2x2+mx+n分解因式的结果为(2x-2)(x+3) 求m,n的值。
能力提升
6:仔细阅读下面的例题,并解答问题
例题:已知二次三项式x2-4x+m有一个因式为x十3,求另
一个因式及m的值
解:设另一个因式为x+n,则x2-4x+m=(x+3)(x+n)
即:x2-4x+m=x2+(n+3)x+3n.
在这里,解决问题的关键是把 一个数式化成几个数的积的形式。
所以,993-99能被100整除. 想一想: 993-99还能被哪些整数整除?
探索一:因式分解的概念
议一议 你能尝试把
因式分解(完全平方公式)课件
公式
$x^2+4x+4=(x+2)^2$
解析
这是一个完全平方公式,其中$a=x$,$b=2$,$c=2$。将$a$和$b$的平方和 加上$2ab$得到$(x+2)^2$。
实例二
公式
$(x+y)^2=x^2+2xy+y^2$
解析
这是一个完全平方公式,其中$a=x$,$b=y$,$c=y$。将$a$和$b$的平方和加上$2ab$得到 $(x+y)^2=x^2+2xy+y^2$。
完成因式分解
如果多项式可以被完全分解为 几个整式的积,则因式分解完
成。
03
完全平方公式的概念和形 式
完全平方公式的定义
完全平方公式是指一个多项式等于一 个平方数与另一个平方数的乘积。
完全平方公式通常表示为 a^2+2ab+b^2或a^2-2ab+b^2,其 中a和b是实数。
完全平方公式的形式
完全平方公式可以表示为(a+b)^2或(a-b)^2,其中a和b是任意实数。 展开后得到a^2+2ab+b^2或a^2-2ab+b^2。
实例三
公式
$(a+b)^2=a^2+2ab+b^2$
解析
这是一个完全平方公式,其中$a=a$,$b=b$,$c=b$。将$a$和$b$的平方和加上$2ab$得到 $(a+b)^2=a^2+2ab+b^2$。
05
因式分解(完全平方公式) 的练习题
练习题一:将下列多项式因式分解
题目1
$x^2 - 4x + 4$
应用在数学问题中
因式分解是解决某些数学 问题的重要方法,如解方 程、求值等。
$x^2+4x+4=(x+2)^2$
解析
这是一个完全平方公式,其中$a=x$,$b=2$,$c=2$。将$a$和$b$的平方和 加上$2ab$得到$(x+2)^2$。
实例二
公式
$(x+y)^2=x^2+2xy+y^2$
解析
这是一个完全平方公式,其中$a=x$,$b=y$,$c=y$。将$a$和$b$的平方和加上$2ab$得到 $(x+y)^2=x^2+2xy+y^2$。
完成因式分解
如果多项式可以被完全分解为 几个整式的积,则因式分解完
成。
03
完全平方公式的概念和形 式
完全平方公式的定义
完全平方公式是指一个多项式等于一 个平方数与另一个平方数的乘积。
完全平方公式通常表示为 a^2+2ab+b^2或a^2-2ab+b^2,其 中a和b是实数。
完全平方公式的形式
完全平方公式可以表示为(a+b)^2或(a-b)^2,其中a和b是任意实数。 展开后得到a^2+2ab+b^2或a^2-2ab+b^2。
实例三
公式
$(a+b)^2=a^2+2ab+b^2$
解析
这是一个完全平方公式,其中$a=a$,$b=b$,$c=b$。将$a$和$b$的平方和加上$2ab$得到 $(a+b)^2=a^2+2ab+b^2$。
05
因式分解(完全平方公式) 的练习题
练习题一:将下列多项式因式分解
题目1
$x^2 - 4x + 4$
应用在数学问题中
因式分解是解决某些数学 问题的重要方法,如解方 程、求值等。
第三讲因式分解PPT课件
① x2-5x+6
1
-2
1
-3
解:原式=(x-2)(x-3)
② a2-a-2
1
1
1
-2
解:原式=(a+1)(a-2)
【例 4】 (2011·台湾)下列四个多项式,是 2x2+5x-3 的因式的只能为
( A)
A.2x-1
B.2x-3
C.x-1
D.x-3
2x²-5x-3
4x²+10x+6
⑷分组分解法: a3 a2 a 1
(1)、提公因式法: 公因式的确定:
