人教版初三数学期末考试试题

合集下载

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。

每小题只有一个选项符合题目要求。

1.方程x2+4x+3=0的两个根为( )A.x1=1,x2=3B.x1=-1,x2=3C.x1=1,x2=-3D.x1=-1,x2=-32.一个口袋里装有4个白球,5个黑球,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽出一个球,抽到白球的概率是( )A.49B.59C.14D.193.将抛物线y=x2向右平移3个单位长度,再向上平移4个单位长度,得到的抛物线是( )A.y=(x-3)2+4 B.y=(x+3)2+4C.y=(x+3)2-4 D.y=(x-3)2-44.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是( )A BC D5.如图,AB切⊙O于点B,连接OA交⊙O于点C,BD∥OA交⊙O于点D,连接CD.若∠OCD=25°,则∠A的度数为( )A.25°B.35°C.40°D.45°6.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.167.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A,B,与y轴交于点C,对称轴为直线x=-1.若点A的坐标为(-4,0),则下列结论正确的是( )A.2a+b=0B.4a-2b+c>0C.x=2是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根D.点(x1,y1),(x2,y2)在抛物线上,当x1>x2>-1时,y1<y2<08.图1是一把扇形纸扇,图2是其完全打开后的示意图,外侧两竹条OA和OB 的夹角为150°,OA的长为30 cm,贴纸部分的宽AC为18 cm,则CD⏜的长为( )A.5π cm B.10π cmC.20π cm D.25π cm9.如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是( )A.144°B.130°C.129°D.108°10.在如图所示的运算程序中,若开始输入x的值为48,我们发现第一次输出的结果为24,第二次输出的结果为12……则第2 023次输出的结果为( )A.6 B.3C.622 021D.322 022二、填空题:本题共6个小题,每小题3分,共18分。

人教版九年级上册数学期末考试试题及答案

人教版九年级上册数学期末考试试题及答案

人教版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下列图形中不是..中心对称图形的是()A .B .C .D .2.如图,AB 是O 的直径,弦CD AB ⊥于点E ,30CDB ∠=︒,O 的半径为3cm ,则CD 弦长为()A .32cmB C .D .6cm3.已知,⊙O 的半径为5cm ,点P 到圆心O 的距离为4cm ,则点P 在⊙O 的()A .外部B .内部C .圆上D .不能确定4.抛物线y =12x 2向左平移1个单位,再向上平移2个单位后,所得抛物线的表达式是A .y =12(x +1)2﹣2B .y =12(x ﹣1)2+2C .y =12(x ﹣1)2﹣2D .y =12(x +1)2+25.有6张扑克牌面数字分别是3,4,5,7,8,10从中随机抽取一张点数为偶数的概率是()A .16B .14C .13D .126.下列事件中,属于必然事件的是()A .小明买彩票中奖B .投掷一枚质地均匀的骰子,掷得的点数是奇数C .等腰三角形的两个底角相等D .a 是实数,0a <7.已知一元二次方程280x x c --=有一个根为2,则另一个根为()A .10B .6C .8D .2-8.若关于x 的一元二次方程2320kx x -+=有实数根,则字母k 的取值范围是()A .98k <且0k ≠B .98k ≤C .98x <D .98k ≤且0k ≠9.下列说法错误的是()A .等弧所对的弦相等B .圆的内接平行四边形是矩形C .90︒的圆周角所对的弦是直径D .平分一条弦的直径也垂直于该弦10.如果a 0,b 0,c 0<>>,那么二次函数2y ax bx c =++的图象大致是()A .B .C .D .二、填空题11.方程(x -1)(x +2)=0的两根分别为________.12.在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率为23,则n=_____.13.在半径为6的圆中,一个扇形的圆心角是120︒,则这个扇形的弧长等于__________.14.如果m 是一元二次方程2220x x --=的一个根,那么2242m m --的值是__________.15.烟花厂为国庆70周年庆祝晚会特别设计制作一种新型礼炮,这种礼炮的升空高h (m )与飞行时间t (s )的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要时间为________.16.如图,将△ABC 绕点A 旋转到△AEF 的位置,点E 在BC 边上,EF 与AC 交于点G .若∠B =70°,∠C =25°,则∠FGC =___°.17.如图,等边三角形ABC 中,点O 是ABC 的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S = ;③四边形ODBE 的面积始终等于定值;④当OE BC ⊥时,BDE 周长最小.上述结论中正确的有__________(写出序号).三、解答题18.解方程:2320x x --=.19.已知二次函数的图象经过()1,1-、()2,1两点,且与x 轴仅有一个交点,求二次函数的解析式.20.方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上.(1)画出ABC 绕B 点顺时针旋转90︒后的111A B C △,并写出1A 的坐标;(2)画出ABC 关于原点O 对称的222A B C △.21.已知抛物线2y x bx c =++经过点()0,3C -和点()4,5D .(1)求抛物线的解析式;(2)设抛物线与x 轴的交点A 、B 的坐标(注:点A 在点B 的左边),求ABC 的面积.22.小李和小王两位同学做游戏,在一个不透明的口袋中放入1个红球、2个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是多少?(2)两人约定:从袋中一次摸出两个球,若摸出的两个球是-红一黑,则小李获胜:若摸出的两个球都是白色,则小王获胜,请用列举法(画树状图或列表)分析游戏规则是否公平.23.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,//OC BD ,交AD 于点E ,连结BC .(1)求证:AE =ED ;(2)若AB =6,∠CBD =30°,求图中阴影部分的面积.24.某地区2018年投入教育经费2000万元,2020年投入教育经费2880万元.(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2021年该地区将投入教育经费多少万元.25.已知二次函数y =x 2-6x+8.求:(1)抛物线与x 轴和y 轴相交的交点坐标;(2)抛物线的顶点坐标;(3)画出此抛物线图象,利用图象回答下列问题:①方程x 2-6x +8=0的解是什么?②x 取什么值时,函数值大于0?③x 取什么值时,函数值小于0?26.如图,ABC 内接于O ,且AB 为O 的直径,过圆心O 作⊥OD AB ,交AC 于点E ,连接DC ,已知2D A ∠=∠.(1)求证:CD 是O 的切线;(2)求证:DE DC =;(3)若5OD =,3CD =,求AC 的长.参考答案1.D 【分析】根据中心对称图形的概念求解.【详解】A 、是中心对称图形,故本选项错误;B 、是中心对称图形,故本选项错误;C 、是中心对称图形,故本选项错误;D 、不是中心对称图形,故本选项正确.故选:D .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C 【分析】根据圆周角定理可求出∠COB 的度数,再利用特殊角的三角函数值及垂径定理即可解答.【详解】解:30CDB ∠=︒ ,60COB ∴∠=︒,又3cm OC = ,CD AB ⊥于点E ,·sin 60CE OC ∴=︒=,2CD CE ∴==.故选:C .【点睛】本题考查了垂径定理、勾股定理以及解直角三角形.此题难度不大,注意数形结合思想的应用.3.B 【解析】试题分析:∵⊙O 的半径为5cm ,点P 到圆心O 的距离为4cm ,5cm >4cm ,∴点P在圆内.故选B.点睛:点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.4.D【分析】根据二次函数图象的平移规律(左加右减,上加下减)进行解答即可.【详解】抛物线y=12x2向左平移1个单位,再向上平移2个单位得y=12(x+1)2+2.故选:D.【点睛】本题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.5.D【分析】用点数为偶数的张数除以总张数即可得出答案.【详解】有6张扑克牌面数字分别是3,4,5,7,8,10从中随机抽取一张一共有6中情形,其中偶数4,8,10三张,由概率公式随机抽取一张点数为偶数的概率P=31= 62,故选择:D.【点睛】本题考查概率公式P(A)=mn求简单事件的概率,关键是应先确定所有结果中的可能性都相同,然后确定所有可能的结果总数n和事件A在总数中的结果数m是解题关键.6.C【分析】由题意根据事件发生的可能性大小判断相应事件的类型即可判断选项.【详解】解:A.小明买彩票中奖,是随机事件;B.投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件;C.等腰三角形的两个底角相等,是必然事件;D.a 是实数,0a <,是不可能事件;故选C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.B 【分析】设方程的另一根为m ,由根与系数的关系可得:28,m +=解方程可得答案.【详解】解: 一元二次方程280x x c --=有一个根为2,设另一根为m ,828,1m -∴+=-=6,m ∴=故选:.B 【点睛】本题考查的是一元二次方程的根与系数的关系,掌握一元二次方程的根与系数的关系是解题的关键.8.D 【分析】根据一元二次方程根的判别式,b 2-4ac≥0,且二次项系数不为0,即可求出k 的范围.【详解】∵方程有实数根∴b 2-4ac=()23420k --⨯⨯≥解得:98k ≤又∵原方程是一元二次方程∴0k ≠∴k 的取值范围是98k ≤且0k ≠【点睛】本题考查了根的判别式,牢记“当0∆≥时,方程有两个实数根”是解题的关键,且切记不要漏掉二次项系数不为0.9.D 【分析】根据圆的性质逐项判断即可.【详解】A .等弧所对的弦相等,故A 正确,不符合题意.B .根据圆的内接四边形对角互补和平行四边形邻角互补,即可知圆的内接平行四边形是矩形.故B 正确,不符合题意.C .90︒的圆周角所对的弦是直径,故C 正确,不符合题意.D .平分一条弦(非直径)的直径也垂直于该弦.故D 错误,符合题意.故选:D .【点睛】本题考查圆周角定理,垂径定理,圆心角、弧、弦的关系以及圆内接平行四边形的性质.熟练掌握这些知识是判断此题的关键.10.D 【分析】根据a 、b 、c 的符号,可判断抛物线的开口方向,对称轴的位置,与y 轴交点的位置,作出选择.【详解】由a <0可知,抛物线开口向下,排除.D ;由a <0,b>0可知,对称轴x=-b2a-b2a >0,在y 轴右边,排除B ;由c <0可知,抛物线与y 轴交点(0,c)在x 轴下方,排除C ;故答案为:D .【点睛】本题考查的是二次函数,熟练掌握二次函数的图像是解题的关键.11.121,2x x ==-根据A·B=0,则A 、B 中至少有一个为0,化为一元一次方程即可解出方程.【详解】解:(x -1)(x +2)=0x -1=0或x +2=0解得:121,2x x ==-【点睛】此题考查的是一元二次方程的解法,根据A·B=0,则A 、B 中至少一个为0,掌握将一元二次方程化为一元一次方程的方法是解决此题的关键.12.4【分析】根据白球的概率公式列出关于n 的方程,解方程即可得.【详解】由题意得22123n =-+,解得n=4,经检验n=4是方程的根,故答案为4.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.13.4π【分析】利用扇形的弧长公式:l =180n rπ代入计算即可.【详解】扇形的圆心角为120°.r=6,则扇形弧长l =1206=4180180n r πππ⨯=,故答案为:4π.【点睛】本题主要考查扇形的弧长公式,解题的关键是熟知扇形的弧长公式的运用.14.2【分析】利用一元二次方程的解的定义得到m 2-2m=2,再把2m 2-4m-2变形为2(m 2-2m )-2,然后利用整体代入的方法计算.【详解】解:∵m 为一元二次方程x 2-2x-2=0的一个根.∴m 2-2m-2=0,即m 2-2m=2,∴2m 2-4m-2=2(m 2-2m )-2=2×2-2=2.故答案为:2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.4s 【分析】把二次函数的一般式写成顶点式,找出顶点坐标,即可知道多长时间后得到最高点.【详解】解:252012h t t =-++=52-(t-4)2+41,∵52-<0,∴这个二次函数图象开口向下,∴当t=4时,升到最高点,∴从点火升空到引爆需要的时间为4s .故答案为:4s .【点睛】本题考查了二次函数解析式的相互转化,以及二次函数的性质,二次函数的表达式有三种形式,一般式,顶点式,交点式.要求最高(低)点,或者最大(小)值,需要先写成顶点式.烟花厂为国庆70周年庆祝晚会特别设计制作一种新型礼炮,这种礼炮的升空高h (m )与飞行时间t (s )的关系式是h=t2+20t+1252012h t t =++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要时间为16.65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE ,∠BAC=∠EAF ,又∵∠B =70°,∴∠BAE=180°-2×70°=40°,∵∠BAC=∠EAF ,∴∠BAE=∠FAG=40°,∵△ABC ≌△AEF ,∴∠F=∠C=25°,∴∠FGC=∠FAG+∠F=40°+25°=65°,故答案为:65.【点睛】本题考查了旋转的性质,把握对应相等的关系是解题关键.17.①③④【分析】连接OB 、OC ,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE ,于是可判断△BOD ≌△COE ,所以BD=CE ,OD=OE ,则可对①进行判断;利用S △BOD =S △COE 得到四边形ODBE 的面积=13S △ABC ,则可对③进行判断;作OH ⊥DE ,如图,则DH=EH ,计算出S △ODE 2,利用S △ODE 随OE 的变化而变化和四边形ODBE 的面积为定值可对②进行判断;由于△BDE 的周长,根据垂线段最短,当OE ⊥BC 时,OE 最小,△BDE 的周长最小,计算出此时OE 的长则可对④进行判断.【详解】解:连接OB 、OC ,如图,∵△ABC 为等边三角形,∴∠ABC=∠ACB=60°,∵点O 是△ABC 的中心,∴OB=OC ,OB 、OC 分别平分∠ABC 和∠ACB ,∴∠ABO=∠OBC=∠OCB=30°,∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE ,在△BOD 和△COE 中,BOD COE BO COOBD OCE ∠∠⎧⎪⎨⎪∠∠⎩===,∴△BOD ≌△COE (ASA ),∴BD=CE ,OD=OE ,∴①正确;作OH ⊥DE 于H ,如图,则DH=EH ,∵∠DOE=120°,∴∠ODE=∠OEH=30°,∴OH=12OE ,332OE ,∴3,∴S △ODE =12×123342,即S △ODE 随OE 的变化而变化,而四边形ODBE 的面积为定值,∴S △ODE ≠S △BDE ;设等边三角形ABC 的边长为a ,∵△BOD ≌△COE ,∴S △BOD =S △COE ,∴四边形ODBE 的面积=S △OBC ═13S △ABC =13×24a ,∴四边形ODBE 的面积始终等于定值;故③正确;∵BD=CE ,∴△BDE 的周长,当OE ⊥BC 时,OE 最小,△BDE 的周长最小,此时OE=6a ,∴△BDE 周长的最小值=a+1322a a =,为定值∴④正确.故答案为:①③④.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.18.123x =-,21x =【分析】选用因式分解法求解.【详解】(32)(1)0x x +-= ,123x ∴=-,21x =.【点睛】本题考查了一元二次方程的解法,根据题目特点灵活选择解法是解题的关键.19.2441999y x x =-+.【解析】根据()1,1-、()2,1两点纵坐标相同可得,抛物线的对称轴为直线x=12,因为函数图象与x 轴仅有一个交点,则抛物线的顶点为(12,0),可设二次函数解析式为y=a (x ﹣12)2,再将(2,1)代入求解即可.【详解】解:∵二次函数的图象经过()1,1-、()2,1两点,且与x 轴仅有一个交点,∴抛物线的顶点为(12,0),则可设二次函数解析式为y=a (x ﹣12)2,将(2,1)代入得a=49,故二次函数的解析式为:224144192999y x x ⎛⎫=-=-+ ⎪⎝⎭.【点睛】本题主要考查二次函数图象的性质,利用待定系数法求函数解析式,解此题的关键在于熟练掌握其知识点.20.(1)见解析,1A 坐标为(3,1)-;(2)见解析.【分析】(1)分别在网格中找到点A 、C 绕点B 顺时针旋转90︒后的点1A 、1C ,再连接111A B C △,即可解题;(2)分别在网格中找到点A 、B 、C 关于原点O 对称的2A 、2B 、2C ,再连接即可解题.【详解】解:(1)所画图形如下:1A 坐标为(3,1)-;(2)所画图形如下所示:【点睛】本题考查网格作图、坐标与图形变换,是重要考点,难度较易,掌握相关知识是解题关键.21.(1)223y x x =--;(2)6【分析】(1)把点C 和点D 的坐标分别代入抛物线解析式可以得到关于b 、c 的二元一次方程组,解方程组即可得到b 、c 的值,从而得到抛物线的解析式;(2)令抛物线解析式中y=0,可以得到关于x 的一元二次方程,解方程可得A 、B 的坐标,从而得到线段AB 的长度,由题意即得△ABC 的面积为AB 与OC (长度等于C 点纵坐标绝对值)积的一半.【详解】(1)把点()0,3C -和点()4,5D .代入2y x bx c =++得35164cb c-=⎧⎨=++⎩解得23b c =-⎧⎨=-⎩所以抛物线的解析式为:223y x x =--;(2)把0y =代入223y x x =--,得2230x x --=解得11x =-,23x =,∵点A 在点B 的左边,∴点()1,0A -,点()3,0B 由题意得4AB =,3OC =,1143622ABC S AB OC =⨯=⨯⨯=△【点睛】本题考查二次函数与一元二次方程的综合运用,熟练掌握二次函数解析式的求法、通过求解一元二次方程计算二次函数与坐标轴交点坐标、利用函数图象与坐标轴的交点计算直线与坐标轴所围图形的面积是解题关键.22.(1)14;(2)见解析【分析】(1)根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到-红一黑,以及两个球都是白色的情况数,求出它们的概率,即可做出判断.【详解】解:(1)4个小球中有1个红球,则任意摸出1个球,恰好摸到红球的概率是:111214=++(2)列表如下:红白白黑红---(白,红)(白,红)(黑,红)白(红,白)---(白,白)(黑,白)白(红,白)(白,白)---(黑,白)黑(红,黑)(白,黑)(白,黑)---所有等可能的情况有12种,其中两次都摸到一红一黑有2种可能,摸出的两个球都是白色的有有2种可能,则P (小李获胜)=21126=,P (小王获胜)=21126=,故游戏公平.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)证明见解析;(2)3π.【分析】(1)先根据圆的性质可得OA OB =,再根据三角形的中位线定理即可得证;(2)如图(见解析),先根据垂径定理、圆周角定理可得90,30ADB ABC CBD ∠=︒∠=∠=︒,从而可得60,30ABD BAD ∠=︒∠=︒,再根据直角三角形的性质、三角形的面积公式可得AOD S =120AOD ∠=︒,最后根据图中阴影部分的面积等于扇形OAD 面积减去AOD △面积即可得.【详解】(1)∵AB 是O 的直径,∴OA OB =,即点O 是AB 的中点,∵//OC BD ,∴OE 是ABD △的中位线,∴点E 是AD 的中点,∴AE ED =;(2)如图,连接OD ,∵AB 是O 的直径,6AB =,90ADB ∴∠=︒,132OA OD AB ===,∵//OC BD ,90AEO ADB ∴∠=∠=︒,即OC AD ⊥,又OC 是O 的半径,AC CD∴=,30ABC CBD ∴∠=∠=︒,60ABD ABC CBD ∴∠=∠+∠=︒,9030BAD ABD ∠=︒-∠=︒,在Rt ABD △中,13,2BD AB AD ====,OD 是Rt ABD △的斜边AB 上的中线,111222AOD Rt ABD S S BD AD ∴==⨯⋅= ,又60ABD ∠=︒ ,2120AOD ABD ∴∠=∠=︒,则图中阴影部分的面积为212033360AODOAD S S ππ⨯-=-- 扇形.【点睛】本题考查了圆周角定理、垂径定理、扇形的面积公式、三角形中位线定理等知识点,较难的是题(2),熟练掌握圆周角定理和扇形的面积公式是解题关键.24.(1)20%;(2)3456【分析】(1)设年平均增长率为x ,一般用增长后的量=增长前的量×(1+增长率),2018年投入教育经费是2000万元,2019年在2018年的基础上增长x ,就是2018年的教育经费数额的(1)x +倍,2020年在2019年的基础上再增长x ,2020年的教育经费数额为20002(1)x +,即可列出方程求解.(2)利用(1)中求得的增长率来求2021年该地区将投入教育经费.【详解】解:(1)设年平均增长率为x,由题意得:2000×(1+x)2=2880,解得:x1=0.2x2=-2.2(舍去),答2018年至2020年洪泽湖初级中学投入教育经费的年平均增长率为20%,(2)2880×(1+20%)=3456(万元),答:2021年该地校将投入教育经费3456万元,【点睛】本题考查了一元二次方程中增长率的知识.掌握增长前的量×(1+年平均增长率)年数=增长后的量是本题的关键.25.(1)(2,0),(4,0),(0,8)(2)(3,-1)(3)①x1=2,x2=4②x<2或x>4③2<x<4【解析】【分析】(1)分别令x=0,y=0即可求得交点坐标.(2)把函数解析式转化为顶点坐标形势,即可得顶点坐标.(3)①根据图象与x轴交点可知方程的解;②③根据图象即可得知x的范围.【详解】(1)由题意,令y=0,得x2-6x+8=0,解得x1=2,x2=4.所以抛物线与x轴交点为(2,0)和(4,0),令x=0,y=8.所以抛物线与y轴交点为(0,8),(2)抛物线解析式可化为:y=x2-6x+8=(x-3)2-1,所以抛物线的顶点坐标为(3,-1),(3)如图所示.①由图象知,x 2-6x+8=0的解为x 1=2,x 2=4.②当x <2或x >4时,函数值大于0;③当2<x <4时,函数值小于0;【点睛】本题考查了二次函数图象上点的坐标特征及函数性质,是基础题型.26.(1)见解析;(2)见解析;(31655【分析】(1)连接OC ,由OA OC =,可得ACO A ∠=∠,可推出2COB A ∠=∠,由2D A ∠=∠,可得D COB ∠=∠.由⊥OD AB ,可求得90D COD ∠+∠=︒即可;(2)由90DCO ∠=︒和⊥OD AB 可得E 90DCE CO ∠+∠=︒,90AEO A ∠+∠=︒,由A ACO ∠=∠,可得DEC DCE ∠=∠即可;(3)由勾股定理求得4OC =,可求AB=8,可证AOE ACB ∽,由性质得OA OE AC BC =,可推出12BC AC =,由勾股定理222AC BC AB +=,转化为222184AC AC +=,解之即可.【详解】(1)证明:连接OC ,如图,OA OC = ,ACO A ∴∠=∠,2COB A ACO A ∴∠=∠+∠=∠,又2D A ∠=∠ ,D COB ∴∠=∠.又OD AB ⊥ ,90COB COD ∴∠+∠=︒.90D COD ∴∠+∠=︒.即90DCO ∠=︒,OC DC ∴⊥,又点C 在O 上,CD ∴是O 的切线;(2)证明:90DCO =︒∠ ,90DCE ACO ∴∠+∠=︒.又OD AB ⊥ ,90AEO A ∴∠+∠=︒,又A ACO ∠=∠ ,DEC AEO ∠=∠,DEC DCE ∴∠=∠,DE DC ∴=;(3)解:90DCO =︒∠ ,5OD =,3DC =,4OC ∴=,28AB OC ∴==,又3DE DC ==,2OE OD DE ∴=-=,A A ∠=∠ ,90AOE ACB ∠=∠=︒,AOE ACB ∴ ∽,OA OE AC BC ∴=,即2142BC OE AC OA ===,12BC AC ∴=,在ABC 中,222.AC BC AB += ,222184AC AC ∴+=,AC ∴=.【点睛】本题考查圆的切线,等腰三角形,相似三角形的判定与性质,勾股定理的应用,掌握圆的切线证明方法,等腰三角形判定方法,相似三角形的判定方法与性质的应用,会用勾股定理构造方程是解题关键.。

