2014年安徽高考数学试卷(理科)

合集下载

2014年高考数学(安徽卷)数学(理科)

2014年高考数学(安徽卷)数学(理科)

11.(2014 安徽,理 11)若将函数 f(x)=sin 2
+
π 4
的图象向右平移φ个单位,所得图象关于 y 轴对称,则φ
的最小正值是
.
12.(2014 安徽,理 12)数列{an}是等差数列,若 a1+1,a3+3,a5+5 构成公比为 q 的等比数列,则
q=
.
13.(2014 安徽,理 13)设 a≠0,n 是大于 1 的自然数, 1 + 的展开式为 a0+a1x+a2x2+…+anxn.若点
2 - + 2 ≥ 0.
值为( ).
A.1或-1
2
B.2
或1
2
C.2 或 1
D.2 或-1
6.(2014 安徽,理 6)设函数 f(x)(x∈R)满足 f(x+π)=f(x)+sin x.当 0≤x<π时,f(x)=0,则 f 23π =( ).
6
A.1
B. 3
C.0
D.-1
2
2
2
7.(2014 安徽,理 7)一个多面体的三视图如图所示,则该多面体的表面积为( ).
正方体-2S
三棱锥侧+2S
三棱锥底=24-2×3×12×1×1+2×
3×(
4
2)2=21+
3.
8.【答案】C 【解析】正方体六个面的对角线共有 12 条,则有C122=66 对,而相对的两个面中的对角线其夹角都
不是 60°,则共有 3×C42=18 对,而其余的都符合题意,故有 66-18=48 对. 9.【答案】D
一、选择题
1.【答案】C 【解析】原式=1+i+i(1-i)=-i+1+i+1=2.

2014年安徽高考理科数学试题

2014年安徽高考理科数学试题

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz+i ·z = (A )-2 (B )-2i (C )2 (D )2i (2)“x <0”是ln (x+1)<0的 (A )充分不必要条件(B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78 (D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为(A )21 或-1(B )2或21(C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x ≤π时,f(x)=0,则)623(πf =(A )21 (B )23 (C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 (A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为(A )5或8 (B )-1或5 (C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b ).曲线C={ P |OP =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| PQ | ≤ R , r <R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2014全国统一高考数学真题及逐题详细解析(理科)—安徽卷

2014全国统一高考数学真题及逐题详细解析(理科)—安徽卷

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)第I 卷(选择题共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设i 是虚数单位,z 表示复数z 的共轭复数。

若,1i z +=则zi z i+⋅=( ) A .2- B .2i - C .2 D .2i 2.“0<x ”是“0)1ln(<+x ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 3.如图所示,程序框图(算法流程图)的输出结果是( )A .34B .55C .78D .894.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是⎩⎨⎧-=+=31y y t x ,(t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为( ) A .14 B .142 C .2 D .225.y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数a的值为( ) A .121-或B .212或C .2或1D .12-或 6.设函数))((R x x f ∈满足()()sin f x f x x π+=+,当π<≤x 0时,0)(=x f ,则=)623(πf ( ) A .12 B .23C .0D .21-7.一个多面体的三视图如图所示,则该多面体的表面积为( )A .21B .18C .21D .188.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60︒的共有( ) A .24对 B .30对 C .48对 D .60对9.若函数()12f x x x a =+++的最小值为3,则实数a 的值为( ) A .5或8 B .1-或5 C .1-或4- D .4-或810.在平面直角坐标系xOy 中,已知向量,,1,0,a b a b a b ==⋅=点Q 满2()OQ a b =+。

2014年安徽省高考数学试卷(理科)

2014年安徽省高考数学试卷(理科)

2014年安徽省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i•=()A.﹣2 B.﹣2i C.2 D.2i2.(5分)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.894.(5分)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被圆C截得的弦长为()A.B.2C.D.25.(5分)x,y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或﹣1 D.2或16.(5分)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f()=()A.B. C.0 D.﹣7.(5分)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+B.18+C.21 D.188.(5分)从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有()A.24对B.30对C.48对D.60对9.(5分)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8 B.﹣1或5 C.﹣1或﹣4 D.﹣4或810.(5分)在平面直角坐标系xOy中.已知向量、,||=||=1,•=0,点Q满足=(+),曲线C={P|=cosθ+sinθ,0≤θ≤2π},区域Ω={P|0<r≤||≤R,r<R}.若C∩Ω为两段分离的曲线,则()A.1<r<R<3 B.1<r<3≤R C.r≤1<R<3 D.1<r<3<R二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置.11.(5分)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.12.(5分)数列{an }是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q= .13.(5分)设a≠0,n是大于1的自然数,(1+)n的展开式为a0+a1x+a2x2+…+anx n.若点Ai (i,ai)(i=0,1,2)的位置如图所示,则a= .14.(5分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F 1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为.15.(5分)已知两个不相等的非零向量,,两组向量,,,,和,,,,均由2个和3个排列而成,记S=•+•+•+•+•,Smin表示S所有可能取值中的最小值.则下列命题正确的是(写出所有正确命题的编号).①S有5个不同的值;②若⊥,则Smin与||无关;③若∥,则Smin与||无关;④若||>4||,则Smin>0;⑤若||=2||,Smin=8||2,则与的夹角为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答早答题卡上的指定区域.16.(12分)设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.17.(12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;(Ⅱ)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望).18.(12分)设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.19.(13分)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.20.(13分)如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;(Ⅲ)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.21.(13分)设实数c>0,整数p>1,n∈N*.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{an }满足a1>,an+1=an+an1﹣p.证明:an>an+1>.2014年安徽省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i•=()A.﹣2 B.﹣2i C.2 D.2i【分析】把z及代入+i•,然后直接利用复数代数形式的乘除运算化简求值.【解答】解:∵z=1+i,∴,∴+i•==.故选:C.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.2.(5分)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.【解答】解:∵x<0,∴x+1<1,当x+1>0时,ln(x+1)<0;∵ln(x+1)<0,∴0<x+1<1,∴﹣1<x<0,∴x<0,∴“x<0”是ln(x+1)<0的必要不充分条件.故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.3.(5分)如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.89【分析】写出前几次循环的结果,不满足判断框中的条件,退出循环,输出z 的值.【解答】解:第一次循环得z=2,x=1,y=2;第二次循环得z=3,x=2,y=3;第三次循环得z=5,x=3,y=5;第四次循环得z=8,x=5,y=8;第五次循环得z=13,x=8,y=13;第六次循环得z=21,x=13,y=21;第七次循环得z=34,x=21,y=34;第八次循环得z=55,x=34,y=55;退出循环,输出55,故选:B.【点评】本题考查程序框图中的循环结构,常用的方法是写出前几次循环的结果找规律,属于一道基础题.4.(5分)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被圆C截得的弦长为()A.B.2C.D.2【分析】先求出直线和圆的直角坐标方程,求出半径和弦心距,再利用弦长公式求得弦长.【解答】解:直线l的参数方程是(t为参数),化为普通方程为 x﹣y ﹣4=0;圆C的极坐标方程是ρ=4cosθ,即ρ2=4ρcosθ,化为直角坐标方程为x2+y2=4x,即(x﹣2)2+y2=4,表示以(2,0)为圆心、半径r等于2的圆.弦心距d==<r,∴弦长为2=2=2,故选:D.【点评】本题主要考查把参数方程化为普通方程的方法,把极坐标方程化为直角坐标方程的方法,点到直线的距离公式、弦长公式的应用,属于中档题.5.(5分)x,y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或﹣1 D.2或1【分析】由题意作出已知条件的平面区域,将z=y﹣ax化为y=ax+z,z相当于直线y=ax+z的纵截距,由几何意义可得.【解答】解:由题意作出约束条件,平面区域,将z=y﹣ax化为y=ax+z,z相当于直线y=ax+z的纵截距,由题意可得,y=ax+z与y=2x+2或与y=2﹣x平行,故a=2或﹣1;故选:C.【点评】本题考查了简单线性规划,作图要细致认真,注意目标函数的几何意义是解题的关键之一,属于中档题.6.(5分)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f()=()A.B. C.0 D.﹣【分析】利用已知条件,逐步求解表达式的值即可.【解答】解:∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,∴f()=f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=sin+sin+sin==.故选:A.【点评】本题考查抽象函数的应用,函数值的求法,考查计算能力.7.(5分)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+B.18+C.21 D.18【分析】判断几何体的形状,结合三视图的数据,求出几何体的表面积.【解答】解:由三视图可知,几何体是正方体的棱长为2,截去两个正三棱锥,侧棱互相垂直,侧棱长为1,几何体的表面积为:S正方体﹣2S棱锥侧+2S棱锥底==21+.故选:A.【点评】本题考查三视图求解几何体的表面积,解题的关键是判断几何体的形状.8.(5分)从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有()A.24对B.30对C.48对D.60对【分析】利用正方体的面对角线形成的对数,减去不满足题意的对数即可得到结果.【解答】解:正方体的面对角线共有12条,两条为一对,共有=66条,同一面上的对角线不满足题意,对面的面对角线也不满足题意,一组平行平面共有6对不满足题意的直线对数,不满足题意的共有:3×6=18.从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有:66﹣18=48.故选:C.【点评】本题考查排列组合的综合应用,逆向思维是解题本题的关键.9.(5分)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8 B.﹣1或5 C.﹣1或﹣4 D.﹣4或8【分析】分类讨论,利用f(x)=|x+1|+|2x+a|的最小值为3,建立方程,即可求出实数a的值.【解答】解:<﹣1时,x<﹣,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>﹣1;﹣≤x≤﹣1,f(x)=﹣x﹣1+2x+a=x+a﹣1≥﹣1;x>﹣1,f(x)=x+1+2x+a=3x+a+1>a﹣2,∴﹣1=3或a﹣2=3,∴a=8或a=5,a=5时,﹣1<a﹣2,故舍去;≥﹣1时,x<﹣1,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>2﹣a;﹣1≤x≤﹣,f(x)=x+1﹣2x﹣a=﹣x﹣a+1≥﹣+1;x>﹣,f(x)=x+1+2x+a=3x+a+1>﹣+1,∴2﹣a=3或﹣+1=3,∴a=﹣1或a=﹣4,a=﹣1时,﹣+1<2﹣a,故舍去;综上,a=﹣4或8.故选:D.【点评】本题主要考查了函数的值域问题.解题过程采用了分类讨论的思想,属于中档题.10.(5分)在平面直角坐标系xOy中.已知向量、,||=||=1,•=0,点Q满足=(+),曲线C={P|=cosθ+sinθ,0≤θ≤2π},区域Ω={P|0<r≤||≤R,r<R}.若C∩Ω为两段分离的曲线,则()A.1<r<R<3 B.1<r<3≤R C.r≤1<R<3 D.1<r<3<R【分析】不妨令=(1,0),=(0,1),则P点的轨迹为单位圆,Ω={P|(0<r≤||≤R,r<R}表示的平面区域为:以Q点为圆心,内径为r,外径为R的圆环,若C∩Ω为两段分离的曲线,则单位圆与圆环的内外圆均相交,进而根据圆圆相交的充要条件得到答案.【解答】解:∵平面直角坐标系xOy中.已知向量、,||=||=1,•=0,不妨令=(1,0),=(0,1),则=(+)=(,),=cosθ+sinθ=(cosθ,sinθ),故P点的轨迹为单位圆,Ω={P|(0<r≤||≤R,r<R}表示的平面区域为:以Q点为圆心,内径为r,外径为R的圆环,若C∩Ω为两段分离的曲线,则单位圆与圆环的内外圆均相交,故|OQ|﹣1<r<R<|OQ|+1,∵|OQ|=2,故1<r<R<3,故选:A.【点评】本题考查的知识点是向量在几何中的应用,其中根据已知分析出P的轨迹及Ω={P|(0<r≤||≤R,r<R}表示的平面区域,是解答的关键.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置.11.(5分)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.【分析】根据函数y=Asin(ωx+φ)的图象变换规律,可得所得图象对应的函数解析式为y=sin(2x+﹣2φ),再根据所得图象关于y轴对称可得﹣2φ=kπ+,k∈z,由此求得φ的最小正值.【解答】解:将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象对应的函数解析式为y=sin[2(x﹣φ)+]=sin(2x+﹣2φ)关于y轴对称,则﹣2φ=kπ+,k∈z,即φ=﹣﹣,故φ的最小正值为,故答案为:.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于中档题.12.(5分)数列{an }是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q= 1 .【分析】设出等差数列的公差,由a1+1,a3+3,a5+5构成公比为q的等比数列列式求出公差,则由化简得答案.【解答】解:设等差数列{an}的公差为d,由a1+1,a3+3,a5+5构成等比数列,得:,整理得:,即+5a1+a1+4d.化简得:(d+1)2=0,即d=﹣1.∴q==.故答案为:1.【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.13.(5分)设a≠0,n是大于1的自然数,(1+)n的展开式为a0+a1x+a2x2+…+anx n.若点Ai (i,ai)(i=0,1,2)的位置如图所示,则a= 3 .【分析】求出(1+)n的展开式的通项为,由图知,a=1,a 1=3,a2=4,列出方程组,求出a的值.【解答】解:(1+)n的展开式的通项为,由图知,a0=1,a1=3,a2=4,∴,,,,a2﹣3a=0,解得a=3,故答案为:3.【点评】本题考查解决二项式的特定项问题,关键是求出展开式的通项,属于一道中档题.14.(5分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F 1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为x2+=1 .【分析】求出B(﹣c,﹣b2),代入椭圆方程,结合1=b2+c2,即可求出椭圆的方程.【解答】解:由题意,F1(﹣c,0),F2(c,0),AF2⊥x轴,∴|AF2|=b2,∴A点坐标为(c,b2),设B(x,y),则∵|AF1|=3|F1B|,∴(﹣c﹣c,﹣b2)=3(x+c,y)∴B(﹣c,﹣b2),代入椭圆方程可得,∵1=b2+c2,∴b2=,c2=,∴x2+=1.故答案为:x2+=1.【点评】本题考查椭圆的方程与性质,考查学生的计算能力,属于中档题.15.(5分)已知两个不相等的非零向量,,两组向量,,,,和,,,,均由2个和3个排列而成,记S=•+•+•+•+•,Smin表示S所有可能取值中的最小值.则下列命题正确的是②④(写出所有正确命题的编号).①S有5个不同的值;②若⊥,则Smin与||无关;③若∥,则S min 与||无关; ④若||>4||,则S min >0;⑤若||=2||,S min =8||2,则与的夹角为. 【分析】依题意,可求得S 有3种结果:S 1=++++,S 2=+•+•++,S 3=•+•+•+•+,可判断①错误;进一步分析有S 1﹣S 2=S 2﹣S 3=+﹣2•≥+﹣2||•||=≥0,即S 中最小为S 3;再对②③④⑤逐一分析即可得答案.【解答】解:∵x i ,y i (i=1,2,3,4,5)均由2个和3个排列而成, ∴S=x i y i 可能情况有三种:①S=2+3;②S=+2•+2;③S=4•+.S 有3种结果:S 1=++++,S 2=+•+•++,S 3=•+•+•+•+,故①错误;∵S 1﹣S 2=S 2﹣S 3=+﹣2•≥+﹣2||•||=≥0,∴S 中最小为S 3; 若⊥,则S min =S 3=,与||无关,故②正确;③若∥,则S min =S 3=4•+,与||有关,故③错误;④若||>4||,则S min =S 3=4||•||cosθ+>﹣4||•||+>﹣+=0,故④正确;⑤若||=2||,S min =S 3=8||2cosθ+4=8,∴2cosθ=1,∴θ=, 即与的夹角为.综上所述,命题正确的是②④, 故答案为:②④.【点评】本题考查命题的真假判断与应用,着重考查平面向量的数量积的综合应用,考查推理、分析与运算的综合应用,属于难题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答早答题卡上的指定区域.16.(12分)设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.【分析】(Ⅰ)利用正弦定理,可得a=6cosB,再利用余弦定理,即可求a的值;(Ⅱ)求出sinA,cosA,即可求sin(A+)的值.【解答】解:(Ⅰ)∵A=2B,,b=3,∴a=6cosB,∴a=6,∴a=2;(Ⅱ)∵a=6cosB,∴cosB=,∴sinB=,∴sinA=sin2B=,cosA=cos2B=2cos2B﹣1=﹣,∴sin(A+)=(sinA+cosA)=.【点评】本题考查余弦定理、考查正弦定理,考查二倍角公式,考查学生的计算能力,属于中档题.17.(12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;(Ⅱ)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望).【分析】(1)根据概率的乘法公式,求出对应的概率,即可得到结论.(2)利用离散型随机变量分别求出对应的概率,即可求X的分布列;以及均值.【解答】解:用A表示甲在4局以内(含4局)赢得比赛的是事件,Ak表示第k局甲获胜,Bk表示第k局乙获胜,则P(Ak )=,P(Bk)=,k=1,2,3,4,5(Ⅰ)P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4)=()2+×()2+××()2=.(Ⅱ)X的可能取值为2,3,4,5.P(X=2)=P(A1A2)+P(B1B2)=,P(X=3)=P(B1A2A3)+P(A1B2B3)=,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=,P(X=5)=P(A1B2A3B4A5)+P(B1A2B3A4B5)+P(B1A2B3A4A5)+P(A1B2A3B4B5)==,或者P(X=5)=1﹣P(X=2)﹣P(X=3)﹣P(X=4)=,故分布列为:X2 3 45PE(X)=2×+3×+4×+5×=.【点评】本题主要考查概率的计算,以及离散型分布列的计算,以及利用期望的计算,考查学生的计算能力.18.(12分)设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.【分析】(Ⅰ)利用导数判断函数的单调性即可;(Ⅱ)利用(Ⅰ)的结论,讨论两根与1的大小关系,判断函数在[0,1]时的单调性,得出取最值时的x的取值.【解答】解:(Ⅰ)f(x)的定义域为(﹣∞,+∞),f′(x)=1+a﹣2x﹣3x2,由f′(x)=0,得x1=,x2=,x1<x2,∴由f′(x)<0得x<,x>;由f′(x)>0得<x<;故f(x)在(﹣∞,)和(,+∞)单调递减,在(,)上单调递增;(Ⅱ)∵a>0,∴x1<0,x2>0,∵x∈[0,1],当时,即a≥4①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在[0,1]上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在[0,x2]单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,∴当0<a<1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处取得最小值;当1<a<4时,f(x)在x=0处取得最小值.【点评】本题主要考查利用导数研究函数的单调性及最值的知识,考查学生分类讨论思想的运用能力,属中档题.19.(13分)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.【分析】(Ⅰ)由题意设出直线l1和l2的方程,然后分别和两抛物线联立求得交点坐标,得到的坐标,然后由向量共线得答案;(Ⅱ)结合(Ⅰ)可知△A1B1C1与△A2B2C2的三边平行,进一步得到两三角形相似,由相似三角形的面积比等于相似比的平方得答案.【解答】(Ⅰ)证明:由题意可知,l1和l2的斜率存在且不为0,设l1:y=k1x,l2:y=k2x.联立,解得.联立,解得.联立,解得.联立,解得.∴,.,∴A1B1∥A2B2;(Ⅱ)解:由(Ⅰ)知A1B1∥A2B2,同(Ⅰ)可证B1C1∥B2C2,A1C1∥A2C2.∴△A1B1C1∽△A2B2C2,因此,又,∴.故.【点评】本题是直线与圆锥曲线的综合题,考查了向量共线的坐标表示,训练了三角形的相似比与面积比的关系,考查了学生的计算能力,是压轴题.20.(13分)如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;(Ⅲ)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.【分析】(Ⅰ)证明平面QBC ∥平面A 1D 1DA ,可得△QBC ∽△A 1AD ,即可证明Q 为BB 1的中点;(Ⅱ)设BC=a ,则AD=2a ,则==,V Q﹣ABCD==ahd ,利用V 棱柱=ahd ,即可求出此四棱柱被平面α所分成上、下两部分的体积之比;(Ⅲ)△ADC 中,作AE ⊥DC ,垂足为E ,连接A 1E ,则DE ⊥平面AEA 1,DE ⊥A 1E ,可得∠AEA 1为平面α与底面ABCD 所成二面角,求出S △ADC =4,AE=4,可得tan ∠AEA 1==1,即可求平面α与底面ABCD 所成二面角的大小.【解答】(Ⅰ)证明:∵四棱柱ABCD ﹣A 1B 1C 1D 1中,四边形ABCD 为梯形,AD ∥BC , ∴平面QBC ∥平面A 1D 1DA ,∴平面A 1CD 与面QBC 、平面A 1D 1DA 的交线平行,∴QC ∥A 1D ∴△QBC ∽△A 1AD , ∴=,∴Q 为BB 1的中点;(Ⅱ)解:连接QA ,QD ,设AA 1=h ,梯形ABCD 的高为d ,四棱柱被平面α所分成上、下两部分的体积为V 1,V 2, 设BC=a ,则AD=2a ,∴==,V Q ﹣ABCD ==ahd ,∴V 2=,∵V 棱柱=ahd , ∴V 1=ahd ,∴四棱柱被平面α所分成上、下两部分的体积之比;(Ⅲ)解:在△ADC 中,作AE ⊥DC ,垂足为E ,连接A 1E ,则DE ⊥平面AEA 1,∴DE ⊥A 1E ,∴∠AEA 1为平面α与底面ABCD 所成二面角的平面角, ∵BC ∥AD ,AD=2BC , ∴S △ADC =2S △ABC ,∵梯形ABCD的面积为6,DC=2,∴S△ADC=4,AE=4,∴tan∠AEA1==1,∴∠AEA1=,∴平面α与底面ABCD所成二面角的大小为.【点评】本题考查面面平行的性质,考查体积的计算,考查面面角,考查学生分析解决问题的能力,属于中档题.21.(13分)设实数c>0,整数p>1,n∈N*.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{an }满足a1>,an+1=an+an1﹣p.证明:an>an+1>.【分析】第(Ⅰ)问中,可构造函数f(x)=(1+x)p﹣(1+px),求导数后利用函数的单调性求解;对第(Ⅱ)问,从an+1着手,由an+1=an+an1﹣p,将求证式进行等价转化后即可解决,用相同的方式将an >an+1进行转换,设法利用已证结论证明.【解答】证明:(Ⅰ)令f(x)=(1+x)p﹣(1+px),则f′(x)=p(1+x)p﹣1﹣p=p[(1+x)p﹣1﹣1].①当﹣1<x<0时,0<1+x<1,由p>1知p﹣1>0,∴(1+x)p﹣1<(1+x)0=1,∴(1+x)p﹣1﹣1<0,即f′(x)<0,∴f(x)在(﹣1,0]上为减函数,∴f(x)>f(0)=(1+0)p﹣(1+p×0)=0,即(1+x)p﹣(1+px)>0,∴(1+x)p>1+px.②当x>0时,有1+x>1,得(1+x)p﹣1>(1+x)0=1,∴f′(x)>0,∴f(x)在[0,+∞)上为增函数,∴f(x)>f(0)=0,∴(1+x)p>1+px.综合①、②知,当x>﹣1且x≠0时,都有(1+x)p>1+px,得证.(Ⅱ)先证an+1>.∵an+1=an+an1﹣p,∴只需证an+an1﹣p>,将写成p﹣1个相加,上式左边=,当且仅当,即时,上式取“=”号,当n=1时,由题设知,∴上式“=”号不成立,∴an +an1﹣p>,即an+1>.再证an >an+1.只需证an >an+an1﹣p,化简、整理得anp>c,只需证an>c.由前知an+1>成立,即从数列{an}的第2项开始成立,又n=1时,由题设知成立,∴对n∈N*成立,∴an >an+1.综上知,an >an+1>,原不等式得证.【点评】本题是一道压轴题,考查的知识众多,涉及到函数、数列、不等式,利用的方法有分析法与综合法等,综合性很强,难度较大.。

