成都石室联合中学数学全等三角形易错题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、八年级数学全等三角形解答题压轴题(难)
1.如图1,等腰△ABC中,AC=BC=42, ∠ACB=45˚,AO是BC边上的高,D为线段AO上一动点,以CD为一边在CD下方作等腰△CDE,使CD=CE且∠DCE=45˚,连结BE.
(1) 求证:△ACD≌△BCE;
(2) 如图2,在图1的基础上,延长BE至Q, P为BQ上一点,连结CP、CQ,若CP=CQ=5,求PQ的长.
(3) 连接OE,直接写出线段OE的最小值.
【答案】(1)证明见解析;(2)PQ=6;(3)OE=422
-
【解析】
试题分析:()1根据SAS即可证得ACD BCE
≌;
()2首先过点C作CH BQ
⊥于H,由等腰三角形的性质,即可求得45
DAC
∠=︒,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ 的长.
()3OE BQ
⊥时,OE取得最小值.
试题解析:()1证明:∵△ABC与△DCE是等腰三角形,
∴AC=BC,DC=EC,45
ACB DCE
∠=∠=,
45
ACD DCB ECB DCB
∴∠+∠=∠+∠=,
∴∠ACD=∠BCE;
在△ACD和△BCE中,
,
AC BC
ACD BCE
DC EC
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
(SAS)
ACD BCE
∴≌;
()2首先过点C作CH BQ
⊥于H,
(2)过点C作CH⊥BQ于H,
∵△ABC是等腰三角形,∠ACB=45˚,AO是BC边上的高,45
DAC
∴∠=,
ACD BCE
≌,
45
PBC DAC
∴∠=∠=,
∴在Rt BHC中,
22
424
22
CH BC
=⨯=⨯=,
54
PC CQ CH
===
,,
3
PH QH
∴==,
6.
PQ
∴=
()3OE BQ
⊥时,OE取得最小值.
最小值为:42 2.
OE=-
2.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;
(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.
【答案】(1)证明见解析(2)证明见解析
【解析】
试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明
△DBE≌△CFD,得出EB=DF,即可得出结论;
(2)作DF∥BC 交AC 的延长线于F ,同(1)证出△DBE≌△CFD,得出EB=DF ,即可得出结论.
试题解析:(1)证明:如图,作DF ∥BC 交AC 于F ,
则△ADF 为等边三角形
∴AD=DF ,又∵ ∠DEC=∠DCB ,
∠DEC+∠EDB=60°,
∠DCB+∠DCF=60° ,
∴ ∠EDB=∠DCA ,DE=CD ,
在△DEB 和△CDF 中,
120EBD DFC EDB DCF DE CD ,,
∠=∠=︒⎧⎪∠=∠⎨⎪=⎩
∴△DEB
≌△CDF ,
∴BD=DF ,
∴BE=AD .
(2). EB=AD 成立;
理由如下:作DF ∥BC 交AC 的延长线于F ,如图所示:
同(1)得:AD=DF ,∠FDC=∠ECD ,∠FDC=∠DEC ,ED=CD ,
又∵∠DBE=∠DFC=60°,
∴△DBE ≌△CFD
(AAS ),
∴EB=DF ,
∴EB=AD.
点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.
3.如图,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,点P在线段AB上以3 cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.
(1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ 是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;
(2)将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.(3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.
【答案】(1)△ACP≌△BPQ,理由见解析;线段PC与线段PQ垂直(2)1或
3
2
(3)9s 【解析】
【分析】
(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出
∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;
(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.
(3)因为V Q<V P,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,据此列出方程,解这个方程即可求得.
【详解】
(1)当t=1时,AP=BQ=3,BP=AC=9,
又∵∠A=∠B=90°,
在△ACP与△BPQ中,
AP BQ
A B
AC BP
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ACP≌△BPQ(SAS),
∴∠ACP=∠BPQ,
∴∠APC+∠BPQ=∠APC+∠ACP=90°,
∠CPQ=90°,
则线段PC与线段PQ垂直.