ma + mb + mc = m(a+b+c)系数取所有系数的最大公约数,
字母取相同的字母, 指数取最低指数。
练习:把下列各式分解因式
① 6x3y2-9x2y3+3x2y2
)②p(y-x)-2(x-y)
解:原式=3x2y2(2x-3y+1)
解:原式=p(y-x)+2(y-x) =(y-x)(p+2)
综合运用多种方法分解因式
知能迁移 4 (1)分解因式:a5-a (2)分解因式:(x+2)(x+4)+x2-4 (3)(解2012(·x+临2沂)(x)+分4解)+因x式22-:4a-6ab+9ab2= ________=.x22+6x+8+x22-4 (4)在=实2x数22+范6x围+内4 分解因式:x4-4
(2)运用公式法:
例题精析
【例 1】 (1)(2013·广东湛江)分解因式:x2-4=___x_2-__4_=__(_x_+__2_)(_x_-__2_)____. (2)(2013·江苏苏州)分解因式:a2+2a+1=___a_2+__2_a_+__1_=__(_a_+__1_)2_____. (3)(2013·山东滨州)分解因式:5x2-20=__5_x_2_-__2_0_=__5_(_x_+__2_)(_x_-__2_)_. (4)(2013·湖南益阳)分解因式:xy2-4x=___x_y2_-__4_x_=__x_(_y+__2_)_(_y_-__2_) __.
因式分解ppt课件
02
03
04
因式分解的基本概念:定义、 性质、方法等
因式分解的技巧:提公因式、 平方差公式、十字相乘法等
因式分解的应用:代数式化简 、解方程等
Hale Waihona Puke 学习方法:理论学习、练习、 小组讨论等
因式分解的应用与重要性
01
02
03
04
代数式化简
利用因式分解简化复杂的代数 式,提高计算效率
解方程
通过因式分解将方程转化为多 个简单方程,便于求解
因式分解的作用
有助于理解方程的解 法
可以用于解决一些数 学问题,如求根、解 方程等
可以将一个复杂的多 项式简化成易于理解 的形式
课程目标和学习方法
掌握因式分解的基本方法 学习如何将一个多项式分解成几个整式的乘积
通过练习,达到能够快速、准确地完成因式分解的目标
02
因式分解的基本概念
整式和因式的定义
分解6a4b3+18a3b2+12a2b
首先,我们可以发现6a4b3和18a3b2可以组合成一项,得到(6a4b3+18a3b2),接着观察多项式,我 们可以发现12a2b可以单独列出来,所以原多项式可以分解为(6a4b3+18a3b2)+12a2b。
应用题中的例子
在一个水池设计中,需要将一个圆形的水池分割成若干个小 的区域,这时候就需要使用到因式分解的方法,将圆形水池 的面积分解成若干个小的面积之和,这样就可以更加方便地 进行设计和规划。
掌握因式分解的方法
因式分解的方法有很多种,初学者可能难以掌握。解决办 法是加强对方法的学习,可以通过大量的练习来掌握。
解决因式分解的问题
因式分解的问题可能比较复杂,初学者可能难以解决。解 决办法是加强对问题的分析,学会拆解问题,找出合适的 解决方法。
因式分解ppt课件
ห้องสมุดไป่ตู้
合作探究
以下两种运算有什么联系与区别? (1)a(a+1)(a-1)=a3-a; (2)a3-a=a(a+1)(a-1). 解:联系:第(2)式与第(1)式是互逆运算; 区别:第(1)式是将乘积化为多项式,而第(2)式是将多项式化为乘积形式. 结论:把一个多项式化成几个整式的积的形式,这种变形叫做 把这个多项式因式分解.
1 因式分解
第四章 因式分解
知识回顾
1.整式乘法有几种形式? (1)单项式乘以单项式; (2)单项式乘以多项式,如:a(m+n)=am+an; (3)多项式乘以多项,如:(a+b)(m+n)=am+an+bm+bn. 2.乘法公式有哪些? (1)平方差公式:a2-b2=(a+b)(a-b). (2)完全平方公式:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.