2014年安徽省高考数学试卷(理科)答案与解析

2014年安徽省高考数学试卷(理科)答案与解析

2014年安徽省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2014•安徽)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i•=()代入+i•∴∴==取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被的参数方程是=<=2,5.(5分)(2014•安徽)x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a 或﹣16.(5分)(2014•安徽)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f()(()+sin)+sin+sin)+sin+sin+sin=sin+sin+sin==8+=21+.=66解:,﹣﹣﹣∴﹣≥,+1>﹣,+1或﹣时,﹣10.(5分)(2014•安徽)在平面直角坐标系xOy中.已知向量、,||=||=1,•=0,点Q满足=(+),曲线C={P|=cosθ+sinθ,0≤θ≤2π},区域Ω={P|0<r≤||≤R,r<R}.若C∩Ω为两段分离的曲线,则()不妨令=),=||中.已知向量、,||=||=1•=0不妨令=),=则(+,=cos+|||二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置.11.(5分)(2014•安徽)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.﹣轴对称可得,)的图象向右平移﹣,﹣﹣,故答案为:.的等比数列列式求出公差,则由得:整理得:q=13.(5分)(2014•安徽)设a≠0,n是大于1的自然数,(1+)n的展开式为a0+a1x+a2x2+…+a n x n.若点A i(i,)的展开式的通项为)的展开式的通项为,,14.(5分)(2014•安徽)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E 于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为x2+=1.(﹣,﹣bc,﹣代入椭圆方程可得==++15.(5分)(2014•安徽)已知两个不相等的非零向量,,两组向量,,,,和,,,,均由2个和3个排列而成,记S=•+•+•+•+•,S min表示S所有可能取值中的最小值.则下列命题正确的是②④(写出所有正确命题的编号).①S有5个不同的值;②若⊥,则S min与||无关;③若∥,则S min与||无关;④若||>4||,则S min>0;⑤若||=2||,S min=8||2,则与的夹角为.++++•+++=+•++•+=﹣•≥+2|||≥个个S=2+3S=+2•+2S=4•++++,=•+•+,=+•++•++2•+﹣2||≥⊥,则=||∥,则=4•,与||||4||=4|||4||||+>﹣=0||=2||=8|=与的夹角为.区域.16.(12分)(2014•安徽)设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.A+)的值.a=6a=2cosB=sinB=sinA=sin2B=,A+)则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;,,(+(+×(=,,=,,×+3×+4×+5×=.18.(12分)(2014•安徽)设函数f(x)=1+(1+a)x﹣x﹣x,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;<<)和(在(19.(13分)(2014•安徽)如图,已知两条抛物线E1:y=2p1x(p1>0)和E2:y=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.的方程,然后分别和两抛物线联立求得交点坐标,得到的联立,解得联立,解得联立,解得联立,解得因此11111且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;,则,== ahd====,ahdahd所分成上、下两部分的体积之比=1,.21.(13分)(2014•安徽)设实数c>0,整数p>1,n∈N.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{a n}满足a1>,a n+1=a n+a n1﹣p.证明:a n>a n+1>.=a+a a,写成相加,上式左边当且仅当,即a a,即>a a c成立,即从数列。

2014年高考安徽理科数学试题及答案(word解析版)