(2)设点Q的运动速度x,
①若△ACP≌△BPQ,则AC=BP,AP=BQ,
912t t xt =-⎧⎨=⎩
, 解得31t x =⎧⎨=⎩
, ②若△ACP ≌△BPQ ,则AC=BQ ,AP=BP ,
912xt t t
=⎧⎨=-⎩ 解得632t x =⎧⎪⎨=⎪⎩
, 综上所述,存在31t x =⎧⎨=⎩或632t x =⎧⎪⎨=⎪⎩
使得△ACP 与△BPQ 全等. (3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程,
设经过x 秒后P 与Q 第一次相遇,
∵AC=BD=9cm ,C ,D 分别是AE ,BD 的中点;
∴EB=EA=18cm.
当V Q =1时,
依题意得3x=x+2×9,
解得x=9;
当V Q =32
时, 依题意得3x=
32x+2×9, 解得x=12.
故经过9秒或12秒时P 与Q 第一次相遇.
【点睛】
本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.
4.如图,在ABC ∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .
(1)填空:ABC S ∆=______2cm ;
(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;
(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.
【答案】(1)8;(2)见解析;(3)
45或4. 【解析】
【分析】
(1)直接可求△ABC 的面积;
(2)连接CD ,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD ,且BE=CF ,即可证△CDF ≌△BDE ,可得DE=DF ;
(3)分△ADF 的面积是△BDE 的面积的两倍和△BDE 与△ADF 的面积的2倍两种情况讨论,根据题意列出方程可求x 的值.
【详解】
解:(1)∵S △ABC =
12⨯AC×BC ∴S △ABC =12
×4×4=8(cm 2) 故答案为:8
(2)如图:连接CD
∵AC=BC ,D 是AB 中点
∴CD 平分∠ACB
又∵∠ACB=90°
∴∠A=∠B=∠ACD=∠DCB=45°
∴CD=BD
依题意得:BE=CF
∴在△CDF与△BDE中
BE CF
B DCA
BD CD
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△CDF≌△BDE(SAS)
∴DE=DF
(3)如图:过点D作DM⊥BC于点M,DN⊥AC于点N,
∵AD=BD,∠A=∠B=45°,∠AND=∠DMB=90°
∴△ADN≌△BDM(AAS)
∴DN=DM
当S△ADF=2S△BDE.
∴
1
2
×AF×DN=2×
1
2
×BE×DM
∴|4-3x|=2x
∴x1=4,x2=
4
5
综上所述:x=
4
5
或4
【点睛】
本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.
5.如图,在ABC
∆中,ACB
∠为锐角,点D为射线BC上一动点,连接AD.以AD为直角边且在AD的上方作等腰直角三角形ADF.
(1)若AB AC =,90BAC ∠=︒
①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系; ②当点D 在线段C 的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;
(2)如图3,若AB AC ≠,90BAC ∠≠︒,45BCA ∠=︒,点D 在线段BC 上运动,试探究CF 与BD 的位置关系.
【答案】(1)①CF ⊥BD ,证明见解析;②成立,理由见解析;(2)CF ⊥BD ,证明见解析.
【解析】
【分析】
(1)①根据同角的余角相等求出∠CAF=∠BAD ,然后利用“边角边”证明△ACF 和△ABD 全等,②先求出∠CAF=∠BAD ,然后与①的思路相同求解即可;
(2)过点A 作AE ⊥AC 交BC 于E ,可得△ACE 是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE ,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD ,然后利用“边角边”证明△ACF 和△AED 全等,根据全等三角形对应角相等可得∠ACF=∠AED ,然后求出∠BCF=90°,从而得到CF ⊥BD .