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若a > b > 0,则下列不等式中成立的是()A. a^2 > b^2B. a^3 < b^3C. 1/a > 1/bD. a^2 b^2 < 02. 已知函数y = 2x 3,若y = 0,则x的值为()A. 1.5B. 1C. 2D. 33. 在直角坐标系中,点A(2, 3),点B(2, 3),则线段AB的中点坐标为()A. (0, 0)B. (2, 3)C. (2, 3)D. (0, 3)4. 若一元二次方程ax^2 + bx + c = 0(a ≠ 0)有两个实数根,则判别式b^2 4ac的值为()A. 正数B. 负数C. 0D. 不确定5. 在等差数列{an}中,已知a1 = 2,d = 3,则a5的值为()A. 5B. 8C. 11D. 14二、填空题(每题5分,共20分)6. 若一个三角形的两边长分别为5cm和8cm,则第三边长的取值范围是______。

7. 已知函数y = x^2 4x + 3,当x = 2时,函数的最小值为______。

8. 在直角坐标系中,点P(x, y)关于x轴的对称点坐标为______。

9. 已知一元二次方程x^2 3x 4 = 0,则该方程的根的判别式为______。

10. 在等比数列{an}中,已知a1 = 2,q = 3,则a4的值为______。

三、解答题(每题10分,共30分)11. 解一元二次方程x^2 5x + 6 = 0。

12. 已知函数y = 2x 3,求当x = 1时,函数的值。

13. 在直角坐标系中,已知点A(2, 3),点B(2, 3),求线段AB的长度。

四、证明题(10分)14. 已知:在等腰三角形ABC中,AB = AC,底边BC上的高为AD,求证:AD垂直于BC。

五、应用题(20分)15. 已知:某工厂生产一批产品,每件产品的成本为100元,销售价格为150元。

2023-2024学年全国初中九年级上数学人教版期末考卷

2023-2024学年全国初中九年级上数学人教版期末考卷

20232024学年全国初中九年级上数学人教版期末考卷一、选择题(每题1分,共5分)1. 若一个等腰三角形的两边长分别为8cm和10cm,则该三角形的周长为()A. 26cmB. 28cmC. 16cmD. 36cm2. 下列函数中,哪一个是一次函数?()A. y = 2x + 3B. y = x^2 + 1C. y = √xD. y = 1/x3. 一个正方体的体积是64立方厘米,则它的表面积是()A. 64平方厘米B. 128平方厘米C. 256平方厘米D. 512平方厘米4. 若a、b为有理数,且a + b = 7,ab = 10,则a b的值为()A. 1B. 1C. 3D. 35. 下列各数中,无理数是()A. √9B. √16C. √3D. √1二、判断题(每题1分,共5分)6. 任何两个等边三角形都是相似的。

()7. 两个负数相乘,结果一定是正数。

()8. 一元二次方程的解一定是两个实数根。

()9. 两条平行线上的任意一对对应角相等。

()10. 任何数乘以0都等于0。

()三、填空题(每题1分,共5分)11. 若一个等差数列的首项为2,公差为3,则第10项为______。

12. 若平行四边形的对角线互相垂直,则这个平行四边形是______。

13. 一元二次方程ax^2 + bx + c = 0(a ≠ 0)的判别式为______。

14. 两个角的和为180°,则这两个角是______。

15. 若一组数据的平均数为10,则这组数据的和为______。

四、简答题(每题2分,共10分)16. 简述等腰三角形的性质。

17. 解释无理数的概念。

18. 什么是函数?给出一个函数的例子。

19. 简述勾股定理。

20. 解释一次函数的图像特点。

五、应用题(每题2分,共10分)21. 小明从家出发,以5km/h的速度向学校走去,30分钟后,小华以10km/h的速度从同一地点出发,追小明。

问小华多久能追上小明?22. 一个长方体的长、宽、高分别为10cm、6cm和4cm,求它的对角线长度。

九年级上册数学期末考试模拟试卷人教版2024—2025学年九年级上册

九年级上册数学期末考试模拟试卷人教版2024—2025学年九年级上册

九年级上册数学期末考试模拟试卷人教版2024—2025学年九年级上册一、选择题(每题只有一个正确选项,每小题3分,满分36分)1.下列说法正确的是()A.了解一批灯泡的使用寿命,应采用抽样调查的方式B.为了直观地介绍某款牛奶各营养成分的百分比,最适合使用的统计图是条形统计图C.一个抽奖活动中,中奖概率为,表示抽奖20次必有1次中奖D.“投掷一枚质地均匀的硬币一次,结果正面朝上”为必然事件2.在一个不透明的口袋中装有3个白球,4个红球和5个黑球,它们除颜色外都相同,从中随机摸出一个球,恰好是白球的概率为()A.B.C.D.3.两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x,根据题意,下列方程正确的是()A.80(1﹣x2)=60B.80(1﹣x)2=60C.80(1﹣x)=60D.80(1﹣2x)=604.关于x的方程x2+mx﹣2=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5.下列说法中,正确的是()A.同心圆的周长相等B.面积相等的圆是等圆C.相等的圆心角所对的弧相等D.平分弧的弦一定经过圆心6.若点(0,y1),(1,y2),(2,y3)都在二次函数y=x2的图象上,则()A.y3>y2>y1B.y2>y1>y3C.y1>y3>y2D.y3>y1>y27.如图,将△ABC绕点A逆时针旋转到△ADE,旋转角为α(0°<α<180°),点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=24°,则旋转角α的度数为()A.24°B.28°C.48°D.66°8.如图,AB是⊙O的直径,若∠CDB=60°,则∠ABC的度数等于()A.30°B.45°C.60°D.90°9.已知圆锥的底面圆半径为3,母线长为4,则圆锥的侧面积为()A.6πB.12πC.15πD.24π10.抛物线与x轴交于A、B两点(A在B左侧),其对称轴与x轴交于点F,D是以点C(0,4m)为圆心,m为半径的圆上的动点,E是线段AD的中点,则线段EF的最大值与最小值的比值为()A .B .C .D .二、填空题(6小题,每题3分,共18分)11.如图,△ABC 是⊙O 的内接三角形,∠A =120°,过点C 的圆的切线交BO 于点P ,则∠P 的度数为 . 12.关于x 的一元二次方程x 2﹣8x +m =0有两个不相等的实数根,则m 的取值范围是 .13.已知关于x 的一元二次方程x 2﹣(m +2)x +3=0的一个根为1,则m = .14.如图,已知二次函数y 1=ax 2+bx +c 与一次函数y 2=kx +m 的图象相交于点A (﹣5,﹣3),B (3,4),则关于x 的不等式ax 2+bx +c >kx +m 的解是 .15.如图,四边形ABCD 是⊙O 的内接正方形,若正方形的面积等于8,则⊙O 的面积等于 .16.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于C 点,且对称轴为直线x =1,点B 坐标为(﹣1,0).则下面的四个结论:①2a +b =0;②4a ﹣2b +c <0;③abc >0;④当y <0时,x <﹣1或x >2.其中正确的是 .第II 卷第7题 第8题 第10题第11题 第14题 第15题九年级上册数学期末考试模拟试卷人教版2024—2025学年九年级上册姓名:____________ 学号:____________准考证号:___________一、选择题12345678910题号答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.解方程:x2﹣5x+6=0.18.如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy,格点(网格线的交点)A,B,C,D的坐标分别为(7,8),(2,8),(10,4),(5,4).(1)以点D为旋转中心,将△ABC旋转180°得到△A1B1C1,画出△A1B1C1;(2)直接写出以B,C1,B1,C为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E,使得射线AE平分∠BAC,写出点E 的坐标.19.已知关于x的一元二次方程x2﹣(m+2)x+m﹣1=0.(1)求证:无论m取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为x1,x2,且+﹣x1x2=9,求m的值.20.如图,在正方形ABCD中,AB=2,对角线AC与BD相交于点O,点E在线段AO上(与端点不重合),线段EB绕点E逆时针旋转90°到EF的位置,点F 恰好落在线段CD上,FH⊥AC,垂足为H.(1)求证:△OBE≌△HEF;(2)设OE=x,求OE2﹣CF的最小值.21.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.销售单价x/元…1214161820…销售量y/盒…5652484440…(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.22.如图,在Rt△ABC中,∠ACB=90°,O为AC边上一点,连结OB.以OC为半径的半圆与AB边相切于点D,交AC边于点E.(1)求证:BC=BD.(2)若OB=OA,AE=4.①求半圆O的半径.②求图中阴影部分的面积.23.为落实“双减”工作,推行“五育并举”,某学校计划成立五个体育兴趣活动小组(每个学生只能参加一个活动小组):A.足球,B.引体向上,C.篮球,D.排球,E.羽毛球.为了解学生对以上兴趣活动的参与情况,随机抽取了部分学生进行调查统计,并根据统计结果,绘制成了如图所示的两幅不完整的统计图:根据图中信息,完成下列问题:(1)①补全条形统计图(要求在条形图上方注明人数);②扇形统计图中的圆心角α的度数为;(2)若该校有4800名学生,估计该校参加C组(篮球)的学生人数;(3)该学校从E组中挑选出了表现最好的两名男生和两名女生,计划从这四位同学中随机抽取两人去市内进行比赛,请用画树状图或列表的方法求出恰好抽到一名男生一名女生的概率.24.如图,抛物线y=﹣x+4与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点.设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标;(2)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(3)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.25.已知抛物线l1:y=ax2+(2b+1)x+2b,直线l2:y=mx+n(0<m<n).(1)若抛物线l1的对称轴为直线x=1,且经过点(﹣1,0),求该抛物线的解析式;(2)在(1)的条件下,将抛物线l1图象x轴下方的部分沿x轴向上翻折,得到的新图象记作w,图象w与直线y=t+1恒有四个交点,从左到右四个交点依次记为A,B,C,D,是否存在以BC为直径的圆恰好过点M(1,1)?若存在,求出t的值;若不存在,请说明理由;(3)若抛物线l1经过(s,﹣4),当a=1,﹣2<b<2时,对于任意实数x,满足ax2+(2b+1)x+2b≥﹣4恒成立;且当m≤x≤n时,恰好有,求直线l2的解析式.。

2024年最新人教版初三数学(上册)期末考卷及答案(各版本)

2024年最新人教版初三数学(上册)期末考卷及答案(各版本)