2014年高考安徽理科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2014年安徽,理1,5分】设i 是虚数单位,z 表示复数z 的共轭复数.若1i z =+,则i izz +=( )(A )2- (B )2i - (C )2 (D )2i 【答案】C【解析】1ii i (1i)(i 1)(i 1)2i iz z ++⋅=+⋅-=--++=,故选C .(2)【2014年安徽,理2,5分】“0x <”是“()ln 10x +<”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】B【解析】ln(1)001110x x x +<⇔<+<⇔-<<,所以“0x <”是“()ln 10x +<”的必要而不充分条件,故选B .(3)【2014年安徽,理3,5分】如图所示,程序框图(算法流程图)的输出结果是( )(A )34(B )55 (C )78 (D )89【答案】B 【解析】x 1 1 2 3 5 8 13 21 y 1 2 3 5 8 13 21 34z2 3 5 8 13 21 34 55 (4)【2014年安徽,理4,5分】以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( ) (A )14 (B )214 (C )2 (D )22 【答案】D【解析】将直线l 方程化为一般式为:40x y --=,圆C 的标准方程为:22(2)4x y -+=,圆C 到直线l 的距离为:22d ==,∴弦长22222L R d =-=,故选D .(5)【2014年安徽,理5,5分】,x y 满足约束条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若z y ax =-取得最大值的最优解不唯一,则实数a 的值为( )(A )12或1- (B )2或12(C )2或1 (D )2或1-【答案】D 【解析】画出约束条件表示的平面区域如右图,z y ax =-取得最大值表示直线z y ax =-向上平移移动最大,a 表示直线斜率,有两种情况:1a =-或2a =,故选D .(6)【2014年安徽,理6,5分】设函数()()f x x R ∈满足()()sin f x f x x π+=+.当0x π≤<时,()0f x =,则236f π⎛⎫= ⎪⎝⎭( )(A )12 (B )3 (C )0 (D )12- 【答案】A【解析】2317171111175511171111()()sin ()sin sin ()sin sin sin 066666666662222f f f f ππππππππππ=+=++=+++=+-+=,故选A .(7)【2014年安徽,理7,5分】一个多面体的三视图如图所示,则该多面体的表面积为( )(A )213+ (B )183+ (C )21 (D )18 【答案】A【解析】如右图,将边长为2的正方体截去两个角,∴213226112(2)2132S =⨯⨯-⨯⨯+⨯⨯=+表,故选A . (8)【2014年安徽,理8,5分】从正方体六个面的对角线中任取两条作为一对,其中所成的角为060的共有( )(A )24对 (B )30对 (C )48对 (D )60对 【答案】C【解析】与正方体一条对角线成060的对角线有4条,∴从正方体六个面的对角线中任取两条作为一对,其中所成的角为060的共有41248⨯=(对),故选C .(9)【2014年安徽,理9,5分】若函数()|1||2|f x x x a =+++的最小值为3,则实数a 的值为( ) (A )5或8 (B )1-或5 (C )1-或4- (D )4-或8 【答案】D【解析】(1)当2a <时,12a-<-,此时31,11,1()2312x a x a x a x f x ax a x ---<-⎧⎪⎪--+-≤≤-=⎨⎪⎪++>-⎩;(2)当2a >时,12a->-,此时31,2()1,12311a x a x f x a x a x x a x ⎧---<-⎪⎪=⎨+--≤≤-⎪⎪++>-⎩,在两种情况下,min ()()|1|322a af x f =-=-+=,解得4a =-或8a =,(此题也可以由绝对值的几何意义得min ()|1|32af x =-+=,从而得4a =-或8a =),故选D .(10)【2014年安徽,理10,5分】在平面直角坐标系xOy 中,向量,a b 满足||||1a b ==,0a b ⋅=.点Q 满足()2OQ a b =+,曲线{}|cos sin ,0C P OP a b θθθπ==+≤≤,区域{}|0||,P r PQ R r R Ω=<≤≤<.若C Ω为两段分离的曲线,则( )(A )13r R <<< (B )13r R <<≤ (C )13r R ≤<< (D )13r R <<< 【答案】A【解析】设(1,0),(0,1)a b ==则(cos ,sin )OP θθ=,(2,2)OQ =,所以曲线C 是单位元,区域Ω为圆环(如右图),∵||2OQ =,∴13r R <<<,故选A . 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)【2014年安徽,理11,5分】若将函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭的图像向右平移ϕ个单位,所得图像关于y 轴对称, 则ϕ的最小正值是 .【答案】38π 【解析】()sin[2()]sin(22)44f x x x ππϕϕϕ-=-+=+-,∴2,()42k k Z ππϕπ-=+∈,∴,()82k k Z ππϕ=--∈,当1k =-时min 38πϕ=.(12)【2014年安徽,理12,5分】已知数列{}n a 是等差数列,若11a +,33a +,55a +构成公比为q 的等比数列,则q = . 【答案】1q =【解析】∵{}n a 是等差数列且1351,3,5a a a +++构成公比为q 的等比数列,∴2111(1)(45)(23)a a d a d +++=++,即2111(1)[(1)4(1)[(1)2(1)]a a d a d ++++=+++, 令11,1a x d y +=+=,则有2(4)(2)x x y x y +=+,展开的0y =,即10d +=,∴1q =.(13)【2014年安徽,理13,5分】设0a ≠,n 是大于1的自然数,1nx a ⎛⎫+ ⎪⎝⎭的展开式为2012n n a a x a x a x ++++.若点()(),0,1,2i i A i a i =的位置如图所示,则a = . 【答案】3a =【解析】由图易知0121,3,4a a a ===,∴122113,()4n n C C a a ⋅=⋅=,∴23(1)42na n n a ⎧=⎪⎪⎨-⎪=⎪⎩,解得3a =. (14)【2014年安徽,理14,5分】设1F ,2F 分别是椭圆()222:101y E x b b+=<<的左、右焦点,过点1F 的直线交椭圆E 于A ,B 两点,若11||3||AF BF =,2AF x ⊥轴,则椭圆E 的方程为 .【答案】22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b --,将点B 坐标带入椭圆方程得22221()53()13b c b --+=,又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩,∴椭圆方程为22312x y +=.(15)【2014年安徽,理15,5分】已知两个不相等的非零向量,a b ,两组向量12345,,,,x x x x x 和12345,,,,y y y y y 均由2个a 和3个b 排列而成.记1122334455S x y x y x y x y x y =⋅+⋅+⋅+⋅+⋅,min S 表示S 所有可能取值中的最小值.则下列命题正确的是_________(写出所有正确命题的编号).①S 有5个不同的值;②若a b ⊥,则min S 与a 无关;③若//a b ,则min S 与||b 无关;④若||4||b a >,则min 0S >;⑤若||4||b a =,2min 8||S a =,则a 和b 的夹角为4π. 【答案】②④【解析】S 有下列三种情况:222222222123,,S a a b b b S a a b a b b b S a b a b a b a b b =++++=+⋅+⋅++=⋅+⋅+⋅+⋅+∵222212232()||0S S S S a b a b a b a b -=-=+-⋅=-=-≥,∴min 3S S =, 若a b ⊥,则2min 3S S b ==,与||a 无关,②正确; 若//a b ,则2min 34S S a b b ==⋅+,与||b 有关,③错误;若||4||b a >,则2222min 34||||cos ||4||||||||||0S S a b b a b b b b θ==⋅+≥-⋅+>-+=,④正确;若2min ||2||,8||b a S a ==,则2222min 348||cos 4||8||S S a b b a a a θ==⋅+=+=,∴1cos 2θ=,∴3πθ=,⑤错误.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.解答写在答题卡上的指定区域内. (16)【2014年安徽,理16,12分】设ABC ∆的内角A ,B ,C 所对边的长分别是a ,b ,c ,且3b =,1c =,2A B =.(1)求a 的值;(2)求sin 4A π⎛⎫+ ⎪⎝⎭的值.解:(1)∵2A B =,∴sin sin 22sin cos A B B B ==,由正弦定理得22222a c b a b ac+-=⋅,∵3,1b c ==,∴212,a a ==(2)由余弦定理得22291121cos 2b c a A bc +-+-===-,由于0A π<<,∴sin A故1sin()sin coscos sin()4443A A A πππ+=+=-=(17)【2014年安徽,理17,12分】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解:用A 表示“甲在4局以内(含4局)赢得比赛”, k A 表示“第k 局甲获胜”, k B 表示“第k 局乙获胜”,则21(),(),1,2,3,4,533k k P A P B k ===.(1)121231234121231234()()()()()()()()()()(()()P A P A A P B A A P A B A A P A P A P B P A P A P A P B A P A =++=++2212221225633333333381=⨯+⨯⨯+⨯⨯⨯=. (2)X 的可能取值为2,3,4,5,121212125(2)()()()()()()9P X P A A P B B P A P A P B P B ==+=+=,1231231231232(3)()()()()()()()()9P X P B A A P A B B P B P A P A P A P B P B ==+=+=,123412341234123410(4)()()()()()()()()()()81P X P A B A A P B A B B P A P B P A P A P B P A P B P B ==+=+=8(5)1(2)(3)(4)81P X P X P X P X ==-=-=-==, 故X∴5234599818181EX =⨯+⨯+⨯+⨯=.(18)【2014年安徽,理18,12分】设函数()()()23110f x a x x x a =++-->.(1)讨论()f x 在其定义域上的单调性;(2)当[]0,1x ∈时,求()f x 取得最大值和最小值时的x 的值. 解:(1)()f x 的定义域为(,)-∞+∞,2'()123f x a x x =+--,令'()0f x =得1212x x x x ==<,所以12'()3()()f x x x x x =---,当1x x <或2x x >时,'()0f x <;当12x x x <<时'()0f x >,故()f x 在1(,)x -∞和2(,)x +∞内单调递减,在12(,)x x 内单调递增. (2)∵0a >,∴120,0x x <>,(ⅰ)当4a ≥时21x ≥,由(1)知()f x 在[0,1]上单调递增,∴()f x 在0x =和1x =处分别取得最小值和最大值.(ⅱ)当40a >>时,21x <,由(1)知()f x 在2[0,]x 上单调递增,在2[,1]x 上单调递减, ∴()f x 在2143ax x -++==处取得最大值,又(0)1,(1)f f a ==,∴当10a >>时()f x 在1x =处取得最小值,当1a =时()f x 在0x =和1x =处同时取得最小值,当41a >>时,()f x 在0x =取得最小值.(19)【2014年安徽,理19,13分】如图,已知两条抛物线()2111:20E y p x p =>和()2122:20E y p x p =>,过原点O 的两条直线1l 和2l ,1l 与1E ,2E 分别交于1A ,2A 两点,2l 与1E ,2E 分别交于1B ,2B 两点. (1)证明:1122//A B A B ;(2)过原点O 作直线l (异于1l ,2l )与1E ,2E 分别交于1C ,2C 两点.记111A B C ∆与222A B C ∆的面积分别为1S 与2S ,求12SS 的值.解:(1)设直线12,l l 的方程分别为1212,,(,0)y k x y k x k k ==≠,则由1212y k x y p x =⎧⎨=⎩得11121122(,)p pA k k ;由1222y k x y p x=⎧⎨=⎩得22221122(,)p p A k k ,同理可得11122222(,)p p B k k ,22222222(,)p p B k k ,所以111111122222121212122221111(,)2(,)p p p p A B p k k k k k k k k =--=--, 222222222222121212122221111(,)2(,)p p p p A B p k k k k k k k k =--=--,故111222p A B A B p =,所以1122A B A B //.(2)由(1)知1122A B A B //,同理可得1122B C B C //,1122AC A C //,所以111222A B C A B C ∆∆∽,因此2111222S ||()||A B S A B =, 又由(1)中的111222p A B A B p =知111222||||A B p p A B =,故211222S p S p =. (20)【2014年安徽,理20,13分】如图,四棱柱1111ABCD A B C D -中,1A A ⊥底面ABCD ,四边形ABCD 为梯形,//AD BC ,且2AD BC =.过1A ,C ,D 三点的平面记为α,1BB 与α的交点为M .(1)证明:M 为1BB 的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若14A A =,2CD =,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角大小. 解:(1)∵1//BQ AA ,//BC AD ,BCBQ B =,1ADAA A =,∴平面//QBC 平面1A AD ,从而平面1A CD 与这两个平面的交线相互平行,即1QC A D //,故QBC ∆与1A AD ∆的对应边相互平行,于是1A QBC AD ∆∆∽,∴11BQ BQ 1BB 2BC AA AD ===,即Q 为1BB 的中点. (2)如图,连接QA ,QD .设1AA h =,梯形ABCD 的高为d ,四棱柱被平面α所分成上下两部分的体积分别为V 上和V 下,BC a =,则2AD a =.11112323Q A AD V a h d ahd -=⋅⋅⋅⋅=,1211()3224Q ABCD a a V d h ahd -+=⋅⋅⋅=,∴1712Q A AD Q ABCD V V V ahd --=+=下,又111132A B C D ABCD V ahd -=,∴1111371121212A B C D ABCD V V V ahd ahd ahd -=-=-=下上,故117V V =上下.MD 1C 1B 1A 1A(3)解法一:如图,在ADC ∆中,作AE DC ⊥,垂足为E ,连接1A E ,又1DE AA ⊥,且1AEAA A =,∴1DE AEA ⊥平面,∴1DE A E ⊥,∴1AEA ∠为平面α和平面ABCD 所成二面角的平面角.∵ //AD BC ,2AD BC =, ∴2ADC ABC S S ∆∆=,又∵梯形ABCD 的面积为6,2DC =,∴4ADC S ∆=,4AE =,于是11tan 1AA AEA AE ∠==,14AEA π∠=,故平面α和底面ABCD 所成二面角的大小为4π.解法二:如图,以D 为原点,DA ,1DD 分别为x 轴和z 轴正方向,建立空间直角坐标系.设CDA θ∠=,因为22sin 62ABCD a a V θ+=⋅=,所以2sin a θ=,从而(2cos ,2sin ,0)C θθ,14(,0,4)sin A θ,设平面1A DC 的法向量为(,,1)n x y =,由1440sin 2cos 2sin 0DA n x DC n x y θθθ⎧⋅=+=⎪⎨⎪⋅=+=⎩ 得sin ,cos x y θθ=-=,所以(sin ,cos ,1)n θθ=-,又平面ABCD 的法向量(0,0,1)m =, 所以2cos ,||||m n m n m n ⋅<>==⋅α和底面ABCD 所成二面角的大小为4π. (21)【2014年安徽,理21,13分】设实数0c >,整数1p >,*n N ∈.(1)证明:当1x >-且0x ≠时,()11px px +>+; (2)数列{}n a 满足11pa c >,111p n n np c a a a p p-+-=+,证明:11p n n a a c +>>. 解:(1)用数学归纳法证明①当2p =时,22(1)1212x x x x +=++>+,原不等式成立.②假设(2,*)p k k k N =≥∈时,不等式(1)1k x kx +>+成立,当1p k =+时,1(1)(1)(1)(1)(1)k k x x x x kx ++=++>++21(1)1(1)k x kx k x =+++>++ 所以1p k =+时,原不等式成立.综合①、②可得当1x >-且0x ≠时,对一切整数1p >,不等式()11px px +>+均成立. (2)解法一:先用数学归纳法证明1p n a c >.①当1n =时由假设11pa c >知1pn a c >成立.②假设(1,*)n k k k N =≥∈时,不等式1pk a c >成立,由111pn n n p c a a a p p-+-=+,易知0,*n a n N >∈, 当1n k =+时,1111(1)p k k p k k a p c c a a p p p a -+-=+=+-,由10p k a c >>得111(1)0p kcp p a -<-<-< 由(1)中的结论得111()[1(1)]1(1)p p k p p p k k k ka c c cp a p a p a a +=+->+⋅-=,因此1p k a c +>,即11p k a c +>,所以当1n k =+时,不等式1pn a c >也成立.综合①、②可得,对一切正整数n ,不等式1pn a c >均成立.再由111(1)n p n n a ca p a +=+-得11n na a +<,即1n n a a +<,综上所述,11,*p n n a a c n N +>>∈.解法二:设111(),p p p c f x x x x c p p--=+≥,则p x c ≥,并且11'()(1)(1)0p p p c p cf x p x p p p x ---=+-=->,1p x c >由此可见,()f x 在1[,)p c +∞上单调递增,因而当1p x c >时11()()p pf x f c c ==. ① 当1n =时由110pa c >>,即1p a c >可知121111111[1(1)]p p p c ca a a a a p p p a --=+=+-<, 并且121()pa f a c =>,从而112pa a c >>,故当1n =时,不等式11pn n a a c +>>成立.② 假设(1,*)n k k k N =≥∈时,不等式11pk k a a c +>>成立,则当1n k =+时11()()()pk k f a f a f c +>>,即有112pk k a a c ++>>,所以当1n k =+时原不等式也成立. 综合①、②可得,对一切正整数n ,不等式11pn n a a c +>>均成立.。