课堂小结
从今天的课程中,你学到了哪些知识?掌握了哪些方法? 明白了哪些道理? 1.因式分解是把一个多项式化成几个整式的积的形式, 分解因式的结果要以积的形式表示. 2.分解因式与整式的乘法是互逆关系. 3.由因数分解可类比得到因式分解.
谢谢观看
自主练习
下列变形是因式分解吗?为什么? (1)a+b=b+a; (2)4x2y-8xy+1=4xy(x-y)+1; (3)a(a-b)=a2-ab; (4)a2-2ab+b=(a-b)2. 解:第(4)式是因式分解,其余都不是.
归纳总结
注意: (1)分解因式与整式的乘法是一种互逆关系; (2)分解因式的结果要以积的形式表示; (3)每个因式必须是整式,且每个因式的次数都必须低于原来的 多项式的次数; (4)必须分解到每个多项式不能再分解为止.
合作探究
以下两种运算有什么联系与区别? (1)a(a+1)(a-1)=a3-a; (2)a3-a=a(a+1)(a-1). 解:联系:第(2)式与第(1)式是互逆运算; 区别:第(1)式是将乘积化为多项式,而第(2)式是将多项式化为乘积形式. 结论:把一个多项式化成几个整式的积的形式,这种变形叫做 把这个多项式因式分解.
1 因式分解
第四章 因式分解
知识回顾
1.整式乘法有几种形式? (1)单项式乘以单项式; (2)单项式乘以多项式,如:a(m+n)=am+an; (3)多项式乘以多项,如:(a+b)(m+n)=am+an+bm+bn. 2.乘法公式有哪些? (1)平方差公式:a2-b2=(a+b)(a-b). (2)完全平方公式:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.
课堂小结
从今天的课程中,你学到了哪些知识?掌握了哪些方法? 明白了哪些道理? 1.因式分解是把一个多项式化成几个整式的积的形式, 分解因式的结果要以积的形式表示. 2.分解因式与整式的乘法是互逆关系. 3.由因数分解可类比得到因式分解.
谢谢观看
自主练习
下列变形是因式分解吗?为什么? (1)a+b=b+a; (2)4x2y-8xy+1=4xy(x-y)+1; (3)a(a-b)=a2-ab; (4)a2-2ab+b=(a-b)2. 解:第(4)式是因式分解,其余都不是.
归纳总结
注意: (1)分解因式与整式的乘法是一种互逆关系; (2)分解因式的结果要以积的形式表示; (3)每个因式必须是整式,且每个因式的次数都必须低于原来的 多项式的次数; (4)必须分解到每个多项式不能再分解为止.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学 试 , 不 做 统 及 一 要 求 , 涉 会 不 选 考
维度A
利用:完全平方公式
分解因式:
1) x + 24 x + 9 16
2
2) a + 4ab 4b
2
2
维度A
(1)2a ( y z ) 3b( z y ) 1 2 (2)a b 25 2 (3) x + 12 x + 36
解:原式 = 4a b ( 3a + b )
2
维度A
10.5.2 公式法
讨论: 我们都学过哪些公式? 请一一列举.
A
公式回顾
(a + b)(a b) = a 2 b 2 平方差公式: (a ± b) 2 = a 2 ± 2ab + b 2 完全平方公式: 立方和公式:a 3 + b 3 = (a + b)(a 2 ab + b 2 ) 立方差公式:a 3 b 3 = (a b)(a 2 + ab + b 2 )
学 试 , 不 做 统 及 一 要 求 , 涉 会 不 选 考
维度A
利用:平方差公式
分解因式:
25 x 16b
2
2
(5 x + 4b)(5 x 4b)
A
公式回顾
(a + b)(a b) = a 2 b 2 平方差公式: (a ± b) 2 = a 2 ± 2ab + b 2 完全平方公式: 立方和公式:a 3 + b 3 = (a + b)(a 2 ab + b 2 ) 立方差公式:a 3 b 3 = (a b)(a 2 + ab + b 2 )
2
(4)4 x 28 x + 49
2
维度B
拓展:在实数范围内分解因式 例
x 2
2
解:原式 = ( x + ?)( x ?)