2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。

12. 若一个数的立方根是它自己的相反数,则这个数是______。

13. 若一个数的绝对值等于它的立方,则这个数是______。

14. 若一个数的绝对值等于它的平方,则这个数是______。

15. 若一个数的平方等于它本身,则这个数是______。

16. 若一个数的立方等于它本身,则这个数是______。

17. 若一个数的平方根是它自己的倒数,则这个数是______。

18. 若一个数的立方根是它自己的相反数,则这个数是______。

19. 若一个数的绝对值等于它的立方,则这个数是______。

20. 若一个数的绝对值等于它的平方,则这个数是______。

人教版九年级上册数学期末考试试卷含答案

人教版九年级上册数学期末考试试卷含答案

人教版九年级上册数学期末考试试题一、单选题1.下列4个图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .2.平面直角坐标系内一点(-3,4)关于原点对称点的坐标是()A .(3,4)B .(-3,-4)C .(3,-4)D .(4,-3)3.如图,在⊙O 中,OC ⊥AB ,若∠BOC =40°,则∠OAB 等于()A .40°B .50°C .80°D .120°4.抛物线y =﹣2(x ﹣3)2﹣4的对称轴是()A .直线x =3B .直线x =﹣3C .直线x =4D .直线x =﹣45.连续抛掷两次骰子,它们的点都是奇数的概率是()A .136B .19C .14D .126.二次函数y =ax 2+bx+c 的图象如图所示,则一次函数y =﹣bx+c 的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限7.如图,将△ABC 绕点A 顺时针旋转α,得到△ADE ,若点D 恰好在CB 的延长线上,则∠CDE 等于()A .ΑB .90°+2αC .90°﹣2αD .180°﹣2α8.如图,是二次函数y =ax 2+bx+c 图象的一部分,其对称轴是x =﹣1,且过点(﹣3,0),下列说法:①abc <0;②2a ﹣b =0;③若(﹣5,y 1),(3,y 2)是抛物线上两点,则y 1=y 2;④4a+2b+c <0,其中说法正确的()A .①②B .①②③C .①②④D .②③④9.已知平面直角坐标系中有点A (﹣4,﹣4),点B (a ,0),二次函数y =x 2+(k ﹣3)x ﹣2k 的图象必过一定点C ,则AB+BC 的最小值是()A .B .C .D .10.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为()A .20°B .25°C .40°D .50°二、填空题11.若方程mx2+3x-4=3x2是关于x的一元二次方程,则m的取值范围是________ 12.为了估计池塘里有多少条鱼,先从池溏里捕捞100条鱼做上记号,然后放回池塘里去,经过一段时间,待有标记的鱼完全混合于鱼群后,第二次再捕捞300条鱼,若其中有15条有标记,那么估计池塘里大约有鱼________条._____.13.如图,扇形AOB的圆心角为120°,弦AB=14.已知⊙O的直径为8cm,如果直线AB上的一点与圆心的距离为4cm,则直线AB与⊙O的位置关系是_____.15.已知二次函数y=﹣x2+bx+c与一次函数y=mx+n的图象相交于点A(﹣2,4)和点B(6,﹣2),则不等式﹣x2+bx+c>mx+n的解集是_____.16.如图,已知Rt△ABC中,∠ABC=90°,∠ACB=30°,斜边AC=4,点P是三角形内的一动点,则PA+PB+PC的最小值是_____.17.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是________.三、解答题18.解方程:(x+3)2﹣2x(x+3)=0.19.如图,四边形ABCD内接于⊙O,E为BC延长线上的一点,点C为 BD的中点.若∠DCE =110°,求∠BAC的度数.20.如图,已知△ABC 中,BD 是中线.(1)尺规作图:作出以D 为对称中心,与△BCD 成中心对称的△EAD .(2)猜想AB+BC 与2BD 的大小关系,并说明理由.21.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,小明随机从口袋中摸取一个小球,记录摸到小球的标号后放回,再从中摸取一个小球,又放回.小明摸取了60次,结果统计如下:标号1234次数16142010(1)上述试验中,小明摸取到“2”号小球的频率是;小明下一次在袋中摸取小球,摸到“2”号小球的概率是;(2)若小明随机从口袋中摸取一个小球,记录摸到小球的标号后放回,再从中摸取一个小球,请用列举法求小明两次摸取到小球的标号相同的概率.(3)若小明一次在袋中摸出两个小球,求小明摸出两个小球标号的和为5的概率.22.如图,一次函数y=x+b 和反比例函数y=xk(k≠0)交于点A (4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x 的取值范围.23.在平面直角坐标系中,以坐标原点为圆心的⊙O 半径为3.(1)试判断点A (3,3)与⊙O 的位置关系,并加以说明.(2)若直线y =x+b 与⊙O 相交,求b 的取值范围.(3)若直线y =x+3与⊙O 相交于点A ,B .点P 是x 轴正半轴上的一个动点,以A ,B ,P 三点为顶点的三角形是等腰三角形,求点P 的坐标.24.已知关于x 的一元二次方程﹣212x +ax+a+3=0.(1)求证:无论a 为任何实数,此方程总有两个不相等的实数根;(2)如图,若抛物线y =﹣212x +ax+a+3与x 轴交于点A (﹣2,0)和点B ,与y 轴交于点C ,连结BC ,BC 与对称轴交于点D .①求抛物线的解析式及点B 的坐标;②若点P 是抛物线上的一点,且点P 位于直线BC 的上方,连接PC ,PD ,过点P 作PN ⊥x 轴,交BC 于点M ,求△PCD 的面积的最大值及此时点P 的坐标.25.已知关于x 的方程ax 2﹣(2a+1)x+a ﹣2=0.(1)若方程有两个实数根,求a 的取值范围.(2)若x=2是方程的一个根,求另一个根.(3)在(1)的条件下,试判断直线y=(2a﹣3)x﹣a+5能否过点A(﹣1,3),并说明理由.26.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.参考答案1.B【详解】解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选B.2.C【详解】∵P(-3,4),∴关于原点对称点的坐标是(3,-4),故选:C.3.B【详解】解:在⊙O中,OA=OB,∴△AOB为等腰三角形,∵OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,∴∠OAB=(180°-∠AOB)÷2=50°.4.A【详解】解:抛物线y=﹣2(x﹣3)2﹣4的对称轴方程为:直线x=3,故选:A.5.C【详解】解:列表如下:123456 1()1,1()1,2()1,3()1,4()1,5()1,6 2()2,1()2,2()2,3()2,4()2,5()2,6 3()3,1()3,2()3,3()3,4()3,5()3,6 4()4,1()4,2()4,3()4,4()4,5()4,6 5()5,1()5,2()5,3()5,4()5,5()5,6 6()6,1()6,2()6,3()6,4()6,5()6,6由表格信息可得:所有的等可能的结果数有36个,符合条件的结果数有91=. 364故选C6.D【详解】解:由势力的线与y轴正半轴相交可知c>0,对称轴x=-2ba<0,得b<0.∴0b ->所以一次函数y =﹣bx+c 的图象经过第一、二、三象限,不经过第四象限.故选:D .7.A【详解】解:由旋转的性质可得:∠ABC=∠ADE ,∵∠ABC+∠ABD=180°,∴∠ABD+∠ADE=180°,即∠ABD+∠ADB+∠CDE=180°,∵∠ABD+∠ADB+∠BAD=180°,∴∠CDE=∠BAD ,∵∠BAD=α,∴∠CDE=α.故选:A .8.B【详解】由图象可得,0a >,0b >,0c <,则0abc <,故①正确;∵该函数的对称轴是1x =-,∴12ba-=-,得20a b -=,故②正确;∵()154---=,()314--=,∴若(﹣5,y 1),(3,y 2)是抛物线上两点,则12y y =,故③正确;∵该函数的对称轴是1x =-,过点(﹣3,0),∴2x =和4x =-时的函数值相等,都大于0,∴420a b c ++>,故④错误;故正确的是①②③,故选:B .9.C【详解】解:二次函数y =x 2+(k ﹣3)x ﹣2k=(x-2)(x-1+k)-2∴函数图象一定经过点C (2,-2)点C 关于x 轴对称的点C '的坐标为(2,2),连接AC ',如图,∵()4,4A --∴AC '==故选:C 10.B【详解】连接OA ,如图:∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=12∠AOB=25°,故选B.11.3m ≠【详解】解:mx 2+3x-4=3x 2,可变形为2(3)340m x x -+-=,∵2(3)340m xx -+-=是一元二次方程,∴30m -≠,∴3m ≠.故答案为:3m ≠.12.2000100条,由此即可解答.【详解】设该池塘里现有鱼x 条,由题意知,15100300x=,∴x=2000.∴估计池塘里大约有鱼2000条.故答案为2000.13.4π3【详解】解:由题意知:∵OA OB=∴△OAB 为等腰三角形∴()1180120302OAB ∠=︒-︒=︒∵12cos30OA⨯︒=∴2OA =∵π120π24π1801803n r S ⨯⨯===扇1sin 302OAB S OA =⨯⨯︒⨯=∴4π3AOB S S S =-=- 阴扇故答案为:4π314.相切或相交【详解】设直线AB 上与圆心距离为4cm 的点为C ,当OC ⊥AB 时,OC=⊙O 的半径,所以直线AB 与⊙O 相切,当OC 与AB 不垂直时,圆心O 到直线AB 的距离小于OC ,所以圆心O 到直线AB 的距离小于⊙O 的半径,所以直线AB 与⊙O 相交,综上所述直线AB 与⊙O 的位置关系为相切或相交,故答案为:相切或相交.15.26x -<<【详解】解:如图,∵两函数图象相交于点A (-2,4),B (6,-2),∴不等式﹣x 2+bx+c >mx+n 的解集是26x -<<.故答案为:26x -<<.16.【分析】将△BCP 绕点B 顺时针旋转60°得到△BHG ,连接PH ,AG ,过点G 作AB 的垂线,交AB 的延长线于N .证明△PBH 是等边三角形,得PH BP =,所以PA PB PC PA PH HG ++=++,推出当A ,P ,G ,H′共线时,PA+PB+PC 的值最小,最小值=AG 的长,再运用勾股定理求出AG 的长即可.【详解】解:将△BCP 绕点B 顺时针旋转60°得到△BHG ,连接PH ,AG ,过点G 作AB 的垂线,交AB 的延长线于N ,如图,∵∠90,30ABC ACB ︒︒=∠=,4AC =2,AB ∴=由勾股定理得:BC ==∵将△BCP 绕点B 顺时针旋转60°得到△BHG ,∴△BPC BHG≅∆∴,60BP BH PBH ︒=∠=,,HG PC BC BG ===,∠PBC GBH=∠∴△PBH 是等边三角形,∴PH BP=∴PA PB PC PA PH HG++=++∴当点A ,点P ,点G ,点H 共线时,PA PH HG ++有最小值,最小值为AG ,∵∠150ABP PBH GBH ABP PBC CBH ︒+∠+∠=∠+∠+∠=∴∠150ABG ︒=∴∠30GBN ︒=∵GN AB⊥∴1122GN BG ==⨯=由勾股定理得,3BN ===∴235AN AB BN =+=+=∴AG ===∴PA PB PC ++最小值为故答案为:17【详解】∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,∵CA=CA 1,∴△ACA 1是等边三角形,AA 1=AC=BA 1=2,∴∠BCB 1=∠ACA 1=60°,∵CB=CB 1,∴△BCB 1是等边三角形,∴BB 1BA 1=2,∠A 1BB 1=90°,∴BD=DB 1∴A 1=18.123,3x x ==-【详解】解:(x+3)2﹣2x (x+3)=0()()3320x x x ++-=()()330x x +-=解得123,3x x ==-19.55°【分析】由圆内接四边形的性质可得110BAD ∠=︒,根据“点C 为 BD的中点”可得AC 是BAD ∠平分线,从而可得结论.【详解】解:∵四边形ABCD 内接于⊙O ,∴DCE BAD∠=∠∵110DCE ∠=︒∴110BAD ∠=︒∵点C 为 BD的中点∴ BC D C=∴111105522BAC DAC BAD ∠=∠=∠=⨯︒=︒20.(1)见详解;(2)AB+BC >2BD .证明见详解.【分析】(1)延长BD ,在BD 延长线上截取DE=BD ,连结AE ,则△ADE 与△CDB 关于点D 成中心对称,根据点D 为AC 中点,得出AD=CD ,再证△ADE ≌△CDB (SAS ),根据∠CDB+∠ADB=180°,得出△BCD 绕点D 旋转180°得到△EAD ,(2)根据△ADE ≌△CDB (SAS ),得出AE=BC ,BD=ED ,得出BE=2BD ,在△ABE 中,AB+AE >BE 即可.(1)解:延长BD ,在BD 延长线上截取DE=BD ,连结AE ,则△ADE 与△CDB 关于点D 成中心对称,∵点D 为AC 中点,∴AD=CD ,在△ADE 和△CDB 中,AD CD ADE CDB ED BD =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CDB (SAS ),∵∠CDB+∠ADB=180°,∴△BCD 绕点D 旋转180°得到△EAD,(2)AB+BC >2BD .证明:∵△ADE ≌△CDB (SAS ),∴AE=BC ,BD=ED ,∴BE=2BD ,在△ABE中,AB+AE>BE,即AB+BC>2BD.【点睛】本题考查尺规作图,三角形全等判定与性质,中心对称的定义,三角形三边关系,掌握尺规作图,三角形全等判定与性质,中心对称的定义,三角形三边关系是解题关键.21.(1)7 30,14(2)1 4(3)1 3【分析】(1)摸取到“2”号小球的频率为1460,摸到“2”号小球的概率是14;(2)小明两次摸取到小球的标号为()()()()()()()()()()()()()()()()1,11,21,31,42,12,22,32,43,13,23,33,44,14,24,34,4共16种可能的情况,其中两次标号相同的为()()()()1,12,23,34,4共4种可能的情况,进而可求概率;(3)列举法可知一次摸出两个小球的有标号为()()()()()()1,21,31,42,32,43,4共6种可能情况,标号和为5有()()1,42,3两种情况,进而可求概率.(1)解:摸取到“2”号小球的频率为147 6030=摸到“2”号小球的概率是1 4故答案为:71 304,.(2)解:列举法求小明两次摸取到小球的标号为()()()()()()()()()()()()()()()()1,11,21,31,42,12,22,32,43,13,23,33,44,14,24,34,4共16种可能的情况,其中两次标号相同的为()()()()1,12,23,34,4共4种可能的情况∵41 164=∴小明两次摸取到小球的标号相同的概率为1 4.(3)解:列举法可知一次摸出两个小球的有标号为()()()()()()1,21,31,42,32,43,4共6种可能情况,标号和为5有()()1,42,3两种情况∵2163=∴小明摸出两个小球标号的和为5的概率为13.【点睛】本题考查了频率,列举法求概率.解题的关键在于正确的列举所有事件.22.(1)反比例函数的解析式为:y=4x ;一次函数的解析式为:y=x ﹣3;(2)S △AOB =152;(3)一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【分析】(1)把A 的坐标代入y=k x ,求出反比例函数的解析式,把A 的坐标代入y=x+b 求出一次函数的解析式;(2)求出D 、B 的坐标,利用S △AOB =S △AOD +S △BOD 计算,即可求出答案;(3)根据函数的图象和A 、B 的坐标即可得出答案.【详解】(1)∵反比例函数y=k x的图象过点A (4,1),∴1=k 4,即k=4,∴反比例函数的解析式为:y=4x.∵一次函数y=x+b (k≠0)的图象过点A (4,1),∴1=4+b ,解得b=﹣3,∴一次函数的解析式为:y=x ﹣3;(2)∵令x=0,则y=﹣3,∴D (0,﹣3),即DO=3.解方程4x=x ﹣3,得x=﹣1,∴B (﹣1,﹣4),∴S △AOB =S △AOD +S △BOD =12×3×4+12×3×1=152;(3)∵A (4,1),B (﹣1,﹣4),∴一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.23.(1)点A 在O 外(2)b -<<(3)(3-+或(3,0)【分析】(1)由勾股定理求出AO 的长,再与圆的半径比较即可得出结论;(2)求出直线y x b =+与O 相切时OB 的长度即可得到b 的取值;(3)分BA BP =,AB AP =和PB PA =三种情况求解即可.(1)∵(3,3)A∴OA ==∵3>∴点A 在O 外(2)如图,当直线y x b =+与O 相切于点C 时,连接OC ,则OC=3∵∠45CBO ︒=∴OB =∴直线y x b =+与O 相交时,b -<(3)∵直线3y x =+与O 相交于点A ,B ,∴(0,3)A ,(3,0)B -∴AB =当BA BP ==P 坐标为:1(3P -+,2(3P--(舍去)当AB AP =时,∵AO x ⊥轴∴BO OP=∴3(3,0)P 当PB PA =时,点P 与点O 重合,∴4()0,0P (舍去)综上,点P 的坐标为:(3-+或(3,0)24.(1)见解析;(2)①y=2142x x -++,点B (4,0);②△PCD 的面积的最大值为1,点P (2,4).【分析】(1)判断方程的判别式大于零即可;(2)①把A (-2,0)代入解析式,确定a 值即可求得抛物线的解析式,令y=0,求得对应一元二次方程的根即可确定点B 的坐标;②设点P 的坐标为(x ,2142x x -++),确定直线BC 的解析式y=kx+b ,确定M 的坐标(x ,kx+b ),求得PM=2142x x -++-(kx+b ),从而利用C ,D 的坐标表示=-PCD PCM CDM S S S △△△构造新的二次函数,利用配方法计算最值即可.(1)∵21-+302x ax a ++=,∴△=214(-)(3)2a a -⨯+=2226(1)5a a a ++=++>0,∴无论a 为任何实数,此方程总有两个不相等的实数根.(2)①把A (-2,0)代入解析式21=-+32y x ax a ++,得1-4-2302a a ⨯++=,解得a=1,∴抛物线的解析式为2142y x x =-++,令y=0,得21402x x -++=,解得x=-2(A 点的横坐标)或x=4,∴点B (4,0);②设直线BC 的解析式y=kx+b ,根据题意,得4=0=4k b b +⎧⎨⎩,解得=-1=4k b ⎧⎨⎩,∴直线BC 的解析式为y=-x+4;∵抛物线的解析式为2142y x x =-++,直线BC 的解析式为y=-x+4;∴设点P 的坐标为(x ,2142x x -++),则M (x ,4x -+),点N (x ,0),∴PM=2142x x -++-(4x -+)=2122x x -+,∵219(1)22y x =--+,∴抛物线的对称轴为直线x=1,∴点D (1,3),∵=-PCD PCM CDMS S S △△△=11-(1)22PM x PM x - =21124PM x x =-+=21(2)14x --+,∴当x=2时,y 有最大值1,此时2142y x x =-++=4,∴△PCD 的面积的最大值为1,此时点P (2,4).25.(1)112a ≥-且0a ≠(2)14x =(3)能,理由见解析【分析】(1)根据一元二次方程的定义,以及根的判别式进行判断即可(2)根据方程的解的定义求得a ,进而根据一元二次方程根与系数的关系求解即可;(1)关于x 的方程ax 2﹣(2a+1)x+a ﹣2=0有两个实数根,则0a ≠,()()2242142b ac a a a ∆=-=-+--⎡⎤⎣⎦2244148a a a a=++-+121a =+0≥a 的取值范围为:112a ≥-且0a ≠(2) x =2是方程的一个根,4(21)220a a a ∴-+⨯+-=解得4a =设另一根为2x ,则2212419244a x a +⨯++===214x ∴=∴另一个根为14x =(3)若y =(2a ﹣3)x ﹣a+5过点A (﹣1,3),则()3235a a =---+解得53a = 112a ≥-且0a ≠∴y =(2a ﹣3)x ﹣a+5能经过点A (﹣1,3),26.(1)证明见解析;(2)1;(3)证明见解析.【分析】(1)连接OD ,由AB 是圆O 的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD 为⊙O 的切线;(2)根据BE 是⊙O 的切线,则∠EBA=90°,即可求得∠P=30°,再由PD 为⊙O 的切线,得∠PDO=90°,根据三角函数的定义求得OD ,由勾股定理得OP ,即可得出PA ;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF ,由AB 是圆O 的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE 是等边三角形.进而证出四边形DFBE 为菱形.【详解】解:(1)直线PD 为⊙O 的切线,理由如下:如图1,连接OD ,∵AB 是圆O 的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO ,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,∴tan30OD PD︒=,解得OD=1,∴PO,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.。

2024年全新初三数学上册期末试卷及答案(人教版)

2024年全新初三数学上册期末试卷及答案(人教版)

2024年全新初三数学上册期末试卷及答案(人教版)一、选择题1. 若a²4a+4=0,则a的值为()A. 2B. 0C. 1D. 22. 下列选项中,哪个不是等腰三角形的性质?A. 底边相等B. 两腰相等C. 底角相等D. 对边相等3. 若一个正方形的边长为5cm,则其对角线的长度为()A. 5cmB. 10cmC. 5√2 cmD. 10√2 cm4. 下列哪个选项是二次函数的一般形式?A. y = ax² + bx + cB. y = ax + bC. y = a/b + cD. y = a² + b² + c²5. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为()A. 3B. 2C. 1D. 4二、填空题6. 若a²4a+4=0,则a的值为________。

7. 下列选项中,哪个不是等腰三角形的性质?________。

8. 若一个正方形的边长为5cm,则其对角线的长度为________。

9. 下列哪个选项是二次函数的一般形式?________。

10. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为________。

答案:一、选择题1. A2. D3. C4. A5. A二、填空题6. 27. D8. 5√2 cm9. A10. 32024年全新初三数学上册期末试卷及答案(人教版)三、解答题11. 已知等差数列的前三项分别为2, 5, 8,求该数列的通项公式。

解答:我们知道等差数列的通项公式为an = a1 + (n 1)d,其中an是第n项,a1是首项,d是公差。

根据题目,首项a1 = 2,公差d = 5 2 = 3。

所以,该数列的通项公式为an = 2 + (n 1)×3。

12. 一个正方形的边长为5cm,求其对角线的长度。

解答:正方形的对角线长度可以通过勾股定理来求解。

设正方形的边长为a,对角线长度为d,则有:d² = a² + a²将a = 5cm代入上式,得:d² = 5² + 5²d² = 50d = √50d = 5√2 cm所以,该正方形的对角线长度为5√2 cm。

2024年全新九年级数学上册期末试卷及答案(人教版)

2024年全新九年级数学上册期末试卷及答案(人教版)

2024年全新九年级数学上册期末试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 一个三角形的两边长分别为5厘米和8厘米,第三边长为多少厘米?A. 3B. 6C. 10D. 123. 下列哪个图形是等腰三角形?A. △ABCB. △DEFC. △GHID. △JKL4. 下列哪个图形是直角三角形?A. △ABCB. △DEFC. △GHID. △JKL5. 下列哪个图形是等边三角形?A. △ABCB. △DEFC. △GHID. △JKL6. 下列哪个数是合数?A. 2B. 3C. 4D. 57. 一个正方形的边长为6厘米,它的周长是多少厘米?A. 12B. 18C. 24D. 308. 一个长方形的长为8厘米,宽为4厘米,它的面积是多少平方厘米?A. 16B. 24C. 32D. 409. 下列哪个数是偶数?A. 2B. 3C. 5D. 710. 下列哪个数是奇数?A. 2B. 3C. 4D. 6二、填空题(每题2分,共20分)1. 一个等边三角形的边长是5厘米,它的周长是______厘米。

2. 一个正方形的边长是8厘米,它的面积是______平方厘米。

3. 一个长方形的长是10厘米,宽是5厘米,它的周长是______厘米。

4. 一个三角形的两边长分别是6厘米和8厘米,第三边长是______厘米。

5. 一个直角三角形的两条直角边长分别是3厘米和4厘米,它的斜边长是______厘米。

6. 一个等腰三角形的底边长是10厘米,腰长是8厘米,它的周长是______厘米。

7. 一个长方形的长是12厘米,宽是6厘米,它的面积是______平方厘米。

8. 一个正方形的边长是7厘米,它的周长是______厘米。

9. 一个三角形的两边长分别是5厘米和12厘米,第三边长是______厘米。

10. 一个直角三角形的两条直角边长分别是5厘米和12厘米,它的斜边长是______厘米。

2023-2024学年全国初中九年级上数学新人教版期末试卷(含解析)

2023-2024学年全国初中九年级上数学新人教版期末试卷(含解析)