2014年安徽省高考数学试卷(理科)答案与解析

2014年安徽省高考数学试卷(理科)答案与解析

2014年安徽省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2014•安徽)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i•=()A.﹣2 B.﹣2i C.2D.2i考点: 复数代数形式的乘除运算.专题:数系的扩充和复数.分析:把z及代入+i•,然后直接利用复数代数形式的乘除运算化简求值.解答:解:∵z=1+i,∴,∴+i•==.故选:C.点评:本题考查复数代数形式的乘除运算,是基础的计算题.2.(5分)(2014•安徽)“x<0"是“ln(x+1)<0"的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:充要条件.专题: 计算题;简易逻辑.分析:根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.解答:解:∵x<0,∴x+1<1,当x+1>0时,ln(x+1)<0;∵ln(x+1)<0,∴0<x+1<1,∴﹣1<x<0,∴x<0,∴“x<0”是ln(x+1)<0的必要不充分条件.故选:B.点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.3.(5分)(2014•安徽)如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.89考点:程序框图;程序框图的三种基本逻辑结构的应用.专题:算法和程序框图.分析:写出前几次循环的结果,不满足判断框中的条件,退出循环,输出z的值.解答:解:第一次循环得z=2,x=1,y=2;第二次循环得z=3,x=2,y=3;第三次循环得z=5,x=3,y=5;第四次循环得z=8,x=5,y=8;第五次循环得z=13,x=8,y=13;第六次循环得z=21,x=13,y=21;第七次循环得z=34,x=21,y=34;第八次循环得z=55,x=34,y=55;退出循环,输出55,故选B点评:本题考查程序框图中的循环结构,常用的方法是写出前几次循环的结果找规律,属于一道基础题.4.(5分)(2014•安徽)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被圆C截得的弦长为()A.B.2C.D.2考点: 点的极坐标和直角坐标的互化;直线与圆的位置关系;参数方程化成普通方程.专题: 坐标系和参数方程.分析:先求出直线和圆的直角坐标方程,求出半径和弦心距,再利用弦长公式求得弦长.解答:解:直线l的参数方程是(t为参数),化为普通方程为x﹣y﹣4=0;圆C的极坐标方程是ρ=4cosθ,即ρ2=4ρcosθ,化为直角坐标方程为x2+y2=4x,即(x﹣2)2+y2=4,表示以(2,0)为圆心、半径r等于2的圆.弦心距d==<r,∴弦长为2=2=2,故选:D.点评:本题主要考查把参数方程化为普通方程的方法,把极坐标方程化为直角坐标方程的方法,点到直线的距离公式、弦长公式的应用,属于中档题.5.(5分)(2014•安徽)x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或1 D.2或﹣1考点:简单线性规划.专题: 不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.解答:解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x﹣y+2=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一, 则直线y=ax+z与直线x+y﹣2=0,平行,此时a=﹣1,综上a=﹣1或a=2,故选:D点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.注意要对a进行分类讨论,同时需要弄清楚最优解的定义.6.(5分)(2014•安徽)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f()=()A.B.C.0D.﹣考点:抽象函数及其应用;函数的值.专题: 函数的性质及应用.分析:利用已知条件,逐步求解表达式的值即可.解答:解:∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,∴f()=f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=sin+sin+sin==.故选:A.点评:本题考查抽象函数的应用,函数值的求法,考查计算能力.7.(5分)(2014•安徽)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+B.18+C.21 D.18考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,结合三视图的数据,求出几何体的表面积.解答:解:由三视图可知,几何体是正方体的棱长为2,截去两个正三棱锥,侧棱互相垂直,侧棱长为1,几何体的表面积为:S正方体﹣2S棱锥侧+2S棱锥底==21+.故选:A.点评:本题考查三视图求解几何体的表面积,解题的关键是判断几何体的形状.8.(5分)(2014•安徽)从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有()A.24对B.30对C.48对D.60对考点: 排列、组合及简单计数问题;异面直线及其所成的角.专题: 排列组合.分析:利用正方体的面对角线形成的对数,减去不满足题意的对数即可得到结果.解答:解:正方体的面对角线共有12条,两条为一对,共有=66条,同一面上的对角线不满足题意,对面的面对角线也不满足题意,一组平行平面共有6对不满足题意的直线对数,不满足题意的共有:3×6=18.从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有:66﹣18=48.故选:C.点评:本题考查排列组合的综合应用,逆向思维是解题本题的关键.9.(5分)(2014•安徽)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8 B.﹣1或5 C.﹣1或﹣4 D.﹣4或8考点: 带绝对值的函数;函数最值的应用.专题:选作题;不等式.分析:分类讨论,利用f(x)=|x+1|+|2x+a|的最小值为3,建立方程,即可求出实数a的值.解答:解:<﹣1时,x<﹣,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>﹣1;﹣≤x≤﹣1,f(x)=﹣x﹣1+2x+a=x+a﹣1≥﹣1;x>﹣1,f(x)=x+1+2x+a=3x+a+1>a﹣2,∴﹣1=3或a﹣2=3,∴a=8或a=5,a=5时,﹣1<a﹣2,故舍去;≥﹣1时,x<﹣1,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>2﹣a;﹣1≤x≤﹣,f(x)=x+1﹣2x﹣a=﹣x﹣a+1≥﹣+1;x>﹣,f(x)=x+1+2x+a=3x+a+1>﹣+1,∴2﹣a=3或﹣+1=3,∴a=﹣1或a=﹣4,a=﹣1时,﹣+1<2﹣a,故舍去;综上,a=﹣4或8.故选:D.点评:本题主要考查了函数的值域问题.解题过程采用了分类讨论的思想,属于中档题.10.(5分)(2014•安徽)在平面直角坐标系xOy中.已知向量、,||=||=1,•=0,点Q满足=(+),曲线C={P|=cosθ+sinθ,0≤θ≤2π},区域Ω={P|0<r≤||≤R,r<R}.若C∩Ω为两段分离的曲线,则()A.1<r<R<3 B.1<r<3≤R C.r≤1<R<3 D.1<r<3<R考点:向量在几何中的应用.专题:平面向量及应用;直线与圆.分析:不妨令=(1,0),=(0,1),则P点的轨迹为单位圆,Ω={P|(0<r≤||≤R,r<R}表示的平面区域为:以Q点为圆心,内径为r,外径为R的圆环,若C∩Ω为两段分离的曲线,则单位圆与圆环的内外圆均相交,进而根据圆圆相交的充要条件得到答案.解答:解:∵平面直角坐标系xOy中.已知向量、,||=||=1,•=0,不妨令=(1,0),=(0,1),则=(+)=(,),=cosθ+sinθ=(cosθ,sinθ),故P点的轨迹为单位圆,Ω={P|(0<r≤||≤R,r<R}表示的平面区域为:以Q点为圆心,内径为r,外径为R的圆环,若C∩Ω为两段分离的曲线,则单位圆与圆环的内外圆均相交,故|OQ|﹣1<r<R<|OQ|+1,∵|OQ|=2,故1<r<R<3,故选:A点评:本题考查的知识点是向量在几何中的应用,其中根据已知分析出P的轨迹及Ω={P|(0<r≤||≤R,r<R}表示的平面区域,是解答的关键.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置.11.(5分)(2014•安徽)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:根据函数y=Asin(ωx+φ)的图象变换规律,可得所得图象对应的函数解析式为y=sin (2x+﹣2φ),再根据所得图象关于y轴对称可得﹣2φ=kπ+,k∈z,由此求得φ的最小正值.解答:解:将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象对应的函数解析式为y=sin[2(x﹣φ)+]=sin(2x+﹣2φ)关于y轴对称,则﹣2φ=kπ+,k∈z,即φ=﹣﹣,故φ的最小正值为,故答案为:.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于中档题.12.(5分)(2014•安徽)数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=1.考点:等比数列的通项公式.专题: 等差数列与等比数列.分析:设出等差数列的公差,由a1+1,a3+3,a5+5构成公比为q的等比数列列式求出公差,则由化简得答案.解答:解:设等差数列{a n}的公差为d,由a1+1,a3+3,a5+5构成等比数列,得:,整理得:,即+5a1+a1+4d.化简得:(d+1)2=0,即d=﹣1.∴q==.故答案为:1.点评:本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.13.(5分)(2014•安徽)设a≠0,n是大于1的自然数,(1+)n的展开式为a0+a1x+a2x2+…+a n x n.若点A i(i,a i)(i=0,1,2)的位置如图所示,则a=3.考点:二项式定理的应用;二项式系数的性质.专题:二项式定理.分析:求出(1+)n的展开式的通项为,由图知,a0=1,a1=3,a2=4,列出方程组,求出a的值.解答:解:(1+)n的展开式的通项为,由图知,a0=1,a1=3,a2=4,∴,,,,a2﹣3a=0,解得a=3,故答案为:3.点评:本题考查解决二项式的特定项问题,关键是求出展开式的通项,属于一道中档题.14.(5分)(2014•安徽)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为x2+=1.考点: 椭圆的标准方程;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出B(﹣c,﹣b2),代入椭圆方程,结合1=b2+c2,即可求出椭圆的方程.解答:解:由题意,F1(﹣c,0),F2(c,0),AF2⊥x轴,∴|AF2|=b2,∴A点坐标为(c,b2),设B(x,y),则∵|AF1|=3|F1B|,∴(﹣c﹣c,﹣b2)=3(x+c,y)∴B(﹣c,﹣b2),代入椭圆方程可得,∵1=b2+c2,∴b2=,c2=,∴x2+=1.故答案为:x2+=1.点评:本题考查椭圆的方程与性质,考查学生的计算能力,属于中档题.15.(5分)(2014•安徽)已知两个不相等的非零向量,,两组向量,,,,和,,,,均由2个和3个排列而成,记S=•+•+•+•+•,S min表示S所有可能取值中的最小值.则下列命题正确的是②④(写出所有正确命题的编号).①S有5个不同的值;②若⊥,则S min与||无关;③若∥,则S min与||无关;④若||>4||,则S min>0;⑤若||=2||,S min=8||2,则与的夹角为.考点:命题的真假判断与应用;平行向量与共线向量.专题:平面向量及应用;简易逻辑.分析:依题意,可求得S有3种结果:S1=++++,S2=+•+•++,S3=•+•+•+•+,可判断①错误;进一步分析有S1﹣S2=S2﹣S3=+﹣2•≥+﹣2||•||=≥0,即S中最小为S3;再对②③④⑤逐一分析即可得答案.解答:解:∵x i,y i(i=1,2,3,4,5)均由2个和3个排列而成,∴S=x i y i可能情况有三种:①S=2+3;②S=+2•+2;③S=4•+.S有3种结果:S1=++++,S2=+•+•++,S3=•+•+•+•+,故①错误;∵S1﹣S2=S2﹣S3=+﹣2•≥+﹣2||•||=≥0,∴S中最小为S3;若⊥,则S min=S3=,与||无关,故②正确;③若∥,则S min=S3=4•+,与||有关,故③错误;④若||>4||,则S min=S3=4||•||cosθ+>﹣4||•||+>﹣+=0,故④正确;⑤若||=2||,S min=S3=8||2cosθ+4=8,∴2cosθ=1,∴θ=,即与的夹角为.综上所述,命题正确的是②④,故答案为:②④.点评:本题考查命题的真假判断与应用,着重考查平面向量的数量积的综合应用,考查推理、分析与运算的综合应用,属于难题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答早答题卡上的指定区域.16.(12分)(2014•安徽)设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.考点:正弦定理;两角和与差的正弦函数.专题:综合题;三角函数的求值.分析:(Ⅰ)利用正弦定理,可得a=6cosB,再利用余弦定理,即可求a的值;(Ⅱ)求出sinA,cosA,即可求sin(A+)的值.解答:解:(Ⅰ)∵A=2B,,b=3,∴a=6cosB,∴a=6,∴a=2;(Ⅱ)∵a=6cosB,∴cosB=,∴sinB=,∴sinA=sin2B=,cosA=cos2B=2cos2B﹣1=﹣,∴sin(A+)=(sinA+cosA)=.点评:本题考查余弦定理、考查正弦定理,考查二倍角公式,考查学生的计算能力,属于中档题.17.(12分)(2014•安徽)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;(Ⅱ)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望).考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题: 概率与统计.分析:(1)根据概率的乘法公式,求出对应的概率,即可得到结论.(2)利用离散型随机变量分别求出对应的概率,即可求X的分布列;以及均值.解答:解:用A表示甲在4局以内(含4局)赢得比赛的是事件,A k表示第k局甲获胜,B k 表示第k局乙获胜,则P(A k)=,P(B k)=,k=1,2,3,4,5(Ⅰ)P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4)=()2+×()2+××()2=.(Ⅱ)X的可能取值为2,3,4,5.P(X=2)=P(A1A2)+P(B1B2)=,P(X=3)=P(B1A2A3)+P(A1B2B3)=,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=,P(X=5)=P(A1B2A3B4A5)+P(B1A2B3A4B5)+P(B1A2B3A4A5)+P(A1B2A3B4B5)==,或者P(X=5)=1﹣P(X=2)﹣P(X=3)﹣P(X=4)=,故分布列为:X 2 3 4 5PE(X)=2×+3×+4×+5×=.点评:本题主要考查概率的计算,以及离散型分布列的计算,以及利用期望的计算,考查学生的计算能力.18.(12分)(2014•安徽)设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(Ⅰ)利用导数判断函数的单调性即可;(Ⅱ)利用(Ⅰ)的结论,讨论两根与1的大小关系,判断函数在[0,1]时的单调性,得出取最值时的x的取值.解答:解:(Ⅰ)f(x)的定义域为(﹣∞,+∞),f′(x)=1+a﹣2x﹣3x2,由f′(x)=0,得x1=,x2=,x1<x2,∴由f′(x)<0得x<,x>;由f′(x)>0得<x<;故f(x)在(﹣∞,)和(,+∞)单调递减,在(,)上单调递增;(Ⅱ)∵a>0,∴x1<0,x2>0,①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在[0,1]上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在[0,x2]单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,∴当0<a<1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处取得最小值;当1<a<4时,f(x)在x=0处取得最小值.点评:本题主要考查利用导数研究函数的单调性及最值的知识,考查学生分类讨论思想的运用能力,属中档题.19.(13分)(2014•安徽)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.考点:直线与圆锥曲线的综合问题.专题:向量与圆锥曲线.分析:(Ⅰ)由题意设出直线l1和l2的方程,然后分别和两抛物线联立求得交点坐标,得到的坐标,然后由向量共线得答案;(Ⅱ)结合(Ⅰ)可知△A1B1C1与△A2B2C2的三边平行,进一步得到两三角形相似,由相似三角形的面积比等于相似比的平方得答案.解答:(Ⅰ)证明:由题意可知,l1和l2的斜率存在且不为0,设l1:y=k1x,l2:y=k2x.联立,解得.联立,解得.联立,解得.联立,解得.∴,.,∴A1B1∥A2B2;(Ⅱ)解:由(Ⅰ)知A1B1∥A2B2,同(Ⅰ)可证B1C1∥B2C2,A1C1∥A2C2.∴△A1B1C1∽△A2B2C2,因此,又,∴.故.点评:本题是直线与圆锥曲线的综合题,考查了向量共线的坐标表示,训练了三角形的相似比与面积比的关系,考查了学生的计算能力,是压轴题.20.(13分)(2014•安徽)如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;(Ⅲ)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.考点: 二面角的平面角及求法;棱柱、棱锥、棱台的体积;用空间向量求平面间的夹角.专题: 综合题;空间位置关系与距离.分析:(Ⅰ)证明平面QBC∥平面A1D1DA,可得△QBC∽△A1AD,即可证明Q为BB1的中点;(Ⅱ)设BC=a,则AD=2a,则==,V Q﹣ABCD==ahd,利用V棱柱=ahd,即可求出此四棱柱被平面α所分成上、下两部分的体积之比;(Ⅲ)△ADC中,作AE⊥DC,垂足为E,连接A1E,则DE⊥平面AEA1,DE⊥A1E,可得∠AEA1为平面α与底面ABCD所成二面角,求出S△ADC=4,AE=4,可得tan∠AEA1==1,即可求平面α与底面ABCD所成二面角的大小.解答:(Ⅰ)证明:∵四棱柱ABCD﹣A1B1C1D1中,四边形ABCD为梯形,AD∥BC,∴平面QBC∥平面A1D1DA,∴平面A1CD与面QBC、平面A1D1DA的交线平行,∴QC∥A1D∴△QBC∽△A1AD,∴=,∴Q为BB1的中点;(Ⅱ)解:连接QA,QD,设AA1=h,梯形ABCD的高为d,四棱柱被平面α所分成上、下两部分的体积为V1,V2,设BC=a,则AD=2a,∴==,V Q﹣ABCD==ahd,∴V2=,∵V棱柱=ahd,∴V1=ahd,∴四棱柱被平面α所分成上、下两部分的体积之比;(Ⅲ)解:在△ADC中,作AE⊥DC,垂足为E,连接A1E,则DE⊥平面AEA1,∴DE⊥A1E,∴∠AEA1为平面α与底面ABCD所成二面角的平面角,∵BC∥AD,AD=2BC,∴S△ADC=2S△ABC,∵梯形ABCD的面积为6,DC=2,∴S△ADC=4,AE=4,∴tan∠AEA1==1,∴∠AEA1=,∴平面α与底面ABCD所成二面角的大小为.点评:本题考查面面平行的性质,考查体积的计算,考查面面角,考查学生分析解决问题的能力,属于中档题.21.(13分)(2014•安徽)设实数c>0,整数p>1,n∈N*.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{a n}满足a1>,a n+1=a n+a n1﹣p.证明:a n>a n+1>.考点:不等式的证明;数列与不等式的综合;分析法和综合法.专题:函数思想;点列、递归数列与数学归纳法.分析:第(Ⅰ)问中,可构造函数f(x)=(1+x)p﹣(1+px),求导数后利用函数的单调性求解;对第(Ⅱ)问,从a n+1着手,由a n+1=a n+a n1﹣p,将求证式进行等价转化后即可解决,用相同的方式将a n>a n+1进行转换,设法利用已证结论证明.解答:证明:(Ⅰ)令f(x)=(1+x)p﹣(1+px),则f′(x)=p(1+x)p﹣1﹣p=p[(1+x)p﹣1﹣1].①当﹣1<x<0时,0<1+x<1,由p>1知p﹣1>0,∴(1+x)p﹣1<(1+x)0=1,∴(1+x)p﹣1﹣1<0,即f′(x)<0,∴f(x)在(﹣1,0]上为减函数,∴f(x)>f(0)=(1+0)p﹣(1+p×0)=0,即(1+x)p﹣(1+px)>0,∴(1+x)p>1+px.②当x>0时,有1+x>1,得(1+x)p﹣1>(1+x)0=1,∴f′(x)>0,∴f(x)在[0,+∞)上为增函数,∴f(x)>f(0)=0,∴(1+x)p>1+px.综合①、②知,当x>﹣1且x≠0时,都有(1+x)p>1+px,得证.(Ⅱ)先证a n+1>.∵a n+1=a n+a n1﹣p,∴只需证a n+a n1﹣p>,将写成p﹣1个相加,上式左边=,当且仅当,即时,上式取“=”号,当n=1时,由题设知,∴上式“=”号不成立,∴a n+a n1﹣p>,即a n+1>.再证a n>a n+1.只需证a n>a n+a n1﹣p,化简、整理得a n p>c,只需证a n>c.由前知a n+1>成立,即从数列{a n}的第2项开始成立,又n=1时,由题设知成立,∴对n∈N*成立,∴a n>a n+1.综上知,a n>a n+1>,原不等式得证.点评:本题是一道压轴题,考查的知识众多,涉及到函数、数列、不等式,利用的方法有分析法与综合法等,综合性很强,难度较大.。

2014年全国高考理科数学试题及答案-安徽卷

2014年全国高考理科数学试题及答案-安徽卷

2014年普通高等学校招生全国统一考试(安徽卷)参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为 (A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x ≤π时,f(x)=0,则)623(πf = (A )21 (B )23 (C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 (A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为 (A )5或8 (B )-1或5 (C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b ).曲线C={ P |OP =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| PQ | ≤ R , r <R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R (C )r ≤ 1 < R <3 (D )1 < r < 3 < R二.填空题:本大题共5小题,每小题5分,共25分。