= ( x + 2 )( x 2 )
维度B
练习
(1) x 7
2
(2)5 x 15
2
维度C
x + ( p + q) x + pq型式子的因式分解
2
例:
x + 7 x + 10
维度A
概念归总
把一个多项式化成几个整式的积的形式,这 因式分解. 样的式子变形叫做把这个多项式因式分解. 因式分解 也叫把这个多项式分解因式. 分解因式. 分解因式
维度A
10.5.1 提公因式法
ma+mb+mc
m(a+b+c)
公
m
因 式
维度A
例
分解因式:12a 3b 2
+ 4a b
2 2
2 4
2
=(x+2)(x+5)
1 1
2 5
"十字相乘"法 分解因式
维度A:书:p38练习1. p40练习2. p42练习2. 维度B:书:p43拓广探索11. 维度C:书:p44观察与猜想(2)~(4)
�
第十章 整式
第五节 因式分解
维度A
ቤተ መጻሕፍቲ ባይዱ知识回顾
630能被哪些数整除? 能被哪些数整除? 能被哪些数整除 你是怎样想的? 你是怎样想的? 分解质因数
2×3 ×5× 7
2
维度A
探究
请把以下多项式写成整式的乘积的形式
(1) x + x =x(x+1)
2
(2) x 1 =(x+1)(x-1)
2
根据
整式的乘法
维度A
利用:完全平方公式
分解因式:
1) x + 24 x + 9 16
2
2) a + 4ab 4b
2
2
维度A
(1)2a ( y z ) 3b( z y ) 1 2 (2)a b 25 2 (3) x + 12 x + 36
解:原式 = 4a b ( 3a + b )
2
维度A
10.5.2 公式法
讨论: 我们都学过哪些公式? 请一一列举.
A
公式回顾
(a + b)(a b) = a 2 b 2 平方差公式: (a ± b) 2 = a 2 ± 2ab + b 2 完全平方公式: 立方和公式:a 3 + b 3 = (a + b)(a 2 ab + b 2 ) 立方差公式:a 3 b 3 = (a b)(a 2 + ab + b 2 )
学 试 , 不 做 统 及 一 要 求 , 涉 会 不 选 考
维度A
利用:平方差公式
分解因式:
25 x 16b
2
2
(5 x + 4b)(5 x 4b)
A
公式回顾
(a + b)(a b) = a 2 b 2 平方差公式: (a ± b) 2 = a 2 ± 2ab + b 2 完全平方公式: 立方和公式:a 3 + b 3 = (a + b)(a 2 ab + b 2 ) 立方差公式:a 3 b 3 = (a b)(a 2 + ab + b 2 )
2
(4)4 x 28 x + 49
2
维度B
拓展:在实数范围内分解因式 例
x 2
2
解:原式 = ( x + ?)( x ?)
= ( x + 2 )( x 2 )
维度B
练习
(1) x 7
2
(2)5 x 15
2
维度C
x + ( p + q) x + pq型式子的因式分解
2
例:
x + 7 x + 10
维度A
概念归总
把一个多项式化成几个整式的积的形式,这 因式分解. 样的式子变形叫做把这个多项式因式分解. 因式分解 也叫把这个多项式分解因式. 分解因式. 分解因式
维度A
10.5.1 提公因式法
ma+mb+mc
m(a+b+c)
公
m
因 式
维度A
例
分解因式:12a 3b 2
+ 4a b
2 2
2 4
2
=(x+2)(x+5)
1 1
2 5
"十字相乘"法 分解因式
维度A:书:p38练习1. p40练习2. p42练习2. 维度B:书:p43拓广探索11. 维度C:书:p44观察与猜想(2)~(4)
�
第十章 整式
第五节 因式分解
维度A
ቤተ መጻሕፍቲ ባይዱ知识回顾
630能被哪些数整除? 能被哪些数整除? 能被哪些数整除 你是怎样想的? 你是怎样想的? 分解质因数
2×3 ×5× 7
2
维度A
探究
请把以下多项式写成整式的乘积的形式
(1) x + x =x(x+1)
2
(2) x 1 =(x+1)(x-1)
2
根据
整式的乘法