【详解】
解:(1)①∵∠BAC=90°,△ADF 是等腰直角三角形,
∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,
∴∠CAF=∠BAD ,
在△ACF 和△ABD 中,
∵AB=AC ,∠CAF=∠BAD ,AD=AF ,
∴△ACF ≌△ABD(SAS),
∴CF=BD ,∠ACF=∠ABD=45°,
∵∠ACB=45°,
∴∠FCB=90°,
∴CF ⊥BD ;
②成立,理由如下:如图2:
∵∠CAB=∠DAF=90°,
∴∠CAB+∠CAD=∠DAF+∠CAD,
即∠CAF=∠BAD,
在△ACF和△ABD中,
∵AB=AC,∠CAF=∠BAD,AD=AF,
∴△ACF≌△ABD(SAS),
∴CF=BD,∠ACF=∠B,
∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°,
∴∠BCF=∠ACF+∠ACB=45°+45°=90°,
∴CF⊥BD;
(2)如图3,过点A作AE⊥AC交BC于E,
∵∠BCA=45°,
∴△ACE是等腰直角三角形,
∴AC=AE,∠AED=45°,
∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,
∴∠CAF=∠EAD,
在△ACF和△AED中,
∵AC=AE,∠CAF=∠EAD,AD=AF,
∴△ACF≌△AED(SAS),
∴∠ACF=∠AED=45°,
∴∠BCF=∠ACF+∠BCA=45°+45°=90°,
∴CF⊥BD.
【点睛】
本题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的
判定和性质进行综合运用.
6.已知4
AB cm
=,3
AC BD cm
==.点P在AB上以1/
cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()
t s.
(1)如图①,AC AB
⊥,BD AB
⊥,若点Q的运动速度与点P的运动速度相等,当1
t=时,ACP
△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;
(2)如图②,将图①中的“AC AB
⊥,BD AB
⊥”为改“60
CAB DBA
∠=∠=︒”,其他条件不变.设点Q的运动速度为/
xcm s,是否存在实数x,使得ACP
△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.
【答案】(1)全等,PC与PQ垂直;(2)存在,
1
1
t
x
=
⎧
⎨
=
⎩
或
2
3
2
t
x
=
⎧
⎪
⎨
=
⎪⎩
【解析】
【分析】
(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出
∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;
(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.
【详解】
解:(1)当t=1时,AP=BQ=1,BP=AC=3,
又∠A=∠B=90°,
在△ACP和△BPQ中,
AP BQ
A B
AC BP
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ACP≌△BPQ(SAS).
∴∠ACP=∠BPQ,
∴∠APC+∠BPQ=∠APC+∠ACP=90°.
∴∠CPQ=90°,
即线段PC与线段PQ垂直.
(
2)①若△ACP ≌△BPQ ,
则AC=BP ,AP=BQ ,
34t t xt =-⎧⎨=⎩
, 解得11t x =⎧⎨=⎩
, ②若△ACP ≌△BQP ,
则AC=BQ ,AP=BP ,
34xt t t
=⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩
, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩
使得△ACP 与△BPQ 全等. 【点睛】
本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.
7.(1)如图(a )所示点D 是等边ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作等边DCF ,连接AF .你能发现线段AF 与BD 之间的数量关系吗?并证明.
(2)如图(b )所示当动点D 运动至等边ABC 边BA 的延长线上时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?(直接写出结论)
(3)①如图(c )所示,当动点D 在等边ABC 边BA 上运动时(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方、下方分别作等边DCF 和等边DCF ',连接AF 、BF ',探究AF 、BF '与AB 有何数量关系?并证明.
②如图(d )所示,当动点D 在等边ABC 边BA 的延长线上运动时,其他作法与(3)①相同,①中的结论是否成立?若不成立,是否有新的结论?并证明.
【答案】(1)AF=BD ,理由见解析;(2)AF=BD ,成立;(3)①AF BF AB '+=,证明
见解析;②①中的结论不成立新的结论是AF AB BF '=+,理由见解析
【解析】
【分析】
(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS 可证得BCD ACF △≌△,然后由全等三角形的对应边相等知AF BD = .
(2)通过证明BCD ACF △≌△,即可证明AF BD =.
(3)①'AF BF AB += ,利用全等三角形BCD ACF △≌△的对应边BD AF = ,同理'BCF ACD △≌△ ,则'BF AD = ,所以'AF BF AB +=;
②①中的结论不成立,新的结论是'AF AB BF =+ ,通过证明BCF ACD △≌△,则'BF AD =(全等三角形的对应边相等),再结合(2)中的结论即可证得
'AF AB BF =+ .