2014年全国高考理科数学试题及答案-安徽卷

2014年全国高考理科数学试题及答案-安徽卷

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页.全卷满分150分,考试时间为120分钟.参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若1z i =+,则zi z i+⋅= (A )-2 (B )-2i (C )2 (D )2i(2)“x <0”是ln(1)0x +<的 (A )充分不必要条件(B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78(D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为 (A )21 或-1 (B )2或21 (C )2或1 (D )2或-1(6)设函数f(x)(x ∈R )满足()()sin f x f x x π+=+,当0≤x ≤π时,()0f x =,则)623(πf = (A )21 (B )23 (C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21(D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有(A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为(A )5或8 (B )-1或5(C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b )、曲线C={ P |OP =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| PQ | ≤ R , r < R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R (C )r ≤ 1 < R <3 (D )1 < r < 3 < R2014普通高等学校招生全国统一考试(安徽卷)数 学(理科) 第Ⅱ卷(非选择题 共100分)考生注意事项:请用0、5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.......... 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)若将函数)42sin()(π+=x x f 的图像向右平移ϕ个单位,所的图像关于y 轴对称,则ϕ的最小正值是 、(12)数列{}n a 是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q= 、(13)设a≠0,n是大于1的自然数,na x ⎪⎭⎫⎝⎛+1的展开式为.2210n n x a x a x a a +++若点A i (i ,a i )(i=0,1,2)的位置如图所示,则a= .(14)若F 1,F 2分别是椭圆E :1222=+by x (0<b<1)的左、右焦点,过点F 1的直线交椭圆E 于A 、B 两点、若B F AF 113=,x AF ⊥2轴,则椭圆E 的方程为 、(15)已知两个不相等的非零向量a ,b ,两组向量x 1,x 2,x 3,x 4,x 5和y 1,y 2,y 3,y 4,y 5均由2个a 和3个b 排列而成、记S=x 1`y 1+x 2`y 2+x 3`y 3+x 4`y 4+x 5`y 5,S min 表示S 所有可能取值中的最小值、则下列命题正确的是 (写出所有正确命题的编号)、 ①S 有5个不同的值 ②若a ⊥b ,则S min 与a 无关 ③若a ∥b ,则S min 与b 无关 ④若a b 4>,则Smin>0⑤若a b 2=,Smin=28a ,则a 与b 的夹角为4π三、解答题:本大题共6小题,共75分、解答应写出文字说明、证明过程或演算步骤、解答写在答题卡上的指定区域内、 (16)(本小题满分12分)设△ABC 的内角A,B,C 所对边的长分别是a,b,c,且b=3,c=1,A=2B 、 (Ⅰ)求a 的值; (Ⅱ)求⎪⎭⎫⎝⎛+4sin πA 的值、 (17)(本小题满分 12 分)甲乙恋人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完 5 局仍未初相连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为 32,乙获胜的概率为31,各局比赛结果相互独立.(Ⅰ)求甲在 4 局以内(含 4 局)赢得比赛的概率;(Ⅱ)记 X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望). (18)(本小题满分 12 分)设函数⎰)(x =1+(1+ a )X-x 2-x3,其中 a > 0 、(Ⅰ)讨论 ⎰)(x 在其定义域上的单调性;(Ⅱ)当x ∈[0,1] 时,求⎰)(x 取得最大值和最小值时的x 的值.(19)(本小题满分 13 分)如图,已知两条抛物线2111:2(0)E y p x p =>和2222:2(0)E y p x p =>,过原点O 的两条直线1l 和2l ,1l 与12,E E 分别交于12,A A 两点,2l 与12,E E 分别交于12,B B 两点.(Ⅰ)证明:1122//A B A B(Ⅱ)过O 作直线l (异于1l ,2l )与12,E E 分别交于12,C C 两点.记111A B C ∆与222A B C ∆的面积分别为12,S S 求12S S 的值. (20)(本小题满分 13 分)如果,四棱柱1111ABCD A BC D -中,1A A ⊥底面ABCD.四边形ABCD 为梯形,AD // BC ,且AD = 2BC 、 过1,,A C D 三点的平面记α,1BB 与α的交点为Q 、(Ⅰ)证明:Q 为1BB 的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;(Ⅲ)若14,2AA CD ==,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角的大小.(21)(本小题满分 13 分)设实数0c >,整数*1,p n N >∈(Ⅰ)证明:当1x >-且0x ≠时,11px px +>+;(Ⅱ)数列{}n a 满足11pa c >,111p n n n p ca a a p p-+-=+,证明:p n n c a 11a >>+参考答案一、选择题:1、C2、B3、B4、D5、D6、A7、A8、C9、D10、A二、填空题:11、38π 12、 1 13、 314、 22312x y += 15、 ②④三、解答题:16、(本小题满分12分) 解:(Ⅰ)因为2A B =,所以sin sin 22sin cos A B B B ==由正、余弦定理得22222a c b a b ac+-=⋅因为3,1b c ==,所以212,a a ==(Ⅱ)由余弦定理得22291121cos 263b c a A bc +-+-===-由于0A π<<,所以sin A ===故1sin()sin coscos sin()4443A A A πππ+=+=-=17、(本小题满分12分)解:用A 表示“甲在4局以内(含4局)赢得比赛”,k A 表示“第k 局甲获胜”, k B 表示“第k 局乙获胜”,则21(),(),1,2,3,4,533k k P A P B k ===(Ⅰ)121231234()()()()P A P A A P B A A P A B A A =++121231234()()()()()()()()()P A P A P B P A P A P A P B P A P A =++22221221256()()()33333381=+⨯+⨯⨯= (Ⅱ)χ的可能取值为2,3,4,5121212125(2)()()()()()()9P P A A P B B P A P A P B P B χ==+=+=123123(3)()()P P B A A P A B B χ==+1231232()()()()()()9P B P A P A P A P B P B =+=12341234(4)()()P P A B A A P B A B B χ==+1234123410()()()()()()()()81P A P B P A P A P B P A P B P B =+=8(5)1(2)(3)(4)81P P P P χχχχ==-=-=-==故χ的分布列为234599818181E χ=⨯+⨯+⨯+⨯=18、(本小题满分12分) 解:(Ⅰ)()f x 的定义域为2(,),()123f x a x x '-∞+∞=+--令()0f x '=,得1212x x x x ==<所以12()3()()f x x x x x '=---当1x x <或2x x >时,()0f x '<;当12x x x <<时,()0f x '> 故()f x 在1(,)x -∞和2(,)x +∞内单调递减,在12(,)x x 内单调递增. (Ⅱ)因为0a >,所以120,0x x <>① 当4a ≥时,21x ≥由(Ⅰ)知,()f x 在[0,1]上单调递增.所以()f x 在0x =和1x =处分别取得最小值和最大值 ② 当04a <<时,21x <由(Ⅰ)知,()f x 在2[0,]x 上单调递增,在2[,1]x 上单调递减 所以()f x在2x x ==处取得最大值又(0)1,(1)f f a ==,所以当01a <<时,()f x 在1x =处取得最小值;当1a =时,()f x 在0x =处和1x =处同时取得最小值; 当14a <<时,()f x 在0x =处取得最小值. 19、(本小题满分13分)(Ⅰ)证:设直线12,l l 的方程分别为1212,(,0)y k x y k x k k ==≠ ,则由121,2,y k x y p x =⎧⎨=⎩ 得 11121122(,)p pA k k由122,2,y k x y p x =⎧⎨=⎩ 得 22221122(,)p p A k k同理可得1122122222222222(,),(,)p p p p B B k k k k 所以111111122222121212122221111(,)2(,)p p p p A B p k k k k k k k k =--=--, 222222222222121212122221111(,)2(,)p p p p A B p k k k k k k k k =--=--, 故111222p A B A B p =,所以1122//A B A B (Ⅱ)解:由(Ⅰ)知1122//A B A B ,同理可得1122//B C B C ,1122//C A C A ,所以111222A B C A B C ∆∆因此2111222||||S A B S A B ⎛⎫= ⎪⎝⎭又由(Ⅰ)中的111222p A B A B p =知111222||||A B p p A B = 故211222S p S p = 20、(本小题满分13分)(Ⅰ)证:因为11//,//,,BQ AA BC AD BC BQ B AD AA A ⋂=⋂=,所以平面//QBC 平面1A AD从而平面1ACD 与这两个平面的交线相互平行,即1//QC A D 故QBC ∆与1A AD ∆的对应边相互平行,于是1QBC A AD ∆∆所以1112BQ BQ BC BB AA AD ===,即Q 为1BB 的中点. (Ⅱ)解:如第(20)题图1,连接,QA QD ,设1A A h =,梯形ABCD 的高为d ,四棱柱被平面α所分成上下两部分的体积分别为V 上和V 下,BC a =,则2AD a =11112323Q A AD V a h d ahd -=⋅⋅⋅⋅=1211()3224Q ABCD a a V d h ahd -+=⋅⋅⋅=所以1712Q A AD Q ABCD V V V ahd --=+=下 又111132A B C D ABCD V ahd -=所以1111A B C D ABCD V V V -=-下上37212ahd ahd =- 1112ahd = 故117V V =上下(Ⅲ)解法一:如第(20)题图1,在ADC ∆中,作AE DC ⊥,垂足为E ,连接1A E又1DE AA ⊥,且1AA AE A ⋂= 所以DE ⊥平面1AEA ,于是1DE A E ⊥所以1AEA ∠为平面α与底面ABCD 所成二面角的平面角 因为//,2BC AD AD BC =,所以2ADC BCA S S ∆∆=又因为梯形ABCD 的面积为6,2DC =,所以4,4ADC S AE ∆== 于是111tan 1,4AA AEA AEA AE π∠==∠= 故平面α与底面ABCD 所成二面角的平面角的大小为4π解法二:如第(20)题图2,以D 为原点,1,DA DD 分别为x 轴和z 轴正方向建立空间直角坐标系,设CDA θ∠=因为22sin 62ABCD a a S θ+=⋅=,所以2sin a θ= 从而14(2cos ,2sin ,0),(,0,4)sin C A θθθ设平面1A DC 的法向量(,,1)n x y =由1440,sin 2cos 2sin 0,DA n x DC n x y θθθ⎧⋅=+=⎪⎨⎪⋅=+=⎩得sin ,cos x y θθ=-=, 所以(sin ,cos ,1)n θθ--又因为平面ABCD 的法向量(0,0,1)m =,所以cos ,||||n m n m n m ⋅<>==故平面α与底面ABCD 所成二面角的平面角的大小为4π21、(本小题满分13分)(Ⅰ)证:用数学归纳法证明(1)当2p =时,22(1)1212x x x x +=++>+,原不等式成立. (2)假设*(2,)p k k k N =≥∈时,不等式(1)1k x kx +>+成立当1p k =+时,1(1)(1)(1)(1)(1)k k x x x x kx ++=++>++21(1)1(1)k x kx k x =+++>++所以1p k =+时,原不等式成立.综合(1)(2)可得当1x >-且0x ≠时,对一切整数1p >,不等式(1)1p x px +>+均成立.(Ⅱ)证法一:先用数学归纳法证明1pn a c >(1)当1n =时由假设11p a c >知1pn a c >成立. (2)假设*(1,)n k k k N =≥∈时,不等式1pk a c >成立由111p n n n p ca a a p p-+-=+易知*0,n a n N >∈ 当1n k =+时1111(1)p k k p k ka p c ca a p p p a -+-=+=+- 由10pk a c >>得111(1)0p kcp p a -<-<-< 由(Ⅰ)中的结论得111()[1(1)]1(1)p p k p p p k k k ka c c cp a p a p a a +=+->+⋅-= 因此1pk a c +>,即11pk a c +>所以,当1n k =+时,不等式1pn a c >也成立.综合(1)(2)可得,对一切正整数n ,不等式1pn a c >均成立. 再由111(1)n p n n a ca p a +=+-得11n na a +<,即1n n a a +<综上所述,1*1,pn n a a c n N +>>∈证法二:设111(),p p p cf x x x x c p p--=+≥,则p x c ≥,并且111()(1)(1)0,p p p p c p cf x p x x c p p p x---'=+-=->>由此可见,()f x 在1[,)pc +∞上单调递增,因而当1px c >时11()()p pf x f c c == (1)当1n =时由110p a c >>,即1p a c >可知121111111[1(1)]p p p c ca a a a a p p p a --=+=+-< 并且121()pa f a c =>,从而112pa a c >> 故当1n =时,不等式11pn n a a c +>>成立.(2)假设*(1,)n k k k N =≥∈时,不等式11pk k a a c +>>成立,则当1n k =+时11()()()pk k f a f a f c +>>,即有112pk k a a c ++>> 所以当1n k =+时原不等式也成立.综合(1)(2)可得,对一切正整数n 不等式11pn n a a c +>>均成立.。

2014年高考理科数学安徽卷(含答案解析)

2014年高考理科数学安徽卷(含答案解析)

数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答..........案无效...,在答题卷....、草稿纸上....答题无效. 4.考试结束,务必将试题卷和答题卡一并上交. 参考公式:如果事件A 与B 互斥,那么 ()()()P A B P A B +=+如果事件A 与B 相互独立,那么()()()P AB P A B =第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设i 是虚数单位,z 表示复数z 的共轭复数.若1i z =+,则i =izz +( ) A .2- B .2i - C .2D .2i2.“0x <”是“ln(1)0x +<”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.如图所示,程序框图(算法流程图)的输出结果是 ( )A .34B .55C .78D .894.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是1,3x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( )AB. CD.5.x ,y 满足约束条件20220,220x y x y x y +-⎧⎪--⎨⎪-+⎩≤,≤≥.若z y ax =-取得最大值的最优解不唯一,则实数a的值为( )A .12或1- B .2或12C .2或1D .2或1-6.设函数()()f x x ∈R 满足(π)()sin f x f x x +=+.当0πx ≤<时,()0f x =,则23π()6f = ( ) A .12 BC .0D .12- 7.一个多面体的三视图如图所示,则该多面体的表面 积为 ( ) A.21+B.18+ C .21 D .18 8.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60的共有 ( )A .24对B .30对C .48对D .60对9.若函数()|1||2|f x x x a =+++的最小值为3,则实数a 的值为( )A .5或8B .1-或5C .1-或4-D .4-或810.在平面直角坐标系xOy 中,已知向量a ,b ,||||1==a b ,0=a b ,点Q 满足2()OQ =+a b .曲线{|cos sin ,02π}C P OP θθθ==+a b ≤<,区域{|0,}P r PQ R r R Ω=<≤||≤<,若C Ω为两段分离的曲线,则( )A .3r R 1<<<B .3r R 1<<≤C .3r R ≤1<<D .3r R 1<<<姓名________________ 准考证号_____________------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效---------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在.答题卡上....作答,在试..题.卷上答题无效....... 二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡的相应位置. 11.若将函数π()sin(2)4f x x =+的图象向右平移ϕ个单位,所得图象关于y 轴对称,则ϕ的最小正值是 .12.数列{}n a 是等差数列,若11a +,33a +,55a +构成公比为q 的等比数列,则q = .13.设0a ≠,n 是大于1的自然数,(1)n xa+的展开式为2012n n a a x a x a x ++++.若点(,)(0,1,2)i i A i a i =的位置如图所示,则a = .14.设1F ,2F 分别是椭圆E :2221(01)y x b b+=<<的左、右焦点,过点1F 的直线交椭圆E 于A ,B 两点.若11||3||AF F B =,2AF x ⊥轴,则椭圆E 的方程为 .15.已知两个不相等的非零向量a ,b ,两组向量1x ,2x ,3x ,4x ,5x 和1y ,2y ,3y ,4y ,5y 均由2个a 和3个b 排列而成.记1122334455S =++++x y x y x y x y x y ,min S 表示S 所有可能取值中的最小值,则下列命题正确的是 (写出所有正确命题的编号).①S 有5个不同的值;②若a b ⊥,则min S 与||a 无关; ③若a b ∥,则min S 与||b 无关; ④若||||b a >4,则min 0S >;⑤若||=2||b a ,2min =8||S a ,则a 与b 的夹角为π4.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内. 16.(本小题满分12分)设ABC △的内角A ,B ,C 所对边的长分别是a ,b ,c ,且3b =,1c =,2A B =. (Ⅰ)求a 的值; (Ⅱ)求πsin()4A +的值.17.(本小题满分12分)甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;(Ⅱ)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望). 18.(本小题满分12分)设函数23()1(1)f x a x x x =++--,其中0a >.(Ⅰ)讨论()f x 在其定义域上的单调性;(Ⅱ)当[0,1]x ∈时,求()f x 取得最大值和最小值时的x 的值. 19.(本小题满分13分)如图,已知两条抛物线1E :2112(0)y p x p =>和2E :2222(0)y p x p =>,过原点O 的两条直线1l 和2l ,1l 与1E ,2E 分别交于1A ,2A 两点,2l 与1E ,2E 分别交于1B ,2B 两点.(Ⅰ)证明:1122A B A B ∥;(Ⅱ)过O 作直线l (异于1l ,2l )与1E ,2E 分别交于1C ,2C 两点.记111A B C △与222A B C △的面积分别为1S 与2S ,求12S S 的值. 20.(本小题满分13分)如图,四棱柱1111ABCD A B C D -中,1AA ⊥底面ABCD .四边形ABCD 为梯形,AD BC ∥,且2AD BC =.过1A ,C ,D 三点的平面记为α,1BB 与α的交点为Q . (Ⅰ)证明:Q 为1BB 的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比; (Ⅲ)若14AA =,2CD =,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角大小.21.(本小题满分13分)设实数0c >,整数p >1,*n ∈N .(Ⅰ)证明:当1x ->且0x ≠时,(1+)+px px >1;(Ⅱ)数列{}n a 满足11pa c >,111p n n n p ca a a p p-+-=+.证明:11p n n a a c +>>.数学试卷 第5页(共16页) 数学试卷 第6页(共16页)1i i i (1i)(i 1)iz +=+-=--及z 代入i izz +,然后直接利用复数代数形式的乘除运算化简求值【解析】画出约束条件表示的平面区域如图,17πsin 6数学试卷 第7页(共16页) 数学试卷 第8页(共16页)222所以共有3618⨯=对不满足题意,故满足题意的共有66-18=48对.故选:C.【答案】A【解析】设(1,0)a =,(0,1)b =.则(cos ,sin OP θθ=,(2,OQ =Ω为圆环(如图).||2OQ =,13r R ∴<<<令(1,0)a =,(0,1)b =,则||,PQ R r ≤CΩ为两段分离的曲线,则单位圆与圆环的内外圆均相交,进而根据圆圆相交的充要条件得到答【解析】{113n a =,214nCa⎛⎫=⎪⎝⎭,【提示】求出1n x⎛⎫+的展开式的通项为3⎪⎩51c⎛⎫【解析】S有下列三种情况:22222a ab b b=++++,222S a a b a b b b=++++,2S a b a b a b a b b=++++,222212232()||0S S S S a b a b a b a b-=-=+-=-=-≥,∴若a b⊥,则2min3S S b==,与||a无关,②正确;若a b∥,则2min34S S a b b==+,与||b有关,③错误;||4||b a>,则222234||||cos||4||||||||||0 S S a b b a b b b bθ=+≥-+>-+=,④正确;||2||b a=,2||S a=,则222248||cos4||8||S S a b b a a aθ==+=+=,cos2θ=,3θ∴=,⑤错误.】依题意,可求得S种结果22222a ab b b=++++,2222S a a b a b b b=++++,2a b a b a b a b b=++++可判断①错误.进一步分析有222212232()||0S S S S a b a b a b a b-=-=+-=-=-≥,即再对②③④⑤逐一分析即可得答案【考点】向量的基本运算,向量的新定义数学试卷第9页(共16页)数学试卷第10页(共16页)数学试卷 第12页(共16页)2A B =222a c b bac +-3b =,1c =,∴(Ⅱ)222a c b b ac+-π⎫10)81=(Ⅱ)0a >,∴(ⅰ)当4a ≥时,在0x =和3 2数学试卷 第13页(共16页) 数学试卷 第14页(共16页)⎝所以2p A B ⎛= 22p A B ⎛=- 1p A B A B =,所11A B ∥,同理可得112B C B C ∥211||||A B A B ⎫⎪⎪⎭.又1p A B A B =知111||||A B p p A B =【提示】(Ⅰ)由题意设出直线得到A B ,A B 的坐标,然后由向量共线得答(Ⅰ)证明:1 //BQ AA =BC BQ B ,1AD AA A =.AD ,从而平面与这两个平面的交线相互平行,即QC 的对应边相互平行,于是1A AD ∽△1112323a h d ahd =12113224a a d h +⎛⎫= ⎪⎝⎭1712A AD Q ABCD V -+=221212下1AEAA A =.平面1AEA 1为平面α BC AD ∥又梯形于是tan ∠数学试卷 第15页(共16页) 数学试卷 第16页(共16页)1112323a h d ahd =12113224a a d h +⎛⎫= ⎪⎝⎭32ahd =棱柱,即可求出此四棱柱被平面分成上、下两部分的体积之比11p k cp p a ⎛⎫- ⎪⎝⎭时,不等式1p n a c >也成立。