2023-2024学年全国九年级上数学期末试卷考试总分:117 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )1. 若将一个正方形的各边长扩大为原来的倍,则这个正方形的面积扩大为原来的( )A.倍B.倍C.倍D.倍2. 下列图形中,既是轴对称图形又是中心对称图形的是 ( ) A. B. C. D.3. 在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表,由表估计该麦种的发芽概率是( )试验种子数(粒)416842n 5020050010003000发芽频数发芽频率A.B.C.D.4. 以半径为的圆的内接正三角形、正方形、正六边形的边心距(圆心到边的距离)为三边作三角形,则该三角形的面积是( )A.B.C.D.5. 在一个不透明的口袋中有若干个只有颜色不同的小球,如果口袋中装有个红球,且摸出红球的概率为,那么袋中共有球的个数为( )A.B.C.D.6. 如图,铁路道口的栏杆短臂长 ,长臂长.当短臂端点下降时,长臂端点升高(杆的宽度忽略不计)( )A.B.C.m451884769512850mn 0.90.940.9520.9510.950.80.90.95113–√83–√42–√42–√8413129761m 16m 0.5m 4m6m8mD.7. 下列说法正确的是( )A.分别在的边,的反向延长线上取点,,使,则是放大后的图形B.两位似图形的面积之比等于位似比C.位似多边形中对应对角线之比等于位似比D.位似图形的周长之比等于位似比的平方8. 将 如图放置在直角坐标系中,并绕点顺时针旋转至的位置,已知,=.则旋转过程中所扫过的图形的面积为( )A.B.C.D.9. 下列说法中正确的是( )①三边对应成比例的两个三角形相似;②两边对应成比例且一个角对应相等的两个三角形相似;③一个锐角对应相等的两个直角三角形相似;④一个角对应相等的两个等腰三角形相似.A.①②B.②③C.③④D.①③10. 如图,为直径,为弦,于,连接,,=,下列结论中正确的有( )①=;②=;③;④=.12m△ABC AB AC D E DE//BC △ADE △ABC Rt △AOB O 90∘△COD A(−2,0)∠ABO 30∘△AOB +211π33–√3π+23–√3π+3–√+11π33–√AB ⊙O CD AB ⊥CD E CO AD ∠BAD 25∘CE OE ∠C 40∘AD 2OEA.①④B.②③C.②③④D.①②③④11. 如图所示,直线与直线平行,,,则下列判断不正确的是( )A.B.C.D.12. 在同一平面直角坐标中,直线与抛物线的图象可能是( ) A. B.l 1l 2BG ⊥l 2∠G =∠A =30∘BG ⊥l 1=2S △GEC S △FDG△FDG ∽△ABC∠EFD =120∘y =ax +b y =a +b x 2C. D.卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )13. 已知线段,,则、的比例中项线段等于________.14. 在一个不透明的布袋中装有标着数字,,,的个小球,这个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于的概率为________.15. 如图,已知直线与轴交于点,与轴的负半轴交于点,且=,点为轴的正半轴上一点,将线段绕点按顺时针方向旋转得线段,连接,若=,则点的坐标为________.16. 如图,在中,已知,,,则它的内切圆半径是________.17. 二次函数=的图象与轴交于,则=________.a =9b =4a b 2345449AB y A(0,2)x B ∠ABO 30∘C x CA C 60∘CD BD BD C △ABC ∠C =90∘BC =6AC =8y +bx −8x 2x (2,0)b ABCD P D DB B B18. 已知正方形的边长是,点从点出发沿向点运动,至点停止运动,连结,过点作于点,在点运动过程中,点所走过的路径长是________.三、 解答题 (本题共计 7 小题 ,每题 9 分 ,共计63分 )19. 如图,在三角形中,,,.将三角形绕着点旋转(规定这里的旋转角小于),使得点落在直线上的点,点落在点.画出旋转后的三角形,求线段在旋转的过程中所扫过的面积(保留);如果在三角形中,,,(其中,).其他条件不变,请你用含有,,的代数式,直接写出线段旋转的过程中所扫过的面积(保留).20. 小丽和小明将在下周的星期一到星期三这三天中各自任选一天担任值日工作,请用画树状图或列表格的方法,求小丽和小明在同一天值日的概率.21. 如图,是的角平分线,,求证.22. 已知,二次函数.用配方法化为的形式,并写出顶点坐标.当时,求函数的取值范围. 23. 如图,已知在直角梯形中,,,,,,点是对角线上一动点,过点作,垂足为.求证:;如图,若以为圆心,为半径的圆和以为圆心、为半径的圆外切时,求的长;如图,点在延长线上,且满足,交于点,若和相似,求ABCD 2P D DB B B AP B BH ⊥AP H P H ABC AC =7BC =3∠ACB =60∘ABC C 180∘B AC B ′A A ′(1)C A ′B ′(2)AB π(3)ABC AC =b BC =a ∠C =n ∘b >a 0<n <90a b n AB πAD △ABC AB =AC +DC ∠C =2∠B y =2−4x +1x 2(1)y =a(x −h +k )2(2)0≤x ≤3y ABCD AD//BC ∠ABC=90∘AB=4AD=3sin ∠BCD =25–√5P BD P P H ⊥CD H (1)∠BCD=∠BDC (2)1P P B H HD DP (3)2E BC DP =CE P E DC F △ADH △ECF的长. 24. 如图,是的弦,是的直径,交于点,过点的直线交的延长线于点,且=.(1)求证:是的切线;(2)若的半径为,=,求的度数.25. 在平面直角坐标系中,点为坐标原点,抛物线交轴正半轴于点,交轴于点.求抛物线的解析式;如图,为第一象限内抛物线上一点,连接,将射线绕点逆时针旋转,与过点且垂直于的直线相交于点,设点横坐标为,点的横坐标为,求与之间的函数关系式(不要求写出的取值范围);如图,在()的条件下,过点作直线交轴于点,在轴上取点,连接,点为的中点,连接,若的横坐标为,,且,求的值.DP AB ⊙O AD ⊙O OP ⊥OA AB P B OP C CP CB BC ⊙O ⊙O 3–√OP 1∠BCP O y =a −4ax −x 23–√x A(5,0)y B (1)(2)1P AP AP A 60∘P AP C P t C m m t t (3)22C x D x F FP E AC ED F −75∠AFP =∠CDE ∠FAP +∠ACD =180∘m参考答案与试题解析2023-2024学年全国九年级上数学期末试卷一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )1.【答案】A【考点】相似图形相似多边形的性质【解析】根据正方形的面积公式:,和积的变化规律,积扩大的倍数等于因数扩大倍数的乘积,由此解答.【解答】解:根据正方形面积的计算方法和积的变化规律,如果一个正方形的边长扩大为原来的倍,那么正方形的面积是原来正方形面积的倍.故选.2.【答案】A【考点】中心对称图形轴对称图形【解析】此题暂无解析【解答】此题暂无解答3.【答案】s =a 244×4=16AC【考点】利用频率估计概率【解析】根据批次种子粒数从粒增加到粒时,种子发芽的频率趋近于,所以估计种子发芽的概率为.【解答】∵种子粒数粒时,种子发芽的频率趋近于,∴估计种子发芽的概率为.4.【答案】D【考点】正多边形和圆【解析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.【解答】如图,∵,∴;如图,∵,55030000.950.9530000.950.951OC =1OD =1×sin =30∘122OB =1E =1×sin =–√∴;如图,∵,∴,则该三角形的三边分别为:,,,∵,∴该三角形是直角三角形,∴该三角形的面积是,5.【答案】A【考点】概率公式【解析】利用红球的概率公式列出方程求解即可.【解答】解:设袋中共有球的个数为,根据概率的公式列出方程:,解得:.故选.6.【答案】C【考点】相似三角形的应用【解析】OE =1×sin =45∘2–√23OA =1OD =1×cos =30∘3–√2122–√23–√2(+(=(12)22–√2)23–√2)2××=12122–√22–√8x =4x 13x =12A栏杆长短臂在升降过程中,将形成两个相似三角形,利用对应变成比例解题.【解答】解:设长臂端点升高米,则,∴解得:.故选.7.【答案】C【考点】位似变换【解析】如果两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),那么这样的两个图形叫位似图形,这个点叫做位似中心,位似图形是特殊的相似形,因而满足相似形的性质,因而正确的是.【解答】解:∵分别在的边,的反向延长线上取点,,使,则是放大或缩小后的图形,∴错误.∵位似图形是特殊的相似形,满足相似形的性质,∴,错误,正确的是.故选.8.【答案】D【考点】坐标与图形变化-旋转【解析】由,得到=,求得=,=根据三角形和扇形的面积公式即可得到结论;【解答】∵,∴=,∵=,x =0.5x 116x =8C C △ABC AB AC D E DE//BC △ADE △ABC A B D C C A(−2,0)OA 2OB 23–√∠BAO 60∘A(−2,0)OA 2∠ABO 30∘OB 2–√∠BAO ∘∴=,=,∴旋转过程中所扫过的图形的面积=,9.【答案】D【考点】相似三角形的判定【解析】此题暂无解析【解答】解:①三边对应成比例的两个三角形相似,正确;②两边对应成比例且夹角对应相等的两个三角形相似,错误;③一个锐角对应相等的两个直角三角形相似,正确,相当于两角对应相等,两三角形相似;④有一个角对应相等的两个等腰三角形相似,错误.故选.10.【答案】B【考点】圆心角、弧、弦的关系垂径定理圆周角定理【解析】OB 23–√∠BAO 60∘△AOB ++=×1×2++=π+S △BC'0S 扇形AOC'S 扇形BOD123–√60⋅π×2236090⋅π×(23–√)23601133–√D此题暂无解析【解答】此题暂无解答11.【答案】B【考点】相似三角形的判定【解析】根据平行线的性质得到,故正确;根据相似三角形的判定得到,故正确;根据三角形的外角的性质得到,故正确;于是得到结论.【解答】解:∵直线与直线平行,,∴,故正确;∴,∵,∴,故正确;∵,,∴,故正确;故选.12.【答案】A【考点】二次函数的图象【解析】根据各选项中直线经过的象限可得出、的符号,再依此找出二次函数图象的开口、对称轴以及顶点坐标,对照图象即可得出结论.【解答】解:、∵直线经过第一、二、三象限,∴,,∴抛物线开口向上,对称轴为轴,顶点为,∴该选项图象符合题意;、∵直线经过第一、二、四象限,∴,,BG ⊥l 1A △FDG ∽△ABC C ∠EFD =∠FDG +∠G =120∘D l 1l 2BG ⊥l 2BG ⊥l 1A ∠FDG =∠ACB =90∘∠G =∠A =30∘△FDG ∽△ABC C ∠FDG =90∘∠G =30∘∠EFD =∠FDG +∠G =120∘D B a b A y =ax +b a >0b >0y =a +b x 2y (0,b)B y =ax +b a <0b >0y =a +b2∴抛物线开口向下,对称轴为轴,顶点为,∴该选项图象不符合题意;、∵直线与抛物线的交点坐标为,∴该选项图象不符合题意;、∵直线经过第一、二、三象限,∴,,∴抛物线开口向上,对称轴为轴,顶点为,∴该选项图象不符合题意.故选.二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )13.【答案】【考点】比例线段【解析】设线段是线段,的比例中项,根据比例中项的定义列出等式,利用两内项之积等于两外项之积即可得出答案.【解答】解:设线段是线段,的比例中项,∵,,∴,∴,∴,(舍去).故答案为:.14.【答案】【考点】列表法与树状图法【解析】【解答】y =a +b x 2y (0,b)C y =ax +b y =a +b x 2(0,b)D y =ax +b a >0b >0y =a +b x 2y (0,b)A 6x a b x a b a =4b =9=a x x b =ab =4×9=36x 2x =±6x =−6623解:根据题意列表得:------------由表可知所有可能结果共有种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字之积大于的有种,所以两个小球上的数字之积大于的概率为;15.【答案】,【考点】坐标与图形变化-旋转【解析】此题暂无解析【解答】此题暂无解答16.【答案】【考点】三角形的内切圆与内心正方形的判定正方形的性质勾股定理【解析】根据勾股定理求出,根据圆是直角三角形的内切圆,推出,,,,,证四边形是正方形,推出,根据切线长定理得到,代入求出即可.【解答】解:根据勾股定理得:,设三角形的内切圆的半径是,23452(3,2)(4,2)(5,2)3(2,3)(4,3)(5,3)4(2,4)(3,4)(5,4)5(2,5)(3,5)(4,5)12989=81223(5−20)2AB O ABC OD =OE BF =BD CD =CE AE =AF ∠ODC =∠C =∠OEC =90∘ODCE CE =CD =r AC −r +BC −r =AB AB ==10A +B C 2C 2−−−−−−−−−−√ABC O r O ABC∵圆是直角三角形的内切圆,∴,,,,,∴四边形是正方形,∴,∴,,∴.故答案为:.17.【答案】【考点】抛物线与x 轴的交点【解析】根据二次函数=的图象与轴交于,可以求得的值,本题得以解决.【解答】∵二次函数=的图象与轴交于,∴=,解得=,18.【答案】【考点】轨迹正方形的性质【解析】由题意点在以为直径的半圆上运动,根据圆的周长公式即可解决问题.【解答】解:如图,∵,∴,∴点在以为直径的半圆上运动,由题意∵,∴点所走过的路径长,故答案为O ABC OD =OE BF =BD CD =CE AE =AF ∠ODC =∠C =∠OEC =90∘ODCE OD =OE =CD =CE =r AC −r +BC −r =AB 8−r +6−r =10r =222y +bx −8x 2x (2,0)b y +bx −8x 2x (2,0)0+2b −822b 2πH AB BH ⊥AP ∠AHB =90∘H AB OA =OB =1H =×2π⋅1=π12π三、 解答题 (本题共计 7 小题 ,每题 9 分 ,共计63分 )19.【答案】解:分两种情况:逆时针旋转,如图所示,顺时针旋转,如图所示.逆时针转度:;顺时针转度:.由可知,当时,需要逆时针旋转或顺时针旋转,同的面积计算可得:逆时针转度:,顺时针转度:.【考点】作图-旋转变换扇形面积的计算【解析】(1)分种顺时针和逆时针作图即可;(2)根据逆时针转度,顺时针转度,分别计算面积;(1)60∘120∘(2)60=(−)60π3607232=π203120=−S 2120π72360120π32360=π403(3)(1)∠C =n ∘n ∘(180−n)∘(2)n =−+−=(−)S 1nπb 2360S △C A ′B ′S △ABC nπa 2360nπ360b 2a 2(180−n)=+−−S 2(180−n)πb 2360S △C A ′B ′S △ABC (180−n)πa 2360=(−)(180−n)π360b 2a 260120(3)利用(1)的旋转图形与(2)的面积计算进行求解.【解答】解:分两种情况:逆时针旋转,如图所示,顺时针旋转,如图所示.逆时针转度:;顺时针转度:.由可知,当时,需要逆时针旋转或顺时针旋转,同的面积计算可得:逆时针转度:,顺时针转度:.20.【答案】根据题意画树状图如下:共有种等情况数,其中小丽和小明在同一天值日的有种,则小丽和小明在同一天值日的概率是.【考点】(1)60∘120∘(2)60=(−)60π3607232=π203120=−S 2120π72360120π32360=π403(3)(1)∠C =n ∘n ∘(180−n)∘(2)n =−+−=(−)S 1nπb 2360S △C A ′B ′S △ABC nπa 2360nπ360b 2a 2(180−n)=+−−S 2(180−n)πb 2360S △C A ′B ′S △ABC (180−n)πa 2360=(−)(180−n)π360b 2a 293=3913列表法与树状图法【解析】根据题意画出树状图得出所有等情况数和小丽和小明在同一天值日的情况数,然后根据概率公式即可得出答案.【解答】根据题意画树状图如下:共有种等情况数,其中小丽和小明在同一天值日的有种,则小丽和小明在同一天值日的概率是.21.【答案】证明:在上截取,连接.∵,,∴,∵是的角平分线,∴,在和中,∴,∴,∴,∴.∵,∴,∴.【考点】相似三角形的性质与判定【解析】此题暂无解析【解答】证明:在上截取,连接.∵,,∴,∵是的角平分线,∴,93=3913AB AE =AC DE AB =AC +DC,AE =AC AB =AE +BE BE =DC AD △ABC ∠EAD =∠CAD △AED △ACD AE =AC,∠EAD =∠CAD AD =AD,△AED ≅△ACD(SAS)DE =DC,∠AED =∠C ED =EB ∠B =∠EDB ∠AED =∠B +∠EDB ∠AED =2∠B ∠C =2∠B AB AE =AC DE AB =AC +DC,AE =AC AB =AE +BE BE =DC AD △ABC ∠EAD =∠CAD AE =AC,在和中,∴,∴,∴,∴.∵,∴,∴.22.【答案】解:.顶点坐标为.当时,此函数随着的增大而减小,当时,此函数随着的增大而增大,∴当时,当时,.∴取值范围是.【考点】二次函数的三种形式二次函数的最值【解析】(1)利用配方法整理即可得解;(3)根据增减性结合对称轴写出最大值即可;【解答】解:.顶点坐标为.当时,此函数随着的增大而减小,当时,此函数随着的增大而增大,∴当时,当时,.∴取值范围是.23.【答案】证明:作,如图,△AED △ACD AE =AC,∠EAD =∠CAD AD =AD,△AED ≅△ACD(SAS)DE =DC,∠AED =∠C ED =EB ∠B =∠EDB ∠AED =∠B +∠EDB ∠AED =2∠B ∠C =2∠B (1)y =2−4x +1x 2=2(−2x)+1x 2=2(x −1−2+1)2=2(x −1−1)2(1,−1)(2)0≤x ≤1y x 1<x ≤3y x x =0y =1,x =3y =7−1≤y ≤7(1)y =2−4x +1x 2=2(−2x)+1x 2=2(x −1−2+1)2=2(x −1−1)2(1,−1)(2)0≤x ≤1y x 1<x ≤3y x x =0y =1,x =3y =7−1≤y ≤7(1)DQ ⊥BC 1则,,,,∴,∴.解:设,则,,.当与外切时,,即,解得:.解:设.作,如图.则,,由,,当时,,即,解得:(舍去).当时,,即,解得:.∴的长是.BQ =AD=3DQ =AB=4∴CD ==2DQ sin ∠BCD 5–√CQ=2BC =5=BD ∠BCD=∠BDC (2)DP =x DH =x 5–√5P H =x 25–√5BP =5−x ⊙P ⊙H P H =DH +BP x =x +5−x 25–√55–√5x =25−55–√4(3)DP =x P M //BE P M =DP =x DH =HM =x 5–√5==1P M CE FM CF CF =FM =−x 5–√5–√5△ADH ∽△FCE =AD CF DH CE =3−x 5–√5–√5x 5–√5x x=−10△ADH ∽△ECF =AD CE DH CF =3x x 5–√5−x 5–√5–√5x =−3+69−−√2DP −3+69−−√2【考点】四边形综合题勾股定理锐角三角函数的定义等腰三角形的性质圆与圆的位置关系相似三角形的性质【解析】(1)作,在直角中利用三角函数即可求解;(2)设=,当与外切时,=,据此即可列方程求得;(3)作,分和两种情况进行讨论,依据相似三角形的对应边的比相等求解.【解答】证明:作,如图,则,,,,∴,∴.解:设,则,,.当与外切时,,即,解得:.解:设.作,如图.DQ ⊥BC △CDQ DP x ⊙P ⊙H P H DH +BP P M //BE △ADH ∽△FCE △ADH ∽△ECF (1)DQ ⊥BC 1BQ =AD=3DQ =AB=4∴CD ==2DQ sin ∠BCD 5–√CQ=2BC =5=BD ∠BCD=∠BDC (2)DP =x DH =x 5–√5P H =x 25–√5BP =5−x ⊙P ⊙H P H =DH +BP x =x +5−x 25–√55–√5x =25−55–√4(3)DP =x P M //BE则,,由,,当时,,即,解得:(舍去).当时,,即,解得:.∴的长是.24.【答案】证明:连接,如图,∵=,∴=,而=,∴=,∵,∴=,而=,∴=,∴=,即=,∴;在中,∵=,,∴,∴=,∴=,∴=.P M =DP =x DH =HM =x 5–√5==1P M CE FM CF CF =FM =−x 5–√5–√5△ADH ∽△FCE =AD CF DH CE =3−x 5–√5–√5x 5–√5x x=−10△ADH ∽△ECF =AD CE DH CF =3x x 5–√5−x 5–√5–√5x =−3+69−−√2DP −3+69−−√2OB CP CB ∠1∠2∠1∠3∠2∠3CO ⊥AD ∠3+∠A 90∘OA OB ∠A ∠OBA ∠2+∠OBA 90∘∠OBC 90∘OB ⊥BC Rt △OAP OP 1OA =3–√tan ∠3=3–√∠360∘∠260∘∠BCP 60∘【考点】切线的判定与性质【解析】(1)连接,如图,利用=得到=,再证明=,再根据垂直的定义得到=,则可得到=,然后根据切线的判定定理可得到结论;(2)在中利用三角函数和得到=,则=,然后根据三角形内角和得到的度数.【解答】证明:连接,如图,∵=,∴=,而=,∴=,∵,∴=,而=,∴=,∴=,即=,∴;在中,∵=,,∴,∴=,∴=,∴=.25.【答案】解:()将代入得.∴.OB CP CB ∠1∠2∠2∠3∠3+∠A 90∘∠2+∠OBA 90∘Rt △OAP ∠360∘∠260∘∠BCP OB CP CB ∠1∠2∠1∠3∠2∠3CO ⊥AD ∠3+∠A 90∘OA OB ∠A ∠OBA ∠2+∠OBA 90∘∠OBC 90∘OB ⊥BC Rt △OAP OP 1OA =3–√tan ∠3=3–√∠360∘∠260∘∠BCP 60∘1A(5,0)y =a −4ax −x 23–√a =3–√5y =−x −3–√5x 243–√53–√(2)P P H ⊥H C CK ⊥HP HP K过作轴于,过作,交延长线于.则.∴.∴.∵在上,∴.∴.∵,.即,∴.过作轴于,在轴上取点,使,连接,.则.∴,.∵,,∴∴.∵,∴.∵,,∴.∴.∵,∴ .∴.∵,∴.过作于,交延长线于点.易证四边形为矩形.∴.(2)P P H ⊥x H C CK ⊥HP HP K ∠CKP =∠CP A =90∘∠AP H =∠KCP cos ∠AP H =cos ∠KCP P y =−x −3–√5x 243–√53–√P (t,−t −3)3–√5t 243–√5P H =−t −3,CK =t −m 3–√5t 243–√5tan ∠P AC ==CP AP 3–√∴=CK P H 3–√t −m =(−t −)3–√3–√5t 243–√53–√m =−+t +335t 2175(3)P P H ⊥x H x G HG =AH P C P E △AHP ≅△GHP AP =P G ∠P AG =∠P GA ∠CP A =90∘∠CAP =60∘∠ACP =.30∘AP =AC 12AE =CE CE =AP =P G FAP +∠ACD =180∘∠FAP +∠P AG =180∘∠P AG =∠DCA ∠DCA =P GA ∠CDE =∠P FA △CDE ≅△GFP CD =FG ∠CAG =∠CDF +∠DCA =∠CAP +∠P AG ∠CDF =60∘C CM ⊥OD M CK ⊥P H.HP K CMHK CM =KH AH =HG =t −5∵,.∴.易证.∴.∴.即.∵,∴.∴.∴ .∴ 解得或(舍去)∴.【考点】二次函数综合题【解析】此题暂无解析【解答】解:()将代入得.∴.过作轴于,过作,交延长线于.则.∴.∴.∵在上,∴.AH =HG =t −5∴FG =2t −=CD 185CM =CD ⋅sin =(2t −)60∘3–√2185∠P AH =∠CP K cos ∠P AH =cos ∠CP K =AH AP KP CP =AP CP AH KP tan =30∘AP CP =AH KP 3–√3KP =AH =(t −5)3–√3–√KH =(t −5)+−t −3–√3–√5t 2453–√3–√(2t −)=(t −5)+−t −3–√21853–√3–√5t 2453–√3–√t =7t =−3m =−×+×7+3=−35721751351A(5,0)y =a −4ax −x 23–√a =3–√5y =−x −3–√5x 243–√53–√(2)P P H ⊥x H C CK ⊥HP HP K ∠CKP =∠CP A =90∘∠AP H =∠KCP cos ∠AP H =cos ∠KCP P y =−x −3–√5x 243–√53–√P (t,−t −3)3–√5t 243–√5H =−t −3,CK =t −m–√4–√∴.∵,.即,∴.过作轴于,在轴上取点,使,连接,.则.∴,.∵,,∴∴.∵,∴.∵,,∴.∴.∵,∴ .∴.∵,∴.过作于,交延长线于点.易证四边形为矩形.∴.∵,.∴.易证.∴.∴.即.∵,∴.∴.P H =−t −3,CK =t −m 3–√5t 243–√5tan ∠P AC ==CP AP 3–√∴=CK P H 3–√t −m =(−t −)3–√3–√5t 243–√53–√m =−+t +335t 2175(3)P P H ⊥x H x G HG =AH P C P E △AHP ≅△GHP AP =P G ∠P AG =∠P GA ∠CP A =90∘∠CAP =60∘∠ACP =.30∘AP =AC 12AE =CE CE =AP =P G FAP +∠ACD =180∘∠FAP +∠P AG =180∘∠P AG =∠DCA ∠DCA =P GA ∠CDE =∠P FA △CDE ≅△GFP CD =FG ∠CAG =∠CDF +∠DCA =∠CAP +∠P AG ∠CDF =60∘C CM ⊥OD M CK ⊥P H.HP K CMHK CM =KH AH =HG =t −5∴FG =2t −=CD 185CM =CD ⋅sin =(2t −)60∘3–√2185∠P AH =∠CP K cos ∠P AH =cos ∠CP K =AH AP KP CP =AP CP AH KP tan =30∘AP CP =AH KP 3–√3KP =AH =(t −5)3–√3–√H =(t −5)+−t −–√∴ .∴ 解得或(舍去)∴.KH =(t −5)+−t −3–√3–√5t 2453–√3–√(2t −)=(t −5)+−t −3–√21853–√3–√5t 2453–√3–√t =7t =−3m =−×+×7+3=−3572175135。

