八年级全等三角形易错题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级全等三角形易错题(Word版含答案)

一、八年级数学轴对称三角形填空题(难)

1.如图所示,ABC为等边三角形,P是ABC内任一点,PD AB,PE BC

∥,PF AC

∥,若ABC的周长为12cm,则PD PE PF

++=____cm.

【答案】4

【解析】

【分析】

先说明四边形HBDP是平行四边形,△AHE和△AHE是等边三角形,然后得到一系列长度相等的线段,最后求替换求和即可.

【详解】

解:∵PD AB,PE BC

∴四边形HBDP是平行四边形

∴PD=HB

∵ABC为等边三角形,周长为12cm

∴∠B=∠A=60°,AB=4

∵PE BC

∴∠AHE=∠B=60°

∴∠AHE=∠A=60°

∴△AHE是等边三角形

∴HE=AH

∵∠HFP=∠A=60°

∴∠HFP=∠AHE=60°

∴△AHE是等边三角形,

∴FP=PH

∴PD+PE+PF=BH+(HP+PE)=BH+HE=BH+AH=AB=4cm

故答案为4cm.

【点睛】

本题考查了平行四边形的判定和性质以及等边三角形的性质,掌握等边三角形的性质是解答本题的关键.

2.如图,△ABC中,AB=AC,∠A=30°,点D在边AB上,∠ACD=15°,则AD

BC

=____.

【答案】

22

. 【解析】

【分析】

根据题意作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH =DH ,连接DH ,并设AD =2x ,解直角三角形求出BC (用x 表示)即可解决问题.

【详解】

解:作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH=DH ,连接DH .

设AD=2x ,

∵AB=AC ,∠A=30°, ∴∠ABC=∠ACB=75°,DF 12=

AD=x ,AF 3=, ∵∠ACD=15°,HD=HC ,

∴∠HDC=∠HCD=15°,

∴∠FHD=∠HDC+∠HCD=30°,

∴DH=HC=2x ,FH 3=,

∴3x , 在Rt △ACE 中,EC 12

=AC=x 3+,AE 3=3=, ∴BE=AB ﹣AE 3=﹣x ,

在Rt △BCE 中,BC 22BE EC =

+=2x , ∴22

22AD BC x ==.

故答案为:

22

. 【点睛】 本题考查的等腰三角形的性质和解直角三角形以及直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.

3.如图,在△ABC 中,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,若∠BAC=126°,则∠EAD=_____°.

【答案】72°

【解析】

【分析】

根据AB 的中垂线可得BAD ∠,再根据AC 的中垂线可得EAC ∠,再结合∠BAC=126°即可计算出∠EAD .

【详解】

根据AB 的中垂线可得BAD ∠=B

根据AC 的中垂线可得EAC ∠=C ∠

18012654B C ︒︒︒∠+∠=-=

又 126BAD DAE EAC BAC ︒∠+∠+∠=∠=

+C+126B DAE ︒∴∠∠∠=

72DAE ︒∴∠=

【点睛】

本题主要考查中垂线的性质,重点在于等量替换表示角度.

4.如图,将ABC ∆沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE ∆沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2020次操作后得到的折痕20192019D E 到BC 的距离记为2020h ,若11h =,则2020h 的值为______.

【答案】2019122-

【解析】

【分析】

根据中点的性质及折叠的性质可得DA=DA ₁=DB,从而可得∠ADA ₁=2∠B,结合折叠的性质可得.,∠ADA ₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE 是△ABC 的中位线,证得AA ₁⊥BC,AA ₁=2,由此发现规律:01

2122h =-=-₁同理21122h =-3211122222

h =-⨯=-…于是经过第n 次操作后得到的折痕Dn-1 En-1到BC 的距离1122n n h -=-

,据此求得2020h 的值. 【详解】

解:如图连接AA ₁,由折叠的性质可得:AA ₁⊥DE, DA= DA ₁ ,A ₂、A ₃…均在AA ₁上

又∵ D 是AB 中点,∴DA= DB ,

∵DB= DA ₁ ,

∴∠BA ₁D=∠B ,

∴∠ADA ₁=∠B +∠BA ₁D=2∠B,

又∵∠ADA ₁ =2∠ADE ,

∴∠ADE=∠B

∵DE//BC,

∴AA ₁⊥BC ,

∵h ₁=1

∴AA ₁ =2,

∴01 2122h =-=-₁ 同理:21122

h =-; 3211122222

h =-⨯=-; …

∴经过n 次操作后得到的折痕D n-1E n-1到BC 的距离1122n n h -=-

∴20202019122h =-

【点睛】

本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.

5.如图,在ABC ∆和DBC ∆中,40A ∠=,2AB AC ==,140BDC ∠=,BD CD =,以点D 为顶点作70MDN ∠=,两边分别交,AB AC 于点,M N ,连接MN ,则AMN ∆的周长为_______.

【答案】4

【解析】

【分析】

延长AB 至F ,使BF =CN ,连接DF ,通过证明△BDF ≌△CDN ,及△DMN ≌△DMF ,从而得出MN =MF ,△AMN 的周长等于AB +AC 的长.

【详解】

延长AB 至F ,使BF =CN ,连接DF .

∵BD =CD ,且∠BDC =140°,

∴∠BCD =∠DBC =20°.

相关文档
最新文档