2014年安徽高考理科数学试题含答案(Word版) - 副本

2014年安徽高考理科数学试题含答案(Word版) - 副本

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz+i ·z = (A )-2 (B )-2i (C )2 (D )2i (2)“x <0”是ln (x+1)<0的 (A )充分不必要条件(B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78 (D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为(A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x ≤π时,f(x)=0,则)623(πf = (A )21 (B )23 (C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 (A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为 (A )5或8 (B )-1或5 (C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| | ≤ R , r <R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R (C )r ≤ 1 < R <3 (D )1 < r < 3 < R2014普通高等学校招生全国统一考试(安徽卷)数 学(理科) 第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2014 年高考安徽卷理科数学试题

2014 年高考安徽卷理科数学试题

绝密★启用前2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz +i·z = (A )-2 (B )-2i (C )2 (D )2i (2)“x <0”是ln (x+1)<0的 (A )充分不必要条件(B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78 (D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a的值为 (A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x≤π时,f(x)=0,则)623(πf = (A )21 (B )23(C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 (A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为(A )5或8 (B )-1或5(C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| | ≤ R , r <R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R (C )r ≤ 1 < R <3 (D )1 < r < 3 < R第(7)题图2014普通高等学校招生全国统一考试(安徽卷)数 学(理科)第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2014年全国高考【理科】数学试题及答案-安徽卷【Word版】

2014年全国高考【理科】数学试题及答案-安徽卷【Word版】

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz+i ·z = (A )-2 (B )-2i (C )2 (D )2i (2)“x <0”是ln (x+1)<0的 (A )充分不必要条件(B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78 (D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a的值(A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x ≤π时,f(x)=0,则)623(πf = (A )21 (B )23 (C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 (A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为 (A )5或8 (B )-1或5 (C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足OQ =2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| PQ | ≤ R , r <R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R (C )r ≤ 1 < R <3 (D )1 < r < 3 < R2014普通高等学校招生全国统一考试(安徽卷)数 学(理科) 第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2014年全国高考理科数学试题-安徽卷(含答案)

2014年全国高考理科数学试题-安徽卷(含答案)

数学(理科)2014年普通高等学校招生全国统一考试(安徽卷)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设i 是虚数单位,z 表示复数z 的共轭复数. 若,1i z +=则=⋅+z iz 1( ) A. 2- B. i 2- C. 2 D. i 2(2)“0<x ”是“0)1ln(<+x ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是( )A. 34B. 55C. 78D. 894.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立学科网极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是⎩⎨⎧-=+=31y y t x ,(t 为参数),圆C 的极坐标方程是θρcos 4=则直线l 被圆C 截得的弦长为( ) A.14 B.142 C.2 D.225.y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数a 的值为( ) A,121-或 B.212或 C.2或1 D.12-或 6.设函数))((R x x f ∈满足.sin )()(x x f x f +=+π当π<≤x 0时,0)(=x f ,则=)623(πf ( ) A.21 B. 23 C.0 D.21- 7.一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+3B.18+3C.21D.188.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60︒的共有( )A.24对B.30对C.48对D.60对9.若函数()12f x x x a =+++的最小值为3,则实数a 的值为( )A.5或8B.1-或5C.1-或4-D.4-或810.在平面直角坐标系xOy 中,已知向量,,1,0,a b a b a b ==⋅=点Q 满足2()OQ a b =+.曲线cos sin ,02C P OP a b θθθπ==+≤≤,区域0,P r PQ R r R Ω=<≤≤<.若C ⋂Ω为两段分离的曲线,则( )A.13r R <<<B.13r R <<≤C.13r R ≤<<D.13r R <<< 第I I 卷(非选择题 共100分)二.选择题:本大题共5小题,每小题5分,共25分.11.若将函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭的图像向右平移ϕ个单位,所得图像关于y 轴对称, 则ϕ的最小正值是________.12.数列{}a n 是等差数列,若1a 1+,3a 3+,5a 5+构成学科网公比为q 的等比数列,则q =________.(13)设n a ,0≠是大于1的自然数,na x ⎪⎭⎫ ⎝⎛+1的展开式为n n x a x a x a a ++++ 2210.若点)2,1,0)(,(=i a i A i i 的位置如图所示,则______=a(14)设21,F F 分别是椭圆)10(1:222<<=+b b y x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为__________ (15)已知两个不相等的非零向量,,b a 两组向量54321,,,,x x x x x 和54321,,,,y y y y y 均由2个和3个排列而成.记5544332211y x y x y x y x y x S ⋅+⋅+⋅+⋅+⋅=, min S 表示S 所有可能取值中的最小值.则下列命题的是_________(写出所有正确命题的编号).①S 有5个不同的值.②若,⊥则min S .③若,∥则min S 无关.>,则0min >S .学科网,min S ==则与的夹角为4π三.解答题:本大题共6小题,共75分.解答应写出文子说明、证明学科网过程或演算步骤.解答写在答题卡上的指定区域内.16.设ABC 的内角,,A B C 所对边的长分别是,,a b c ,且3,1,2.b c A B ===(1)求a 的值;(2)求sin()4A π+的值.17(本小题满分12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(1) 求甲在4局以内(含4局)赢得比赛的概率;(2) 记为比赛决出胜负时的总局数,求的分布列和均值(数学期望)18(本小题满分12分) 设函数其中. (1) 讨论在其定义域上的单调性; (2) 当时,求取得最大值和最小值时的的值.(19)(本小题满分13分)如图,已知两条抛物线()02:1121>=p x p y E 和()02:2222>=p x p y E ,过原点O 的两条直线1l 和2l ,1l 与21,E E 分别交于21,A A 两点,2l 与21,E E 分别交于21,B B 两点.(1)证明:;//2211B A B A (2)过原点O 作直线l (异于1l ,2l )与21,E E 分别交于21,C C 两点。

2014年安徽高考理科数学试题附答案(Word版)

2014年安徽高考理科数学试题附答案(Word版)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz +i·z = (A )-2 (B )-2i(C )2 (D )2i(2)“x <0”是ln (x+1)<0的(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34(B )55(C )78(D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214(C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为(A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x≤π时,f(x)=0,则)623(πf = (A )21 (B )23 (C )0 (D )21- (7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有(A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为(A )5或8 (B )-1或5(C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| | ≤ R , r < R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R(C )r ≤ 1 < R <3 (D )1 < r < 3 < R2014普通高等学校招生全国统一考试(安徽卷)数 学(理科)第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2014年安徽省高考理科数学试卷及参考标准答案(word版)

2014年安徽省高考理科数学试卷及参考标准答案(word版)

2014年普通高等学校招生全国统一考试(安徽卷)数 学(理科) 第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设i 是虚数单位,z 表示复数z 的共轭复数.若i z +=1,则=⋅+z iz1( )A .-2 B.-2i C.2 D.2i(2)“0<x ”是“0)1ln(<+x ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 (3)如图所示,程序框图(算法流程图)的输出结果是( ) A .34 B .55 C .78 D .89(4)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎨⎧-=+=31y y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为( )A .14B .142C .2D .22(5)x ,y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数a 的值为( )A .21或-1 B .2或21C .2或1D .2或-1 (6)设函数)(x f (R x ∈)满足x x f x f sin )()(+=+π.当π≤≤x 0时,0)(=x f ,则=)623(πf ( ) A .21 B .23 C .0 D .21-(7)一个多面体的三视图如图所示,则该多面体的表面积为( ). A .21+3 B .18+3 C .21 D .18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )对.A .24B .30C .48D .60(9)若函数a x x x f +++=21)(的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4 D .-4或8(10)在平面直角坐标系xoy 中,已知向量,,1==,0=⋅,点Q 满足)(2+=.曲线πθθθ20,sin cos ≤≤+==b a P C丨,区域R r R r P <≤≤<=Ω,丨0.若Ω⋂C 为两段分离的曲第(13)题图第II 卷(非选择题 共100分)二.填空题:本大题共5小题,每小题5分,共25分. (11)若将函数)42sin()(π+=x x f 的图像向右平移ϕ个单位,所得图像关于y 轴对称,则ϕ的最小正值是 . (12)数列{}n a 是等差数列,若11+a ,33+a ,55+a 构成公比为q 的等比数列,则q = . (13)设0≠a ,n 是大于1的自然数,na x ⎪⎭⎫ ⎝⎛+1的展开式为nn x a x a x a a ++++ 22210.点),(i i a i A (2,1,0=i )的位置如图所示,则a = .(14)设21,F F 分别是椭圆E :1222=+by x (10<<b )的左、右焦点,过点1F 的直线交椭圆E 与A,B 两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为 .(15)已知两个不相等的非零向量a ,b ,两组向量54321,,,,x x x x x 和54321,,,,y y y y y 均由2个a 和3个b 排列而成.记5544332211y x y x y x y x y x S ⋅+⋅+⋅+⋅+⋅=,min S 表示S 所有可能取值中的最小值.则下列正确的命题的是(写出所有正确命题的编号).①S 有5个不同的值; ②若⊥,则min S 与a无关; ③若∥,则min S 与b 无关; ④若b >a 4,则min S >0; ⑤若b =a 4,min S =28a ,则与的夹角为4π三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内. (16)(本小题满分12分) 设△ABC 的内角C B A ,,对边的长分别是a ,b ,c ,且3=b ,1=c ,B A 2=. (I )求a 的值: (II )求)4sin(π+A 的值.(17)(本小题满分12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为32,乙获胜的概率为31,各局比赛结果互相独立. (I )求甲在4局以内(含4局)赢得比赛的概率;(II )记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).第(20)题图D A D 1(18)(本小题满分12分)设函数32)1(1)(x x x a x f --++=,其中0>a . (I )讨论)(x f 在其定义域上的单调性;(II )当][1,0∈x 时,求)(x f 取得最大值和最小值时的x 的值.(19)(本小题满分13分)如图,已知两条抛物线1E :x p y 122=(01>p )和2E :x p y 222=1l 与1E ,2E 分别交于1A ,2A 两点,2l 与1E ,2E 分别交于1B ,2B 两点.(I )证明:2211B A B A ∥;(II )过O 作直线l (异于1l ,2l )与1E ,2E 分别交于1C ,2C 两点,记111C B A △,与222C B A △的面积分别为1S 与2S ,求21S S的值.(20)(本小题满分13分)如图,四棱柱1111D C B A ABCD -中,⊥A A 1底面ABCD .四边形为梯形,∥,且.过D C A ,,1三点的平面记为α,1BB 与α的交点为Q .(I )证明:Q 为1BB 的中点;(II )求此四棱柱被平面α所分成上下两部分的体积之比;(III )若41=AA ,2=CD ,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角的大小.(21)(本小题满分13分)设实数0>c ,整数1>p ,*N n ∈.(I )证明:当1->x 且0≠x 时,()px x p+>+11;(II )数列{}n a 满足p n n n pa pc a p p a c a -++-=>11111,,证明:p n n c a a 11>>+.数学(理科)试题参考答案一.选择题:本题考查基本知识和基本运算.每小题5分,满分50分.(1)C (2)B (3)B (4)D (5)D (6)A (7)A (8)C (9)D (10)A二.填空题:本题考查基本知识和基本运算.每小题5分,满分25分. (11)83π (12)1 (13)3 (14)12322=+y x (15)②④三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内. (16)(本小题满分12分) 解:(I )∵B A 2=,∴B B B A cos sin 22sin sin ==.由正、余弦定理得:acb c a b a 22222-+⋅=.∵1,3==c b ,∴32,122==a a .(II ) 由余弦定理得:31612192cos 222-=-+=-+=bc a c b A .∵π<<A 0,∴322911cos 1sin 2=-=-=A A . ∴62422)31(223224sincos 4cossin )4sin(-=⨯-+⨯=+=+πππA A A .(17)(本小题满分12分)解:用A 表示“甲在4局以内(含4局)赢得比赛”,k A 表示“第k 局甲获胜”,k B 表示“第k 局乙获胜”, 则32)(=k A P ,31)(=k B P ,5,4,3,2,1=k . (I ))()()()(432132121A A B A P A A B P A A P A P ++==)()()()()()()()()(432132121A P A P B P A p A P A P B P A P A P ++=8156323132323132222=⎪⎭⎫ ⎝⎛⨯⨯+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫⎝⎛ ( )X 的可能取值为2,3,4,5.95)()()()()()()2(21212121=+=+==B P B P A P A P B B P A A P X P , 92)()()()()()()()()3(321321321321=+=+==B P B P A P A P A P B P B B A P A A B P X P ,8110)()()()()()()()()()()4(4321432143214321=+=+==B P B P A P B P A P A P B P A P B B A B P A A B A P X P 818)4()3()2(1)5(==-=-=-==X P X P X P X P ∴X 的分布列为8181581493952=⨯+⨯+⨯+⨯=EX .(18)(本小题满分12分)解:(I ))(x f 的定义域为()+∞∞-,,2321)(x x a x f --+='.令0)(='x f ,得2121,3341,3341x x ax a x <++-=+--=.∴))((3)(21x x x x x f ---='.当1x x <或2x x >时,0)(<'x f ;当21x x x <<时,0)(>'x f . ∴)(x f 在()1,x ∞-和()+∞,2x 内单调递减,在()21,x x 内单调递增. (II )∵0>a ,∴0,021><x x .① 当4≥a 时,12≥x .由(I )知,)(x f 在][1,0上单调递增.∴)(x f 在0=x 和1=x 处分别取得最小值和最大值. ② 当40<<a 时,12<x .由(I )知,)(x f 在][2,0x 上单调递增,在][1,2x 上单调递减. ∴)(x f 在33412ax x ++-==处取得最大值.又1)0(=f ,a f =)1(,∴当10<<a 时,)(x f 在1=x 处取得最小值;当1=a 时,)(x f 在0=x 处和1=x 处同时取得最小值;(19)(本小题满分13分)(I )证:设直线21,l l 的方程分别为x k y x k y 21,==(0,21≠k k ),则 由⎩⎨⎧==x p y xk y 1212,得⎪⎪⎭⎫ ⎝⎛1121112,2k p k p A ,由⎩⎨⎧==x p y xk y 2212,得⎪⎪⎭⎫ ⎝⎛1221222,2k p k p A .同理可得⎪⎪⎭⎫⎝⎛2122112,2k p k p B ,⎪⎪⎭⎫ ⎝⎛2222222,2kp k p B . ∴⎪⎪⎭⎫- ⎝⎛-=⎪⎪⎭⎫- ⎝⎛-=122122111212112211111,11222,22k k k k P k p k p k p k p B A , ⎪⎪⎭⎫- ⎝⎛-=⎪⎪⎭⎫- ⎝⎛-=122122212222122222211,11222,22k k k k P k p k p k p k p B A . 故222111B A p p B A =,∴2211B A B A ∥. (II )解:由(I )知2211B A B A ∥,同理可得2211C B C B ∥,2211A C A C ∥. ∴222111C B A C B A ∽△△.∴221=S S .又由(I )中的222111B A p p B A =21P P =. ∴222121P PS S =.(20)(本小题满分13分)(I )证:∵1AA BQ ∥,AD BC ∥,B BQ BC =⋂,A AA AD =⋂1. ∴平面QBC ∥平面AD A 1.从而平面CD A 1与这两个平面的交线互相平行,即D A QC 1∥. ∴△QBC 与△AD A 1的对应边相互平行,于是△∽QBC △AD A 1.第(20)题图1αEQ D AB A 1D 1C 1B 1C(II )解:如第(20)题图1,连接QA ,QD .设h AA =1,梯形ABCD 的高为d ,四棱柱被平面α所分成上下两部分的体积分别为上V 和下V ,a BC =,则a AD 2=.ahd d h a V AD A Q 31221311=⋅⋅⋅⋅=-, a h dh d a a V A B C D Q 41)21(2231=⋅⋅+⋅=-, ∴ahd V V V ABCD Q AD A Q 1271=+=--下.又ahd V ABCD D C B A 231111=-,∴ahd ahd ahd V V V ABCD D C B A 121112723-1111=-==-下上,故711=下上V V . (III )解法1如第(20)题图1,在ADC △中,作DC AE ⊥,垂足为E ,连接E A 1. 又1AA DE ⊥,且A AA DE =⋂1. ∴1AEA DE 平面⊥,于是E A DE 1⊥.∴∠1AEA 为平面α与底面ABCD 所成二面角的平面角. ∵AD BC ∥,BC AD 2=,∴BCA ADC S S △△2=.又∵梯形ABCD 的面积为6,2=DC ,∴4=ADC S △,4=AE . ∴1tan 11==∠AE AA AEA ,41π=∠AEA . 故平面α与底面ABCD 所成二面角的大小为4π. 解法2如第(20)题图2,以D 为原点,1,DD DA 分别为x 轴和z 轴正方向建立空间直角坐标系. 设θ=∠CDA∵6sin 222=⋅+=θaa S ABCD ,∴θsin 2=a .从而)(0,sin 2,cos 2θθC ,⎪⎭⎫⎝⎛4,0,sin 41θA , ∴()0,sin 2,cos 2θθ=DC ,⎪⎭⎫⎝⎛=4,0,sin 41θDA .由⎪⎩⎪⎨⎧=+=⋅=+=⋅0sin 2cos 204sin 41θθθy x n DA ,得θsin -=x ,θcos =y ,∴)1,cos ,sin (θθ-=n .又∵平面ABCD 的法向量)1,0,0(=,∴22,cos =>=<m n , ∴平面α与底面ABCD 所成二面角的大小为4π.(21)(本小题满分13分) (I )证:用数学归纳法证明① 当2=p 时,x x x x 2121)1(22+>++=+,原不等式成立. ② 假设),2(*N k k k p ∈≥=时,不等式kx x k+>+1)1( 成立. 当1+=k p 时,x k kx x k kx x x x x k k )1(1)1(1)1)(1()1)(1()1(21++>+++=++>++=++.∴1+=k p 时,原不等式也成立.综合①②可知,当0,1≠->x x 时,对一切整数1>p ,不等式px x p+>+1)1(均成立.(II )证法1:先用数学归纳法证明pn c a 1>.① 当1=n 时,由题设p c a 11>知,pn c a 1>成立. ② 假设)(*,1N k k k n ∈≥=时,不等式pk c a 1>成立. 由pn n n a pc a p p a -++-=111易知*,0N n a n ∈>. 当1+=k n 时,)1(1111-+=+-=-+p kp k k k a cp a p c p p a a . 由01>>pk ca 得0)1(111<-<-<-p ka cp p . 由(I )中的结论得p k p k pp k pk k a c a c p p a c p a a =-⋅+>⎥⎥⎦⎤⎢⎢⎣⎡-+=⎪⎪⎭⎫ ⎝⎛+)1(11)1(111. 因此c a pk >+1,即pk c a 11>+.1综合①②可得,对一切正整数n ,不等式pk c a 1>均成立. 再由)1(111-+=+p nn n a cp a a 可得11<+n n a a ,即n n a a <+1.综上所述,*11,N n c a a pn n ∈>>+.证法2:设p p c x x p cx p p x f 111)(≥+-=-,,则c x p ≥,并且p p p c x xcp p x p p c p p x f 10)1(1)1(1)(>>--=-+-='-,.由此可得,)(x f 在),[1+∞pc 上单调递增.因而,当p c x 1>时,pp c c f x f 11)()(=>.① 当1=n 时,由011>>p ca ,即c a p>1可知1111112)1(111a a c p a a p c a p p a p p <⎥⎦⎤⎢⎣⎡-+=+-=-,并且pc a f a 112)(>=,从而p c a a 121>>.故当1=n 时,不等式pn n ca a 11>>+成立.②假设),(*1N k k k n ∈≥=时,不等式pk k c a a 11>>+成立,则 当1+=k n 时,)()()(11pk k c f a f a f >>+,即有pk k c a a 121>>++.∴1+=k n 时,原不等式也成立.综合①②可得,对一切正整数n ,不等式pk k c a a 11>>+均成立.。