2024年人教版初三数学下册期末考试卷(附答案)

2024年人教版初三数学下册期末考试卷(附答案)

2024年人教版初三数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是3,则这个数是()。

A. 3B. 9C. 27D. 812. 下列各数中,不是有理数的是()。

A. 3/4B. √2C. 0.25D. 3/53. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是()。

A. 34厘米B. 32厘米C. 30厘米D. 28厘米4. 一个正方体的边长是5厘米,那么它的体积是()。

A. 25立方厘米B. 125立方厘米C. 50立方厘米D. 100立方厘米5. 下列函数中,是一次函数的是()。

A. y = x^2B. y = 3x + 2C. y = 1/xD. y = x^3二、判断题(每题1分,共5分)1. 一个数的平方根有两个,一个是正数,一个是负数。

()2. 两个相似的三角形,它们的面积比等于它们对应边的长度比。

()3. 一个等差数列的通项公式是an = a1 + (n1)d,其中an表示第n项,a1表示首项,d表示公差。

()4. 两个平行线上的任意一点,到这两条平行线的距离相等。

()5. 一个数的立方根和它的平方根是同一个数。

()三、填空题(每题1分,共5分)1. 若a > b,则a^2 > b^2。

()2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是34厘米。

()3. 一个正方体的边长是5厘米,那么它的体积是125立方厘米。

()4. 下列函数中,是一次函数的是y = 3x + 2。

()5. 一个数的立方根和它的平方根是同一个数。

()四、简答题(每题2分,共10分)1. 简述一次函数的定义。

2. 简述相似三角形的性质。

3. 简述等差数列的定义。

4. 简述平行线的性质。

5. 简述立方根和平方根的区别。

五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。

人教版九年级上册数学期末考试试卷含答案

人教版九年级上册数学期末考试试卷含答案

人教版九年级上册数学期末考试试题一、单选题1.以下关于垃圾分类的图标中是中心对称图形的是()A .B .C .D .2.如图,在平面直角坐标系中,已知ABC 与DEF 位似图形,原点O 是它们的位似中心.且3OF OC =,则ABC 与DEF 的面积之比是()A .1:2B .1:4C .1:3D .1:93.已知圆锥的高为12,底面圆的半径为5,则该圆锥的侧面展开图的面积为()A .65πB .60πC .75πD .70π4.男篮世界杯小组赛,每两队之间进行一场比赛,小组赛共进行了6场比赛,设该小组有x 支球队,则可列方程为()A .()16x x -=B .()16x x +=C .()1162x x -=D .()1162x x +=5.如图,在边长为2的等边ABC 中,D 是BC 边上的中点,以点A 为圆心,AD 为半径作圆与AB ,AC 分别交于E ,F 两点,则图中阴影部分的面积为()A .π6B .π3C .π2D .2π36.圆的直径是13cm ,如果圆心与直线上某一点的距离是6.5cm ,那么该直线和圆的位置关系是()A .相离B .相切C .相交D .相交或相切7.如图,在△ABC 中,∠CAB =70°,∠B =30°,在同一平面内,将△ABC 绕点A 逆时针旋转40°到△A′B′C′的位置,则∠CC′B′=()A .10°B .15°C .20°D .30°8.若关于x 的一元二次方程()22120m x x m m +-+--=有一根为0,则m 的值为()A .2B .1-C .2或1-D .1或2-9.已知两点()()126,,2,A y B y -均在抛物线2(0)y ax bx c a =++>上,若12y y >,则抛物线的顶点横坐标m 的值可以是()A .6-B .5-C .2-D .1-10.如图,在ABC ∆中,90ACB ∠=︒,4AC =,3BC =,P 是AB 边上一动点,PD AC ⊥于点D ,点E 在P 的右侧,且1PE =,连接CE ,P 从点A 出发,沿AB 方向运动,当E 到达点B 时,P 停止运动,在整个运动过程中,阴影部分面积12S S +的大小变化的情况是()A .一直减小B .一直增大C .先增大后减小D .先减小后增大二、填空题11.坐标平面内的点P(m ,﹣2)与点Q(3,n)关于原点对称,则m +n =__.12.已知,1x ,2x 是方程232x x -=的两根,则12x x ⋅的值为______.13.已知正三角形ABC ,则正三角形的边长为______cm.14.如图,PA 、PB 是O 的切线,其中A 、B 为切点,点C 在O 上,52ACB ∠=︒,则APB ∠=______︒.15.如图,AB 为O 的直径,C 为O 上一动点,将AC 绕点A 逆时针旋转120︒得AD ,若2AB =,则BD 的最大值为__.16.如图,将△ABC 绕点C 逆时针旋转得到△A′B′C ,其中点A′与A 是对应点,点B′与B 是对应点,点A′落在直线BC 上,连接AB′,若∠ACB =45°,AC =3,BC =2,则AB′的长为_____.17.如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数1y x =上,顶点B 在反比例函数4y x=上,点C 在x 轴的正半轴上,则平行四边形OABC 的面积是_____.18.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论:①0b >;②0a b c -+=;③一元二次方程200(1)ax bx c a +++=≠有两个不相等的实数根;④当1x <-或3x >时,0y >.上述结论中正确的是__________.(填上所有正确结论的序号)三、解答题19.解方程:2670x x --=20.如图,已知ABO ,点A 、B 坐标分别为()2,4、()2,1.(1)把ABO 绕着原点O 顺时针旋转90︒得11A B O ,画出旋转后的11A B O ;(2)在(1)的条件下,点B 旋转到点1B 经过的路径的长为______.(结果保留π)21.如图,AC 平分∠BAD ,∠B =∠ACD .(1)求证:△ABC ∽△ACD ;(2)若AB =2,AC =3,求AD 的长.22.如图,抛物线2y x mx =-+的对称轴为直线2x =(1)求抛物线解析式;(2)若关于x 的一元二次方程20x mx t -+-=(t 为实数)在13x <<的范围内有解,则t 的取值范围是______.23.脱贫攻坚取得重大胜利,是中国在2020年取得的最重要成就之一.家庭养猪是农村精准扶贫的重要措施之一.如图所示,修建一个矩形猪舍,猪舍一面靠墙,墙长13m ,另外三面用27m 长的建筑材料围成,其中一边开有一扇1m 宽的门(不包括建筑材料).(1)所围矩形猪舍的AB 边为多少时,猪舍面积为290m ?(2)所围矩形猪舍的AB 边为多少时(AB 为整数),猪舍面积最大,最大面积是多少?24.如图,四边形ABCD 内接于O ,4OC =,42AC =(1)求点O 到AC 的距离;(2)求出弦AC 所对的圆周角的度数.25.如图,反比例函数2m y x=和一次函数y=kx-1的图象相交于A (m ,2m ),B 两点.(1)求一次函数的表达式;(2)求出点B 的坐标,并根据图象直接写出满足不等式21m kx x<-的x 的取值范围.26.如图,在Rt △ABC 中,∠C =90°,以AC 为直径作⊙O 交AB 于点D ,线段BC 上有一点P .(1)当点P 在什么位置时,直线DP 与⊙O 有且只有一个公共点,补全图形并说明理由.(2)在(1)的条件下,当BP =2,AD =3时,求⊙O 半径.27.已知抛物线23y ax bx =++与x 轴分别交于点()30A -,,()10B ,,与y 轴交于点C ,对称轴DE 与x 轴交于点D ,顶点为E .(1)求抛物线的解析式;(2)若点P 为对称轴右侧且位于x 轴上方的抛物线上一动点(点P 与顶点E 不重合),PQ AE ⊥于点Q ,当PQE V 与ADE 相似时,求点P 的坐标;(3)对称轴DE 上是否存在一点M 使得2ACB AMD ∠=∠,若存在求出点M 的坐标,若不存在请说明理由.参考答案1.C【分析】根据中心对称图形的概念逐项判断即可.【详解】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意,故选:C.【点睛】本题考查中心对称图形,理解概念是解答的关键.2.D【分析】根据位似图形的概念得到AB∥DE,进而得到△OAB与△ODE相似,根据相似三角形的性质计算即可.【详解】解:∵△ABC与△DEF是位似图形,∴AB∥DE,∴△OAB∽△ODE,∴13 AB OADE OD==,∴221139 ABCDEFS ABS DE⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭.故选:D.【点睛】本题考查的是位似图形的概念和性质,掌握位似图形的对应边平行、相似三角形的性质是解题的关键.3.A【分析】利用勾股定理易得圆锥的母线长,圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】∵圆锥的高为12,底面圆的半径为5,=13,∴圆锥的侧面展开图的面积为:π×13×5=65π,故选:A .【点睛】本题考查了圆锥侧面展开图的面积问题,掌握圆锥的侧面积公式是解题的关键.4.C【分析】设该小组有x 支球队,则每个队参加(1)x -场比赛,则共有1(1)2x x -场比赛,从而可以列出一个一元二次方程.【详解】解:设该小组有x 支球队,则共有1(1)2x x -场比赛,由题意得:1(1)62x x -=,故选:C .【点睛】此题考查了一元二次方程的应用,关要求我们掌握单循环制比赛的特点:如果有n 支球队参加,那么就有1(1)2n n -场比赛,此类虽然不难求出x 的值,但要注意舍去不合题意的解.5.C【分析】由等边ABC 中,D 是BC 边上的中点,可知扇形的半径为等边三角形的高,利用扇形面积公式即可求解.【详解】ABC 是等边三角形,D 是BC 边上的中点AD BC ∴⊥,60A ∠=︒AD ∴===S 扇形AEF226060(3)3603602r πππ⨯===故选C .【点睛】本题考查了等边三角形的性质,勾股定理,扇形面积公式,熟练等边三角形性质和扇形面积公式,求出等边三角形的高是解题的关键.6.D【分析】比较圆心到直线距离与圆半径的大小关系,进行判断即可.【详解】圆的直径是13cm ,故半径为6.5cm.圆心与直线上某一点的距离是6.5cm ,那么圆心到直线的距离可能等于6.5cm 也可能小于6.5cm ,因此直线与圆相切或相交.故选D.【点睛】本题主要考查直线与圆的位置关系,需注意圆的半径为6.5cm ,那么圆心与直线上某一点的距离是6.5cm 是指圆心到直线的距离可能等于6.5cm 也可能小于6.5cm.7.A【分析】根据旋转的性质找到对应点、对应角进行解答.【详解】解:∵在△ABC 中,∠CAB =70°,∠B =30°,∴∠ACB =180°﹣70°﹣30°=80°,∵△ABC 绕点A 逆时针旋转40°得到△AB′C′,∴∠CAC′=40°,∠AC′B′=∠ACB =80°,AC =AC′,∴∠AC′C =12(180°﹣40°)=70°,∴∠CC′B′=∠AC′B′﹣∠AC′C =10°,故选:A .【点睛】本题考查了旋转的性质,掌握旋转的性质,以及三角形的内角和是解题的关键8.A【分析】根据一元二次方程和根的定义,可得10m +≠,将0x =代入求解m 即可.【详解】解:由题意可得,10m +≠,解得1m ≠-将0x =代入得:220m m --=解得2m =或1m =-(舍去)故选A【点睛】此题考查了一元二次方程的定义和根的定义,解题的关键是掌握一元二次方程的定义和根的定义,易错点为容易忽略二次项系数不为0.9.D【分析】根据题意假设点A 、B 是抛物线()20y ax bx c a =++>上的两个对称点,则此时该抛物线的对称轴为直线6222x -+==-,然后由12y y >,开口向上离对称轴越近y 的值越小,进而问题可求解.【详解】解:∵点()()126,,2,A y B y -均在抛物线()20y ax bx c a =++>上,∴假设点A 、B 是抛物线()20y ax bx c a =++>上的两个对称点,∴此时该抛物线的对称轴为直线6222x -+==-,∵12y y >,开口向上,抛物线上的点离对称轴越近,则y 的值越小,∴该抛物线的顶点横坐标2m >-,所以选项中符合题意的只有D 选项;故选D .【点睛】本题主要考查二次函数图象与性质,熟练掌握二次函数的图象与性质是解题的关键.10.D【分析】设PD=x ,AB 边上的高为h ,想办法求出AD 、h ,构建二次函数,利用二次函数的性质解决问题即可.【详解】在Rt ABC ∆中,90ACB ∠=︒ ,4AC =,3BC =,5AB ∴===,设PD x =,AB 边上的高为h ,125AC BC h AB == ,//PD BC ,ADP ACB ∆∆∽∴,∴PD AD BC AC=,43AD x ∴=,53PA x =22121415122242333(4)2()23235353210S S x x x x x x ∴+=+-=-+=-+ ∴当302x <<时,12S S +的值随x 的增大而减小,当14x时,12S S +的值随x 的增大而增大.故选D .【点睛】本题考查相似三角形的判定和性质,动点问题的函数图象,三角形面积,勾股定理等知识,解题的关键是构建二次函数,学会利用二次函数的增减性解决问题.11.1-【分析】利用关于原点对称点的性质得出m ,n 的值进而得出答案.【详解】解:∵点P(m ,-2)与点Q(3,n)关于原点对称,∴m =﹣3,n =2,∴m +n =﹣3+2=﹣1.故答案为:﹣1.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.12.-2【分析】先将方程化为一般形式,再根据一元二次方程根与系数的关系求解即可.【详解】解:∵232x x -=∴2320x x --=∵1x ,2x 是方程232x x -=的两根,∴12=2x x ⋅-故答案为:-2.【点睛】本题主要考查了一元二次方程根与系数的关系,熟练掌握一元二次方程极好与系数的关系是解答本题的关键.13.6【分析】直接利用正三角形的性质得出,再由勾股定理求出BD 的长即可解决问题.【详解】解:如图所示:连接BO ,由题意可得,OD ⊥BC ,,∠OBD=30°,故.BC=2BD由勾股定理得,3BD ===∴6cmBC =故答案为:6.【点睛】此题主要考查了正多边形和圆,正确掌握正三角形的性质是解题关键.14.76【分析】连接OA 、OB ,根据圆周角定理求得∠AOB ,由切线的性质求出∠OAP=∠OBP=90°,再由四边形的内角和等于360°,即可得出答案【详解】解:连接OA 、OB ,52ACB ∠=︒,∴∠AOB=104°∵PA 、PB 是⊙O 的两条切线,点A 、B 为切点,∴∠OAP=∠OBP=90°∵∠APB+∠OAP+∠AOB+∠OBP=360°∴∠APB=180°-(∠OAP+∠AOB+∠OBP)=76°故答案为:76151【分析】将ABD △绕点A 顺时针旋转120︒,则D 与C 重合,'B 是定点,BD 的最大值即'B C 的最大值,根据圆的性质,可知:'B O C 、、三点共线时,BD 最大,根据勾股定理可得结论.【详解】解:如图,将ABD △绕点A 顺时针旋转120︒,则D 与C 重合,'B 是定点,BD 的最大值即'B C 的最大值,即'B O C 、、三点共线时,BD 最大,过'B 作'B E AB ⊥于点E ,由题意得:'2,'120AB AB BAB ==∠=︒,∴'60EAB ∠=︒,'Rt AEB △中,'30AB E ∠=︒,∴1'1,'2AE AB EB ==,由勾股定理得:'OB =,∴''1B C OB OC =+=.1.16【分析】证明90ACB ∠'=︒,利用勾股定理求出AB '即可.【详解】解:如图,由旋转的性质可知,2CB CB ='=,45ABC BCB ∠=∠'=︒,90ACB ∴'=︒,AB ∴'===17.3【分析】过点A 作AF ⊥x 轴于点F ,过点B 作BE ⊥x 轴于点E ,延长BA 交y 轴于点G ,结合反比例系数k 的几何意义表达出矩形OFAG 和矩形OEBG 的面积,再结合平行四边形的性质求出平行四边形OABC 的面积.【详解】解:如图,过点A 作AF ⊥x 轴于点F ,过点B 作BE ⊥x 轴于点E ,延长BA 交y 轴于点G ,则四边形OFAG 和四边形OEBG 是矩形,∵点A 在反比例函数y =1x 上,点B 在反比例函数y =4x上,∴S 矩形OFAG =1,S 矩形OEBG =4,∴S ▱OABC =S 矩形ABEF =S 矩形OEBG ﹣S 矩形OFAG =4﹣1=3.故答案为:3.18.②③④.【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:由图可知,对称轴1x =,与x 轴的一个交点为()3,0,∴2b a =-,与x 轴另一个交点()1,0-,①∵0a >,∴0b <;∴①错误;②当1x =-时,0y =,∴0a b c -+=;②正确;③一元二次方程210ax bx c +++=可以看作函数2y ax bx c =++与1y =-的交点,由图象可知函数2y ax bx c =++与1y =-有两个不同的交点,∴一元二次方程200(1)ax bx c a +++=≠有两个不相等的实数根;∴③正确;④由图象可知,0y >时,1x <-或3x >∴④正确;故答案为②③④.19.x 1=7,x 2=1-【分析】观察原方程,可运用二次三项式的因式分解法进行求解.【详解】解:原方程可化为:(x-7)(x+1)=0,x-7=0或x+1=0;解得:x 1=7,x 2=1-.20.(1)见解析2【分析】(1)分别作出A ,B 的对应点1A ,1B 即可.(2)利用弧长公式计算即可.(1)如图,△11A B O即为所求作.(2)∵OB=∴点B旋转到点1B经过的路径的长==..21.(1)证明见解析;(2)92.【分析】(1)根据角平分线的性质可知∠BAC=∠CAD,再根据题意∠B=∠ACD,即可证明△ABC∽△ACD.(2)利用三角形相似的性质,可知AC ADAB AC=,再根据题意AB和AC的长,即可求出AD.【详解】(1)∵AC分∠BAD,∴∠BAC=∠CAD,∵∠B=∠ACD,∴△ABC∽△ACD.(2)∵△ABC∽△ACD,∴AC AD AB AC=,∵AB=2,AC=3,∴AD=92.22.(1)y=-x 2+4x(2)3<t≤4【分析】(1)先利用抛物线的对称轴方程求出即可得到抛物线解析式为y=-x 2+4x ;(2)配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x 2+4x 与直线y=t 在1<x<3的范围内有公共点可确定t 的范围.(1)∵抛物线y=-x 2+mx 的对称轴为直线x=2,∴22(1)m -=⨯-,解得m=4,∴抛物线解析式为y=-x 2+4x ,(2)∵y=-x 2+4x=2(2)4x --+,∴抛物线的顶点坐标为(2,4),当x=1时,y=-x 2+4x=3;当x=3时,y=-x 2+4x=3,∵关于x 的一元二次方程-x 2+mx-t=0(t 为实数)在1<x<3的范围内有解,∴抛物线y=-x 2+4x 与直线y=t 在1<x<3的范围内有公共点,如图,∴3<t≤4.故答案为:3<t≤4【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.23.(1)9m(2)AB 为8m 时,面积最大,最大面积是296m .【分析】(1)设m AB x =,则()2721m AD x =-+,根据题意列式即可;(2)设m AB x =,所围矩形猪圈的面积为2m y ,列出二次函数解析式,根据二次函数性质和猪舍的AB 边的取值范围即可得出结论.(1)解:(1)设m AB x =,则()2721m AD x =-+.根据题意可得:()272190x x -+=,解得:15=x ,29x =.当5x =时,27211813x -+=>,不符合题意,舍去;当9x =时,27211013x -+=<,符合题意.答:AB 为9m 时,猪舍的面积为290m .(2)(2)设m AB x =,所围矩形猪圈的面积为2m y .()()2227212282798y x x x x x =-+=-+=--+028213x <-≤ ,7.514x ∴≤<.∵()22798y x =--+,图像开口向下,在对称轴7x =的右侧随x 增大而减小,∴当AB 为整数时,8x =,272112x -+=时,96y =最大值.答:AB 为8m 时,面积最大,最大面积是296m .【点睛】本题主要考查了二次函数与一元二次方程的应用,找准等量关系,正确列出二次函数解析式和一元二次方程是解题的关键.24.(1)(2)∠B =45°,∠D=135°.【分析】(1)连接OA ,作OH ⊥AC 于H ,根据勾股定理的逆定理得到∠AOC=90°,根据等腰直角三角形的性质解答;(2)根据圆周角定理求出∠B ,根据圆内接四边形的性质计算,得到答案.(1)连接OA ,作OH ⊥AC 于H ,∵4OA OC ==,AC =∴22224432OA OC +=+=,232AC ==,∴OA 2+OC 2=AC 2,∴△AOC 为等腰直角三角形,90,AOC ∠=︒又∵OH AC ⊥,∴AH CH =,∴OH=12AC=O 到AC 的距离为(2)90,AOC Ð=°Q ∴∠B=12∠AOC=45°,∵四边形ABCD 内接于⊙O ,∴∠D=180°-45°=135°.综上所述:弦AC 所对的圆周角∠B =45°,∠D=135°.【点睛】本题考查的是圆内接四边形的性质,圆周角定理,勾股定理的逆定理,掌握圆内接四边形对角互补是解本题的关键.25.(1)y=3x-1;(2)203x -<<或x >1.【分析】(1)把A (m ,2m )代入2m y x =,求得A 的坐标为(1,2),然后代入一次函数y=kx-1中即可得出其解析式;(2)联立方程求得交点B 的坐标,然后根据函数图象即可得出结论.【详解】(1)∵A(m ,2m)在反比例函数图象上,∴22m m m=,∴m=1,∴A(1,2).又∵A(1,2)在一次函数y=kx-1的图象上,∴2=k-1,即k=3,∴一次函数的表达式为:y=3x-1.(2)由231y x y x ⎧=⎪⎨⎪=-⎩解得B(23-,-3)∴由图象知满足21m kx x<-的x 取值范围为203x -<<或x >1.【点睛】本题考查的是反比例函数的图象与一次函数图象的交点问题,根据题意利用数形结合求出不等式的解集是解答此题的关键.26.(1)补图见解析;理由见解析;(2)2.【分析】(1)根据题意补全图形如图所示,情况一:点P 在过点D 与OD 垂直的直线与BC 的交点处,根据切线的定义即可得到结论;情况二:如图,当点P 是BC 的中点时,直线DP 与⊙O 有且只有一个公共点,连接CD ,OD ,根据圆周角定理得到∠ADC=∠BDC=90°,根据直角三角形的性质得到DP=CP ,根据切线的判定定理即可得到结论;(2)由题意可知在Rt △BCD 中,根据直角三角形的性质得到BC=2BP ,求得,根据相似三角形的性质和勾股定理即可得到结论.【详解】解:(1)补全图形如图所示,情况一:点P 在过点D 与OD 垂直的直线与BC 的交点处,理由:经过半径外端,并且垂直于这条半径的直线是圆的切线;情况二:如图,当点P 是BC 的中点时,直线DP 与⊙O 有且只有一个公共点,证明:连接CD ,OD ,如上图,∵AC 是⊙O 的直径,∴∠ADC =∠BDC =90°,∵点P 是BC 的中点,∴DP =CP ,∴∠PDC =∠PCD ,∵∠ACB =90°,∴∠PCD+∠DCO =90°,∵OD =OC ,∴∠DCO =∠ODC ,∴∠PDC+∠ODC =90°,∴∠ODP =90°,∴DP ⊥OD ,∴直线DP 与⊙O 相切;(2)在Rt △BCD 中,∵∠BDC =90°,P 是BC 的中点,∴BC =2BP ,∵BP =2,∴BC ,∵∠ACB =∠BDC =90°,∠B =∠B ,∴△ACB ∽△CDB ,∴AB BC BC BD=,∴2BC AB BD = ,设AB =x ,∵AD =3,∴BD =x ﹣3,∴x (x ﹣3)2,∴x =5(负值舍去),∴AB =5,∵∠BDC =90°,∴AC∴OC =12AC即⊙O27.(1)223y x x =--+;(2)12039P ⎛⎫ ⎪⎝⎭,;(3)存在,点M 的坐标为()11M -,或()11--,【分析】(1)利用待定系数法求出抛物线的解析式;(2)由P 的位置分析得只能是PEQ EAD △△∽,得QEP EAD ∠=∠.延长EP 交x 轴于F ,则AF EF =,设()0F m ,,由两点间距离公式可列方程得到F 点的坐标,用待定系数法求直线EF 的解析式,于抛物线联立即可求得P 点坐标;(3)当点M 在x 轴上方时,连接MA ,MB ,由抛物线的对称性可知MA=MB ,则2=AMB AMD ACB ∠=∠∠,利用圆中同弧所对圆周角相等的性质得圆心O '在对称轴上,设O '的坐标为()1,m -,根据AO CO BO MO ''''===,可列方程求得O '的坐标,从而求得M 的坐标,最后由轴对称性质可知另一点M '的坐标.【详解】解:(1)把()30A -,,()10B ,,点坐标分别代入抛物线解析式,得:933030a b a b -+=⎧⎨++=⎩解得:1a =-,2b =-∴抛物线的解析式:223y x x =--+(2)如图,只能是PEQ EAD △△∽,得QEP EAD ∠=∠.延长EP 交x 轴于F ,∴AF EF =,∴22AF EF =设()0F m ,,则()()222341m m +=++∴2m =,即()20F ,.设直线EF 的解析式为11y k x b =+,则1111420k b k b -+=⎧⎨+=⎩,解之得114383k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线EF 的解析式4833y x =-+.联立2483323y x y x x ⎧=-+⎪⎨⎪=--+⎩,解得13209x y ⎧=⎪⎪⎨⎪=⎪⎩或14x y =-⎧⎨=⎩(舍去)∴12039P ⎛⎫⎪⎝⎭,.(3)如图2,当点M 在x 轴上方时,连接MA ,MB ,设O '的坐标为()1,m -,若AO CO BO MO ''''===,则点A ,B ,C ,M 四点在以O '为圆心的圆上∴ACB AMB∠=∠∵DE 是抛物线的对称轴,∴AMD BMD ∠=∠,∴2AMB AMD ∠=∠,∴2ACB AMD ∠=∠,∵()30A -,,()03C ,,AO CO ''=,∴AO '=CO '=∴()22413m m +=+-,∴1m =,∴()11O '-,,CO AO ''=∴1MD =,∴()11M -+,当点M 在x 轴下方时,由对称知,()11M --,,即:点M 的坐标为()11M -+,或()11-,.。