【详解】
(1)AF BD =
证明如下:ABC 是等边三角形,
BC AC ∴=,60BCA ︒∠=.
同理可得:DC CF =,60DCF ︒∠=.
BCA DCA DCF DCA ∴∠-∠=∠-∠.
即BCD ACF ∠=∠.
BCD ACF ∴△≌△.
AF BD ∴=.
(2)证明过程同(1),证得BCD ACF △≌△,则AF BD =(全等三角形的对应边相等),所以当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF BD =依然成立.
(3)①AF BF AB '+=
证明:由(1)知,BCD ACF △≌△.
BD AF ∴=.
同理BCF ACD '△≌△.
BF AD '∴=.
AF BF BD AD AB '∴+=+=.
②①中的结论不成立新的结论是AF AB BF '=+;
BC AC =,BCF ACD '∠=∠,F C DC '=,
BCF ACD '∴△≌△.
BF AD '∴=.
又由(2)知,AF BD =.
AF BD AB AD AB BF '∴==+=+.
即AF AB BF '=+.
【点睛】
本题考查了三角形的综合问题,掌握等边三角形的三条边、三个内角都相等的性质、全等三角形的判定定理、全等三角形的对应边相等是解题的关键.
8.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图
(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;
(2)请你直接利用以上结论,解决以下问题:
①如图(2),把一块三角尺XYZ放置在△ABC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.
②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE 的度数.
【答案】(1)∠BDC=∠BAC+∠B+∠C,理由见解析;(2)①50;②∠DCE=85°.【解析】
【分析】
(1)首先连接AD并延长至点F,然后根据外角的性质,即可判断出∠BDC=
∠BAC+∠B+∠C;
(2)①由(1)可得∠A+∠ABX+∠ACX=∠X,然后根据∠A=40°,∠X=90°,即可求解;
(3)②由∠A=40°,∠DBE=130°,求出∠ADE+∠AEB的值,然后根据∠DCE=
∠A+∠ADC+∠AEC,求出∠DCE的度数即可.
【详解】
(1)如图,∠BDC=∠BAC+∠B+∠C,理由是:
过点A、D作射线AF,
∵∠FDC =∠DAC+∠C ,∠BDF =∠B+∠BAD ,
∴∠FDC+∠BDF =∠DAC+∠BAD+∠C+∠B ,
即∠BDC =∠BAC+∠B+∠C ;
(2)①如图(2),∵∠X =90°,
由(1)知:∠A+∠ABX+∠ACX =∠X =90°,
∵∠A =40°,
∴∠ABX+∠ACX =50°,
故答案为:50;
②如图(3),∵∠A =40°,∠DBE =130°,
∴∠ADE+∠AEB =130°﹣40°=90°,
∵DC 平分∠ADB ,EC 平分∠AEB ,
∴∠ADC =
12∠ADB ,∠AEC =12
∠AEB , ∴∠ADC+∠AEC =1(ADB AEB)2∠+∠=45°, ∴∠DCE =∠A+∠ADC+∠AEC =40°+45°=85°.
【点睛】
本题主要考查了三角形外角性质以及角平分线的定义的运用,熟知三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.
9.如图,ABC ∆是等腰直角三角形,090BAC ∠=,点D 是直线BC 上的一个动点(点D 与点B C 、不重合),以AD 为腰作等腰直角ADE ∆,连接CE .
(1)如图①,当点D 在线段BC 上时,直接写出,BC CE 的位置关系,线段,BC CD ,CE 之间的数量关系;
(2)如图②,当点D 在线段BC 的延长线上时,试判断线段BC ,CE 的位置关系,线段,,BC CD CE 之间的数量关系,并说明理由;
(3)如图③,当点D 在线段CB 的延长线上时,试判断线段,BC CE 的位置关系,线段
,,BC CD CE 之间的数量关系,并说明理由.