2014年安徽高考理科数学试题及参考答案

2014年安徽高考理科数学试题及参考答案

2014年安徽高考理科数学试题第I 卷 (选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.【2014年安徽卷(理01)】设i 是虚数单位,_z 表示复数z 的共轭复数,若i z +=1,则=⋅+z i iz(A )2- (B )i 2- (C )2(D )i 2【答案】C 【解析】2)2()(=-=-=⋅+⋅-=⋅+i i z z i z i z i z i iz【2014年安徽卷(理02)】“0<x ”是“0)1ln(<+x ”的(A ) 充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件【答案】B【解析】}01|{0)1ln(<<-⇒<+x x x 是}0|{<x x 的真子集【2014年安徽卷(理03)】如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55(C )78(D )89【答案】B【解析】本程序涉及“斐波拉切数列”即:2、3、5、8、13、21、34、55、89…,并输出第一个大于50的数 第(3)题图【2014年安徽卷(理04)】以平面直角坐标系的原点为极点,x 轴的正半轴为极轴, 建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是⎩⎨⎧-=+=31t y t x ,(t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )142 (C ) 2 (D )22【答案】D【解析】直线与圆都化成普通方程,直线04:=--y x l ,圆4)2(:22=+-y x C 。

圆心C 到直线l 的距离为2=d ,弦长为22222=-d r【2014年安徽卷(理05)】y x ,满足约束条件⎪⎩⎪⎨⎧+-≤--≤-+202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数 a 的值为(A )21或1-(B )2或21(C )2或1(D )2或1-【答案】D【解析】可行域如右图所示,ax y z -=可化为z ax y +=,由题意知2=a 或1-【2014年安徽卷(理06)】设函数))((R x x f ∈满足x x f x f sin )()(+=+π,当π<≤x 0时,0)(=x f ,则=)623(πf (A )21(B )23(C )0 (D )21-2=02=-【解析】法一:2165sin )65(21611sin )611(617sin )617()623(=+=++=+=πππππππf f f f 法二:x x f x x x f x x f x f sin )()2sin()sin()()2sin()2()3(+=+++++=+++=+ππππππ2165sin )65()623(=+=πππf f【2014年安徽卷(理07)】一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+(C )21(D )18【答案】A【解析】此多面体的直观图如下图所示表面积为61121622⨯⨯⨯-⨯⨯ 3212)2(432+=⨯⨯+第(7)题图【2014年安徽卷(理08)】从正方体六个面的对角线中任取两条作为一对,其中所成的角为︒60的共有(A )24对 (B )30对 (C )48对 (D )60对【答案】A【解析】正方体每一条面对角线都与其它8条面对角线成︒60角,故共有482812=⨯对【2014年安徽卷(理09)】若函数a x x x f +++=21)(的最小值为3,则实数a 的值为(A )5或8 (B )1-或5 (C )1-或4- (D )4-或8正(主)视图侧(左)视图【解析】若2≥a ,则当12-≤≤-x a时,由312121)(=-≥-+=+++=a a x a x x x f 可得8=a 符合要求;若2<a ,则当21ax -≤≤-时,由321121)(=-≥--=+++=a x a a x x x f 可得4-=a 符合要求;综上所述,4-=a 或8。