最新人教版九年级数学上册期末考试题(完整版)

最新人教版九年级数学上册期末考试题(完整版)

最新人教版九年级数学上册期末考试题(完整版)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的倒数是()A. B. C. D.2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见, 随机对全校100名学生家长进行调查, 这一问题中样本是()A. 100B. 被抽取的100名学生家长C. 被抽取的100名学生家长的意见D. 全校学生家长的意见3. 下列说法正确的是()A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是14.如图, 数轴上的点A, B, O, C, D分别表示数-2, -1, 0, 1, 2, 则表示数的点P应落在A. 线段AB上B. 线段BO上C. 线段OC上D. 线段CD上5.下列对一元二次方程x2+x﹣3=0根的情况的判断, 正确的是()A. 有两个不相等实数根B. 有两个相等实数根C. 有且只有一个实数根D. 没有实数根6. 正十边形的外角和为()A. 180°B. 360°C. 720°D. 1440°7.如图, 点B、F、C、E在一条直线上, AB∥ED, AC∥FD, 那么添加下列一个条件后, 仍无法判定△ABC≌△DEF的是()A. AB=DEB. AC=DFC. ∠A=∠DD. BF=EC8.如图, 已知是的角平分线, 是的垂直平分线, , , 则的长为()A. 6B. 5C. 4D.9.如图, △ABC中, AD是BC边上的高, AE、BF分别是∠BAC、∠ABC的平分线, ∠BAC=50°, ∠ABC=60°, 则∠EAD+∠ACD=()A. 75°B. 80°C. 85°D. 90°10.下列所给的汽车标志图案中, 既是轴对称图形, 又是中心对称图形的是()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 化简: =____________.2. 因式分解: a3-ab2=____________.3. 已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0, 则m=_____.4. 如图, 直线与抛物线交于, 两点, 点是轴上的一个动点, 当的周长最小时, __________.5.把图1中的菱形沿对角线分成四个全等的直角三角形, 将这四个直角三角形分别拼成如图2, 图3所示的正方形, 则图1中菱形的面积为__________.6. 菱形的两条对角线长分别是方程的两实根, 则菱形的面积为__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 先化简, 再求值: , 其中a= +1.3. 如图, 在Rt△ABC中, ∠ACB=90°, ∠A=40°, △ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE, 交AC的延长线于点F, 求∠F的度数.4. 如图, 点A, B, C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上, AB∥x轴, ∠ABC=135°, 且AB=4.(1)填空: 抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2, 当2m﹣5≤x≤2m﹣2时, y的最大值为2, 求m的值.5. 在一次中学生田径运动会上, 根据参加男子跳高初赛的运动员的成绩(单位: m), 绘制出如下的统计图①和图②, 请根据相关信息, 解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩, 由高到低确定9人进入复赛, 请直接写出初赛成绩为1.65m的运动员能否进入复赛.6. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元, 甲种图书每本的售价是乙种图书每本售价的1.4倍, 若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者, 决定甲种图书售价每本降低3元, 乙种图书售价每本降低2元, 问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、C3、D4、B5、A6、B7、C8、D9、A10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、22.a(a+b)(a﹣b)3、24、12 5.5.12.6、24三、解答题(本大题共6小题, 共72分)1、无解2、3.(1) 65°;(2) 25°.4、(1)(m, 2m﹣5);(2)S△ABC =﹣;(3)m的值为或10+2 .5.(1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、(1)甲种图书售价每本28元, 乙种图书售价每本20元;(2)甲种图书进货533本, 乙种图书进货667本时利润最大.。

人教版九年级上册《数学》期末考试卷及答案【可打印】

人教版九年级上册《数学》期末考试卷及答案【可打印】

人教版九年级上册《数学》期末考试卷及答案【可打印】一、选择题(每题1分,共5分)1. 若x^2 3x + 2 = 0,则x的值为多少?A. 1B. 2C. 1D. 22. 若sin(θ) = 1/2,则θ的值为多少?A. 30°B. 45°C. 60°D. 90°3. 若一个正方形的边长为4cm,则其面积为多少?A. 16cm^2B. 8cm^2C. 12cm^2D. 6cm^24. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则其体积为多少?A. 24cm^3B. 12cm^3C. 6cm^3D. 8cm^35. 若一个等腰三角形的底边长为6cm,腰长为5cm,则其面积为多少?A. 15cm^2B. 10cm^2C. 12cm^2D. 8cm^2二、判断题(每题1分,共5分)1. 一个等边三角形的三个内角都是60°。

()2. 一个正方形的对角线互相垂直且平分。

()3. 一个圆的半径是直径的一半。

()4. 一个长方体的对角线互相垂直。

()5. 一个等腰三角形的底角等于顶角。

()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角是______度。

2. 一个正方形的对角线长是边长的______倍。

3. 一个圆的周长是直径的______倍。

4. 一个长方体的体积是长、宽、高的______。

5. 一个等腰三角形的底边长是腰长的______倍。

四、简答题(每题2分,共10分)1. 简述等边三角形的性质。

2. 简述正方形的性质。

3. 简述圆的性质。

4. 简述长方体的性质。

5. 简述等腰三角形的性质。

五、应用题(每题2分,共10分)1. 一个等边三角形的边长为10cm,求其周长。

2. 一个正方形的边长为8cm,求其对角线长。

3. 一个圆的直径为14cm,求其周长。

4. 一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积。

5. 一个等腰三角形的底边长为10cm,腰长为8cm,求其周长。

2024年人教版初三数学上册期末考试卷(附答案)

2024年人教版初三数学上册期末考试卷(附答案)

2024年人教版初三数学上册期末考试卷一、选择题(每题1分,共5分)1. 已知一个等腰三角形的底边长为8cm,腰长为5cm,则这个三角形的周长是()cm。

A. 18B. 20C. 22D. 242. 下列哪个数不是有理数?()A. 3/4B. 0C. √2D. 2/33. 一个正方形的周长是36cm,那么它的面积是()cm²。

A. 36B. 81C. 144D. 1964. 如果一个圆的半径是4cm,那么它的面积是()cm²。

A. 16πB. 32πC. 64πD. 128π5. 下列哪个图形是中心对称图形?()A. 矩形B. 梯形C. 圆D. 三角形二、判断题(每题1分,共5分)1. 一个数的平方根是唯一的。

()2. 两个全等的三角形一定是相似的。

()3. 一个等腰三角形的底角一定是锐角。

()4. 一个圆的周长等于它的直径的π倍。

()5. 一个平行四边形的对角线互相垂直。

()三、填空题(每题1分,共5分)1. 一个数的立方根是它自己的数叫做______数。

2. 一个等腰三角形的两个底角是______角。

3. 一个圆的半径是5cm,那么它的周长是______cm。

4. 一个正方形的边长是6cm,那么它的周长是______cm。

5. 一个等腰梯形的两个底角是______角。

四、简答题(每题2分,共10分)1. 简述有理数的概念。

2. 简述等腰三角形的性质。

3. 简述圆的性质。

4. 简述平行四边形的性质。

5. 简述等腰梯形的性质。

五、应用题(每题2分,共10分)1. 已知一个等腰三角形的底边长为10cm,腰长为8cm,求这个三角形的周长。

2. 已知一个正方形的周长为36cm,求它的面积。

3. 已知一个圆的半径为5cm,求它的面积。

4. 已知一个平行四边形的底边长为8cm,高为6cm,求它的面积。

5. 已知一个等腰梯形的上底长为8cm,下底长为12cm,高为5cm,求它的面积。

六、分析题(每题5分,共10分)1. 分析有理数和无理数的区别。

2024年最新人教版初三数学(上册)期末试卷及答案(各版本)

2024年最新人教版初三数学(上册)期末试卷及答案(各版本)

2024年最新人教版初三数学(上册)期末试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列函数中,哪个函数是奇函数?A. y = x^3B. y = x^2C. y = |x|D. y = x^43. 下列哪个图形是正方体?A. 长方体B. 正方体C. 球体D. 圆柱体4. 下列哪个命题是假命题?A. 对顶角相等B. 两直线平行,同旁内角相等C. 两直线平行,内错角相等D. 两直线平行,同旁内角互补5. 下列哪个数是无理数?A. 1/2B. √9C. πD. 0.333二、判断题5道(每题1分,共5分)1. 任何两个实数的和都是实数。

()2. 任何两个实数的积都是实数。

()3. 0是正数。

()4. 1是质数。

()5. 2是偶数。

()三、填空题5道(每题1分,共5分)1. 两个角的和为180°,这两个角互为__________。

2. 两个角的和为90°,这两个角互为__________。

3. 两个角的和为360°,这两个角互为__________。

4. 两个角的和为270°,这两个角互为__________。

5. 两个角的和为__________°,这两个角互为补角。

四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。

2. 请简要说明无理数的定义。

3. 请简要说明实数的定义。

4. 请简要说明函数的定义。

5. 请简要说明奇函数的定义。

五、应用题:5道(每题2分,共10分)1. 计算下列表达式的值:(3/4 + 1/3) ÷ (5/6 1/2)2. 计算下列表达式的值:(2/3)^2 × (3/4)^33. 计算下列表达式的值:√(27) + √(48) √(75)4. 计算下列表达式的值:log2(64) + log2(16) log2(8)5. 计算下列表达式的值:sin(45°) + cos(45°) tan(45°)六、分析题:2道(每题5分,共10分)1. 请分析并解释勾股定理及其应用。