【答案】(1)见解析;(2)BC CE ⊥,CE BC CD =+,理由见解析;(3)
,BC CE CD BC CE ⊥=+,理由见解析
【解析】
【分析】
(1)根据条件AB=AC ,∠BAC=90°,AD=AE ,∠DAE=90°,判定△ABD ≌△ACE (SAS ),利用两角的和即可得出BC CE ⊥;利用线段的和差即可得出BC CE CD =+;
(2)同(1)的方法根据SAS 证明△ABD ≌△ACE ,得出BD=CE ,∠ACE=∠ABD ,从而得出结论;
(3)先根据SAS 证明△ABD ≌△ACE ,得出ADB AEC ∠=∠,BD CE =,从而得出结论.
【详解】
(1)∵△ABC 、△ADE 是等腰直角三角形,
∴AB=AC ,AE =AD ,
在△△ABD 和△ACE 中
90AB AC BAC DAE AD AE ⎧⎪∠∠=︒⎨⎪⎩
=== , ∴△ABD ≌△ACE (SAS ),
∴∠B =∠ACE ,BD=CE,
又∵△ABC 是等腰直角三角形,
∴∠B+∠ACB=90︒,
∴∠ACE +∠ACB=90︒,即BC CE ⊥,
∵BC=BD+CD, BD=CE ,
∴BC CE CD =+;
(2)BC CE ⊥,CE BC CD =+,理由如下:
∵ABC ∆、ADE ∆是等腰直角三角形,
∴0
,,90AB AC AD AE BAC DAE ==∠=∠=,
∴BAC DAC DAE DAC ∠+∠=∠+∠
即BAD CAE ∠=∠,
在ABD ∆和ACE ∆中 AB AC BAD CAE AD AE ⎧⎪∠=∠⎨⎪⎩
== ∴()ABD ACE SAS ∆≅∆
∴BD CE =
∵BD BC CD =+
∴CE BC CD =+,
∴ABD ACE ∠=∠,
∵090ABD ACE ∠+∠=
∴090ACE ACB ∠+∠=
∴BC CE ⊥.
(3),BC CE CD BC CE ⊥=+,理由如下:
∵ABC ADE ∆∆、是等腰直角三角形,
∴0
,,90AB AC AD AE BAC DAE ==∠=∠=,
∴BAC BAE DAE BAE ∠-∠=∠-∠,即BAD CAE ∠=∠,
在ABD ∆和ACE ∆中 AB AC BAD CAE AD AE ⎧⎪∠=∠⎨⎪⎩
== ∴()ABD ACE SAS ∆≅∆,
∴ADB AEC ∠=∠,BD CE =,
∵CD BD BC =+,
∴CD CE BC =+,
∵090ADE AED ∠+∠=,即090ADB CDE AED ∠+∠+∠=
∴090AEC CDE AED ∠+∠+∠=,
∴090DCE ∠=,即BC CE ⊥.
【点睛】
考查了全等三角形的判定与性质以及等腰直角三角形的性质的运用,解题关键是根据利用两边及其夹角分别对应相等的两个三角形全等判定三角形全等.
10.(1)如图(1),已知:在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE=BD+CE .
(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA=∠AEC=∠BAC ,求证:△DEF 是等边三角形.
【答案】(1)见解析;(2)成立,理由见解析;(3)见解析
【解析】
【分析】
(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.
(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以
DE=DA+AE=EC+BD.
(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.
【详解】
证明:(1)∵BD ⊥直线m ,CE ⊥直线m
∴∠BDA=∠CEA=90°,∵∠BAC=90°
∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°
∴∠CAE=∠ABD,又AB=AC ,∴△ADB≌△CEA
∴AE=BD,AD=CE,∴DE=AE+AD= BD+CE
(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α
∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC
∴△ADB≌△CEA,∴AE=BD,AD=CE
∴DE=AE+AD=BD+CE
(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE
∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°
∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE
∵BF=AF,∴△DBF≌△EAF
∴DF=EF,∠BFD=∠AFE
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°
∴△DEF为等边三角形.
【点睛】
利用全等三角形的性质证线段相等是证两条线段相等的重要方法.。