2014年安徽省高考数学试卷(理科)附送答案

2014年安徽省高考数学试卷(理科)附送答案

2014年安徽省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i•=()A.﹣2 B.﹣2i C.2 D.2i2.(5分)“x<0”是“ln(x+1)<0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.894.(5分)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被圆C截得的弦长为()A. B.2C.D.25.(5分)x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或1 D.2或﹣16.(5分)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f()=()A.B.C.0 D.﹣7.(5分)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+B.18+C.21 D.188.(5分)从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有()A.24对B.30对C.48对D.60对9.(5分)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8 B.﹣1或5 C.﹣1或﹣4 D.﹣4或810.(5分)在平面直角坐标系xOy中.已知向量、,||=||=1,•=0,点Q满足=(+),曲线C={P|=cosθ+sinθ,0≤θ≤2π},区域Ω={P|0<r≤||≤R,r<R}.若C∩Ω为两段分离的曲线,则()A.1<r<R<3 B.1<r<3≤R C.r≤1<R<3 D.1<r<3<R二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置.11.(5分)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.12.(5分)数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=.13.(5分)设a≠0,n是大于1的自然数,(1+)n的展开式为a0+a1x+a2x2+…+a n x n.若点A i(i,a i)(i=0,1,2)的位置如图所示,则a=.14.(5分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为.15.(5分)已知两个不相等的非零向量,,两组向量,,,,和,,,,均由2个和3个排列而成,记S=•+•+•+•+•,S min表示S所有可能取值中的最小值.则下列命题正确的是(写出所有正确命题的编号).①S有5个不同的值;②若⊥,则S min与||无关;③若∥,则S min与||无关;④若||>4||,则S min>0;⑤若||=2||,S min=8||2,则与的夹角为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答早答题卡上的指定区域.16.(12分)设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.17.(12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;(Ⅱ)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望).18.(12分)设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.19.(13分)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.20.(13分)如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD 为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;(Ⅲ)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.21.(13分)设实数c>0,整数p>1,n∈N*.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{a n}满足a1>,a n+1=a n+a n1﹣p.证明:a n>a n+1>.2014年安徽省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2014•安徽)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i•=()A.﹣2 B.﹣2i C.2 D.2i【分析】把z及代入+i•,然后直接利用复数代数形式的乘除运算化简求值.【解答】解:∵z=1+i,∴,∴+i•==.故选:C.2.(5分)(2014•安徽)“x<0”是“ln(x+1)<0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.【解答】解:∵x<0,∴x+1<1,当x+1>0时,ln(x+1)<0;∵ln(x+1)<0,∴0<x+1<1,∴﹣1<x<0,∴x<0,∴“x<0”是ln(x+1)<0的必要不充分条件.故选:B.3.(5分)(2014•安徽)如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.89【分析】写出前几次循环的结果,不满足判断框中的条件,退出循环,输出z的值.【解答】解:第一次循环得z=2,x=1,y=2;第二次循环得z=3,x=2,y=3;第三次循环得z=5,x=3,y=5;第四次循环得z=8,x=5,y=8;第五次循环得z=13,x=8,y=13;第六次循环得z=21,x=13,y=21;第七次循环得z=34,x=21,y=34;第八次循环得z=55,x=34,y=55;退出循环,输出55,故选B4.(5分)(2014•安徽)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被圆C截得的弦长为()A. B.2C.D.2【分析】先求出直线和圆的直角坐标方程,求出半径和弦心距,再利用弦长公式求得弦长.【解答】解:直线l的参数方程是(t为参数),化为普通方程为x﹣y﹣4=0;圆C的极坐标方程是ρ=4cosθ,即ρ2=4ρcosθ,化为直角坐标方程为x2+y2=4x,即(x﹣2)2+y2=4,表示以(2,0)为圆心、半径r等于2的圆.弦心距d==<r,∴弦长为2=2=2,故选:D.5.(5分)(2014•安徽)x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或1 D.2或﹣1【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x﹣y+2=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+y﹣2=0,平行,此时a=﹣1,综上a=﹣1或a=2,故选:D6.(5分)(2014•安徽)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f()=()A.B.C.0 D.﹣【分析】利用已知条件,逐步求解表达式的值即可.【解答】解:∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,∴f()=f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=sin+sin+sin==.故选:A.7.(5分)(2014•安徽)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+B.18+C.21 D.18【分析】判断几何体的形状,结合三视图的数据,求出几何体的表面积.【解答】解:由三视图可知,几何体是正方体的棱长为2,截去两个正三棱锥,侧棱互相垂直,侧棱长为1,几何体的表面积为:S正方体﹣2S棱锥侧+2S棱锥底==21+.故选:A.8.(5分)(2014•安徽)从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有()A.24对B.30对C.48对D.60对【分析】利用正方体的面对角线形成的对数,减去不满足题意的对数即可得到结果.【解答】解:正方体的面对角线共有12条,两条为一对,共有=66条,同一面上的对角线不满足题意,对面的面对角线也不满足题意,一组平行平面共有6对不满足题意的直线对数,不满足题意的共有:3×6=18.从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有:66﹣18=48.故选:C.9.(5分)(2014•安徽)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8 B.﹣1或5 C.﹣1或﹣4 D.﹣4或8【分析】分类讨论,利用f(x)=|x+1|+|2x+a|的最小值为3,建立方程,即可求出实数a的值.【解答】解:<﹣1时,x<﹣,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>﹣1;﹣≤x≤﹣1,f(x)=﹣x﹣1+2x+a=x+a﹣1≥﹣1;x>﹣1,f(x)=x+1+2x+a=3x+a+1>a﹣2,∴﹣1=3或a﹣2=3,∴a=8或a=5,a=5时,﹣1<a﹣2,故舍去;≥﹣1时,x<﹣1,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>2﹣a;﹣1≤x≤﹣,f(x)=x+1﹣2x﹣a=﹣x﹣a+1≥﹣+1;x>﹣,f(x)=x+1+2x+a=3x+a+1>﹣+1,∴2﹣a=3或﹣+1=3,∴a=﹣1或a=﹣4,a=﹣1时,﹣+1<2﹣a,故舍去;综上,a=﹣4或8.故选:D.10.(5分)(2014•安徽)在平面直角坐标系xOy中.已知向量、,||=||=1,•=0,点Q满足=(+),曲线C={P|=cosθ+sinθ,0≤θ≤2π},区域Ω={P|0<r≤||≤R,r<R}.若C∩Ω为两段分离的曲线,则()A.1<r<R<3 B.1<r<3≤R C.r≤1<R<3 D.1<r<3<R【分析】不妨令=(1,0),=(0,1),则P点的轨迹为单位圆,Ω={P|(0<r ≤||≤R,r<R}表示的平面区域为:以Q点为圆心,内径为r,外径为R的圆环,若C∩Ω为两段分离的曲线,则单位圆与圆环的内外圆均相交,进而根据圆圆相交的充要条件得到答案.【解答】解:∵平面直角坐标系xOy中.已知向量、,||=||=1,•=0,不妨令=(1,0),=(0,1),则=(+)=(,),=cosθ+sinθ=(cosθ,sinθ),故P点的轨迹为单位圆,Ω={P|(0<r≤||≤R,r<R}表示的平面区域为:以Q点为圆心,内径为r,外径为R的圆环,若C∩Ω为两段分离的曲线,则单位圆与圆环的内外圆均相交,故|OQ|﹣1<r<R<|OQ|+1,∵|OQ|=2,故1<r<R<3,故选:A二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置.11.(5分)(2014•安徽)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.【分析】根据函数y=Asin(ωx+φ)的图象变换规律,可得所得图象对应的函数解析式为y=sin(2x+﹣2φ),再根据所得图象关于y轴对称可得﹣2φ=kπ+,k∈z,由此求得φ的最小正值.【解答】解:将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象对应的函数解析式为y=sin[2(x﹣φ)+]=sin(2x+﹣2φ)关于y 轴对称,则﹣2φ=kπ+,k∈z,即φ=﹣﹣,故φ的最小正值为,故答案为:.12.(5分)(2014•安徽)数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=1.【分析】设出等差数列的公差,由a1+1,a3+3,a5+5构成公比为q的等比数列列式求出公差,则由化简得答案.【解答】解:设等差数列{a n}的公差为d,由a1+1,a3+3,a5+5构成等比数列,得:,整理得:,即+5a1+a1+4d.化简得:(d+1)2=0,即d=﹣1.∴q==.故答案为:1.13.(5分)(2014•安徽)设a≠0,n是大于1的自然数,(1+)n的展开式为a0+a1x+a2x2+…+a n x n.若点A i(i,a i)(i=0,1,2)的位置如图所示,则a=3.【分析】求出(1+)n的展开式的通项为,由图知,a0=1,a1=3,a2=4,列出方程组,求出a的值.【解答】解:(1+)n的展开式的通项为,由图知,a0=1,a1=3,a2=4,∴,,,,a2﹣3a=0,解得a=3,故答案为:3.14.(5分)(2014•安徽)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为x2+=1.【分析】求出B(﹣c,﹣b2),代入椭圆方程,结合1=b2+c2,即可求出椭圆的方程.【解答】解:由题意,F1(﹣c,0),F2(c,0),AF2⊥x轴,∴|AF2|=b2,∴A点坐标为(c,b2),设B(x,y),则∵|AF1|=3|F1B|,∴(﹣c﹣c,﹣b2)=3(x+c,y)∴B(﹣c,﹣b2),代入椭圆方程可得,∵1=b2+c2,∴b2=,c2=,∴x2+=1.故答案为:x2+=1.15.(5分)(2014•安徽)已知两个不相等的非零向量,,两组向量,,,,和,,,,均由2个和3个排列而成,记S=•+•+•+•+•,S min表示S所有可能取值中的最小值.则下列命题正确的是②④(写出所有正确命题的编号).①S有5个不同的值;②若⊥,则S min与||无关;③若∥,则S min与||无关;④若||>4||,则S min>0;⑤若||=2||,S min=8||2,则与的夹角为.【分析】依题意,可求得S有3种结果:S1=++++,S2=+•+•++,S3=•+•+•+•+,可判断①错误;进一步分析有S1﹣S2=S2﹣S3=+﹣2•≥+﹣2||•||=≥0,即S中最小为S3;再对②③④⑤逐一分析即可得答案.【解答】解:∵x i,y i(i=1,2,3,4,5)均由2个和3个排列而成,∴S=x i y i可能情况有三种:①S=2+3;②S=+2•+2;③S=4•+.S有3种结果:S1=++++,S2=+•+•++,S3=•+•+•+•+,故①错误;∵S1﹣S2=S2﹣S3=+﹣2•≥+﹣2||•||=≥0,∴S中最小为S3;若⊥,则S min=S3=,与||无关,故②正确;③若∥,则S min=S3=4•+,与||有关,故③错误;④若||>4||,则S min=S3=4||•||cosθ+>﹣4||•||+>﹣+=0,故④正确;⑤若||=2||,S min=S3=8||2cosθ+4=8,∴2cosθ=1,∴θ=,即与的夹角为.综上所述,命题正确的是②④,故答案为:②④.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答早答题卡上的指定区域.16.(12分)(2014•安徽)设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.【分析】(Ⅰ)利用正弦定理,可得a=6cosB,再利用余弦定理,即可求a的值;(Ⅱ)求出sinA,cosA,即可求sin(A+)的值.【解答】解:(Ⅰ)∵A=2B,,b=3,∴a=6cosB,∴a=6,∴a=2;(Ⅱ)∵a=6cosB,∴cosB=,∴sinB=,∴sinA=sin2B=,cosA=cos2B=2cos2B﹣1=﹣,∴sin(A+)=(sinA+cosA)=.17.(12分)(2014•安徽)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;(Ⅱ)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望).【分析】(1)根据概率的乘法公式,求出对应的概率,即可得到结论.(2)利用离散型随机变量分别求出对应的概率,即可求X的分布列;以及均值.【解答】解:用A表示甲在4局以内(含4局)赢得比赛的是事件,A k表示第k 局甲获胜,B k表示第k局乙获胜,则P(A k)=,P(B k)=,k=1,2,3,4,5(Ⅰ)P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4)=()2+×()2+××()2=.(Ⅱ)X的可能取值为2,3,4,5.P(X=2)=P(A1A2)+P(B1B2)=,P(X=3)=P(B1A2A3)+P(A1B2B3)=,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=,P(X=5)=P(A1B2A3B4A5)+P(B1A2B3A4B5)+P(B1A2B3A4A5)+P(A1B2A3B4B5)==,或者P(X=5)=1﹣P(X=2)﹣P(X=3)﹣P(X=4)=,故分布列为:X2345PE(X)=2×+3×+4×+5×=.18.(12分)(2014•安徽)设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.【分析】(Ⅰ)利用导数判断函数的单调性即可;(Ⅱ)利用(Ⅰ)的结论,讨论两根与1的大小关系,判断函数在[0,1]时的单调性,得出取最值时的x的取值.【解答】解:(Ⅰ)f(x)的定义域为(﹣∞,+∞),f′(x)=1+a﹣2x﹣3x2,由f′(x)=0,得x1=,x2=,x1<x2,∴由f′(x)<0得x<,x>;由f′(x)>0得<x<;故f(x)在(﹣∞,)和(,+∞)单调递减,在(,)上单调递增;(Ⅱ)∵a>0,∴x1<0,x2>0,∵x∈[0,1],当时,即a≥4①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在[0,1]上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在[0,x2]单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,∴当0<a<1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处取得最小值;当1<a<4时,f(x)在x=0处取得最小值.19.(13分)(2014•安徽)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.【分析】(Ⅰ)由题意设出直线l1和l2的方程,然后分别和两抛物线联立求得交点坐标,得到的坐标,然后由向量共线得答案;(Ⅱ)结合(Ⅰ)可知△A1B1C1与△A2B2C2的三边平行,进一步得到两三角形相似,由相似三角形的面积比等于相似比的平方得答案.【解答】(Ⅰ)证明:由题意可知,l1和l2的斜率存在且不为0,设l1:y=k1x,l2:y=k2x.联立,解得.联立,解得.联立,解得.联立,解得.∴,.,∴A1B1∥A2B2;(Ⅱ)解:由(Ⅰ)知A1B1∥A2B2,同(Ⅰ)可证B1C1∥B2C2,A1C1∥A2C2.∴△A1B1C1∽△A2B2C2,因此,又,∴.故.20.(13分)(2014•安徽)如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;(Ⅲ)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.【分析】(Ⅰ)证明平面QBC∥平面A1D1DA,可得△QBC∽△A1AD,即可证明Q 为BB1的中点;(Ⅱ)设BC=a,则AD=2a,则==,V Q﹣ABCD==ahd,利用V棱柱=ahd,即可求出此四棱柱被平面α所分成上、下两部分的体积之比;(Ⅲ)△ADC中,作AE⊥DC,垂足为E,连接A1E,则DE⊥平面AEA1,DE⊥A1E,可得∠AEA1为平面α与底面ABCD所成二面角,求出S△ADC=4,AE=4,可得tan ∠AEA1==1,即可求平面α与底面ABCD所成二面角的大小.【解答】(Ⅰ)证明:∵四棱柱ABCD﹣A1B1C1D1中,四边形ABCD为梯形,AD∥BC,∴平面QBC∥平面A1D1DA,∴平面A1CD与面QBC、平面A1D1DA的交线平行,∴QC∥A1D∴△QBC∽△A1AD,∴=,∴Q为BB1的中点;(Ⅱ)解:连接QA,QD,设AA1=h,梯形ABCD的高为d,四棱柱被平面α所分成上、下两部分的体积为V1,V2,设BC=a,则AD=2a,∴==,V Q﹣ABCD==ahd,∴V2=,∵V棱柱=ahd,∴V1=ahd,∴四棱柱被平面α所分成上、下两部分的体积之比;(Ⅲ)解:在△ADC中,作AE⊥DC,垂足为E,连接A1E,则DE⊥平面AEA1,∴DE⊥A1E,∴∠AEA1为平面α与底面ABCD所成二面角的平面角,∵BC∥AD,AD=2BC,∴S△ADC =2S△ABC,∵梯形ABCD的面积为6,DC=2,∴S△ADC=4,AE=4,∴tan∠AEA1==1,∴∠AEA1=,∴平面α与底面ABCD所成二面角的大小为.21.(13分)(2014•安徽)设实数c>0,整数p>1,n∈N*.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{a n}满足a1>,a n+1=a n+a n1﹣p.证明:a n>a n+1>.【分析】第(Ⅰ)问中,可构造函数f(x)=(1+x)p﹣(1+px),求导数后利用函数的单调性求解;对第(Ⅱ)问,从a n+1着手,由a n+1=a n+a n1﹣p,将求证式进行等价转化后即可解决,用相同的方式将a n>a n+1进行转换,设法利用已证结论证明.【解答】证明:(Ⅰ)令f(x)=(1+x)p﹣(1+px),则f′(x)=p(1+x)p﹣1﹣p=p[(1+x)p﹣1﹣1].①当﹣1<x<0时,0<1+x<1,由p>1知p﹣1>0,∴(1+x)p﹣1<(1+x)0=1,∴(1+x)p﹣1﹣1<0,即f′(x)<0,∴f(x)在(﹣1,0]上为减函数,∴f(x)>f(0)=(1+0)p﹣(1+p×0)=0,即(1+x)p﹣(1+px)>0,∴(1+x)p>1+px.②当x>0时,有1+x>1,得(1+x)p﹣1>(1+x)0=1,∴f′(x)>0,∴f(x)在[0,+∞)上为增函数,∴f(x)>f(0)=0,∴(1+x)p>1+px.综合①、②知,当x>﹣1且x≠0时,都有(1+x)p>1+px,得证.(Ⅱ)先证a n>.+1=a n+a n1﹣p,∴只需证a n+a n1﹣p>,∵a n+1将写成p﹣1个相加,上式左边=,当且仅当,即时,上式取“=”号,当n=1时,由题设知,∴上式“=”号不成立,∴a n+a n1﹣p>,即a n+1>.再证a n>a n+1.只需证a n>a n+a n1﹣p,化简、整理得a n p>c,只需证a n>c.由前知a n>成立,即从数列{a n}的第2项开始成立,+1又n=1时,由题设知成立,∴对n∈N*成立,∴a n>a n+1.综上知,a n>a n+1>,原不等式得证.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年安徽高考数学试卷 (理科)
一、选择题
1、设i 为虚数单位,z 表示复数z 的共轭复数,若1z i =+,则z
i z i
+⋅=( ) A 、2- B 、2i - C 、2 D 、2i 2、“0x <”是“()ln 10x +<的 ( )
A 、充分不必要条件
B 、必要不充分条件
C 、充分必要条件
D 、既不充分又不必要条件 3、如图所示,程序框图(算法流程图)的输出结果是( )
A 、34
B 、55
C 、78
D 、89
4、以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度。

已知直线l
的参数方程是1
3x t y t =+⎧⎨=-⎩
(t 为参数),圆C 的极坐标方程是
4cos ρθ=,则直线l 被圆C 截得的弦长为( )
A
B
、 C
D
、5、,x y 满足约束条件20
220220x y x y x y +-≤⎧⎪
--≤⎨⎪-+≥⎩
,若z y ax =-取得最
大值的最优解不唯一,则实数a 的值为( ) A 、
12或-1 B 、1
2
或2 C 、2或1 D 、2或-1 6、设函数()f x 满足()()sin f x f x x π+=+,当0x π≤<时,()0f x =,则236
f π
⎛⎫
=
⎪⎝⎭
( ) A 、
12 B
C 、0
D 、1
2
-
7、一个多面体的三视图如图所示,则该多面体的表面积为( ) A
、21 B
、18C 、21 D 、18
8、从正方体六个面的对角线中任取两条作为一对,其中所成的角为
60o 的共有( )
A 、24对
B 、30对
C 、48对
D 、60对
9、若函数()12f x x x a =+++的最小值为3,则实数a 的值为( )A 、5或8 B 、1-或5 C 、4-或-1 D 、8或-4
10、在平面直角坐标系xOy 中,已知向量,a b ,1,0a b a b ==⋅=,点Q 满足()
2OQ a b =
+,曲线
1 1 1 1 1 1
{}
cos sin ,02C P OP a b θθθπ==+≤<,区域{}
0,P r PQ R r R Ω=<≤≤<,若C ⋂Ω为两段分
离的曲线,则( )
A 、13r R <<<
B 、13r R <<≤
C 、13r R ≤<<
D 、13r R <<< 二、填空题
11、若将函数()sin 24f x x π⎛⎫
=+ ⎪⎝

的图像向右平移ϕ个单位,所得的图像关于y 轴对称,则ϕ的最小正值为 。

12、数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q= 。

13、设0a ≠,n 是大于1的自然数,1n
x a ⎛⎫
+ ⎪⎝⎭
的展开式为
2012......n n a a x a x a x ++++,若点()(),0,1,2i i A i a i =的位置如图所示,
则a = 。

14、设12,F F 分别是椭圆()2
2
2:101y E x b b
+=<<的左,右焦点,过点1
F 的直线交椭圆E 于A,B 两点,若113AF F B =,2AF x ⊥轴,则椭圆E 的方程为 。

15、已知两个不相等的非零向量,a b ,两组向量1234512345,,,,,,,,x x x x x y y y y y 和均由2个a 和3个b 排列而成,记1122334455S x y x y x y x y x y =⋅++⋅+⋅+⋅,min S 表示S 所有可能取值中的最小值,则下列命题正确的是 (写出所有正确命题的编号)。

①S 有5个不同的值;②若a b ⊥则min S 与a 无关;③若//a b 则min S 与b 无关; ④若4b a >,则min 0S >;⑤若2b a =,则2
min 8S a =,则,a b 的夹角为4
π。

三、解答题
16、(12分)设ABC ∆的内角,,A B C 所对的边分别是,,a b c ,且3,1,2,b c A B === ⑴求a 的值;⑵求sin 4A π⎛⎫
+ ⎪⎝

的值。

17、(12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为
23,乙获胜的概率为1
3
,各局比赛结果相互独立。

⑴求甲在4局以内(含4局)赢得比赛的概率;
⑵记X 为比赛决出胜负时的总局数,求X 的分布列和数学期望。

18、(12分)设函数()()2311f x a x x x =++--,其中0a >。

⑴讨论()f x 在其定义域上的单调性;
⑵当[]0,1x ∈时,求()f x 取得最大值和最小值时的x 的值。

19、如图,已知两条抛物线()()2
2
111222:20,:20,E y p x p E y p x p =>=>过原点O 的两条直线12,l l ,1
l 与12,E E 分别交于12,A A 两点,2l 与12,E E 分别交于12,B B 两点。

⑴证明:1122//A B A B ;
⑵过O 的直线l (异于12,l l )与12,E E 分别交于12,C C ,记
111222A B C A B C ∆∆和的面积分别为12S S 和,求12
S
S 的值。

20、如图,四棱柱1111ABCD A B C D -中,1A A ABCD ⊥底面,四边形ABCD 为梯形,AD//BC ,且AD=2BC ,过1,,A C D 三点的平面记为α,1BB 与α的交点为Q 。

⑴证明:Q 为1BB 的中点;
⑵求此四棱柱被平面α所分成的上下两部分的体积之比;
⑶14,2AA CD ==,梯形ABCD 的面积为6,求平面α与底面ABCD 所成的二面角的大小。

21、设实数0c >,整数1,p n N +
>∈
⑴证明:当1,0x x >-≠时,()11p x px +>+;
⑵数列{}n a 满足1
1p
a c >,111p
n n n p c a a a p p
-+-=+,证明:1
1p n n a a c +>> 1
D 1
C 1
B 1
A D
C
B
A
Q
α。

相关文档
最新文档