人教版九年级上册数学期末考试试卷附答案

人教版九年级上册数学期末考试试卷附答案

人教版九年级上册数学期末考试试题一、单选题1.用配方法解方程x 2+2x-1=0时,配方结果正确的是()A .()212x +=B .()222x +=C .()213x +=D .()223x +=2.下列二次函数中,其图象的对称轴为x =﹣2的是()A .y =2x 2﹣2B .y =﹣2x 2﹣2C .y =2(x ﹣2)2D .y =(x+2)23.下列标志图中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .4.抛物线223y x x =--与x 轴的两个交点间的距离是()A .-1B .-2C .2D .45.将抛物线y =2(x ﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A .y =2x 2+1B .y =2x 2﹣3C .y =2(x ﹣8)2+1D .y =2(x ﹣8)2﹣36.将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为A .110°B .120°C .150°D .160°7.如图,⊙O 的半径为2,点C 是圆上的一个动点,CA ⊥x 轴,CB ⊥y 轴,垂足分别为A 、B ,D 是AB 的中点,如果点C 在圆上运动一周,那么点D 运动过的路程长为()A .4πB .2πC .πD .2π8.如图是二次函数y =ax 2+bx+c (a≠0)图象的一部分,对称轴是直线x =﹣2.关于下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b+c >0;④b ﹣4a =0;⑤方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4,其中正确的结论有()A .2个B .3个C .4个D .5个9.如图,ABCD 为正方形,O 为对角线AC,BD 的交点,则△COD 绕点O 经过下列哪种旋转可以得到△DOA ()A .顺时针旋转90°B .顺时针旋转45°C .逆时针旋转90°D .逆时针旋转45°10.已知二次函数y =ax2+bx+c 的图象与x 轴交于A ,B 两点,对称轴是直线x =﹣1,若点A 的坐标为(1,0),则点B 的坐标是()A .(﹣2,0)B .(0,﹣2)C .(0,﹣3)D .(﹣3,0)二、填空题11.一元二次方程()()320x x --=的根是_____.12.抛物线y =(x+2)2+1的顶点坐标为_____.13.从实数﹣1、﹣2、1中随机选取两个数,积为负数的概率是________.14.如图,△DEC 与△ABC 关于点C 成中心对称,AB =3,AC =1,∠D =90°,则AE 的长是_____.15.已知扇形的圆心角为120°,它所对弧长为20πcm ,则扇形的半径为_____.16.若关于x 的函数2y kx 2x 1=+-与x 轴仅有一个公共点,则实数k 的值为___17.已知点P (x 0,m ),Q (1,n )在二次函数y =(x+a )(x ﹣a ﹣1)(a≠0)的图象上,且m <n 下列结论:①该二次函数与x 轴交于点(﹣a ,0)和(a+1,0);②该二次函数的对称轴是x =12;③该二次函数的最小值是(a+2)2;④0<x 0<1.其中正确的是_____.(填写序号)三、解答题18.解方程:2680x x -+=19.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =10cm ,CD =16cm ,求AE 的长.20.已知二次函数2y ax bx =+的图象过点()2,0,()1,6-.(1)求二次函数的关系式;(2)写出它与x 轴的两个交点及顶点坐标.21.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.(1)请直接写出袋子中白球的个数.(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)22.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根?(2)当Rt△ABC的斜边a b和c恰好是这个方程的两个根时,求k的值.23.已知⊙O的直径AB、CD互相垂直,弦AE交CD于F,若⊙O的半径为R,求证:AE•AF =2R2.24.在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;(Ⅱ)不论a取何实数,该抛物线都经过定点H.①求点H的坐标;②证明点H是所有抛物线顶点中纵坐标最大的点.25.ΔABC为等腰三角形,O为底边BC的中点,腰AB与 O相切于点D.求证:AC是 O的切线.26.某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价2元,每天可多销售16件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?参考答案1.A【分析】先把常数项移到方程右边,再把方程两边同时加上一次项系数一半的平方,然后把方程左边写成完全平方形式即可.【详解】解:∵x2+2x﹣1=0,∴x2+2x=1,∴x2+2x+1=2,∴(x+1)2=2.故选:A.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.2.D【分析】根据二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质逐项分析即可.【详解】A.y=2x2﹣2的对称轴是x=0,故该选项不正确,不符合题意;;B.y=﹣2x2﹣2的对称轴是x=0,故该选项不正确,不符合题意;;C.y=2(x﹣2)2的对称轴是x=2,故该选项不正确,不符合题意;;D.y=(x+2)2的对称轴是x=-2,故该选项正确,符合题意;;故选D【点睛】本题考查了二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质,y=a(x-h)2+k是抛物线的顶点式,其顶点是(h,k),对称轴是x=h.熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键.3.B【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A 、不是轴对称图形,是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、是轴对称图形,不是中心对称图形,不符合题意;D 、不是轴对称图形,也不是中心对称图形,不符合题意.故选B .【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.4.D 【分析】求解得到方程的两个根,用较大根减去小根即可.【详解】令y=0,得2230x x --=,解得123,1x x ==-,∴两个交点间的距离是3-(-1)=4,故选D .【点睛】本题考查了抛物线与x 轴的交点,一元二次方程的解法,正确理解题意,找到合理的解题方法是解题的关键.5.A 【分析】根据二次函数平移的规律“上加下减,左加右减”的原则即可得到平移后函数解析式.【详解】解:抛物线y =2(x ﹣4)2﹣1先向左平移4个单位长度,得到的抛物线解析式为y =2(x ﹣4+4)2﹣1,即y =2x 2﹣1,再向上平移2个单位长度得到的抛物线解析式为y =2x 2﹣1+2,即y =2x 2+1;故选:A .【点睛】本题考查的是二次函数图象平移变换,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.6.A 【详解】设C′D′与BC 交于点E ,如图所示:∵旋转角为20°,∴∠DAD′=20°,∴∠BAD′=90°−∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°−70°−90°−90°=110°,∴∠1=∠BED′=110°.故选:A .7.D 【分析】根据题意可知,四边形OACB 是矩形,D 为AB 的中点,连接OC ,可知D 点是矩形的对角线的交点,那么当C 点绕圆O 旋转一周时,D 点也会以OD 长为半径旋转一周,D 点的轨迹是一个以O 为圆心,以OD 长为半径的圆,计算圆的周长即可.【详解】如图,连接OC ,∵CA ⊥x 轴,CB ⊥y 轴,∴四边形OACB 是矩形,∵D 为AB 中点,∴点D 在AC 上,且OD =12OC ,∵⊙O 的半径为2,∴如果点C 在圆上运动一周,那么点D 运动轨迹是一个半径为1圆,∴点D 运动过的路程长为2π•1=2π,故选:D .【点睛】本题考查了动点问题,解决本题的关键是能够判断出D 点的运动轨迹是一个半径为1的圆.8.C 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵22ba-=-,∴b =4a ,ab >0,∴b ﹣4a =0,∴①错误,④正确,∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4,∴②⑤正确,∵当x =﹣3时y >0,即9a ﹣3b+c >0,∴③正确,故正确的有②③④⑤.故选:C .【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用9.C 【详解】试题分析:因为四边形ABCD 为正方形,所以∠COD=∠DOA=90°,OC=OD=OA ,则△COD 绕点O 逆时针旋转得到△DOA ,旋转角为∠COD 或∠DOA .故选C .考点:旋转的性质10.D 【分析】利用点B 与点A 关于直线x=-1对称确定B 点坐标.【详解】解:∵二次函数y =ax 2+bx+c 的图象与x 轴交于A ,B 两点,∴点A 与点B 关于直线x =﹣1对称,而对称轴是直线x =﹣1,点A 的坐标为(1,0),∴点B 的坐标是(﹣3,0).故选D .【点睛】本题考查抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.11.123,2==x x 【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可.【详解】解:30x -=或20x -=,所以123,2==x x .故答案为123,2==x x .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.12.(﹣2,1)【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【详解】由抛物线的顶点坐标可知,抛物线y =(x+2)2+1的顶点坐标是(﹣2,1).故答案为:(﹣2,1).【点睛】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.13.23【详解】从实数-1、-2、1中随机选取两个数共有以下三种等可能情况:①-1,-2;②-1,1;③-2,1;其中乘积为负数的是②、③两种,∴从实数-1,-2,1中随机选取两个数,积为负数的概率是:23.故答案为23.141,3CD AC DE AB ====,再利用勾股定理即可得.【详解】DEC ∆ 与ABC ∆关于点C 成中心对称ABC DEC∴∆≅∆1,3CD AC DE AB ∴====2AD CD AC ∴=+=90D ∠=︒AE ∴===【点睛】本题考查了中心对称图形的性质、勾股定理,熟记中心对称图形的性质是解题关键.15.30cm .【分析】根据扇形弧长公式代入计算即可解决.【详解】根据题意得12020180rππ⨯⨯=,r =30cm ,故答案为30cm .【点睛】本题考查了扇形弧长公式的应用,解决本题的关键是熟练掌握扇形弧长公式.16.0或-1##-1或0【详解】由于没有交待是二次函数,故应分两种情况:当k=0时,函数y 2x 1=-是一次函数,与x 轴仅有一个公共点.当k≠0时,函数2y kx 2x 1=+-是二次函数,若函数与x 轴仅有一个公共点,则2210kx x +-=有两个相等的实数根,即()224k 10∆=-⋅⋅-=,解得:k 1=-,故答案为:0或-1.17.①②④.【分析】(1)根据二次函数的解析式,求出与x 轴的交点坐标,即可判断①;(2)用与x 轴交点的横坐标相加除以2,即可求证结论②;(3)将二次函数交点式转化为顶点式,得到顶点坐标,即可求证③;(4)讨论P 点分别在对称轴的左侧和右侧两种情况,根据函数的增减性,计算x 0的范围即可.【详解】①∵二次函数y =(x+a )(x ﹣a ﹣1),∴当y =0时,x 1=﹣a ,x 2=a+1,即该二次函数与x 轴交于点(﹣a ,0)和(a+1,0).故①结论正确;②对称轴为:12122x x x +==.故②结论正确;③由y =(x+a )(x ﹣a ﹣1)得到:y =(x ﹣12)2﹣(a+12)2,则其最小值是﹣(a+12)2,故③结论错误;④当P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,由m <n ,得0<x 0≤12;当P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得12<x 0<1,综上所述:m <n ,所求x 0的取值范围0<x 0<1.故④结论正确.故答案是:①②④.【点睛】本题考查了二次函数性质的应用,解决本题的关键是熟练掌握二次函数不同形式解析式之间的相互转化,正确理解掌握二次函数的性质.18.x 1=4,x 2=2【分析】原方程运用因式分解法求解即可【详解】解:2680x x -+=(x -4)(x -2)=0x -4=0或x -2=0∴x 1=4,x 2=2【点睛】本题主要考查了解一元二次方程,灵活选用方法是解答本题的关键19.AE =16cm .【分析】根据垂径定理,计算出CE 的长度,再根据勾股定理计算OE 的长度,两者相加即可解决问题.【详解】∵弦CD ⊥AB 于点E ,CD =16cm ,∴CE =12CD =8cm .在Rt △OCE 中,OC =10cm ,CE =8cm ,∴6OE ===(cm ),∴AE =AO+OE =10+6=16(cm ).【点睛】本题考查了圆中计算问题,解决本题的关键是:①熟练掌握垂径定理及其推论,②熟练掌握勾股定理.20.(1)224y x x=-(2)与x 轴的两个交点坐标分别是:()0,0,()2,0;顶点坐标是()1,2-【分析】(1)把点(2,0),(−1,6)代入二次函数y =ax 2+bx ,得出关于a 、b 的二元一次方程组,求得a 、b 即可;(2)将(1)中解析式转化为两点式或顶点式,即可求得抛物线与x 轴的交点坐标和顶点坐标.(1)解:把点()2,0,()1,6-代入二次函数2y ax bx =+,得4206a b a b +=⎧⎨-=⎩,解得24a b =⎧⎨=-⎩,因此二次函数的关系式224y x x =-;(2)解:∵224y x x =-=2x (x−2),∴该抛物线与x 轴的两个交点坐标分别是(0,0),(2,0).∵224y x x =-=2(x−1)2−2,∴二次函数224y x x =-的顶点坐标(1,−2).21.(1)袋子中白球有2个;(2)59.【分析】(1)设袋子中白球有x 个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【详解】解:(1)设袋子中白球有x 个,根据题意得:213x x =+,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:59.22.(1)见解析;(2)3【分析】(1)根据根的判别式的符号来证明;(2)根据韦达定理得到b+c=2k+1,bc=4k-3.又在直角△ABC 中,根据勾股定理,得(b+c )2﹣2bc 2,由此可以求得k 的值.【详解】(1)证明:∵△=[﹣(2k+1)]2﹣4×1×(4k ﹣3)=4k 2﹣12k+13=(2k ﹣3)2+4,∴无论k 取什么实数值,总有=(2k ﹣3)2+4>0,即△>0,∴无论k 取什么实数值,该方程总有两个不相等的实数根;(2)解:∵两条直角边的长b 和c 恰好是方程x 2﹣(2k+1)x+4k ﹣3=0的两个根,得∴b+c =2k+1,bc =4k ﹣3,又∵在直角△ABC 中,根据勾股定理,得b 2+c 2=a 2,∴(b+c)2﹣2bc2,即(2k+1)2﹣2(4k﹣3)=31,整理后,得k2﹣k﹣6=0,解这个方程,得k=﹣2或k=3,当k=﹣2时,b+c=﹣4+1=﹣3<0,不符合题意,舍去,当k=3时,b+c=2×3+1=7,符合题意,故k=3.23.见解析【详解】连接BE,根据圆周角定理可的∠AEB=90,再有AB⊥CD,公共角∠A,即可证得△AOF∽△AEB,根据相似三角形的对应边成比例即得结果.解:如图,连接BE,∵AB为⊙O的直径∴∠AEB=90°∵AB⊥CD∴∠AOF=90°∴∠AOF=∠AEB=90°又∠A=∠A∴△AOF∽△AEB∴AE•AF=AO•AB∵AO=R,AB=2R所以AE•AF=2R2.24.(Ⅰ)a=﹣1,抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①点H的坐标为(2,6);2②证明见解析.【分析】(I)根据该抛物线与x轴的一个交点为(-1,0),可以求得的值及该抛物线与x轴另一交点坐标;(II)①根据题目中的函数解析式可以求得点H的坐标;②将题目中的函数解析式化为顶点式,然后根据二次函数的性质即可证明点H是所有抛物线顶点中纵坐标最大的点.【详解】(Ⅰ)∵抛物线y=x2﹣2ax+4a+2与x轴的一个交点为(﹣1,0),∴0=(﹣1)2﹣2a×(﹣1)+4a+2,解得,a=﹣12,∴y=x2+x=x(x+1),当y=0时,得x1=0,x2=﹣1,即抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①∵抛物线y=x2﹣2ax+4a+2=x2+2﹣2a(x﹣2),∴不论a取何实数,该抛物线都经过定点(2,6),即点H的坐标为(2,6);②证明:∵抛物线y=x2﹣2ax+4a+2=(x﹣a)2﹣(a﹣2)2+6,∴该抛物线的顶点坐标为(a,﹣(a﹣2)2+6),则当a=2时,﹣(a﹣2)2+6取得最大值6,即点H是所有抛物线顶点中纵坐标最大的点.25.见解析.【分析】过点O作OE⊥AC于点E,连结OD,OA,根据切线的性质得出AB⊥OD,根据等腰三角形三线合一的性质得出AO是∠BAC的平分线,根据角平分线的性质得出OE=OD,从而证得结论.【详解】证明:过点O作OE⊥AC于点E,连结OD,OA,∵AB与O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是O的半径,∵AC经过O的半径OE的外端点且垂直于OE,∴AC是O的切线。

人教版九年级上册数学期末考试试卷有答案

人教版九年级上册数学期末考试试卷有答案

人教版九年级上册数学期末考试试题一、单选题1.如图所示四个图标中,属于中心对称图形的是()A.B.C.D.2.抛物线y=3(x﹣1)2+2的顶点坐标是()A.(1,﹣2)B.(﹣1,2)C.(1,2)D.(﹣1,﹣2)3.如果∠A是锐角,且sinA=12,那么∠A的度数是()A.90°B.60°C.45°D.30°4.如图,OA、OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠C的度数()A.90°B.60°C.45°D.30°5.在半径为6的圆中,120°的圆心角所对的弧长是()A.3πB.4πC.6πD.12π6.如图,△ABC中,点D是AB的中点,DE∥BC交AC于点E,下面结论中正确的是A.12AE AC=B.BC=3DEC.S梯形BCDE=4S△ADE D.AD DEBD BC=7.如图,Rt △ABC 中,∠C =90°,BC AC tanA 的值是()AB .1CD .无法确定8.已知函数y=x 2+2x ﹣3,当x=m 时,y <0,则m 的值可能是()A .4B .0C .2D .39.如图,△ABC 中,AB =AC ,AD 是BC 边上的中线.按下列步骤作图:①分别以点A 、C 为圆心,大于12AC 的长为半径作弧,相交于M 、N 两点;②直线MN 交AD 于点E ;③连接EB .下列结论中错误的是()A .AD ⊥BCB .EA =EBC .∠AEB =2∠ACBD .∠EBD =2∠EBA10.Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 旋转得到△ADE ,且点D 恰好在AC 上,sin ∠DCE 的值是()A .12B .35C D 二、填空题11.在平面直角坐标系中,点P 、点Q 关于原点对称,若点P 的坐标是(2,3),则点Q 的坐标是.12.如图,△ABC 中,D 、E 分别在BA 、CA 延长线上,DE ∥BC ,23AE AC =,DE =1,BC 的长度是_________.13.若点A (2,y1),B y 2)在抛物线y =x 2﹣2x+1上,则用不等号表示y 1、y 2的大小关系是_____.14.如图,抛物线y =﹣x 2+2x+3的对称轴交抛物线于点P ,交x 轴于点Q ,点A 是PQ 右侧的抛物线上的一点,过点P 做PB ⊥PA 交x 轴于点B ,若设点A 的横坐标为t (t >1),线段BQ 的长度为d ,则d 与t 的函数关系式是_____.15.如图,在O 中、三条劣弧AB 、BC 、CD 的长都相等,弦AC 与BD 相交于点E ,弦BA 与CD 的延长线相交于点F ,且40F ∠=︒,则AED ∠的度数为________.16.如图,把△ABC 绕点A 旋转一定角度得到△ADE ,BC 与DE 交于F ,连接CE ,若∠BFD =20°,则∠ACE =_____度.三、解答题17.确定抛物线y=﹣x2+6x+1的开口方向、对称轴和顶点.18.如图,正方形网格中每个小正方形的边长都是1.将△ABC绕点P逆时针旋转90°后得到△A'B'C',其中A和A',B和B',C和C'是对应点.(1)画出△A'B'C';(2)在该网格中建立平面直角坐标系,点P,A坐标分别为P(0,1),A(1,1),直接写出该坐标系下A',B',C'的坐标.19.如图,四边形ABCD内接于⊙O,AB=12cm,AD=5cm,BD为直径,AC平分∠BAD,求BC的长.20.在△ABC和△ADE中,点E在BC上,已知∠B=∠D,∠DAB=∠EAC.(1)求证:△ABC ∽△ADE ;(2)若AC ∥DE ,∠AEC =45°,求∠C 的度数.21.如图,O 上有A ,B ,C 三点,AC 是直径,点D 是 AB 的中点,连接CD 交AB 于点E ,点F 在AB 延长线上且FC FE =.(1)求证:CF 是O 的切线;(2)若6BF =,4sin 5F =,求O 的半径.22.某班计划购买A ,B 两种花苗,根据市场调查整理出表:A 种花苗盆数B 种花苗盆数花费(元)35220410380(1)求A ,B 两种花苗的单价;(2)经过班级学生商讨,决定购买A ,B 两种花苗12盆(A ,B 两种花苗都必须有),同时得到了优惠方式:购买几盆A 种花,A 种花苗每盆就降价几元.请设计花费最少的购买方案.23.如图,Rt △ABC 中,∠C =90°,AB =10,AC =8.点D 是线段AC 上的一点,点E 在射线CB 上且∠CDE =∠B .(1)求BC 的长;(2)若AD =x ,△CDE 的面积与△ABC 重合部分的面积是y ,求y 关于x 的函数解析式,并直接写出自变量x 的取值范围.24.如图,Rt △ABC 中,AB =AC ,∠BAC =90°,△ADE 中,AD =AE ,∠DAE =90°.连接BD 、CE .(1)如图1,点B 在边ED 的延长线上,求∠AEC 的度数;(2)如图2,∠AEC =90°,射线ED 交BC 于点F .①求证:BF =CF ;②若BD =kAD (k >1),求DEDF的值(用含k 的式子表示).25.如图为函数F 1:21(1)22y x =-++的图象,若F 1和F 2的图象关于坐标原点O (0,0)对称,F 1的顶点A 关于点O 的对称点为点B .(1)求F2的解析式;(2)在F1的图象和直线AB围成的封闭图形上,求平行于y轴的线段的长度的最大值;(3)若F=12(1) (1)F x F x <-⎧⎨>-⎩在F的图象上是否存在点C,使∠ABC=45°,若存在,求出点C的坐标;若不存在,请说明理由.参考答案1.A2.C3.D4.C5.B6.A7.C8.B9.D10.C11.(﹣2,﹣3)【详解】解:∵点P 和点Q 关于原点对称,点P 的坐标是(2,3),∴点Q 的坐标是:(﹣2,﹣3).故答案为:(﹣2,﹣3).12.32【详解】解:∵DE ∥BC ,,AED ACB ADE ABC ∴∠=∠∠=∠,∴ADE ABC ,∴AE DEAC BC=,∵23AE AC =,DE =1,∴32BC =,故答案为:32.13.y 1>y 2【详解】解:∵抛物线y=x 2-2x+1,∴抛物线开口向上,对称轴为直线2121x -=-=⨯,∴点A (2,y 1),B y 2)在抛物线y=x 2-2x+1上,且1<2,∴y 1>y 2.故答案为:y 1>y 2.14.44d t =-【详解】如图,过点A 作AC ⊥PQ 于点C∵222314y x x x ++=--+=-()∴P(1,4)∴PQ=4∵PB ⊥PA∴∠BPQ+∠CPA=90°∵AC ⊥PQ∴∠PAC+∠CPA=90°∴∠PAC=∠BPQ ∴△BQP ∽△PCA ∴AQ PC B QPC =∵点A 的横坐标为t (t >1)∴A(t,-t 2+2t +3)∴PC=4-(-t 2+2t +3)=4+t 2-2t -3=t 2-2t+1∵CA=t-1∴24211d t t t =-+-∴4(1)44d t t =-=-故答案为:44d t =-15.70︒【分析】连接BC ,由弧AB 、BC 、CD 的长相等,可得BAC BDC BCA DBC ∠=∠=∠=∠,设ACD ABD x ∠=∠=,在ABC 中,根据三角形内角和定理建立方程,解方程求得x 的值,进而即可求解.【详解】解:连接BC ,弧AB 、BC 、CD 的长相等,BAC BDC BCA DBC ∴∠=∠=∠=∠,设ACD ABD x ∠=∠=,40F ∠=︒ ,40BAC x ∴∠=+︒,40BDC BCA DBC x ∴∠=∠=∠=+︒,在ABC 中,404040180x x x x +︒++++︒+︒=︒,解得15x =︒,4055DBC BCA x ∴∠=∠=+︒=︒,4070AED BEC x x ∴∠=∠=++︒=︒.故答案为:70︒.16.80【分析】由旋转的性质可得∠ACB =∠AED ,AC =AE ,由外角的性质可得∠CAE =∠EFC =∠BFD =20°,由等腰三角形的性质可求解.【详解】解:如图,设AC 与DE 交点为O ,∵△ABC 绕点A 旋转一定角度得到△ADE ,∴∠ACB =∠AED ,AC =AE ,∵∠COE =∠CAE+∠AED =∠ACB+∠EFC ,∴∠CAE =∠EFC =∠BFD =20°,∵AC =AE ,∴∠ACE =∠AEC =80°,故答案为:80.17.开口向下,对称轴x =3,顶点坐标(3,10)【分析】把二次函数化为顶点式,即可得出开口方向、对称轴及顶点坐标.【详解】解:∵y =﹣x 2+6x+1=﹣(x ﹣3)2+10,∴开口向下,对称轴x =3,顶点坐标(3,10).18.(1)见解析(2)图见解析,A'(0,2),B'(-3,4),C'(-3,2)【分析】(1)根据旋转的性质即可画出△A'B'C';(2)根据点P ,A 坐标分别为P (0,1),A (1,1),即可在网格中建立平面直角坐标系,进而写出该坐标系下A',B',C'的坐标.(1)解:如图,△A'B'C'即为所求;(2)解:如图即为所求的平面直角坐标系,A'(0,2),B'(-3,4),C'(-3,2).19.2【分析】根据圆周角定理得到∠BAD=∠BCD=90°,根据勾股定理得到BD==(cm),求得BC=CD,于是得到结论.13【详解】解:解:∵BD为直径,∴∠BAD=∠BCD=90°,∵AB=12,AD=5,∴BD13=,∵AC平分∠BAD,∴∠BAC=∠DAC=45°,∴ BCCD =,∴BC =CD ,∴BC =CD BD ,故BC 的长为2.20.(1)见详解(2)67.5°【分析】(1)根据∠DAB =∠EAC ,得∠DAE =∠BAC ,从而证明结论;(2)根据平行线的性质得∠AED =∠EAC ,利用△ABC ∽△ADE ,得∠AED =∠C ,从而有∠EAC =∠C ,再利用三角形内角和定理可得答案.(1)证明:∵∠EAC =∠DAB ,∴∠BAC =∠DAE ,∵∠B =∠D ,∴△ABC ∽△ADE ;(2)解:∵AC ∥DE ,∴∠AED =∠EAC ,∵△ABC ∽△ADE ,∴∠AED =∠C ,∴∠EAC =∠C ,∵∠AEC =45°,∴∠C =(180°﹣45°)÷2=67.5°,∴∠C 的度数为67.5°.21.(1)证明见解析(2)203【分析】(1)如图,连接BC ,由题意知90ABC ∠=︒, AD BD=,可得90A ACB ∠+∠=︒,ACD BCD ∠=∠,由等边对等角与三角形外角的性质可知ECF CEF A ACD ∠=∠=∠+∠,根据ACF ACD ECF ∠=∠+∠可求90ACF ∠=︒,进而结论得证;(2)由90F BCF ∠+∠=︒,90ACB BCF ∠+∠=︒可得ACB F ∠=∠,4sin sin 5AB ACB F AC ∠===,则45AB AC =,证明ABC ACF ∽△△,则AB AC AC AF =,可得()2446655AC AB AB ⎛⎫=+=⨯+ ⎪⎝⎭,求出满足要求的AC 的值,根据12OC AC =求半径即可.(1)证明:如图,连接BC ,由题意知90ABC ∠=︒,AD BD =∴90A ACB ∠+∠=︒,ACD BCD ∠=∠,∵FC FE=∴ECF CEF A ACD∠=∠=∠+∠∵ACF ACD ECF∠=∠+∠∴90ACF ACD A ACD BCD A ACD ∠=∠+∠+∠=∠+∠+∠=︒∴AC CF⊥又∵OC 是半径∴CF 是O 的切线.(2)解:∵90F BCF ∠+∠=︒,90ACB BCF ∠+∠=︒∴ACB F∠=∠∴4sin sin 5ABACB F AC ∠===∴45AB AC=∵BAC CAF ∠=∠,ACB F∠=∠∴ABC ACF∽△△∴AB ACAC AF =即ABACAC AB BF=+∴()2446655AC AB AB AC AC ⎛⎫=+=⨯+ ⎪⎝⎭解得0AC =(不合题意,舍去),403AC =∴12023OC AC ==∴O 的半径为203.22.(1)A 种花苗的单价为30元,B 种花苗的单价为26元;(2)购买A 种花苗11盆,购买B 种花苗1盆花费最少.【分析】(1)设A 种花苗的单价为x 元,B 种花苗的单价为y 元,根据“购买A 种花苗3盆,B 种花苗5盆,则需220元;购买A 种花苗4盆,B 种花苗10盆,则需380元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总费用等于购买A ,B 两种花苗费用之和列出函数解析式,再根据函数的性质求最值.(1)解:设A 种花苗的单价为x 元,B 种花苗的单价为y 元,依题意得:35220410380x y x y +=⎧⎨+=⎩,解得:3026x y =⎧⎨=⎩.答:A 种花苗的单价为30元,B 种花苗的单价为26元;(2)设购买两种花的总费用为w 元,购买A 种花苗m 盆,则购买B 种花苗(12-m )盆,根据题意得:w=(30-m )m+26(12-m )=-m 2+4m+312=-(m-2)2+316,∵-1<0,0<m <12(m 为整数),∴当m=11时,w 最小,最小值为235,∴购买A 种花苗11盆,购买B 种花苗1盆花费最少.23.(1)6(2)()226724,072278,832y x x y x x ⎧=-+≤<⎪⎪⎨⎪=-≤≤⎪⎩【分析】(1)根据勾股定理可以直接求得BC 的长;(2)当点E 在线段BC 上时,△CDE 的面积与△ABC 重合部分的面积是△CDE 的面积,根据ABC EDC ∽得到CE 即可求出△CDE 的面积,当点E 在CB 的延长线上时,根据相似三角形的性质求出高OF 关于x 的表达式,即可求得ADO S △,从而得到ABC ADO y S S ∆∆=-,最终得到函数的解析式.(1)解:∵∠C =90°∴222BC AC AB +=,∴6BC ==;(2)解:当点E 在线段BC 上时,12DCE S DC CE=⨯ ∵∠C =90°,∠CDE =∠B ,∴=DEC A ∠∠,∴ABC EDC ∽,∴DCCEBC AC =,∵8,6,8AC BC DC x===-∴()()884863x CE x -==-,∴()()11488223DCE S DC CE x x ⎛⎫=⨯=-- ⎪⎝⎭∴()2283DCE S x =- ,如下图所示,当E 点于B 点重合,即BC=CE=6时,即()4863x -=,得72x =,∴当782x ≤≤时,()2283y x =-;当702x ≤<时,点E 在CB 的延长线上,如下图所示,设AB 交DE 于点O ,过点O 作OF AC ⊥,∵90DFO C ∠=∠= ,FDO CBA ∠=∠,∴FDO CBA ∽,∵90DFO C ∠=∠= ,A A ∠=∠,∴AFO ACB ∽,∴FODF AC BC =,AFFOAC BC=设=OF h ,DF n=∵=AF DF x n x+=+∴8686h nx n h ⎧=⎪⎪⎨+⎪=⎪⎩,6h=8n 即3h=4n6x+6n=8h 解方程组得:127h x =,∴2111262277ADO S AD FO x x x =⨯=⨯= ,22ΔΔ1666824277ABC ADO y S S x x =-=⨯⨯-=-+,∴()226724,072278,832y x x y x x ⎧=-+≤<⎪⎪⎨⎪=-≤≤⎪⎩.24.(1)135︒(2)①答案见解析;②21DE DF k =-【分析】(1)证明△BAD ≌△CAE (SAS ),由全等三角形的性质可得出∠AEC =∠ADB ,由等腰直角三角形的性质可得出答案;(2)①过点B 作BH ⊥BD ,交ED 的延长线于点H ,证明△BFH ≌△CFE (AAS ),由全等三角形的性质可得出BF =CF ;②设AD =x ,由等腰直角三角形的性质及全等三角形的性质可得出DF=2,则可得出答案.(1)解:∵∠BAC =∠DAE =90°,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,即∠BAD =∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS ),∴∠AEC =∠ADB ,∵AD =AE ,∠ADE =90°,∴∠ADE =45°,∴∠ADB =135°,∴∠AEC =135°;(2)解:①证明:过点B 作BH ⊥BD ,交ED 的延长线于点H ,由(1)可知△AEC≌△ADB,∴∠AEC=∠ADB=90°,BD=CE,∵∠DAE=90°,AD=AE,∴∠ADE=∠AED=45°,∴∠BDF=∠CED=45°,∴∠H=45°,∴∠BDH=∠H,∠H=∠CEH,∴BD=BH,∴BH=EC,又∵∠BFH=∠CFE,∴△BFH≌△CFE(AAS),∴BF=CF;②解:设AD=x,∵BD=kAD(k>1),∴BD=kx,∴DE2x,DH22kx,∵△BFH≌△CFE,∴EF=FH,∴DF+EF2,∴DF+DE+DF2kx,∴DF=222kx x,∴21DE DFk =-.25.(1)y 12=x 2﹣x 32-(2)2(3)存在C 点,符合条件的C点坐标为(23-,139)或(7,16)【分析】(1)设F 1与x 轴的交点为C 和D ,求出C 点和D 点坐标,然后求出C 点和D 点关于原点的对称点C'和D',再求出B 点的坐标,最后用待定系数法求出F 2的解析式即可;(2)设AB 上一点M ,过M 作y 轴的平行线MN ,交F 1于点N ,求MN 的最大值即可;(3)分点C 在F 1图象段和在F 2图象段两种情况分别求出C 点的坐标即可.(1)设F 1与x 轴的交点为C 和D,当12-(x+1)2+2=0时,解得x 1=1,x 2=﹣3,∴C (1,0),D (﹣3,0),∴C 点关于原点的对称点C'(﹣1,0),D 点关于原点的对称点D'(3,0),∵A (﹣1,2),∴A 点关于原点的对称点B (1,﹣2),设抛物线F 2的解析式为y =ax 2+bx+c ,代入B 点,C'点,D'点坐标得,09302a b c a b c a b c -+=⎧⎪++=⎨⎪++=-⎩,解得12132 abc⎧=⎪⎪=-⎨⎪⎪=-⎩,∴F2的解析式为y12=x2﹣x32-;(2)设AB上一点M,过M作y轴的平行线MN,交F1于点N,设直线AB的解析式为y=sx,代入A点坐标得s=﹣2∴直线AB的解析式为y=﹣2x,设M(m,﹣2m),则N(m,12-(m+1)2+2),∴MN12=-(m+1)2+2﹣(﹣2m)12=-m2+m3122+=-(m﹣1)2+2,∴当m=1时,MN有最大值为2,即平行于y轴的线段的长度的最大值为2;(3)存在C点,分C点在F1图象段和在F2图象段两种情况:①当C 点在F 1图象段时,作线段AB 的垂直平分线PQ ,且OP =OB =OQ ,∴Q (2,1),P (﹣2,﹣1),连接PB 并延长交F 于点C ,连接BQ 并延长与F 交于点C 1设直线PB 的解析式为y =rx+t ,∴212r t r t -+=-⎧⎨+=-⎩,解得1353r t ⎧=-⎪⎪⎨⎪=-⎪⎩,即直线PB 的解析式为y 13=-x 53-,∴215331(1)22y x y x ⎧=--⎪⎪⎨⎪=-++⎪⎩,解得26161261136113x x y y ⎧⎧+-==⎪⎪⎪⎪⎨⎨---⎪⎪==⎪⎪⎩⎩或(舍去),∴此时C (2613-,61139),②当C 点在F 2图象段时,同理可得直线BQ 的解析式为y =3x ﹣5,∴2351322y x y x x =-⎧⎪⎨=--⎪⎩,解得71162x x y y ==⎧⎧⎨⎨==-⎩⎩或(舍去),∴此时C (7,16),综上,符合条件的C 点坐标为(23-,139)或(7,16).。

人教版初三上册《数学》期末考试卷及答案【可打印】

人教版初三上册《数学》期末考试卷及答案【可打印】

一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。

A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 已知一组数据:1,2,3,4,5,那么这组数据的众数、中位数、平均数分别是()。

A. 3,3,3B. 3,3,3.5C. 3,3,4D. 3,3,4.53. 下列函数中,属于一次函数的是()。

A. y=2x+1B. y=x^2C. y=2/xD. y=3sinx4. 已知正比例函数y=kx(k≠0),当x=2时,y=4,那么k的值为()。

A. 2B. 4C. 2D. 45. 在等腰三角形ABC中,AB=AC,∠A=40°,则∠B的度数是()。

A. 40°B. 70°C. 80°D. 90°二、判断题(每题1分,共5分)1. 任意两个等腰三角形的底边长度相等。

()2. 两条平行线上的任意两个点之间的距离相等。

()3. 当两个数的和为0时,它们互为相反数。

()4. 函数y=2x+1的图像是一条直线。

()5. 正比例函数的图像经过原点。

()三、填空题(每题1分,共5分)1. 若x2y=3,则2x4y=______。

2. 若函数y=kx(k≠0)的图像经过点(1,2),则k=______。

3. 已知等腰三角形ABC中,AB=AC=5,BC=8,则∠B的度数是______。

4. 若一组数据的平均数为5,则这组数据的总和是______。

5. 若两个等腰三角形的底边长度相等,则它们一定全等。

()四、简答题(每题2分,共10分)1. 简述正比例函数的定义。

2. 简述等腰三角形的性质。

3. 简述函数图像平移的规律。

4. 简述求解二元一次方程组的方法。

5. 简述众数、中位数、平均数的定义及区别。

五、应用题(每题2分,共10分)1. 某商店销售一批商品,售价为每件20元,成本为每件15元。

若要使利润率达到50%,则售价应定为多少元?2. 已知函数y=kx(k≠0),若该函数的图像经过点(2,4),求k的值。

2023-2024学年全国初三上数学人教版期末试卷(含答案解析)

2023-2024学年全国初三上数学人教版期末试卷(含答案解析)

20232024学年全国初三上数学人教版期末试卷一、选择题(每题2分,共20分)1. 下列选项中,哪个数是方程 $x^2 5x + 6 = 0$ 的一个根?A. 2B. 3C. 4D. 52. 若 $a$ 和 $b$ 是实数,且 $a + b = 7$,$ab = 10$,则$a^2 + b^2$ 等于:A. 29B. 49C. 53D. 633. 在直角坐标系中,点 $P(2, 3)$ 关于 $x$ 轴的对称点是:A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 3)4. 若一个等腰三角形的底边长为8,腰长为10,则该三角形的周长为:A. 16B. 26C. 28D. 365. 下列函数中,哪个函数在其定义域内是增函数?A. $y = 2x + 3$B. $y = x^2 4x + 5$C. $y = \frac{1}{x}$D. $y = x^3$6. 一个正方体的体积是 $64 \text{ cm}^3$,则它的表面积是:A. $64 \text{ cm}^2$B. $96 \text{ cm}^2$C. $128 \text{ cm}^2$D. $256 \text{ cm}^2$7. 若 $\sin \theta = \frac{1}{2}$,且 $\theta$ 是第二象限的角,则 $\cos \theta$ 等于:A. $\frac{\sqrt{3}}{2}$B. $\frac{\sqrt{3}}{2}$C. $\frac{1}{2}$D. $\frac{1}{2}$8. 在 $\triangle ABC$ 中,若 $a = 5$, $b = 8$, $\sin A = \frac{3}{5}$,则 $\sin B$ 等于:A. $\frac{3}{5}$B. $\frac{8}{5}$C. $\frac{5}{8}$D. $\frac{5}{13}$9. 若 $f(x) = x^3 3x + 2$,则 $f'(x)$ 等于:A. $3x^2 3$B. $x^2 3$C. $3x^2 + 3$D. $x^2 + 3$10. 若复数 $z$ 满足 $|z 1| = 1$,则 $z$ 在复平面内对应的点位于:A. 以 (1,0) 为圆心,1 为半径的圆上B. 以 (0,1) 为圆心,1 为半径的圆上C. 以 (1,0) 为圆心,1 为半径的圆上D. 以 (0,1) 为圆心,1 为半径的圆上二、判断题(每题2分,共10分)11. 任何两个奇数之和都是偶数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代县滩上初级中学2014年下学期-期末考试
数学卷
考试时间:90分钟 满分:120分 题号 0 1 2 总分 核分人 得分
*注意事项:
1.填写答题卡的内容用2B 铅笔填写
2.提前5分钟收取答题卡
第Ⅰ卷 客观题
得分
批卷人 一、 选择题 每题3分,共10题
1、一个数的绝对值等于3,这个数是【 】
A .3
B .﹣3
C .±3
D .
2、神舟九号飞船发射成功,一条相关的微博被转发了3570000次,3570000这个数用科学计数法表示为【 】
(A)357×104 (B) 3.57×105 (C) 3.57×106 (D) 3.57×107
3、下列图形中,是中心对称图形,但不是轴对称图形的是【 】
4、在一个不透明的袋子中,装有形状、质地、大小等完全相同的1个黑球、2个白球、3个黄球、4个红球.从中随机抽取一个,那么取出的小球是黄球的概率是【 】
A .110
B .15
C .310
D .2
5
5、已知关于x 的一元二次方程x 2+x+m=0的一个实数根为1,那么它的另一个实数根是【 】
A .-2
B .0
C .1
D .2
6、如果关于x 的一元二次方程2kx 2k 1x 10++=有两个不相等的实数根,那么k 的取值范围是【 】
A .k <12
B .k <12且k≠0
C .﹣12≤k <12
D .﹣12≤k <1
2且k≠0
7、如图,两个同心圆的半径分别为4cm 和5cm ,大圆的一条弦AB 与小圆相切,则弦AB 的长为【 】
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○……………………○…………内…………○…………装…………○…………订…………○…………线…………○…………
A.3cm B.4cm C.6cm D.8cm
8、如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A, B为圆
心,以大于1
2AB长为半径作弧,两弧交于点C.若点C的坐标为(m-1,2n),则m与n的关系为【】
(A)m+2n=1 (B)m-2n=1 (C)2n-m=1 (D)n-2m=1
9、如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC 绕点C顺时针旋转60°,则顶点A所经过的路径长为:【】
A.10πB.10
3C.
10
3πD.π
10、如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,点B坐标(﹣1,0),下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④b2﹣4ac>0.其中正确的结论是【】
A.①④B.①③C.②④D.①②
第Ⅱ卷主观题
得分批卷人二、填空题
每题3分,共6题
11、如图所示,图形①经过_______变化成图形②,图形②经过______变化成图形③, 图形③经过________变化成图形④.
12、某种衬衣的价格经过连续两次降价后,由每件150元,降至96元,平均每次降低的百分率是。

13、如图,正六边形内接于圆O,圆O的半径为10,则图中阴影部分的面积为_________.
14、将二次函数
()212
y x
=---
的图像沿
y轴向上平移3个单位,那么平移后的二次函数解析式
为.
15、如图,已知⊙P的半径为2,圆心P在抛物线y=1
2x2—1上运动,当⊙P与x轴相切时,圆心P的坐标为
_________________.
16、如图,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形,图4中有30个菱形……,则第6个图中菱形的个数是个.
得分批卷人三、计算题
每题10分,共1题
解方程:
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… …………○…………内…………○…………装…………○
…………订…………○…………线…………○…………
17、
09422=--x x (用配方法解) 18、
023432=+-x x (用公式法解)
得分
批卷人 四、 解答题 18、19、20、21、22每题10分,23题12分
,共6题
19、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库
存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元。

商场平均每天可多售出4件,若商
场平均每天盈利2100元,每件衬衫应降价多少元?
20、如图,在直角坐标系中,Rt AOB △的两条直角边OA
OB ,分别在x 轴的负半轴,y 轴的负半轴上,且21OA OB ==,.将Rt AOB △绕点O 按顺时针方向旋转90,再把所得的像沿x 轴正方向平移1个单位,得
CDO △.
(1)写出点A C ,的坐标;
(2)求点A 和点C 之间的距离.
21、小晶和小红玩掷骰子游戏,每人将一个各面分别标有1,2,3,4,5,6的正方体骰子掷一次,把两人掷得
的点数相加,并约定:点数之和等于6,小晶赢;点数之和等于7.小红赢;点数之和是其它数,两人不分胜负.问
他们两人谁获胜的概率大?请你用“画树状图”或“列表”的方法加以分析说明.
22、如图,已知CB 是⊙O 的弦,CD 是⊙O 的直径,点A 为CD 延长线上一点,BC=AB ,∠CAB=30°.
(1)求证:AB 是⊙O 的切线;(2)若⊙O 的半径为2,求BD 的长.
23、已知:如图,在正方形ABCD 中,E 、F 分别是AD 、CD 的中点.
(1)线段AF 与BE 有何关系?说明理由;
y
x C B
D
O A
(2)延长AF 、BC 交于点H ,则B 、D 、G 、H 这四个点是否在同一个圆上?说明理由. D G F
E
C B A
24、已知抛物线y=ax 2+2x+c 的图象与x 轴交于点A (3,0)和点C ,与y 轴交于点B (0,3).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上找一点D ,使得点D 到点B 、C 的距离之和最小,并求出点D 的坐标;
(3)在第一象限的抛物线上,是否存在一点P ,使得△ABP 的面积最大?若存在,求出点P 的坐标;若不存在,请说明理由.。

相关文档
最新文档